2018届杨浦区高三一模数学试卷及解析
2018年上海市杨浦区高考数学一模试卷及解析
2018年上海市杨浦区高考数学一模试卷一。
填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g (x)=f(x+α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二。
选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点"的() A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A.B.2 C.4 D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B ⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.21.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列",写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一。
上海杨浦实验学校 2018年高三数学文模拟试卷含解析
上海杨浦实验学校 2018年高三数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 由直线与曲线所围成的封闭图形的面积为()A. B. C. D.参考答案:【知识点】定积分在求面积中的应用.B13D 解析:作出对应的图象如图:则对应的区域面积,故选:D【思路点拨】先根据题意画出直线及所围成的封闭图形,然后利用定积分表示区域面积,最后转化成等价形式.2. 若满足且的最大值为4,则的值为(A) (B)(C) (D)参考答案:A考点:线性规划因为可行域如图,当时,不合题意,当时,在取得最大值故答案为:A3. 在复平面内,复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限参考答案:B【分析】化简复数为的形式,然后判断复数的对应点所在象限,即可求得答案.【详解】对应的点的坐标为在第二象限故选:B.【点睛】本题主要考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,属于基础题.4. 已知都是定义在R上的函数,,,且(),,对于数列(n=1,2,…,10),任取正整数k(1≤k≤10),则其前k项和大于的概率是( ).A. B. C.D.参考答案:D5. 已知函数f(x)=sin (2x+),其中为实数,若f(x)≤对x∈R恒成立,且,则f(x)的单调递增区间是A.B.C.D.参考答案:C若对恒成立,则,所以,.由,(),可知,即,所以,代入,得,由,得,故选C.6. 某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有()A.种 B.种 C.种 D.种参考答案:A7. 已知,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:A8. 已知,命题,则( )A.是假命题;B.是假命题;C.是真命题;D.是真命题;参考答案:D9. 已知函数是自然对数的底数)与的图象上存在关于x轴对称的点,则实数a的取值范围是()A. B.C. D.参考答案:A【分析】由已知,得到方程即在[,e]上有解,构造函数,求出它的值域,即可得到a的范围.【详解】根据题意,若函数(,是自然对数的底数)与的图象上存在关于轴对称的点,则方程在区间上有解,即,即方程在区间上有解,设函数,其导数,又,在有唯一的极值点,分析可得:当时,,为减函数,当时,,为增函数,故函数有最小值,又由,,比较得,故函数有最大值,故函数在区间上的值域为;若方程在区间上有解,必有,则有,即的取值范围是.故选A.【点睛】本题考查了利用导数研究函数的值域问题,考查了构造函数法求方程的解及参数范围,考查了转化思想,属于中档题.10. 设是虚数单位,复数为纯虚数,则实数为A. B. C. D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 的值等于________.参考答案:略12. 二男二女共四个学生站成一排照相,两个女生必须相邻的站法有种.(用数字作答)参考答案:1213. 定义在R上的偶函数满足:上是增函数,给出下列判断:①是周期函数;②的图像关于直线x=1对称;③在[0,1]上是增函数;④在[1,2]上是减函数;⑤其中正确的命题是。
2018学年杨浦区高三年级一模试卷
2018学年杨浦区高三年级一模试卷2018.12一、填空题1.设全集{}1,2,3,4,5U =,若集合{}3,4,5A =,则u A =ð___________.2.已知扇形的半径为6,圆心角为3π,则扇形的面积为___________. 3.已知双曲线221x y -=,则其两条渐近线的夹角为___________. 4.若()na b +展开式的二项式系数之和为8,则n =___________. 5.若实数,x y 满足221x y +=,则xy 的取值范围是___________.6.若圆锥的母线长()5l cm =,高()4h cm =,则这个圆锥的体积等于___________.7.在无穷等比数列{}n a 中,()121lim ,2n n a a a →+∞+++=则1a 的取值范围是___________. 8.若函数()1ln1xf x x +=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆,则实数a 的取值范围为___________.9.在行列式274434651xx--中,第3行第2列的元素的代数余子式记作()f x ,则()1y f x =+的零点是___________.10.已知复数())12cos 2,cos z x f x i z x x i =+=++,(,x R i ∈虚数单位)在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若1290Z OZ ∠=,其中是坐标原点,则函数()f x 的最小正周期___________. 11.当0x a <<时,不等式()22112x a x +≥-恒成立,则实数a 的最大值为___________. 12.设d 为等差数列{}n a 的公差,数列{}n b 的前项和n T ,满足()()112n n n nT b n N *+=-∈,且52d a b ==,若实数{}()23,3k k k m P x a x a k N k *-+∈=<<∈≥,则称m 具有性质k P ,若是n H 数列{}n T 的前n 项和,对任意的n N *∈,21n H -都具有性质k P ,则所有满足条件的k 的值为___________. 二、选择题13.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )(A )()arcsin f x x= (B )lg y x= (C )()f x x =-(D )()cos f x x =14.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ( )(A )310 (B ) 35 (C ) 25 (D )2315.已知()sin log ,0,2f x x θπθ⎛⎫=∈ ⎪⎝⎭,设sin cos ,,2a f b f θθ+⎛⎫== ⎪⎝⎭sin sin cos c f θθθ⎛⎫=⎪+⎝⎭,则,,a b c 的大小关系是 (A )a b c ≤≤ (B )b c a ≤≤ (C )c b a ≤≤(D )a b c ≤≤16.已知函数()22x f x m x nx =⋅++,记集合(){}0,A x f x x R==∈,集合(){}0,B x f x x R ==∈,若A B =,且都不是空集,则m n +的取值范围是( )( A )[]0,4(B )[]1,4- (C )[]3,5- (D )[]0,7三、解答题17.如图,,PA ABCD ⊥平面四边形ABCD 为矩形,1PA PB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动。
上海市杨浦区2018届高三数学上学期期末质量调研试题
上海市杨浦区2018届高三数学上学期期末质量调研试题一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 计算1lim(1)n n→∞-的结果是2. 已知集合{1,2,}A m =,{3,4}B =,若{3}A B =,则实数m =3. 已知3cos 5θ=-,则sin()2πθ+=4. 若行列式124012x -=,则x = 5. 已知一个关于x 、y 的二元一次方程组的增广矩阵是112012-⎛⎫⎪⎝⎭,则x y +=6. 在62()x x-的二项展开式中,常数项的值为7. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具), 先后抛掷2次,则出现向上的点数之和为4的概率是8. 数列{}n a 的前n 项和为n S ,若点(,)n n S (*n N ∈)在函数2log (1)y x =+的反函数的图像上,则n a =9. 在ABC ∆中,若sin A 、sin B 、sin C 成等比数列,则角B 的最大值为10. 抛物线28y x =-的焦点与双曲线2221x y a-=的左焦点重合,则这条双曲线的两条渐近线的夹角为11. 已知函数()cos (sin )f x x x x =x R ∈,设0a >,若函数()()g x f x α=+ 为奇函数,则α的值为12. 已知点C 、D 是椭圆2214x y +=上的两个动点,且点(0,2)M ,若MD MC λ=,则实数λ的取值范围为二. 选择题(本大题共4题,每题5分,共20分) 13. 在复平面内,复数2iz i-=对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限14. 给出下列函数:①2log y x =;②2y x =;③||2x y =;④arcsin y x =. 其中图像关于y 轴对称的函数的序号是( )A. ①②B. ②③C. ①③D. ②④ 15. “0t ≥”是“函数2()f x x tx t =+-在(,)-∞+∞内存在零点”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要条件16. 设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的最大值是( ) A. 12B. 2C. 4D. 8三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域; (2)怎样围才能使得场地的面积最大?最大面积是多少?18. 如图,已知圆锥的侧面积为15π,底面半径OA 和OB 互相垂直,且3OA =,P 是母线BS 的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小. (结果用反三角函数值表示)19. 已知函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.20. 设直线l 与抛物线2:4y x Ω=相交于不同两点A 、B ,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆22:(5)16C x y -+=相切于点M ,且M 为线段AB 的中点,求直线l 的方程;(3)若0OA OB ⋅=,点Q 在线段AB 上,满足OQ AB ⊥,求点Q 的轨迹方程.21. 若数列A :1a ,2a ,⋅⋅⋅,n a (3n ≥)中*i a N ∈(1i n ≤≤)且对任意的21k n ≤≤-,112k k k a a a +-+>恒成立,则称数列A 为“U -数列”.(1)若数列1,x ,y ,7为“U -数列”,写出所有可能的x 、y ;(2)若“U -数列” A :1a ,2a ,⋅⋅⋅,n a 中,11a =,2017n a =,求n 的最大值; (3)设0n 为给定的偶数,对所有可能的“U -数列”A :1a ,2a ,⋅⋅⋅,0n a ,记012max{,,,}n M a a a =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示1x ,2x ,⋅⋅⋅,s x 这s 个数中最大的数,求M 的最小值.参考答案一. 填空题1. 32. 35- 3. 2 4. 6 5. 160- 6.1127. 1 8. 12n n a -= 9. 3π 10. 3π11. *()26k k N ππα=-∈ 12. 1[,3]3二. 选择题13. C 14. B 15. A 16. B三. 解答题17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)设平行于墙的边长为a , 则篱笆总长3l x a =+,即3a l x =-, ……2分所以场地面积(3)y x l x =-,(0,)3lx ∈ (定义域2分) ……6分(2)222(3)33()612l l y x l x x lx x =-=-+=--+,(0,)3l x ∈ ……8分所以当且仅当6l x =时,2max 12l y = ……12分综上,当场地垂直于墙的边长x 为6l 时,最大面积为212l ……14分18.(本题满分14分,第1小题满分7分,第2小题满分7分) 解1:(1)由题意,15OA SB ππ⋅⋅=得5BS =, ……2分故4SO === ……4分从而体积2211341233V OA SO πππ=⋅⋅=⨯⨯=. ……7分 (2)如图,取OB 中点H ,联结PH AH 、. 由P 是SB 的中点知PH SO ∥,则APH ∠(或其补角)就是异面直线SO 与PA 所成角. ……10分 由SO ⊥平面OAB ⇒PH ⊥平面OAB ⇒PH AH ⊥.在OAH ∆中,由OA OB ⊥得2AH ==;……11分在Rt APH ∆中,90AHP O∠=,122PH SB ==,AH =分则tan AH APH PH ∠==,所以异面直线SO 与PA 所成角的大小arctan 4…14分 (其他方法参考给分)19.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)令101xx+>-,解得11x -<<,所以(1,1)A =-, ……3分 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[1,0]- ……6分(2)函数()f x 的定义域(1,1)A =-,定义域关于原点对称 ……8分1()()ln 1()x f x x ---=+-1111ln ln ln ()111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭……12分而1()ln32f =,11()ln 23f -=,所以11()()22f f -≠ ……13分 所以函数()f x 是奇函数但不是偶函数. ……14分20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分) 解:(1)抛物线Ω的焦点到准线的距离为2 ……4分 (2)设直线:l x my b =+当0m =时,1x =和9x =符合题意 ……5分当0m ≠时,11(,)A x y 、22(,)B x y 的坐标满足方程组24x my by x=+⎧⎨=⎩,所以2440y my b --=的两根为1y 、2y 。
杨浦区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案
杨浦区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 实数a=0.2,b=log0.2,c=的大小关系正确的是( )A .a <c <bB .a <b <cC .b <a <cD .b <c <a2.已知两不共线的向量,,若对非零实数m ,n 有m+n与﹣2共线,则=( )A .﹣2B .2C.﹣D.3. 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.B.C.D.4. 已知a ,b 都是实数,那么“a 2>b 2”是“a >b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .46. 已知集合{}ln(12)A x y x ==-,{}2B x x x =≤,全集U AB =,则()UC A B =( )(A ) (),0-∞ ( B ) 1,12⎛⎤- ⎥⎝⎦ (C ) ()1,0,12⎡⎤-∞⋃⎢⎥⎣⎦ (D ) 1,02⎛⎤- ⎥⎝⎦7. 现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种8. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列结论正确的是( ) A .α∥β,l ⊂α,n ⊂β⇒l ∥n B .α∥β,l ⊂α⇒l ⊥β C .l ⊥n ,m ⊥n ⇒l ∥m D .l ⊥α,l ∥β⇒α⊥β9. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________10.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围 ( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<11.若向量=(3,m ),=(2,﹣1),∥,则实数m 的值为( )A .﹣B .C .2D .612.从1,2,3,4,5中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( )A .B .C .D .二、填空题13.设全集______.14.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 .15.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.16.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,M 是BC 的中点,BM=2,AM=c ﹣b ,△ABC 面积的最大值为 .17.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .18.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b a c+的最大值为__________. 三、解答题19.设,证明:(Ⅰ)当x >1时,f (x )<( x ﹣1);(Ⅱ)当1<x <3时,.20.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=2,AD=1,A 1A=1,(1)求证:直线BC 1∥平面D 1AC ; (2)求直线BC 1到平面D 1AC 的距离.21.(本题满分15分)如图,已知长方形ABCD 中,2AB =,1AD =,M 为DC 的中点,将ADM ∆沿AM 折起,使得平面⊥ADM 平面ABCM .(1)求证:BM AD ⊥;(2)若)10(<<=λλDB DE ,当二面角D AM E --大小为3π时,求λ的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.22.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.23.未来制造业对零件的精度要求越来越高.3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件.该技术应用十分广泛,可以预计在未来会有广阔的发展空间.某制造企业向A高校3D打印实验团队租用一台3D打印设备,用于打印一批对内径有较高精度要求的零件.该团队在实验室打印出了一批这样的零件,从中随机抽取10件零件,度量其内径的茎叶图如如图所示(单位:μm).(Ⅰ)计算平均值μ与标准差σ;(Ⅱ)假设这台3D打印设备打印出品的零件内径Z服从正态分布N(μ,σ2),该团队到工厂安装调试后,试打了5个零件,度量其内径分别为(单位:μm):86、95、103、109、118,试问此打印设备是否需要进一步调试,为什么?参考数据:P(μ﹣2σ<Z<μ+2σ)=0.9544,P(μ﹣3σ<Z<μ+3σ)=0.9974,0.95443=0.87,0.99744=0.99,0.04562=0.002.24.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.杨浦区第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,即0<a<1,b<0,c>1,∴b<a<c.故选:C.【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键.2.【答案】C【解析】解:两不共线的向量,,若对非零实数m,n有m+n与﹣2共线,∴存在非0实数k使得m+n=k(﹣2)=k﹣2k,或k(m+n)=﹣2,∴,或,则=﹣.故选:C.【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题.3.【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C4.【答案】D【解析】解:∵“a2>b2”既不能推出“a>b”;反之,由“a>b”也不能推出“a2>b2”.∴“a2>b2”是“a>b”的既不充分也不必要条件.故选D.5.【答案】D【解析】解:由题意,S k+2﹣S k=,即3×2k=48,2k=16,∴k=4. 故选:D .【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.6. 【答案】C【解析】[]11,,0,1,0,22A B A B ⎛⎫⎡⎫=-∞== ⎪⎪⎢⎝⎭⎣⎭,(],1U =-∞,故选C .7. 【答案】 B【解析】 排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C 52=20种结果, ③当三台设备按1、1、1分成三份时分给三个社区时,有C 53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B .【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.8. 【答案】D【解析】解:对于A ,α∥β,l ⊂α,n ⊂β,l ,n 平行或 异面,所以错误; 对于B ,α∥β,l ⊂α,l 与β 可能相交可能平行,所以错误;对于C ,l ⊥n ,m ⊥n ,在空间,l 与m 还可能异面或相交,所以错误. 故选D .9. 【答案】B 【解析】考点:三角函数()sin()f x A x ωϕ=+的图象与性质. 10.【答案】A 【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 11.【答案】A【解析】解:因为向量=(3,m ),=(2,﹣1),∥, 所以﹣3=2m ,解得m=﹣. 故选:A .【点评】本题考查向量共线的充要条件的应用,基本知识的考查.12.【答案】A【解析】解:从1,2,3,4,5中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共3个,故取出的3个数可作为三角形的三边边长的概率P=.故选:A .【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的基本事件.二、填空题13.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
2018年上海市高考数学一模试卷(解析卷)
2018年上海市高考数学试卷一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得分,否则一律得零分.1.(4分)设全集U=Z,集合M={1,2},P={﹣2,﹣1,0,1,2},则P∩C U M {﹣2,﹣1,0} .【解答】解:C U M={﹣2,﹣1,0},故P∩C U M={﹣2,﹣1,0}故答案为:{﹣2,﹣1,0}2.(4分)已知复数(i为虚数单位),则=.【解答】解:复数==,∴=,∴=•==,故答案为.3.(4分)不等式2>()3(x﹣1)的解集为(﹣∞,﹣2)∪(3,+∞).【解答】解:不等式2>()3(x﹣1)化为2>23﹣3x,即x2﹣4x﹣3>3﹣3x,∴x2﹣x﹣6>0,解得x<﹣2或x>3,∴原不等式的解集为(﹣∞,﹣2)∪(3,+∞).故答案为:(﹣∞,﹣2)∪(3,+∞).4.(4分)函数f(x)=sinxcosx+cos2x的最大值为.【解答】解:函数f(x)=sinxcosx+cos2x=sin2x+cos2x+=sin(2x+)+,当2x+=2kπ+,k∈Z,即x=kπ+,k∈Z,函数取得最大值1+=,故答案为:.5.(4分)在平面直角坐标系xOy中,以直线y=±2x为渐近线,且经过椭圆x2+=1右顶点的双曲线的方程是x2﹣=1.【解答】解:设以直线y=±2x为渐近线的双曲线的方程为x2﹣=λ(λ≠0),∵双曲线椭圆x2+=1右顶点(1,0),∴1=λ,∴双曲线方程为:x2﹣=1.故答案为:x2﹣=1.6.(4分)将圆锥的侧面展开后得到一个半径为2的半圆,则此圆锥的体积为.【解答】解:设圆锥的底面半径为r,则2πr=2π,∴r=1.∴圆锥的高h=.∴圆锥的体积V==.故答案为:.7.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=4.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故答案为:4.8.(5分)已知(1+2x)6展开式的二项式系数的最大值为a,系数的最大值为b,则=12.【解答】解:由题意可得a==20,再根据,解得,即≤r≤,∴r=4,此时b=×24=240;∴==12.故答案为:12.9.(5分)同时掷两枚质地均匀的骰子,则两个点数之积不小于4的概率为.【解答】解:同时掷两枚质地均匀的骰子,基本事件总数n=6×6=36,两个点数之积小于4包含的基本事件(a,b)有:(1,1),(1,2),(2,1),(1,3),(3,1),共5个,∴两个点数之积不小于4的概率为p=1﹣=.故答案为:.10.(5分)已知函数f(x)=有三个不同的零点,则实数a的取值范围是[1,+∞).【解答】解:由题意可知:函数图象的左半部分为单调递增对数函数的部分,函数图象的右半部分为开口向上的抛物线,对称轴为x=,最多两个零点,如上图,要满足题意,必须指数函数的部分向下平移到与x轴相交,由对数函数过点(1,0),故需左移至少1个单位,故a≥1,还需保证抛物线与x轴由两个交点,故最低点<0,解得a<0或a>,综合可得:a≥1,故答案为:[1,+∞).11.(5分)已知S n为数列{a n}的前n项和,a1=a2=1,平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,若A,B,C在同一直线上,则S2018=2.【解答】解:若A,B,C三点共线,则=x+(1﹣x),∴根据条件“平面内三个不共线的向量,,,满足=(a n﹣1+a n+1)+(1﹣a n),n≥2,n∈N*,A,B,C在同一直线上,”得出a n﹣1+a n+1+1﹣a n=1,∴a n﹣1+a n+1=a n,∵S n为数列{a n}的前n项和,a1=a2=1,∴数列{a n}为:1,1,0,﹣1,﹣1,0,1,1,0,﹣1,﹣1,0,…即数列{a n}是以6为周期的周期数列,前6项为1,1,0,﹣1,﹣1,0,∵2018=6×336+2,∴S2018=336×(1+1+0﹣1﹣1+0)+1+1=2.故答案为:2.12.(5分)已知函数f(x)=m(x﹣m)(x+m+2)和g(x)=3x﹣3同时满足以下两个条件:①对任意实数x都有f(x)<0或g(x)<0;②总存在x0∈(﹣∞,﹣2),使f(x0)g(x0)<0成立.则m的取值范围是(﹣3,﹣2).【解答】解:对于①∵g(x)=3x﹣3,当x<1时,g(x)<0,又∵①∀x∈R,f(x)<0或g(x)<0∴f(x)=m(x﹣m)(x+m+2)<0在x≥1时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,即,可得﹣3<m<0又∵②x∈(﹣∞,﹣2),f(x)g(x)<0∴此时g(x)=3x﹣3<0恒成立∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣2)有成立的可能,则只要﹣2比x1,x2中的较小的根大即可,(i)当﹣1<m<0时,较小的根为﹣m﹣2,﹣m﹣2>﹣2不成立,(ii)当m=﹣1时,两个根同为﹣1>﹣3,不成立,(iii)当﹣3<m<﹣1时,较小的根为m,即m<﹣2成立.综上可得①②成立时﹣3<m<﹣2.故答案为:(﹣3,﹣2).二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.(5分)“a>b”是“()2>ab”成立的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件【解答】解:由()2>ab得>ab,即a2+2ab+b2>4ab,则a2﹣2ab+b2>0,即(a﹣b)2>0,则a≠b,则“a>b”是“()2>ab”成立的充分不必要条件,故选:A.14.(5分)已知函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f (x)≤f(x2),则|x2﹣x1|的最小值是()A.πB.2πC.2 D.4【解答】解:对于函数f(x)=2sin(x+),若对任意实数x,都有f(x1)≤f(x)≤f(x2),则|x2﹣x1|的最小值为函数f(x)的半个周期,即===2,故选:C.15.(5分)已知和是互相垂直的单位向量,向量满足:,,n∈N*,设θn为和的夹角,则()A.θn随着n的增大而增大B.θn随着n的增大而减小C.随着n的增大,θn先增大后减小D.随着n的增大,θn先减小后增大【解答】解:分别以和所在的直线为x轴,y轴建立坐标系,则=(1,0),=(0,1),设=(x n,y n),∵,,n∈N*,∴x n=n,y n=2n+1,n∈N*,∴=(n,2n+1),n∈N*,∵θn为和的夹角,∴tanθn===2+∴y=tanθn为减函数,∴θn随着n的增大而减小.故选:B.16.(5分)在平面直角坐标系xOy中,已知两圆C1:x2+y2=12和C2:x2+y2=14,又点A坐标为(3,﹣1),M、N是C1上的动点,Q为C2上的动点,则四边形AMQN能构成矩形的个数为()A.0个 B.2个 C.4个 D.无数个【解答】解:如图所示,任取圆C2上一点Q,以AQ为直径画圆,交圆C1与M、N两点,则四边形AMQN能构成矩形,由作图知,四边形AMQN能构成矩形的个数为无数个.故选:D.三.解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(14分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2AB=2,E是PB的中点.(1)求三棱锥P﹣ABC的体积;(2)求异面直线EC和AD所成的角(结果用反三角函数值表示).【解答】解:(1)∵PA⊥平面ABCD,底面ABCD是矩形,高PA=2,BC=AD=2,AB=1,==1.∴S△ABC故V P==.﹣ABC(2)∵BC∥AD,∴∠ECB或其补角为异面直线EC和AD所成的角θ,又∵PA⊥平面ABCD,∴PA⊥BC,又BC⊥AB,∴BC⊥平面PAB,∴BC⊥PB,于是在Rt△CEB中,BC=2,BE=PB=,tanθ==,∴异面直线EC和AD所成的角是arctan.18.(14分)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.【解答】解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p=,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)证明:设过点(0,)的直线方程为y=kx+,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y=x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+=0,∴x1+x2=,x1x2=∴y1+=kx1++=2kx1+=2kx1+=2kx1+(1﹣k)•2x1=2x1,∴A为线段BM的中点.19.(14分)如图,某大型厂区有三个值班室A、B、C.值班室A在值班室B的正北方向2千米处,值班室C在值班室B的正东方向2千米处.(1)保安甲沿CA从值班室出发行至点P处,此时PC=1,求PB的距离;(2)保安甲沿CA从值班室C出发前往值班室A,保安乙沿AB从值班室A出发前往值班室B,甲乙同时出发,甲的速度为1千米/小时,乙的速度为2千米/小时,若甲乙两人通过对讲机联系,对讲机在厂区内的最大通话距离为3千米(含3千米),试问有多长时间两人不能通话?【解答】解:(1)在Rt△ABC中,AB=2,BC=2,所以∠C=30°,在△PBC中PC=1,BC=2,由余弦定理可得BP2=BC2+PC2﹣2BC•PCcos30°=(2)2+1﹣2×2×1×=7,即BP=;(2)在Rt△ABC中,BA=2,BC=2,AC==4,设甲出发后的时间为t小时,则由题意可知0≤t≤4,设甲在线段CA上的位置为点M,则AM=4﹣t,①当0≤t≤1时,设乙在线段AB上的位置为点Q,则AQ=2t,如图所示,在△AMQ中,由余弦定理得MQ2=(4﹣t)2+(2t)2﹣2•2t•(4﹣t)cos60°=7t2﹣16t+7>9,解得t<或t>,所以0≤t≤;②当1≤t≤4时,乙在值班室B处,在△ABM中,由余弦定理得MB2=(4﹣t)2+4﹣2•2t•(4﹣t)cos60°=t2﹣6t+12>9,解得t<3﹣或t>3+,又1≤t≤4,不合题意舍去.综上所述0≤t≤时,甲乙间的距离大于3千米,所以两人不能通话的时间为小时.20.(16分)设集合A,B均为实数集R的子集,记A+B={a+b|a∈A,b∈B}.(1)已知A={0,1,2},B={﹣1,3},试用列举法表示A+B;(2)设a1=,当n∈N*且n≥2时,曲线+=的焦距为a n,如果A={a1,a2,…,a n},B={﹣,﹣,﹣},设A+B中的所有元素之和为S n,求S n的值;(3)在(2)的条件下,对于满足m+n=3k,且m≠n的任意正整数m,n,k,不等式S m+S n﹣λS k>0恒成立,求实数λ的最大值.【解答】解:(1)∵A+B={a+b|a∈A,b∈B};当A={0,1,2},B={﹣1,3}时,A+B={﹣1,0,1,3,4,5};(2)曲线+=,即﹣=,在n≥2时表示双曲线,故a n=2=n,∴a1+a2+a3+…+a n=∵B={﹣,﹣,﹣},∴A+B中的所有元素之和为S n=3(a1+a2+a3+…+a n)+n(﹣﹣﹣)=3•+n (﹣﹣﹣)=n2,(3)∵∴S m+S n﹣λS k>0恒成立⇔λ<=恒成立,∵m+n=3k,且m≠n,∴==>,∴λ≤,故实数λ的最大值为21.(18分)对于定义在[0,+∞)上的函数f(x),若函数y=f(x)﹣(ax+b)满足:①在区间[0,+∞)上单调递减,②存在常数p,使其值域为(0,p],则称函数g(x)=ax+b是函数f(x)的“逼进函数”.(1)判断函数g(x)=2x+5是不是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)求证:函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”(3)若g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,求a 的值.【解答】解:(1)f(x)﹣g(x)=﹣(2x+5)=,可得y=f(x)﹣g(x)在[0,+∞)递减,且x+2≥2,0<≤,可得存在p=,函数y的值域为(0,],则函数g(x)=2x+5是函数f(x)=,x∈[0,+∞)的“逼进函数”;(2)证明:f(x)﹣g(x)=()x﹣x,由y=()x,y=﹣x在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)递减,则函数y=f(x)﹣g(x)在[0,+∞)的最大值为1;由x=1时,y=﹣=0,x=2时,y=﹣1=﹣<0,则函数y=f(x)﹣g(x)在[0,+∞)的值域为(﹣∞,1],即有函数g(x)=x不是函数f(x)=()x,x∈[0,+∞)的“逼进函数”;(3)g(x)=ax是函数f(x)=x+,x∈[0,+∞)的“逼进函数”,可得y=x+﹣ax为[0,+∞)的减函数,可得导数y′=1﹣a+≤0在[0,+∞)恒成立,可得a﹣1≥,由x>0时,=≤1,则a﹣1≥1,即a≥2;又y=x+﹣ax在[0,+∞)的值域为(0,1],则>(a﹣1)x,x=0时,显然成立;x>0时,a﹣1<,可得a﹣1≤1,即a≤2.则a=2.。
2018年上海市杨浦区高考高三数学一模试卷及解析
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x +α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B =(a,a +1),且B ⊆A.(1)求实数a 的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l 与抛物线Ω:y 2=4x 相交于不同两点A 、B,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆C :(x ﹣5)2+y 2=16相切于点M,且M 为线段AB 的中点,求直线l 的方程; (3)若,点Q 在线段AB 上,满足OQ ⊥AB,求点Q 的轨迹方程.21.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U ﹣数列”A :a 1,a 2,…,a n 中,a 1=1,a n =2017,求n 的最大值;(3)设n0为给定的偶数,对所有可能的“U ﹣数列”A :a 1,a 2,…,,记,其中max {x1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数,求M 的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【试题解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【试题解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则=﹣.【试题解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【试题解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=6.【试题解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.【试题解答】解:展开式的通项为T r=x6﹣r(﹣)r=(﹣2)r x6﹣2r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【试题解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【试题解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【试题解答】解:∵在△ABC中,sinA、sinB、sinC依次成等比数列,∴sin2B=sinAsinC,利用正弦定理化简得:b2=ac,由余弦定理得:cosB==≥=(当且仅当a=c时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【试题解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.【试题解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【试题解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【试题解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【试题解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsinx是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【试题解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8【试题解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4所以S△ABC +S△ACD+S△ADB=(ab+ac+bc )≤(a2+b2+c2)=2即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【试题解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【试题解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90 O,,…(12分)则,∴异面直线SO与PA所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【试题解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【试题解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m =0时,x =1和x =9符合题意;当m ≠0时,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2. △=16(m 2+b)>0,y 1+y 2=4m, 所以,所以线段AB 的中点M(2m 2+b,2m)因为k AB •k CM =﹣1,,所以,得b =3﹣2m 2所以△=16(m 2+b)=16(3﹣m 2)>0,得0<m 2<3 因为,所以m 2=3(舍去)综上所述,直线l 的方程为:x =1,x =9(3)设直线AB :x =my +b,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2 △=16(m 2+b)>0,y 1+y 2=4m,y 1y 2=﹣4b 所以,得b =0或b =4b =0时,直线AB 过原点,所以Q(0,0); b =4时,直线AB 过定点P(4,0) 设Q(x,y),因为OQ ⊥AB, 所以(x ≠0),综上,点Q 的轨迹方程为x 2﹣4x +y 2=021.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【试题解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意. 综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.。
杨浦区2018学年度第一学期高三年级模拟质量调研 数学学科试卷及答案
杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案 2018.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则U A =ð ▲ .2.已知扇形的半径为6,圆心角为3π,则扇形的面积为 ▲ . 3.已知双曲线221x y -=,则其两条渐近线的夹角为 ▲________.4. 若nb a )(+展开式的二项式系数之和为8,则n = ▲________.5. 若实数,x y 满足 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,高)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在无穷等比数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ⊆, 则实数a 的取值范围为▲________.9. 在行列式中,第3行第2列的元素的代数余子式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若︒=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最小正周期 ▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成立,则实数a 的最大值为 ▲________. 274434651xx--()f x 1()y f x =+12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满足)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P .若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满足条件的k 的值为▲________.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 下列函数中既是奇函数,又在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5人,其中女队员2人. 现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+⎛⎫=⎪⎝⎭b f =,sin 2sin cos c f θθθ⎛⎫=⎪+⎝⎭,则c b a ,,的大小关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++⋅=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)- ()C . [3,5]- ()D . [0,7)()A ()B ()C ()D )2,0(πθ∈三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1小题满分7分,第2小题满分7分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且5cos 13B =. (1)若4sin 5A =,求cos C ; (2)若4b =,求证:5-≥⋅BC AB .19. (本题满分14分,第1小题满分6分,第2小题满分8分)上海某工厂以x 千克/小时的速度匀速生产一种产品,每一小时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20. (本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线x y C 4:2=上存在不同的两点B A ,,满足PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ∆面积的最小值.21. (本题满分18分,第1小题满分4分,第2小题满分5分,第3小题满分9分) 记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不小于K 的正整数n ,有1n n b b += 成立?请说明理由.青浦区2018学年第一学期高三年级期终学业质量调研测试数学参考答案及评分标准 2018.12说明1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题至第21题中右端所注的分数,表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果. 1.{}1-; 2.“若a b <,则22am bm <”; 3.()2,3-;4.43; 5.12π;67.(0,4)(4,8); 8.32;9. 80; 10. 14;11.10,2⎛⎤ ⎥⎝⎦;12.1,3⎤⎦.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. A ;14. D ; 15.C ;16. C .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)在正四棱柱1111ABCD A B C D -中, ∵1AA ⊥平面ABCD ,AD ⊂≠平面ABCD , ∴1AA AD ⊥,故14AA =, ∴正四棱柱的侧面积为(43)448⨯⨯=, 体积为2(3)436⨯=.(2)建立如图的空间直角坐标系O xyz -,由题意 可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E ,1(0,0,4)AA =,3(,3,2)2BE =--,设1AA 与BE 所成角为α,直线BE 与平面ABCD 所成角为θ,则11cos ||||AA BEAA BE α⋅===⋅ 又1AA是平面ABCD 的一个法向量, 故sin cos θα==,θ=.所以直线BE 与平面ABCD所成的角为arcsin61. 【另法提示:设AD 中点为G ,证EBG ∠即为BE 与平面ABCD 所成的角,然后解直角三角形EBG ,求出EBG ∠】arctan 1518.(本题满分14分)第(1)小题满分8分,第(2)小题满分6分.解:(1),1,01BP t CP t t ==-≤≤45DAQ θ∠=︒-,1tan(45)1tDQ tθ-=︒-=+, 12111t tCQ t t-=-=++所以211t PQ t +===+ 故221111211t t l CP CQ PQ t t t t t+=++=-++=-++=++ 所以△CPQ 的周长l 是定值2(2)111221ABP ADQ ABCD t t S S S S t ∆∆-=--=--⨯+正方形122(1)221t t=-++≤+当且仅当1t =时,等号成立所以摄像头能捕捉到正方形ABCD 内部区域的面积S至多为22hm19.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为函数()3g x x =是函数()3mf x x x=+在区间[)+∞4,上的弱渐近函数, 所以()()1mf xg x x-=≤ ,即m x ≤在区间[)+∞4,上恒成立, 即444m m ≤⇒-≤≤(2)()()2f x g x x x -==[)2,+x ∈∞,()()22(f x g x x x ∴-==-A DCBθP Q45令2()()()2(x xh x f x g x x=-===任取122x x≤<,则2212311x x≤-<-≤<120xx<<12()()h x h x⇒>⇒<即函数()()()2(h x f x g x x=-=在区间[)2,+∞上单调递减,所以(()()0,4f x gx-∈-,又([]0,41,1-⊆-,即满足()2g x x=使得对于任意的[)2,x∈+∞有()()1f xg x-≤恒成立,所以函数()2g x x=是函数()f x=在区间[)2,+∞上的弱渐近函数.20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.解:(1)242a a=⇒=,又双曲线的渐近线方程为y=,所以bba==双曲线的标准方程是221412x y-=.(2)法一:由题不妨设11()A x,22(,)B x,则1212(,)22x xP+,由P在双曲线上,代入双曲线方程得124x x⋅=;法二:当直线AB的斜率不存在时,显然2x=±,此时124xx⋅=;当直线AB的斜率存在时,设直线AB的方程为(0,y kxt k k=+≠≠则由y kx tAy=+⎛⎧⎪⇒⎨=⎪⎩同理y kx tBy=+⎛⎧⎪⇒⎨=⎪⎩此时223,33kt t P k k ⎛⎫ ⎪--⎝⎭代入双曲线方程得224(3)t k =-,所以212243t x x k ⋅==-(3)①对称中心:原点;对称轴方程:,y y x ==②顶点坐标:3,22⎛⎫⎪ ⎪⎝⎭,322⎛⎫-- ⎪ ⎪⎝⎭;焦点坐标:(,(1,-实轴长:2a =、虚轴长:22b =、焦距:24c =③范围:()0,,2,x y ⎡≠∈-∞+∞⎣④渐近线:0,3x y x ==21.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1)因为数列{}n b 是“Γ数列”,且11b =,3k =、4d =、0c =,所以当1n ≥,n *∈N 时,310n b +=,又*2016672N 3=∈,即20170b =, 20182017044b b d =+=+=,20192018448b b d =+=+= (2)因为数列{}n b 是“Γ数列”,且12b =,4k =、2d =、1c =()()()414344341434243434312336n n n n n n n n n n b b cb b b d b b d b b d b d +---------=-=⨯+-=+-=+-==则数列前4n 项中的项43n b -是以2为首项,6为公差的得差数列,易知{}4n b 中删掉含有43n b -的项后按原来的顺序构成一个首项为2公差为2的等差数列,41543()n n S b b b -∴=+++()()()()23467846454442414+n n n n n n b b b b b b b b b b b b -----++++++++++++⎡⎤⎣⎦2(1)3(31)26(3)2212822n n n n n n n n --=+⨯+⨯+⨯=+ 43nn S λ≤⋅,43nn S λ∴≤,设2412833n n n n S n n c +==,则()max n c λ≥,22211112(1)8(1)12824820333n n n n n n n n n n n c c +++++++-++-=-=当1n =时,2248200n n -++>,12c c <;当2n ≥,n *∈N 时,2248200n n -++<,1n n c c +<,∴123c c c <>>,∴()2max 649n c c ==, 即()2max 649n c c λ≥==(3)因为{}n b 既是“Γ数列”又是等比数列,设{}n b 的公比为1n nb q b +=,由等比数列的通项公式有1n n b bq -=,当m *∈N 时,21k m k m b b d ++-=,即()11km km km bq bq bq q d +-=-=① 1q =,则0d =,n b b =; ② 1q ≠,则()1kmd qq b=-,则kmq 为常数,则1q =-,k 为偶数,2d b =-,()11n n b b -=-; 经检验,满足条件的{}n b 的通项公式为n b b =或()11n n b b -=-.。
2018年上海市15区高考高三一模数学试卷合集 带答案
8
第 2 卷 2018 年崇明区一模
一、填空题(本大题共有 12 题,满分 54 分,其中 1-6 题每题 4 分,7-12 题每题 5 分)
1、已知集合 A {1, 2, 5}, B {2, a} ,若 A B {1, 2, 3, 5} ,则 a
;
2、抛物线 y2 4x 的焦点坐标是
Sn ,首项 a1
1,公比为
a
3 2
,且
lim
n
S
n
a
,则
a ________.
11.从 5 男 3 女共 8 名学生中选出队长 1 人,副队长 1 人,普通队员 2 人组成 4 人志愿者服
务,要求服务队中至少有 1 名女生,共有
种不同的选法.(用数字作答)
12.在 ABC 中, BC 边上的中垂线分别交 BC, AC 于点 D, E .若 AE BC 6 , AB 2 ,
f (C) 1 ,求 ABC 面积的最大值,并指出此时 ABC 为何种类型的三角形. 2
19. 设数列{an} ,{bn} 及函数 f (x) ( x R ), bn f (an ) ( n N * ). (1)若等比数列{an} 满足 a1 1, a2 3 , f (x) 2x ,求数列{bnbn1} 的前 n ( n N * ) 项和; (2)已知等差数列{an} 满足 a1 2 , a2 4 , f (x) (q x 1) ( 、 q 均为常数, q 0 且 q 1), cn 3 n (b1 b2 bn ) ( n N * ),试求实数对 (, q) ,使得{cn} 成等比 数列.
x 1 5. 若 z 2 3i (其中 i 为虚数单位),则 Im z
i 6. 若从五个数 1 ,0,1,2,3 中任选一个数 m ,则使得函数 f (x) (m2 1)x 1 在 R 上
杨浦区2018学年度第二学期高三年级模拟质量调研及答案
杨浦区2018学年度第二学期高三年级模拟质量调研数学学科试卷 2019.4.考生注意: 1. 答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果. 1. 函数2()12sin f x x =-的最小正周期是▲________.2. 方程组310,2540x y x y -+=⎧⎨+-=⎩的增广矩阵为▲________.3. 若幂函数()kf x x =的图像过点(4,2),则(9)f =▲________.4. 若的二项展开式中项的系数是,则▲________.5. 若复数z 满足()234i a bi +=+(i 为虚数单位,,a b ∈R ),则22a b +=▲________.6. 函数()1log 3a y x =-++(0a >且1a ≠)的反函数为()1f x -,则()11f --=▲________. 7. 函数arcsin 211x x y =-的值域是▲________.8. 哥德巴赫猜想是“每个大于的2偶数可以表示为两个素数的和”,如835=+.在不超过13的素数中,随机选取两个不同的数,其和为偶数的概率是▲________(用分数表示).9. 若定义域为(,0)(0,)-∞+∞U 的函数⎪⎩⎪⎨⎧<+>-=-0,2,0,21)(x m x x f x x是奇函数,则实数m的值为▲________.10. 古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何()13nx +2x 54n =问题:在平面上给定两点)0,(),0,(a B a A -,动点P 满足||||PA PB λ=(其中a 和λ是正常数,且1λ≠),则P 的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”. 该圆的半径为 ▲________.11. 若ABC ∆的内角C B A ,,,其中G 为ABC ∆的重心,且0GA GB ⋅=u u u r u u u r,则Ccos 的最小值为▲________.12. 定义域为集合{1,2,3,,12}L 上的函数)(x f 满足:① 1)1(=f ; ②|(1)()|1(1,2,,11)f x f x x +-==L ; ③)12(),6(),1(f f f 成等比数列. 这样的不同函数)(x f 的个数为▲________.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 若x 、y 满足0,2,0,x y x y y -≥⎧⎪+≤⎨⎪≥⎩ 则目标函数2f x y =+的最大值为……………………( ))(A 1 )(B 2 )(C 3 )(D 414. 已知命题:α “双曲线的方程为()2220x y a a -=>”和命题β:“双曲线的两条渐近线夹角为2π”,则α是β的 ……………………( ))(A 充分非必要条件 )(B 必要非充分条件)(C 充要条件 )(D 既非充分也非必要条件 15. 对于正三角形T ,挖去以三边中点为顶点的小正三角形,得到一个新的图形,这样的过程称为一次“镂空操作”. 设T 是一个边长为1的正三角形,第一次“镂空操作”后得到图1,对剩下的3个小正三角形各进行一次“镂空操作”后得到图2,对剩下的小三角形重复进行上述操作. 设n A 是第n 次挖去的小三角形面积之和(如1A 是第1次挖去的中间小三角形面积,2A 是第2次挖去的三个小三角形面积之和),n S 是前n 次挖去的所有三角形的面积之和,则=∞→n n S lim ……………………( ))(A 43 )(B 33 )(C 23 )(D 2116. 已知ABC ∆的内角C B A ,,的对边分别为,,a b c , 且87cos =A . I 为ABC ∆内部的一点,且0a IA b IB c IC ++=u u r u u r u u r r ,若AI x AB y AC =+u u r u u u r u u u r,则y x +的最大值为………( ))(A 45 )(B 21 )(C 65 )(D 54三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知函数()(1tan )sin 2f x x x =+⋅. (1)求()f x 的定义域;(2)求函数()()2F x f x =-在区间(0,π)内的零点.18.(本题满分14分,第1小题满分7分,第2小题满分7分)上海地铁四通八达,给市民出行带来便利. 已知某条线路运行时,地铁的发车时间间隔 t (单位:分钟)满足:220t ≤≤,t ∈N . 经测算,地铁载客量)(t p 与发车时间间隔t 满足:()212001010,210()1200,1020t t p t t ⎧--≤<⎪=⎨≤≤⎪⎩,, 其中t ∈N .(1)请你说明()5p 的实际意义; (2)若该线路每分钟的净收益为6()3360360p t Q t-=-(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求最大净收益.19.(本题满分14分,第1小题满分6分,第2小题满分8分)我国古代数学名著《九章算术》中记载了有关特殊几何体的定义:阳马指底面为矩形,一侧棱垂直于底面的四棱锥;堑堵指底面是直角三角形,且侧棱垂直于底面的的三棱柱.(1)某堑堵的三视图,如图1,网格中的每个小正方形的边长为1,求该堑堵的体积;(2)在堑堵111C B A ABC -中,如图2,BC AC ⊥,若21==AB A A ,当阳马C C AA B 11-的体积最大时,求二面角11C B A C --的大小.图1 图220.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)已知椭圆134:22=+Ωy x 的左右两焦点分别为12,F F .(1)若矩形ABCD 的边AB 在y 轴上,点D C ,均在Ω上,求该矩形绕y 轴旋转一周所得圆柱侧面积S 的取值范围;(2)设斜率为k 的直线l 与Ω交于Q P ,两点,线段PQ 的中点为)0)(,1(>m m M ,求证:21-<k ;(3)过Ω上一动点()00,E x y 作直线134:00=+yy x x l ,其中00y ≠,过E 作直线l的垂线交x 轴于点R . 问是否存在实数λ,使得1221EF RF EF RF λ⋅=⋅恒成立?若存在,求出λ的值;若不存在,说明理由.21.(本题满分18分,第1小题满分4分,第2小题满分5分,第3小题满分9分)已知数列}{n a 满足:21111,8n n a a a m +==+,其中R N ∈∈m n ,*.(1)若21,,a m a 成等差数列,求m 的值; (2)若0=m ,求数列}{n a 的通项n a ;(3)若对任意正整数n ,都有4<n a ,求m 的最大值.杨浦区2018学年度第二学期高三年级模拟质量调研数学学科试卷评分标准 2019.4.考生注意: 1. 答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. π2.⎪⎪⎭⎫⎝⎛--452131 3. 3 4. 4 5. 5 6. 2- 7. ]22,221[ππ+-8. 32 9. 1- 10.|1|22λλ-a 11. 5412. 155 二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.C 14.A 15.A 16.D三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)因为函数tan y x =的定义域为},2|{Z k k x x ∈+≠ππ ……2分所以函数()f x 的定义域为},2|{Z k k x x ∈+≠ππ ……6分(2)x x xxx f cos sin 2)cos sin 1()(⋅+= x x x 2sin 2cos sin 2+= x x 2cos 12sin -+= )42sin(21π-+=x , ……10分令2)(=x f ,即22)42sin(=-πx 由),0(π∈x 得,)47,4(42πππ-∈-x , ……12分 故442ππ=-x 或π43,即4π=x 或2π(舍). ……14分 18.(本题满分14分,第1小题满分7分,第2小题满分7分)解:(1)95025101200)5(=⨯-=p , ……3分)5(p 的实际意义是:当地铁的发车时间隔为5分钟时,地铁载客量为950; ……7分(2)当102<≤t 时,840)36(603603360)10(6072002++-=----=tt t t Q ,1208401260=+⨯≤-等号成立当且仅当6=t ; ……10分 当2010≤≤t 时,3603840360336012006-=--⨯=tt Q24360103840=≤- 等号成立当且仅当10=t ……13分故当发车时间间隔为6分钟时,该线路每分钟的净收益最大,最大净收益为120元. ……14分19.(本题满分14分,第1小题满分6分,第2小题满分8分) 解:(1)由已知,该“堑堵”的底面是等腰直角三角形,且斜边长为2,相应的高为1 棱柱的侧棱长为2 ……4分故该堑堵的体积为221221=⨯⨯⨯; ……6分(2)12132221111AA BC AC V V V ABC A C AA B C C AA B ⨯⨯⨯===--- 3431)(31222==+≤AB BC AC等号成立的充要条件是2==BC AC ; ……8分以C 为原点,1,,CC CA CB 为坐标轴建系, 则)2,2,0(),2,0,0(),0,0,2(11A C B ,则)2,2,0(),0,0,2(1==CA ,设面BC A 1的法向量为),,(1c b a n =,故⎪⎩⎪⎨⎧=+=,022,02c b a 令1=c ,得)1,2,0(1-=n , 同理可得,面11BC A 的法向量为)1,0,2(2=n , ……12分 故1n 与2n 的夹角θ满足:31cos =θ, 由图可知,所求二面角为锐角,故所求为31arccos ……14分20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分) 解:(1)解法一:不妨假设C 在第一象限,令)20)(sin 3,cos 2(πααα<<C ,则)2sin(34sin 32cos 22απααπ=⋅⋅=S ,……2分 由)0(2πα,∈,得]34,0(π∈S ; ……4分解法二:不妨假设()00,C x y 在第一象限,则2200143x y += ……1分有1≥ 所以00x y ≤3分004S x y π=≤ 得]34,0(π∈S ; ……4分(2)解法一:直线l 的方程为)1(-=-x k m y ,代入0124322=-+y x ,012)(4)(8)34(222=--+-++k m x k m k x k ,……6分0]3)(4[48]12)(4)[34(4)(64222222>+--=--+--=∆k m k k m k k m k ,即03)(422>+--k m k , ……7分 又M 为中点,故134)(42=+--k k m k ,得km 43-=,0<k , ……8分 代入03)(422>+--k m k 得,0)34)(12)(12(2>++-k k k , 而0)34)(12(2<+-k k ,故012<+k ,即21-<k ……9分 解法二:设()()1122,,,P x y Q x y ,则,222211221,14343x y x y +=+=两式相减整理得1212121234y y x x x x y y -+=--+ 即121234x x k y y +=-+由题意得121,2x x +=12,2y y m += 于是34k m=- ……6分 中点()1,M m 在椭圆内部,则221143m +< 解得302m <<(要说明理由,否则扣2分) 故12k <-……9分 (3)当00x =时, 1221EF RF EF RF ⋅=⋅,所以,存在实数满足条件,则1λ=; ……10分 直线ER 的方程为0)(4)(30000=---y y xx x y , 则)0,4(x R , ……12分 故20202020*********2212)411()411()1()1(||||||||x x y x y x RF EF RF EF +-⨯+-++=⋅⋅=λ ……14分 1)4()4()4()4()4()4(433)1(433)1(2020202020202020220=+-⨯-+=+-⨯-+--++=x x x x x x x x x x 所以,1=λ。
杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案
杨浦区2018学年度第⼀学期⾼三年级模拟质量调研数学学科试卷及答案杨浦区2018学年度第⼀学期⾼三年级模拟质量调研数学学科试卷及答案 2018.12.考⽣注意: 1.答卷前,考⽣务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2.本试卷共有21道题,满分150分,考试时间120分钟.⼀、填空题(本⼤题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考⽣应在答题纸的相应位置填写结果. 1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则U A =e ▲.2.已知扇形的半径为6,圆⼼⾓为3π,则扇形的⾯积为▲. 3.已知双曲线221x y -=,则其两条渐近线的夹⾓为▲________.4. 若nb a )(+展开式的⼆项式系数之和为8,则n = ▲________.5. 若实数,x y 满⾜ 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,⾼)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在⽆穷等⽐数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ?,则实数a 的取值范围为▲________.9. 在⾏列式中,第3⾏第2列的元素的代数余⼦式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平⾯上,设复数12,z z 对应的点分别为12,Z Z ,若?=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最⼩正周期▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成⽴,则实数a 的最⼤值为▲________. 274434651xx--()f x 1()y f x =+12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满⾜)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P .若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满⾜条件的k 的值为▲________.⼆、选择题(本题共有4题,满分20分,每题5分)每题有且只有⼀个正确选项,考⽣应在答题纸的相应位置,将代表正确选项的⼩⽅格涂⿊.13. 下列函数中既是奇函数,⼜在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5⼈,其中⼥队员2⼈. 现随机选派2⼈参加⼀个象棋⽐赛,则选出的2⼈中恰有1⼈是⼥队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+??=b f =,sin 2sin cosc f θθθ=+,则c b a ,,的⼤⼩关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++?=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)- ()C . [3,5]- ()D . [0,7)()A ()B ()C ()D )2,0(πθ∈三、解答题(本⼤题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1⼩题满分6分,第2⼩题满分8分)如图,PA ⊥平⾯ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:⽆论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1⼩题满分7分,第2⼩题满分7分)在ABC ?中,⾓,,A B C 所对的边分别为,,a b c ,且5cos 13B =.(1)若4sin 5A =,求cos C ;(2)若4b =,求证:5-≥?BC AB .19. (本题满分14分,第1⼩题满分6分,第2⼩题满分8分)上海某⼯⼚以x 千克/⼩时的速度匀速⽣产⼀种产品,每⼀⼩时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使⽣产该产品2⼩时获得的利润不低于30元,求x 的取值范围;(2)要使⽣产900千克该产品获得的利润最⼤,问:该⼚应选取何种⽣产速度?并求最⼤利润.20. (本题满分16分,第1⼩题满分4分,第2⼩题满分5分,第3⼩题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)⼀点,抛物线x y C 4:2=上存在不同的两点B A ,,满⾜PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ?⾯积的最⼩值.21. (本题满分18分,第1⼩题满分4分,第2⼩题满分5分,第3⼩题满分9分)记⽆穷数列{}n a 的前n 项中最⼤值为n M ,最⼩值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不⼩于K 的正整数n ,有1n n b b += 成⽴?请说明理由.青浦区2018学年第⼀学期⾼三年级期终学业质量调研测试数学参考答案及评分标准 2018.12说明1.本解答列出试题⼀种或⼏种解法,如果考⽣的解法与所列解法不同,可参照解答中评分标准的精神进⾏评分.2.评阅试卷,应坚持每题评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅.当考⽣的解答在某⼀步出现错误,影响了后续部分,但该步以后的解答未改变这⼀题的内容和难度时,可视影响程度决定后⾯部分的给分,但是原则上不应超出后⾯部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题⾄第21题中右端所注的分数,表⽰考⽣正确做到这⼀步应得的该题分数. 4.给分或扣分均以1分为单位.⼀.填空题(本⼤题满分54分)本⼤题共有12题,1-6每题4分,7-12每题5分考⽣应在答题纸相应编号的空格内直接填写结果. 1.{}1-; 2.“若a b <,则22am bm <”; 3.()2,3-;4.43; 5.12π;67.(0,4)(4,8); 8.32;9. 80; 10. 14;11.10,2;12.1,3??.⼆.选择题(本⼤题满分20分)本⼤题共有4题,每题有且只有⼀个正确答案,考⽣应在答题纸的相应编号上,将代表答案的⼩⽅格涂⿊,选对得5分,否则⼀律得零分. 13. A ;14. D ; 15.C ;16. C .三.解答题(本⼤题满分74分)本⼤题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2⼩题,第(1)⼩题6分,第(2)⼩题8分. 解:(1)在正四棱柱1111ABCD A B C D -中,∵1AA ⊥平⾯ABCD ,AD ?≠平⾯ABCD ,∴1AA AD ⊥,故14AA =,∴正四棱柱的侧⾯积为(43)448??=,体积为2(3)436?=.(2)建⽴如图的空间直⾓坐标系O xyz -,由题意可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E ,1(0,0,4)AA =,3(,3,2)2BE =--,设1AA 与BE 所成⾓为α,直线BE 与平⾯ABCD 所成⾓为θ,则11cos ||||AA BEAA BE α?===⼜1AA是平⾯ABCD 的⼀个法向量,故sin cos θα==,θ=.所以直线BE 与平⾯ABCD所成的⾓为arcsin61.【另法提⽰:设AD 中点为G ,证EBG ∠即为BE 与平⾯ABCD 所成的⾓,然后解直⾓三⾓形EBG ,求出EBG ∠】arctan 1518.(本题满分14分)第(1)⼩题满分8分,第(2)⼩题满分6分.解:(1),1,01BP t CP t t ==-≤≤45DAQ θ∠=?-,1tan(45)1tDQ tθ-=?-=+, 12111t tCQ t t-=-=++所以211t PQ t +===+ 故221111211t t l CP CQ PQ t t t t t+=++=-++=-++=++ 所以△CPQ 的周长l 是定值2(2)111221ABP ADQ ABCD t t S S S S t ??-=--=--?+正⽅形122(1)221t t=-++≤+当且仅当1t =时,等号成⽴所以摄像头能捕捉到正⽅形ABCD 内部区域的⾯积S⾄多为22hm19.(本题满分14分)本题共2⼩题,第(1)⼩题6分,第(2)⼩题8分. 解:(1)因为函数()3g x x =是函数()3m=+在区间[)+∞4,上的弱渐近函数,所以()()1mf xg x x-=≤ ,即m x ≤在区间[)+∞4,上恒成⽴,即444m m ≤?-≤≤(2)()()2f x g x x x -==[)2,+x ∈∞,()()22(f x g x x x ∴-==-A DCBθP Q45令2()()()2(x xh x f x g x x=-===任取12≤<,则2212311x x≤-<-≤<120xx<<12()()h x h x><即函数()()()2(h x f x g x x=-=在区间[)2,+∞上单调递减,所以(()()0,4x-∈-,⼜([]0,41,1-?-,即满⾜()2g x x=使得对于任意的[)2,x∈+∞有()()1f xg x-≤恒成⽴,所以函数()2g x x=是函数()f x=在区间[)2,+∞上的弱渐近函数.20.(本题满分16分)本题共3⼩题,第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题6分.解:(1)242a a=?=,⼜双曲线的渐近线⽅程为y=,所以bba==双曲线的标准⽅程是22412x y-=.(2)法⼀:由题不妨设11()A x,22(,)B x,则1212(,)22x xP+,由P在双曲线上,代⼊双曲线⽅程得124x x?=;法⼆:当直线AB的斜率不存在时,显然2x=±,此时124xx?=;当直线AB的斜率存在时,设直线AB的⽅程为(0,t k k=+≠≠则由y kx tAy=+?=同理y kx tBy=+?=此时223,33kt t P k k ?? ?--??代⼊双曲线⽅程得224(3)t k =-,所以212243t x x k ?==-(3)①对称中⼼:原点;对称轴⽅程:,y y x = =②顶点坐标:3,22??,322??-- ? ???;焦点坐标:(,(1,-实轴长:2a =、虚轴长:22b =、焦距:24c =③范围:()0,,2,x y ?≠∈-∞+∞?④渐近线:0,3x y x ==21.(本题满分18分)本题共3⼩题,第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题8分.解:(1)因为数列{}n b 是“Γ数列”,且11b =,3k =、4d =、0c =,所以当1n ≥,n *∈N 时,310n b +=,⼜*2016672N 3=∈,即20170b =, 20182017044b b d =+=+=,20192018448b b d =+=+= (2)因为数列{}n b 是“Γ数列”,且12b =,4k =、2d =、1c =()()()414344341434243434312336n n n n n n n n n n b b cb b b d b b d b b d b d +---------=-=?+-=+-=+-==则数列前4n 项中的项43n b -是以2为⾸项,6为公差的得差数列,易知{}4n b 中删掉含有43n b -的项后按原来的顺序构成⼀个⾸项为2公差为2的等差数列,41543()n n S b b b -∴=+++()()()()23467846454442414+n n n n n n b b b b b b b b b b b b -----++++++++++++2(1)3(31)26(3)2212822n n n n n n n n --=+++=+ 43nn S λ≤?,43nn S λ∴≤,设2412833n n n n S n n c +==,则()max n c λ≥,22211112(1)8(1)12824820333n n n n n n n n n n n c c +++++++-++-=-=当1n =时,2248200n n -++>,12c c <;当2n ≥,n *∈N 时,2248200n n -++<,1n n c c +<,∴123c c c <>>,∴()2max 649n c c ==,即()2max 649n c c λ≥==(3)因为{}n b 既是“Γ数列”⼜是等⽐数列,设{}n b 的公⽐为1n nb q b +=,由等⽐数列的通项公式有1n n b bq -=,当m *∈N 时,21k m k m b b d ++-=,即()11km km km bq bq bq q d +-=-=① 1q =,则0d =,n b b =;② 1q ≠,则()1kmd qq b=-,则kmq 为常数,则1q =-,k 为偶数,2d b =-,()11n n b b -=-;经检验,满⾜条件的{}n b 的通项公式为n b b =或()1 1n n b b -=-.。
2018年上海市杨浦区高考一模数学试卷【解析版】
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sin A、sin B、sin C成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g (x)=f(x+α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsin x.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD 的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与P A所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.21.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n 0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,x2,…,x s}表示x1,x2,…,x s,其中max{x这s个数中最大的数,求M的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【考点】6F:极限及其运算.【解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【考点】1E:交集及其运算.【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则=﹣.【考点】GF:三角函数的恒等变换及化简求值.【解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【考点】O1:二阶矩阵.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =6.【考点】OT:特征向量的定义.【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.【考点】DA:二项式定理.【解答】解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【考点】CB:古典概型及其概率计算公式.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【考点】4R:反函数.【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sin A、sin B、sin C成等比数列,则角B的最大值为.【考点】HR:余弦定理.【解答】解:∵在△ABC中,sin A、sin B、sin C依次成等比数列,∴sin2B=sin A sin C,利用正弦定理化简得:b2=ac,由余弦定理得:cos B==≥=(当且仅当a=c 时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【考点】KC:双曲线的性质.【解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.【考点】GL:三角函数中的恒等变换应用.【解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【考点】K4:椭圆的性质.【解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3,∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsin x.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【考点】3K:函数奇偶性的性质与判断.【解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsin x是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD 的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8【考点】9O:平面向量数量积的性质及其运算;LF:棱柱、棱锥、棱台的体积.【解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4+S△ACD+S△ADB=(ab+ac+bc)≤(a2+b2+c2)=2所以S△ABC即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【考点】7F:基本不等式及其应用.【解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与P A所成角的大小.(结果用反三角函数值表示)【考点】L5:旋转体(圆柱、圆锥、圆台);LM:异面直线及其所成的角.【解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与P A所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90O,,…(12分)则,∴异面直线SO与P A所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【考点】18:集合的包含关系判断及应用;3K:函数奇偶性的性质与判断.【解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【考点】KN:直线与抛物线的综合.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m=0时,x=1和x=9符合题意;当m≠0时,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m)因为k AB•k CM=﹣1,,所以,得b=3﹣2m2所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=021.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n 0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s 这s个数中最大的数,求M的最小值.【考点】8K:数列与不等式的综合.【解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.。
杨浦区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
杨浦区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为()A .B .C .D .2. 有下列关于三角函数的命题P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x ﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( )A .P 1,P 4B .P 2,P 4C .P 2,P 3D .P 1,P 23. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是()A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)4. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V ≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V ≈L 2h 相当于将圆锥体积公式中的π近似取为()A .B .C .D .5. 下列推断错误的是()A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件6. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 11班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有()A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关8. 已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( )A .8B .﹣8C .11D .﹣119. (2016广东适应)已知双曲线的顶点为椭圆长轴的端点,且双曲线的离心率与椭圆的离心率1222=+y x 的乘积等于,则双曲线的方程是( )1A . B . C .D .122=-y x 122=-x y 222=-y x 222=-x y 10.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .4811.已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=()A .2B .1C .D .12.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于()A .5B .6C .7D .8二、填空题13.如果实数满足等式,那么的最大值是 .,x y ()2223x y -+=yx14.如图,正方形的边长为1,它是水平放置的一个平面图形的直观图,则原图的''''O A B C cm 周长为.1111]15.设函数,若用表示不超过实数m 的最大整数,则函数的值域为 .16.一船以每小时12海里的速度向东航行,在A 处看到一个灯塔B 在北偏东60°,行驶4小时后,到达C 处,看到这个灯塔B 在北偏东15°,这时船与灯塔相距为 海里.17.定义在[1,+∞)上的函数f (x )满足:(1)f (2x )=2f (x );(2)当2≤x ≤4时,f (x )=1﹣|x ﹣3|,则集合S={x|f (x )=f (34)}中的最小元素是 . 18.若x 、y 满足约束条件,z =3x +y +m 的最小值为1,则m =________.{x -2y +1≤02x -y +2≥0x +y -2≤0)三、解答题19.(本小题满分12分)一直线被两直线截得线段的中点是12:460,:3560l x y l x y ++=--=P 点, 当点为时, 求此直线方程.P ()0,020.已知复数z 1满足(z 1﹣2)(1+i )=1﹣i (i 为虚数单位),复数z 2的虚部为2,且z 1z 2是实数,求z 2. 21.某小组共有A 、B 、C 、D 、E 五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下表所示:AB C D E 身高 1.69 1.73 1.75 1.79 1.82体重指标19.225.118.523.320.9(Ⅰ)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率. 22.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长;(2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.23.(本小题满分10分)选修4-1:几何证明选讲如图所示,是半圆的直径,,垂足为,,与、分别交于点、BC O AD BC ⊥D »»AB AF =BF AD AO E .G (1)证明:;DAO FBC ∠=∠ (2)证明:.AE BE =EFG COAB24.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.杨浦区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.2.【答案】D【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx==>0,则P1为真命题;对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),则f(x)的最小正周期为π,则P4为假命题.故选D.【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.3.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.4.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.5.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.6.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C7.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.8.【答案】D【解析】解:设{a n}是等比数列的公比为q,因为a2=2,a3=﹣4,所以q===﹣2,所以a 1=﹣1,根据S 5==﹣11.故选:D .【点评】本题主要考查学生运用等比数列的前n 项的求和公式的能力,本题较易,属于基础题. 9. 【答案】D【解析】∵椭圆的端点为,∴,(0,依题意双曲线的实半轴,∴,,故选D .a =2c =b =10.【答案】C【解析】解:F 1(﹣5,0),F 2(5,0),|F 1F 2|=10,∵3|PF 1|=4|PF 2|,∴设|PF 2|=x ,则,由双曲线的性质知,解得x=6.∴|PF 1|=8,|PF 2|=6,∴∠F 1PF 2=90°,∴△PF 1F 2的面积=.故选C .【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用. 11.【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y ,得y=﹣2x+z ,平移直线y=﹣2x+z ,由图象可知当直线y=﹣2x+z 经过点C 时,直线y=﹣2x+z 的截距最小,此时z 最小.即2x+y=1,由,解得,即C (1,﹣1),∵点C 也在直线y=a (x ﹣3)上,∴﹣1=﹣2a ,解得a=.故选:C .【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.12.【答案】B【解析】解:由题意可得抛物线的轴为x轴,F(2,0),∴MP所在的直线方程为y=4在抛物线方程y2=8x中,令y=4可得x=2,即P(2,4)从而可得Q(2,﹣4),N(6,﹣4)∵经抛物线反射后射向直线l:x﹣y﹣10=0上的点N,经直线反射后又回到点M,∴直线MN的方程为x=6故选:B.【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用. 二、填空题13.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.yx14.【答案】8cm 【解析】考点:平面图形的直观图.15.【答案】 {0,1} .【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用. 16.【答案】 24 【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.17.【答案】 6 【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目. 18.【答案】【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1,∴m =4.答案:4三、解答题19.【答案】.16y x =-【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线12,l l ()()1122,,,A x y B x y ()()1122,,,A x y B x y 上,列出方程组,求解的值,即可求解直线的方程. 112,l l 11,x y考点:直线方程的求解.20.【答案】【解析】解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1z2是实数∴4﹣a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.21.【答案】【解析】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题. 22.【答案】【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,整理得:PA=;(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得: ==,∴PB=sin θ,PC=sin (﹣θ),∴△PBC 的面积S (θ)=PB •PCsin =sin (﹣θ)sin θ=sin (2θ+)﹣,θ∈(0,),则当θ=时,△PBC 面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键. 23.【答案】【解析】(1)连接,,FC OF ∵,,»»AB AF =OB OF =∴点是的中点,.G BF OG BF ⊥∵是的直径,∴.BC O e CF BF ⊥∴.∴,//OG CF AOB FCB ∠=∠∴,90,90DAO AOB FBC FCB ∠=︒-∠∠=︒-∠∴.DAO FBC ∠=∠(2)在与中,Rt OAD ∆Rt OBG ∆由(1)知,DAO GBO ∠=∠又,OA OB =∴,于是.OAD ∆≅OBG ∆OD OG =∴.AG OA OG OB OD BD =-=-=在与中,Rt AGE ∆Rt BDE ∆由于,,DAO FBC ∠=∠AG BD =∴,∴.AGE ∆≅BDE ∆AE BE =24.【答案】【解析】【知识点】垂直平行【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面.因为,平面,平面,所以平面.又因为,所以平面平面.又因为平面,所以平面.(Ⅱ)证明:因为底面,底面,BDAOCG FE所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.。
杨浦区第一中学2018-2019学年高三上学期11月月考数学试卷含答案
杨浦区第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所,则该几何体的俯视图为( )A. B. C. D.2. 有下列关于三角函数的命题 P 1:∀x ∈R ,x ≠k π+(k ∈Z ),若tanx >0,则sin2x >0;P 2:函数y=sin (x﹣)与函数y=cosx 的图象相同;P 3:∃x 0∈R ,2cosx 0=3;P 4:函数y=|cosx|(x ∈R )的最小正周期为2π,其中真命题是( ) A .P 1,P 4 B .P 2,P 4C .P 2,P 3D .P 1,P 23. 已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是( )A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞)4. 《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式V≈L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L 2h 相当于将圆锥体积公式中的π近似取为( )A.B.C.D.5. 下列推断错误的是( )A .命题“若x 2﹣3x+2=0,则x=1”的逆否命题为“若x ≠1则x 2﹣3x+2≠0”B .命题p :存在x 0∈R ,使得x 02+x 0+1<0,则非p :任意x ∈R ,都有x 2+x+1≥0C .若p 且q 为假命题,则p ,q 均为假命题D .“x <1”是“x 2﹣3x+2>0”的充分不必要条件6. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 11班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________7. 如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m ,n 为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a 和b ,则一定有( )A .a >bB .a <bC .a=bD .a ,b 的大小与m ,n 的值有关8. 已知数列{a n }是等比数列前n 项和是S n ,若a 2=2,a 3=﹣4,则S 5等于( ) A .8B .﹣8C .11D .﹣119. (2016广东适应)已知双曲线的顶点为椭圆1222=+y x 长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是( )A .122=-y xB .122=-x yC .222=-y xD .222=-x y10.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( )A .B .C .24D .4811.已知a >0,实数x ,y 满足:,若z=2x+y 的最小值为1,则a=( )A .2B .1C .D .12.如图,从点M (x 0,4)发出的光线,沿平行于抛物线y 2=8x 的对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射向抛物线上的点Q ,再经抛物线反射后射向直线l :x ﹣y ﹣10=0上的点N ,经直线反射后又回到点M ,则x 0等于( )A .5B .6C .7D .8二、填空题13.如果实数,x y 满足等式()2223x y -+=,那么yx的最大值是 . 14.如图,正方形''''O A B C 的边长为1cm ,它是水平放置的一个平面图形的直观图,则原图的 周长为 .1111]15.设函数,若用表示不超过实数m的最大整数,则函数的值域为.16.一船以每小时12海里的速度向东航行,在A处看到一个灯塔B在北偏东60°,行驶4小时后,到达C处,看到这个灯塔B在北偏东15°,这时船与灯塔相距为海里.17.定义在[1,+∞)上的函数f(x)满足:(1)f(2x)=2f(x);(2)当2≤x≤4时,f(x)=1﹣|x﹣3|,则集合S={x|f(x)=f(34)}中的最小元素是.18.若x、y满足约束条件⎩⎪⎨⎪⎧x-2y+1≤02x-y+2≥0x+y-2≤0,z=3x+y+m的最小值为1,则m=________.三、解答题19.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y++=--=截得线段的中点是P点, 当P点为()0,0时, 求此直线方程.20.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.21.某小组共有A、B、C、D、E五位同学,他们的身高(单位:米)以及体重指标(单位:千克/米2)如下(Ⅱ)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.22.如图,在Rt △ABC 中,∠ACB=,AC=3,BC=2,P 是△ABC 内一点.(1)若P 是等腰三角形PBC 的直角顶角,求PA 的长; (2)若∠BPC=,设∠PCB=θ,求△PBC 的面积S (θ)的解析式,并求S (θ)的最大值.23.(本小题满分10分)选修4-1:几何证明选讲如图所示,BC 是半圆O 的直径,AD BC ⊥,垂足为D ,AB AF =,BF 与AD 、AO 分别交于点E 、G . (1)证明:DAO FBC ∠=∠; (2)证明:AE BE =.EFG CAB24.如图,在四棱柱中,底面,,,.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)若,判断直线与平面是否垂直?并说明理由.杨浦区第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】C【解析】解:由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体的左侧,由以上各视图的描述可知其俯视图符合C选项.故选:C.【点评】本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相等”的含义.2.【答案】D【解析】解:对于P1,∀x∈R,x≠kπ+(k∈Z),若tanx>0,则sin2x=2sinxcosx==>0,则P1为真命题;对于P2,函数y=sin(x﹣)=sin(2π+x﹣)=sin(x+)=cosx,则P2为真命题;对于P3,由于cosx∈[﹣1,1],∉[﹣1,1],则P3为假命题;对于P4,函数y=|cosx|(x∈R),f(x+π)=|cos(x+π)|=|﹣cosx|=|cosx|=f(x),则f(x)的最小正周期为π,则P4为假命题.故选D.【点评】本题考查全称性命题和存在性命题的真假,以及三角函数的图象和周期,运用二倍角公式和诱导公式以及周期函数的定义是解题的关键,属于基础题和易错题.3.【答案】A【解析】解:若命题p:“∀∈[1,e],a>lnx,为真命题,则a>lne=1,若命题q:“∃x∈R,x2﹣4x+a=0”为真命题,则△=16﹣4a≥0,解得a≤4,若命题“p∧q”为真命题,则p,q都是真命题,则,解得:1<a≤4.故实数a的取值范围为(1,4].故选:A.【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键.4.【答案】B【解析】解:设圆锥底面圆的半径为r,高为h,则L=2πr,∴=(2πr)2h,∴π=.故选:B.5.【答案】C【解析】解:对于A,命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1则x2﹣3x+2≠0”,正确;对于B,命题p:存在x0∈R,使得x02+x0+1<0,则非p:任意x∈R,都有x2+x+1≥0,正确;对于C,若p且q为假命题,则p,q至少有一个为假命题,故C错误;对于D,x2﹣3x+2>0⇒x>2或x<1,故“x<1”是“x2﹣3x+2>0”的充分不必要条件,正确.综上所述,错误的选项为:C,故选:C.【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题.6.【答案】C【解析】解:∵a n=29﹣n,∴T n=a1•a2•…•a n=28+7+…+9﹣n=∴T1=28,T19=2﹣19,故A不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C7.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.8.【答案】D【解析】解:设{a n}是等比数列的公比为q,因为a2=2,a3=﹣4,所以q===﹣2,所以a1=﹣1,根据S5==﹣11.故选:D.【点评】本题主要考查学生运用等比数列的前n项的求和公式的能力,本题较易,属于基础题.9.【答案】D【解析】∵椭圆的端点为(0,,∴c=,b=D.依题意双曲线的实半轴a=∴210.【答案】C【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10,∵3|PF1|=4|PF2|,∴设|PF2|=x,则,由双曲线的性质知,解得x=6.∴|PF1|=8,|PF2|=6,∴∠F1PF2=90°,∴△PF1F2的面积=.故选C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.11.【答案】C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.12.【答案】B【解析】解:由题意可得抛物线的轴为x轴,F(2,0),∴MP所在的直线方程为y=4在抛物线方程y2=8x中,令y=4可得x=2,即P(2,4)从而可得Q(2,﹣4),N(6,﹣4)∵经抛物线反射后射向直线l:x﹣y﹣10=0上的点N,经直线反射后又回到点M,∴直线MN的方程为x=6故选:B.【点评】本题主要考查了抛物线的性质的应用,解决问题的关键是要熟练掌握相关的性质并能灵活应用.二、填空题13.【解析】考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把y的最值转化为直线与圆相切是解答的关键,属于中档试题.x14.【答案】8cm【解析】考点:平面图形的直观图.15.【答案】{0,1}.【解析】解:=[﹣]+[+]=[﹣]+[+],∵0<<1,∴﹣<﹣<,<+<,①当0<<时,0<﹣<,<+<1,故y=0;②当=时,﹣=0,+=1,故y=1;③<<1时,﹣<﹣<0,1<+<,故y=﹣1+1=0;故函数的值域为{0,1}.故答案为:{0,1}.【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.16.【答案】24【解析】解:根据题意,可得出∠B=75°﹣30°=45°,在△ABC中,根据正弦定理得:BC==24海里,则这时船与灯塔的距离为24海里.故答案为:24.17.【答案】6【解析】解:根据题意,得;∵f(2x)=2f(x),∴f(34)=2f(17)=4f()=8f()=16f();又∵当2≤x≤4时,f(x)=1﹣|x﹣3|,∴f()=1﹣|﹣3|=,∴f(2x)=16×=2;当2≤x≤4时,f(x)=1﹣|x﹣3|≤1,不存在;当4≤x≤8时,f(x)=2f()=2[1﹣|﹣3|]=2,解得x=6;故答案为:6.【点评】本题考查了根据函数的解析式求函数值以及根据函数值求对应自变量的最小值的应用问题,是基础题目.18.【答案】【解析】解析:可行域如图,当直线y =-3x +z +m 与直线y =-3x 平行,且在y 轴上的截距最小时,z 才能取最小值,此时l 经过直线2x -y +2=0与x -2y +1=0的交点A (-1,0),z min =3×(-1)+0+m =-3+m =1, ∴m =4.答案:4三、解答题19.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 20.【答案】【解析】解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1z2是实数∴4﹣a=0解得a=4所以z2=4+2i【点评】本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.21.【答案】【解析】(Ⅰ)从身高低于1.80的同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D)共6个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人身高都在1.78以下的事件有:(A,B),(A,C),(B,C)共3个.因此选到的2人身高都在1.78以下的概率为p=;(Ⅱ)从该小组同学中任选2人,其一切可能的结果组成的基本事件有:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E)共10个.由于每个同学被选到的机会均等,因此这些基本事件的出现是等可能的.选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的事件有:(C,D)(C,E),(D,E)共3个.因此选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率p=.【点评】本题考查了古典概型及其概率计算公式,解答的关键在于列举基本事件时做到不重不漏,是基础题.22.【答案】【解析】解:(1)∵P为等腰直角三角形PBC的直角顶点,且BC=2,∴∠PCB=,PC=,∵∠ACB=,∴∠ACP=,在△PAC中,由余弦定理得:PA2=AC2+PC2﹣2AC•PC•cos=5,整理得:PA=;(2)在△PBC中,∠BPC=,∠PCB=θ,∴∠PBC=﹣θ,由正弦定理得:==,∴PB=sin θ,PC=sin(﹣θ),∴△PBC 的面积S (θ)=PB •PCsin=sin(﹣θ)sin θ=sin (2θ+)﹣,θ∈(0,),则当θ=时,△PBC面积的最大值为.【点评】此题考查了正弦、余弦定理,以及三角形面积公式,熟练掌握定理及公式是解本题的关键.23.【答案】【解析】(1)连接FC ,OF , ∵AB AF =,OB OF =, ∴点G 是BF 的中点,OG BF ⊥. ∵BC 是O 的直径,∴CF BF ⊥. ∴//OG CF .∴AOB FCB ∠=∠,∴90,90DAO AOB FBC FCB ∠=︒-∠∠=︒-∠, ∴DAO FBC ∠=∠.(2)在Rt OAD ∆与Rt OBG ∆中, 由(1)知DAO GBO ∠=∠, 又OA OB =,∴OAD ∆≅OBG ∆,于是OD OG =. ∴AG OA OG OB OD BD =-=-=. 在Rt AGE ∆与Rt BDE ∆中, 由于DAO FBC ∠=∠,AG BD =, ∴AGE ∆≅BDE ∆,∴AE BE =.24.【答案】【解析】【知识点】垂直平行 【试题解析】(Ⅰ)证明:因为,平面,平面,所以平面. 因为,平面,平面,所以平面. 又因为, 所以平面平面.又因为平面, 所以平面. (Ⅱ)证明:因为底面,底面,BACG FE所以.又因为,,所以平面.又因为底面,所以.(Ⅲ)结论:直线与平面不垂直.证明:假设平面,由平面,得.由棱柱中,底面,可得,,又因为,所以平面,所以.又因为,所以平面,所以.这与四边形为矩形,且矛盾,故直线与平面不垂直.。
年上海市杨浦区高考数学一模试卷
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m= .3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为Sn,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n= .9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限 C.第三象限ﻩD.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是( )A.①②B.②③C.①③ﻩD.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的() A.充分非必要条件ﻩB.必要非充分条件C.充要条件ﻩD.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是( )A.ﻩB.2ﻩC.4ﻩD.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程. 21.(18分)若数列A:a1,a2,…,an(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2ak恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,an=2017,求n的最大值;(3)设n 0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,x2,…,x s}表示x1,x2,…,x s这s个,其中max{x1数中最大的数,求M的最小值.ﻬ2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m= 3 .【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则= ﹣.【解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y= 6 .【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.=x6﹣r(﹣)r=(﹣2)r x6﹣2r【解答】解:展开式的通项为Tr+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+n1)的反函数的图象上,则a n= 2n﹣1.【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,an=s n﹣sn﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为an=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【解答】解:∵在△ABC中,sinA、sinB、sinC依次成等比数列,∴sin2B=sinAsinC,利用正弦定理化简得:b2=ac,由余弦定理得:cosB==≥=(当且仅当a=c时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f (x+α)为奇函数,则α的值为.【解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥, x1+x2=﹣,x1x2=,(*)=λx2代入到(*)式整理可得由,可得,x1==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于( )A.第一象限ﻩB.第二象限C.第三象限ﻩD.第四象限【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③ﻩC.①③ D.②④【解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsinx是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件ﻩB.必要非充分条件C.充要条件ﻩD.既非充分也非必要条件【解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S+S2+S3的最大值是()1A. B.2ﻩC.4 D.8【解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a 2+b2+c2=4R2=4所以S△ABC +S△ACD+S△ADB=(ab+ac+bc)≤(a2+b2+c2)=2即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90O,,…(12分)则,∴异面直线SO与PA所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m=0时,x=1和x=9符合题意;当m≠0时,A(x,y1)、B(x2,y2)的坐标满足方程组,1所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m)因为k AB•kCM=﹣1,,所以,得b=3﹣2m2所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=021.(18分)若数列A:a1,a2,…,an(n≥3)中(1≤i≤n)且对任意的2+a k﹣1>2ak恒成立,则称数列A为“U﹣数列”.≤k≤n﹣1,ak+1(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,an中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x 1,x2,…,x s}表示x1,x2,…,xs这s个数中最大的数,求M的最小值.【解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:ak+1+ak﹣1>2ak⇔a k+1﹣ak>ak﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则bi∈Z且b k>b k﹣1(2≤k≤n﹣1),故bk≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,an=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣an﹣2)+…+(a2﹣a1)=bn﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{an}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣bk≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(bm+k﹣1﹣bm+k﹣2)+…+(bk+1﹣bk)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+bm﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(am+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,bm﹣1=﹣1,bm=0,bm+1=1,b2m﹣1=m﹣1时,ak+1+ak﹣1﹣2ak=(ak+1﹣a k)﹣(a k﹣ak﹣1)=b k﹣b k﹣1=1>0取am=1,则a m+1=1,a1>a2>a3>…>am,a m+1<am+2<…<a2m,且此时.综上,M的最小值为.。
2021杨浦高三数学一模试卷(含解析) (1)
⎝ ⎭x n n n 2 8x 2 )y y2018 杨浦高三数学一模试卷(2017.12)一、填空题 1. 计算lim ⎛1- 1 ⎫的结果是_n →∞ n ⎪ ⎝ ⎭2. 已知集合 A = {1, 2, m }, B = {3, 4},若 A ⋂ B = {3},则实数 m=_3. 已知cos θ =- 3 ,则sin ⎛θ + π ⎫ =5 2 ⎪4. 若行列式2x -1⎝ ⎭4 = 0 ,则 x = __ _125. 已知一个关于 x 、y 的二元一次方程组的增广矩阵是⎛1-12 ⎫,则 x + y = _ _⎛ 2 ⎫60 1 2 ⎪ 6. 在 x - ⎪ ⎝ ⎭的二项展开式中,常数项的值为_7. 若将一颗质地均匀的骰子(一种各面上分别标有 1,2,3,4,5,6 个点的正方体玩具),先后抛掷 2 次,则出现向上的点数之和为 4 的概率是8. 数列{a }的前n 项和为 S ,若点(n , S )(n∈ N * )在函数 y = log (x +1)的反函数的图像上, 则a n = __9. 在 ABC 中,若sin A , sin B , sin C 成等比数列,则角 B 的最大值为__10. 抛物线 y 2 = - 的焦点与双曲线 x 2 - 2 a= 1的左焦点重合,则这条双曲线的两条渐近线的夹角为11. 已知函数 f (x ) = cos x (sin x +3 cos x -3, x ∈ R ,设a > 0 ,若函数 g (x ) = f (x +α )为 2奇函数,则α 的值为12. 已知点 C 、D 是椭圆 x 2 + 24= 1上的两个动点,且点M (0, 2),若MD = λ MC ,则实数λ 的取值范围为_ _二、选择题13. 在复平面内,复数 z =2 - i 对应的点位于( )iA. 第一象限B. 第二象限C. 第三象限D. 第四象限14. 给出下列函数:① y = log 2 x② y = x 2③ y = 2 x④ y = arcsin x其中图像关于 y 轴对称的函数的序号是()A.①②B.②③C. ①③D.②④15.“ t ≥ 0 ”是“函数 f (x ) = x 2 + tx - t 在(-∞, +∞) 内存在零点”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16. 设 A 、B 、C 、D 是半径为 1 的球面上的四个不同点,且满足 AB ⋅ AC = 0 , AC ⋅ AD = 0 ,AD ⋅ AB = 0 ,用S 1 、 S 2 、 S 3 分别表示 ABC 、 ACD 、 ABD 的面积,则S 1 + S 2 + S 3 的最大值是()A. 12B. 2C. 4D. 8三、解答题17. 如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边篱笆隔开.(1)设场地面积为 y ,垂直于墙的边长为 x ,试用解析式将 y 表示成 x 的函数,并确定这个函数的定义域;18.如图,已知圆锥的侧面积为15π,底面半径 OA 和OB 互相垂直,且 OA=3,P 是母线BS 的中点. (1)求圆锥的体积;(2)求异面直线 SO 与 PA 所成角的大小(结果用反三角函数表示).19.已知函数f (x)= ln 1+x的定义域为集合 A,集合B ={a, a +1},且B ⊆A . 1-x(1)求实数a 的取值范围;(2)求证:函数f (x)是奇函数不是偶函数.20.设直线l 与抛物线Ω : y2 = 4x 相交于不同两点 A、B,O 为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x-5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若OA⋅OB = 0 ,点 Q 在线段 AB 上,满足OQ ⊥AB ,其点 Q 的轨迹方程.21.若数列 A : a , a ,……, a (n ≥ 3) 中, a ∈ N *(1 ≤ i ≤ n ) 且对任意2 ≤ k ≤ n -1,1 2 n ia k +1 + a k -1 > 2a k 恒成立,则称数列 A 为“U -数列”.(1)若数列1, x , y , 7 为“U -数列”,写出所有可能的 x , y ;(2)若“U -数列” A : a 1 , a 2 ,……, a n 中, a 1 = 1, a n = 2017 ,求n 的最大值; (3)设n 0 为给定的偶数,对所有可能的“U -数列” A : a 1 , a 2 ,……,a n 0 ,记 M = max {a 1, a 2 ,..., a n 0 },其中M = max {x 1, x 2 ,..., x s }表示 x 1, x 2 ,..., x s 这s 个数中最大的数,求M 的最小值.4 3 ⎪ 3 ⎪答案与解析1、12、33、- 354、25、66、-1607、 18、2n -19、π10、π123311、 k π - π (k ∈ N * ); f (x ) = sin ⎛ 2x + π ⎫ ,可向右平移π 叠加半周期。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎝ ⎭n- 2 上海市杨浦区 2018 届高三一模数学试卷2017.12一. 填空题(本大题共 12 题,1-6 每题 4 分,7-12 每题 5 分,共 54 分)1. 计算lim(1 - 1) 的结果是n →∞n2. 已知集合 A = {1, 2, m } , B = {3, 4},若 A I B = {3} ,则实数 m =3. 已知cos θ= - 3 ,则sin(θ+ 5 π) =24. 若行列式2x -1 4 = 0 ,则 x =1 2⎛ 1 -1 2 ⎫5. 已知一个关于 x 、 y 的二元一次方程组的增广矩阵是 0 1 2 ⎪ ,则x + y =6. 在(x - 2)6 的二项展开式中,常数项的值为x7. 若将一颗质地均匀的骰子(一种各面上分别标有 1,2,3,4,5,6 个点的正方体玩具), 先后抛掷 2 次,则出现向上的点数之和为 4 的概率是8. 数列{a } 的前n 项和为 S ,若点(n , S ) ( n ∈ N *)在函数 y = log (x + 1) 的反函数的图像上,则 a n =9. 在∆ABC 中,若sin A 、sin B 、sin C 成等比数列,则角 B 的最大值为10. 抛物线 y 2= -8x 的焦点与双曲线x 2a 2y= 1 的左焦点重合,则这条双曲线的两条渐近 线的夹角为11. 已知函数 f (x ) = cos x (sin x + 为奇函数,则α的值为x 2 23 cos x ) - 3 ,x ∈ R ,设 a > 0 ,若函数 g (x ) = f (x +α)212. 已知点C 、 D 是椭圆 + y 4= 1 上的两个动点,且点 M (0, 2) ,若 MD = λMC ,则实数λ的取值范围为二. 选择题(本大题共 4 题,每题 5 分,共 20 分) 13. 在复平面内,复数 z = 2 - i 对应的点位于( )iA. 第一象限B. 第二象限C. 第三象限D. 第四象限2 14. 给出下列函数:① y = log x ;② y = x 2 ;③ y = 2|x | ;④ y = arcsin x . 其中图像关于 y 轴对称的函数的序号是( )A. ①②B. ②③C. ①③D. ②④15. “ t ≥ 0 ”是“函数 f (x ) = x 2 + tx - t 在(-∞, +∞) 内存在零点”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16. 设 A 、B 、C 、D 是半径为 1 的球面上的四个不同点,且满足 AB ⋅ AC = 0 ,AC ⋅ AD = 0 ,AD ⋅ AB = 0 ,用 S 1 、S 2 、S 3 分别表示∆ABC 、∆ACD 、∆ABD 的面积,则 S 1 + S 2 + S 3 的最大值是()A. 12B. 2C. 4D. 8三. 解答题(本大题共 5 题,共 14+14+14+16+18=76 分)17. 如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1) 设场地面积为 y ,垂直于墙的边长为 x ,试用解析式将 y 表示成 x 的函数,并确定这个函数的定义域;(2) 怎样围才能使得场地的面积最大?最大面积是多少?18. 如图,已知圆锥的侧面积为15π,底面半径OA 和OB 互相垂直,且OA = 3 , P 是母线BS 的中点.(1) 求圆锥的体积;(2) 求异面直线 SO 与 PA 所成角的大小.(结果用反三角函数值表示)0 019. 已知函数 f (x ) = ln1 + x的定义域为集合 A ,集合 B = (a , a + 1) ,且 B ⊆ A .1 - x(1) 求实数 a 的取值范围;(2) 求证:函数 f (x ) 是奇函数但不是偶函数.20. 设直线l 与抛物线Ω : y 2 = 4x 相交于不同两点 A 、 B , O 为坐标原点.(1) 求抛物线Ω 的焦点到准线的距离; (2) 若直线l 又与圆C : (x - 5)2+ y 2 = 16 相切于点 M ,且 M 为线段 AB 的中点,求直线l的方程;(3) 若OA ⋅ O B = 0 ,点Q 在线段 AB 上,满足OQ ⊥ AB ,求点Q 的轨迹方程.21. 若数列 A :a ,a ,⋅⋅⋅,a ( n ≥ 3 )中 a ∈ N *(1 ≤ i ≤ n )且对任意的2 ≤ k ≤ n -1 ,12nia k +1 + a k -1 > 2a k 恒成立,则称数列 A 为“U - 数列”.(1)若数列 1, x , y ,7 为“U - 数列”,写出所有可能的 x 、 y ;(2)若“U - 数列” A : a 1 , a 2 , ⋅⋅⋅, a n 中, a 1 = 1, a n = 2017 ,求 n 的最大值; (3)设 n 0 为给定的偶数,对所有可能的“U - 数列” A : a 1 , a 2 , ⋅⋅⋅, a n ,记M = max{a 1,a 2 ,⋅⋅⋅,a n } ,其中 max{x 1, x 2 , ⋅⋅⋅, x s } 表示 x 1 ,x 2 ,⋅⋅⋅ ,x s 这 s 个数中最大的数,求 M 的最小值.n参考答案一. 填空题 1. 3 2. - 353. 24. 65.-160 6. 1127. 18. a = 2n -1 ππ9.10.3311. α= k π- π(k ∈ N *)2 6112. [ ,3]3二. 选择题 13. C14. B15. A 16. B三. 解答题17.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)解:(1)设平行于墙的边长为 a , 则篱笆总长l = 3x + a ,即a = l - 3x , ……2 分所以场地面积 y = x (l - 3x ) , x ∈ l (0, ) 3(定义域2 分) ……6 分 2l 2 l 2 l (2) y = x (l - 3x ) = -3x + lx = -3(x - ) + , x ∈(0, )……8 分 6 12 3 l l 2所以当且仅当 x = 6 时, y max = 122综上,当场地垂直于墙的边长 x 为 l 时,最大面积为 l……12 分……14 分6 1218.(本题满分 14 分,第 1 小题满分 7 分,第 2 小题满分 7 分)解 1:(1)由题意,π⋅ O A ⋅ SB = 15π得 BS = 5 ,……2 分故 SO== 4 ……4 分 从而体积V =1π⋅OA 2 ⋅ SO = 1π⨯ 32 ⨯ 4 = 12π .……7 分33(2)如图,取OB 中点 H ,联结 PH 、AH . 由 P 是 SB 的中点知 PH ∥SO ,则∠APH (或其补角)就是异面直线 SO 与 PA 所成角 ................................. 10 分 由 SO ⊥ 平面OAB ⇒ PH ⊥平面OAB ⇒ PH ⊥ AH .OA 2+ OH 23 52⎨a + 1 ≤ 1⎝⎭ ⎩在 ∆OAH 中,由OA ⊥ OB 得AH = = ;……11 分在 Rt ∆APH 中, ∠AHP = 90O, PH = 1 SB = 2 , AH = 3 5 ……12 分则tan ∠APH = AHPH2 2= 3 5 ,4 所以异面直线 SO 与 PA 所成角的大小arctan 35 4 (其他方法参考给分)…14 分19.(本题满分 14 分,第 1 小题满分 6 分,第 2 小题满分 8 分)解:(1)令1 + x> 0 ,解得-1 < x < 1 ,所以 A = (-1,1) , ……3 分1 - x因为 B ⊆ A ,所以⎧a ≥ -1⎩ ,解得-1 ≤ a ≤ 0 ,即实数 a 的取值范围是[-1, 0] ……6 分(2)函数 f (x ) 的定义域 A = (-1,1) ,定义域关于原点对称……8 分 1 - (- x )1 + x ⎛ 1 - x ⎫-11 - xf (-x ) = ln 1 + (- x ) = ln 1 - x = ln 1 + x⎪ = - ln = - f ( x )1 + x ……12 分 1 1 1 1 1 而 f ( ) = ln 3, f (- ) = ln ,所以 f (- ) ≠ f ( )……13 分 2 2 3 2 2所以函数 f (x ) 是奇函数但不是偶函数.……14 分20.(本题满分 16 分,第 1 小题满分 4 分,第 2 小题满分 5 分,第 3 小题满分 7 分) 解:(1)抛物线Ω 的焦点到准线的距离为 2……4 分(2) 设直线l : x = my + b当 m = 0 时, x = 1 和 x = 9 符合题意……5 分⎧x = my + b 当 m ≠ 0 时, A ( x 1, y 1 ) 、 B ( x 2 , y 2 ) 的坐标满足方程组⎨ y 2 = 4x ,所以 y 2- 4my - 4b = 0 的两根为 y 、 y 。
12∆ = 16(m 2 + b ) > 0 , y + y = 4m ,所以 x + x = my + b + my + b = 4m 2 + 2b ,12所以线段 AB 的中点 M (2m 2+ b , 2m )1212……7 分因为 k AB ⋅ k CM= -1 , k AB= ,所以 k mCM= 2m 2m 2 + b - 5= -m ,得b = 3 - 2m 2 所以∆ = 16(m 2 + b ) = 16(3 - m 2) > 0 ,得0 < m 2< 31⎩1 ⎨因为4 = r =,所以 m 2 = 3 (舍去)综上所述,直线l 的方程为: x = 1 , x = 9(3) 设直线 AB : x = my + b ,……9 分⎧x = my + bA ( x 1, y 1 ) 、B ( x 2 , y 2 ) 的坐标满足方程组⎨ y 2 = 4x ,所以 y 2- 4my - 4b = 0 的两根为 y 、 y∆ = 16(m 2 + b ) > 0 , y + y = 4m , y y = -4b υυρυυυρ121 2y 2 y 22所 以 OA ⋅OB = x 1x 2 + y 1y 2 = 1 ⋅ 2 + y 1y 2 = b4 4- 4b = 0 ,得b = 0 或b = 4 ……12 分b = 0 时,直线 AB 过原点,所以Q (0, 0) ; ……13 分b = 4 时,直线 AB 过定点 P (4, 0)设Q (x , y ) ,因为OQ ⊥ AB ,所以OQ ⋅ PQ = ( x , y ) ⋅ ( x - 4, y ) = x 2 - 4x + y 2= 0 ( x ≠ 0 ), ……15 分综上,点Q 的轨迹方程为 x 2- 4x + y 2= 0……16 分21.(本题满分 18 分,第 1 小题满分 3 分,第 2 小题满分 6 分,第 3 小题满分 9 分) ⎧1 + y > 2解:(1)x =1 时, ⎩1 + 7 > 2 y ⎧1 + y > 4 ,所以 y =2 或 3;⎧1 + y > 2 xx =2 时, ⎨2 + 7 > 2 y ,所以 y =4; x ≥ 3 时, ⎨ x + 7 > 2 y 无整数解⎩ ⎩⎧x = 1 ⎧x = 1 ⎧x = 2所以所有可能的 x ,y 为⎨ y = 2 , ⎨ y = 3 或⎨ y = 4…… 3 分 ⎩ ⎩ ⎩(2) n 的最大值为65,理由如下…… 4 分一方面,注意到: a k +1 + a k -1 > 2a k ⇔ a k +1 - a k > a k - a k -1对任意的1≤ i ≤ n -1,令b i = a i +1 - a i ,则b i ∈ Z 且b k > b k -(1 对任意的 2 ≤ k ≤ n -1恒成立. (★)当 a 1 = 1, a n = 2017 时,注意到b 1 = a 2 - a 1 ≥ 1-1 = 0 ,得2 ≤ k ≤ n -1),故b k ≥ b k -1 + 1 b i = (b i - b i -1 ) + (b i -1 - b i -2 ) + ⋅ ⋅ ⋅ + (b 2 - b 1 ) + b 1 ≥ 11+41 +2Λ4+31 + 0 = i - 1 (2 ≤ i ≤ n -1) i -1个即b i ≥ i - 1 ,此时a n - a 1 = (a n - a n -1 ) + (a n -1 + a n -2 ) +Λ+ (a 2 - a 1 )= b 1 + b 2 + ⋅ ⋅ ⋅ + b n -1≥ 0 + 1 + 2 + ⋅ ⋅ ⋅ + (n - 2) = 1 (n -1)(n - 2) 2(★★) 2即 1(n -1)(n - 2) ≤ 2017 -1,解得: -62 ≤ n ≤ 65 ,故 n ≤ 652…… 7 分另一方面,为使(**)取到等号,所以取b i = i -1 (1≤ i ≤ 64),则对任意的 2 ≤ k ≤ 64 ,b k > b k -1 ,故数列{a n } 为“U - 数列”,此时由(★★)式得a 65 - a 1= 0 + 1 + 2 + ⋅ ⋅ ⋅ + 63 = 63 ⨯ 64= 2016 , 2所以a 65 = 2017 ,即 n = 65 符合题意. 综上, n 的最大值为 65. ……… 9 分n 2 - 2n + 8(3) M 的最小值为 0,证明如下: ……… 10 分8当 n 0 = 2m ( m ≥ 2 , m ∈ N )时, *一方面:由(★)式, b k +1 - b k ≥ 1 ,b m +k - b k = (b m +k - b m +k -1) + (b m +k -1 - b m +k - 2 ) + ⋅⋅⋅ + (b k + 1 - b k ) ≥ m .此时有:(a 1 + a 2m ) - (a m + a m +1 )= (a 2m - a m +1 ) - (a m - a 1 )= (b m +1 + b m +2 + ⋅⋅⋅ + b 2m -1 ) - (b 1 + b 2 + ⋅⋅⋅ + b m -1 ) = (b m +1 - b 1 ) + (b m +2 - b 2 ) + ⋅⋅⋅ + (b 2m -1 - b m -1 ) ≥ m + m + ⋅⋅⋅ + m = m (m -1)即 (a 1 + a 2 m ) ≥ (a m + a m +1 ) + m (m -1)故 M ≥a 1 + a 2m ≥ a m + a m +1 + m (m - 1) ≥ 1 + 1 + m (m - 1)2 2 2n 1 + 1 + n 0 ( n 0- 1) 2因为m = 0 ,所以 M ≥ 2 2 = n 0 - 2n 0 + 8 ......................... 15 分 2 2 8另一方面,当b 1 = 1- m , b 2 = 2 - m ,…, b m -1 = -1 , b m = 0 , b m +1 = 1 ,b 2m -1 = m -1 时, a k +1 + a k -1 - 2a k = (a k +1 - a k ) - (a k - a k -1 ) = b k - b k -1 = 1 > 0取 a m = 1 ,则 a m +1 = 1 , a 1 > a 2 > a 3 > ⋅⋅⋅ > a m , a m +1 < a m +2 < ⋅ ⋅ ⋅ < a 2m ,且a 1 = a m - (b 1 + b 2 +⋅⋅⋅+ b m -1 ) = 1m (m -1) +12a = a + (b + b + ⋅⋅⋅ + b ) = 1m (m - 1) + 1 2m m +1 m +1 m +2 2m -112 n 2 - 2n +8 此时 M = a 1 = a 2 m = m (m - 1) + 1 =0 0. 2 8 n 2 - 2n + 8综上, M 的最小值为 0 0.……18 分8。