第三章 函数
离散数学 第三章 函数
下面先规定几个标准集合的基数: 1) 空集的基数为0。 2) 设n为一自然数,Nn为从1到n的连贯的自然数集合, Nn={1,2,3,…,n},Nn的基数为n,|Nn|=n 。 3) 设N为自然数的全体,N={1,2,3,…},N的基数为ℵ0(读成 阿列夫零, ℵ是希伯莱文的第一个字母)。 4) 设R为实数的全体,R的基数为ℵ ,|R|= ℵ 。 • • 以上四项规定,对于空集及Nn的基数,实际上就是集 合中元素的个数,关于ℵ0及ℵ,下面将予探讨。 有了标准基数之后,我们可以对各种集合测量其基数。 测量的手段是以双射函数为主体的等价关系一等势。 比如说,一个集合与N等势,那么这个集合的基数为 ℵ0 。
定理6 设A及B为两个可数集,那么A×B为一可数集。 定理 推论1 推论 设A1,A2,A3,…,An为n个可数集,那么 × A是可数集。
i=1 i n
定理7 (0,1)开区间上的实数不是可数集。 定理 定理8 设A为一集Y的函数,若f 是双射函数,则f 的逆关系 f –1是从Y到X的双射函数。 定理2 定理 设f 是从X到Y的函数,g 是从Y到Z的函数,则复合关 系f οg是从 X到Z的函数,将f ο g记为g ο f 。 定理3 定理 设f 是从X到Y的函数,g 是从Y到Z的函数。 1)若f 和g是满射函数,则g ο f 是满射函数; 2)若f 和g是单射函数,则g ο f 是单射函数; 3)若f 和g是双射函数,则g ο f 是双射函数。 定理4 定理 设f 是从X到Y的双射函数, f –1是f 的逆函数,则 1) (f –1) –1 = f 2) f –1 ο f = IX 3) f ο f –1 = IY
定义3 定义 设 |X|=n,P是从X到X的双射函数,称P为X上的置 换,称n为置换的阶。 • 在n个元素的集合中,不同的n阶置换的个数为n!。 • 通常用下面的方法表示置换。 x1 x2 x3 … xn P = p(x ) p(x ) p(x ) … p(x ) 1 2 3 n • 若∀xi∈X 有 p(xi) = xi ,则称P是恒等置换。 • P的逆函数P-1可表示为 p(x1) p(x2) p(x3) … p(xn) P-1 = x1 x2 x3 … xn • 置换的复合与关系的复合相同。 1 2 3 1 2 3 1 2 3 3 2 1 2 1 3 3 1 2
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
然,其原因是没有关注到 t 的变化范圈。 下面用更精确的语言表示问题 1 中 S 与 t 的对应 关系。列车行进的路程 S 与运行时间 t 的对应关 系是列车行进的路程 S 与运行时间/的对应关系是 S=350t. ①,
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2.函数的三要素
定义域 值域 对应法则f
定义域
决定
值域
对应法则
3.会求简单函数的定义域和函数值
4.理解区间是表示数集的一种方法,会把不等式转化为区间。
3.1.2函数的表示法
复习引入
函数的定义:设A、B是非空的实数集,如果
对于集合A中的任意一个数x,按照某种确定的对 应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
x叫做自变量,x的取值范围A叫做函数的定 义域;与x的值相对应的y的值叫做函数值,函 数值的集合{f(x)|x∈A}叫做函数的值域。
显然值域是集合B的子集
复习引入
(1)如果y=f (x)是整式,则定义域是 实数集R (2)如果y=f (x)是分式,则定义域是
使分母不等于0的实数的集合
(3)如果y=f (x)是偶次根式,则定义域是
高一第三章函数问题知识点
高一第三章函数问题知识点函数是数学中一种重要的概念,是研究数量关系的基础工具。
在高一的第三章函数问题中,我们要学习各种函数的性质和运算规则。
本文将详细介绍高一第三章函数问题的知识点。
一、函数的定义与表示方法函数是数学中的一种映射关系,可以表示为y=f(x),其中x为自变量,y为因变量,f(x)为函数的表达式。
函数可以通过函数图像、函数表、解析式等多种方式表示。
二、函数的性质1. 定义域与值域:函数的定义域是自变量可能的取值范围,值域是函数取得的所有可能的值。
2. 奇偶性:函数在对称中心点具有对称性的称为偶函数,对称中心点为原点的称为奇函数。
3. 单调性:函数在定义域上的取值随自变量的增减而增减的性质。
4. 最值与极值:函数的最值是函数取得的最大值和最小值,极值是函数在某一区间内的最大值和最小值。
5. 周期性:函数在一定的区间内有规律地重复出现的性质。
三、函数的基本运算1. 函数的四则运算:函数之间可以进行加减乘除的四则运算,结果仍为函数。
2. 函数的复合:将一个函数的输出作为另一个函数的输入,形成新的函数。
3. 函数的反函数:满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数之间称为互为反函数。
4. 函数的平移与伸缩:通过平移和伸缩可以改变函数的位置和形状。
四、常见函数的性质与图像1. 线性函数:y=kx+b,其中k为斜率,b为截距,图像为一条直线。
2. 幂函数:y=x^n,其中n为常数,图像形状由n的正负以及大小决定。
3. 指数函数:y=a^x,其中a为底数,大于1时为增长函数,小于1时为衰减函数。
4. 对数函数:y=log_a(x),其中a为底数,反映a的x次幂等于y,常见的对数函数为以10为底的常用对数函数log(x)和以e为底的自然对数函数ln(x)。
5. 三角函数:包括正弦函数、余弦函数、正切函数等,图像为周期性波动的曲线。
五、函数的应用函数在现实生活中有着广泛的应用,例如物体自由落体运动的高度与时间的关系、经济学中的供需曲线、生物学中的种群增长模型等等。
高中数学必修一-第三章-3.1 函数的概念及其表示
第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
数学必修一第三章知识点总结
数学必修一第三章知识点总结第三章是关于函数的知识点总结。
1. 函数的概念:函数是一个特殊的关系,将一个数集的每个元素与另一个数集的元素对应起来。
函数可以用一个公式、图像或者表格来表示。
2. 定义域和值域:函数的定义域是指能够使函数有意义的所有输入值的集合,值域是所有函数可能的输出值的集合。
3. 函数的图像:函数的图像是将函数的输入和输出对应起来的一种形象表示。
在平面直角坐标系中,函数的图像是一条曲线或者直线。
4. 函数的性质:函数可以是奇函数、偶函数或者普通函数。
奇函数满足 f(-x) = -f(x);偶函数满足 f(-x) = f(x);普通函数不满足奇偶性质。
5. 函数的性质:函数可以是单调递增函数、单调递减函数、增函数或者减函数。
单调递增函数满足 f(x1) < f(x2) 当且仅当 x1 < x2;单调递减函数满足 f(x1) > f(x2) 当且仅当 x1 < x2;增函数在定义域上满足 f(x1) < f(x2) 当且仅当 x1 < x2;减函数在定义域上满足 f(x1) > f(x2) 当且仅当 x1 < x2。
6. 反函数:函数的反函数将函数的输入和输出颠倒过来,即输入变为输出,输出变为输入。
反函数的定义域和值域与原函数相反。
7. 复合函数:复合函数是两个或多个函数的组合。
复合函数的定义域是能够使复合函数有意义的所有值的集合。
8. 基本初等函数:基本初等函数包括常函数、一次函数、幂函数、指数函数、对数函数和三角函数等。
这些函数具有特定的性质和图像特征。
9. 函数的运算:函数之间可以进行加减乘除和求导等运算。
函数的运算结果仍然是一个函数,具有相应的性质和图像特征。
以上是第三章关于函数的知识点总结。
在学习函数时,需要理解函数的概念和性质,掌握常见的函数类型和图像特征,以及函数的运算和组合等操作。
同时,还需要通过练习题和实例来巩固和应用所学知识。
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
第三章 函数
⑶ 在函数的定义中,如果集合 A 和 B 都是通常的数集, 则这里定义的函数就是数学中的函数,其中“自变量”、 “定义域”、“值域”等概念与数学中的函数一致。因此, 离散数学中的函数概念是通常函数概念的推广。 ⑷ 谈到函数,必须涉及两个集合:定义域 A、值域包 B。 在证明题中,需首先明确定义域 A 和值域包集合 B
成为一种特殊的“关系”。函数主要涉及把一个有限集合变换成
另一个有限集合的离散函数。例如,编译程序把一组高级语言命 令的集合变成机器语言指令的集合。
§3.1 函数的概念
一,基本概念
函数:设有集合 Biblioteka 、B,f 是一个由 A 到B 的关系,如果对于每
个 a∈A,存在唯一的 b∈B 使得 af b(或 f (a) = b),则
练习
有关习题:
12
作业
p112 习题 1、2、3
作业
有关习题:
13
二,函数相等
函数相等:设有函数 f:A→B 和 g:C→D,如果 A=C 和B =D , 并且对所有的 a∈A(或 a∈C )都有 f (a)= g (a), 则称函数 f 和 g 是相等 的,记为 f =g
思考:设有函数 f :A→B ,S A, 等式 f (A)-f (S) = f (A -S) 成立吗?为什么?
有关习题:
基本概念
4
我们从反面来理解函数,看什么样的关系 不是函数?
⑴ 在关系 f :A→B 中,若对于某个 a∈A,不存在 b∈B,
使得 a f b ,则 f 不是函数 例: f = {(n1,n2)︱n1,n2∈N,n2=小于 n1 的素数的个数} ⑵ 在关系 f :A→B 中,若对于某个 a∈A,存在 b1∈B 和 b2∈B ,且 b1≠b2,使得 af b1 和 af b2 同 时成立,则
第三章 函数的概念与性质(课堂笔记)
第三章函数的概念与性质3.1函数的概念及其表示3.1.1函数的概念1.概念的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =f (x ),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合f x x ∈A }叫做函数的值域.2.函数三要素:定义域、对应关系、值域。
3.区间若a ,b ∈R ,且a <b ,则(1)x |a ≤x ≤b =a ,b 闭区间(2)x |a <x <b =a ,b 开区间(3)x |a ≤x <b =a ,b ) 半开半闭区间x |a <x ≤b =(a ,b ]半开半闭区间∞表示无穷大,R =-∞,+∞(4)x |x <a =-∞,a x |x ≤a =-∞,a ] (5)x |x >a =(a ,+∞)x |x ≥a =[a ,+∞)4.常见求函数定义域方法(1)分式的分母不等于零;(2)偶次根号下被开方数大于等于零;(3)零的零次方无意义;a 0=1,a ≠0(4)对数式的真数大于零;(5)定义域多个取值范围同时满足,求交集。
例:函数f (x )=-x 2+4x +12+1x -4的定义域是.解:要使函数有意义,需满足-x 2+4x +12≥0x -4≠0,即-2≤x ≤6x ≠4 .即-2≤x <4或4<x ≤6,故函数的定义域为[-2,4)⋃4,6 .5.判断函数为同一函数如果两个函数的定义域相同,并且对应关系也完全一致,那么这两个函数是同一个函数。
3.1.2函数的表示方法1.函数的表示方法:表格法、图像法、解析式法2.分段函数如果一个函数,在其定义域内,对于自变量x 的不同取值区间,有不同的对应关系,则称其为分段函数。
第三章:函数的应用
第三章:函数的应用考纲要求:1.方程的根和函数的零点:(1)理解函数(结合二次函数)零点的概念 (2)领会函数零点与相应方程根的关系 (3)掌握零点存在的判定条件. 2.用二分法求方程的解:(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解 (2)体会程序化解决问题的思想,为算法的学习作准备 3.函数模型的应用:(1)结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性(2)能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题(3)能够利用给定的函数模型或建立确定性函数模型解决实际问题第一课时;方程的根和函数的零点:(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。
即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。
(2)二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。
(3)零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。
既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。
第三章 函数知识点
思维导图一.函数的概念1、函数的概念(1)函数的定义设集合A是一个非空_____集,按照某种确定的对应法则f对A中任意的实数x,都有___________的实数值y与它对应,则称这种对应法则为集合A 上的一个函数,记作________,其中x为________,y为________.(2)函数的三要素:_______、_______、(_______).(3)相同函数的判断方法:①____________;②____________2、函数的定义域:(1)定义域的定义:________________________叫做函数的定义域.(2)确定函数定义域的常见方法:①若)(xf是整式,则定义域为________②若)(xf是分式,则定义域为________例:求函数xy111+=的定义域。
③若)(xf是偶次根式,则定义域为________例1:求函数()21432-+--=xxxy的定义域。
例2:求函数()02112++-=xxy的定义域。
④若)(xf是偶次根式,则定义域为________⑤对数函数y=log a x的真数________⑥指数y=a x、对数式y=log a x的底为________⑦若)(xf为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑧函数y =[f(x)]0的定义域为__________⑨如果函数由一些基本函数通过有限次四则运算结合而成的,那么其定义域为这些基本函数定义域的_______.书写函数定义域时,要写成集合或_______的形式.⑩实际问题中的函数的定义域还要保证实际问题有意义 (3)求抽象函数(复合函数)的定义域例1:已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域例2:已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、函数的值域 :(1)值域的定义:____________________________叫做函数的值域. (2)常见基本初等函数值域: 一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(3)确定函数值域的常见方法(配方法):配方法是求“二次函数类”值域的基本方法。
第三章函数
第三章 函数一、基础知识定义1 映射,对于任意两个集合A ,B ,依对应法则f ,若对A 中的任意一个元素x ,在B 中都有唯一一个元素与之对应,则称f : A →B 为一个映射。
定义2 单射,若f : A →B 是一个映射且对任意x , y ∈A , x ≠y , 都有f (x )≠f (y )则称之为单射。
定义3 满射,若f : A →B 是映射且对任意y ∈B ,都有一个x ∈A 使得f (x )=y ,则称f : A →B 是A 到B 上的满射。
定义4 一一映射,若f : A →B 既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B 到A 由相反的对应法则f -1构成的映射,记作f -1: A →B 。
定义5 函数,映射f : A →B 中,若A ,B 都是非空数集,则这个映射为函数。
A 称为它的定义域,若x ∈A , y ∈B ,且f (x )=y (即x 对应B 中的y ),则y 叫做x 的象,x 叫y 的原象。
集合{f (x )|x ∈A }叫函数的值域。
通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y =3x -1的定义域为{x |x ≥0,x ∈R}.定义6 反函数,若函数f : A →B (通常记作y =f (x ))是一一映射,则它的逆映射f -1: A→B 叫原函数的反函数,通常写作y =f -1(x ). 这里求反函数的过程是:在解析式y =f (x )中反解x 得x =f -1(y ),然后将x , y 互换得y =f -1(x ),最后指出反函数的定义域即原函数的值域。
例如:函数y =x -11的反函数是y =1-x1(x ≠0). 定理1 互为反函数的两个函数的图象关于直线y =x 对称。
定理2 在定义域上为增(减)函数的函数,其反函数必为增(减)函数。
定义7 函数的性质。
(1)单调性:设函数f (x )在区间I 上满足对任意的x 1, x 2∈I 并且x 1< x 2,总有f (x 1)<f (x 2)(f (x )>f (x 2)),则称f (x )在区间I 上是增(减)函数,区间I 称为单调增(减)区间。
第三章 基本初等函数(Ⅰ)
第三章 基本初等函数(Ⅰ)一 高考要求(1)指数函数① 了解指数函数模型的实际背景.② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③ 理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.④ 知道指数函数是一类重要的函数模型.(2)对数函数① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.② 理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点. ③ 知道对数函数是一类重要的函数模型;④ 了解指数函数x y a =与对数函数log a y x =互为反函数(0a >且1a ≠).(3)幂函数① 了解幂函数的概念.② 结合函数12321,,,,y x y x y x y y x x =====的图像,了解它们的变化情况. (4)函数模型及其应用① 了解指数函数、对数函数以及幂函数的增长特征.知道直线上升、指数增长、对数增长等不同函数类型增长的含义.② 了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.二 知识回顾1 指数的运算性质有:_____________________________________________.例:化简10.50.25310.25()62527--+-=___________. 2 分数指数幂与根式的互化:_____________________________________.例:化简=__________.3 指数式与对数式互化:___________________________________;由此得到两个恒等式为__________________________________;换底公式是__________________.例:已知1249a =(a >0) ,则23log a = . 4 对数的运算性质有:___________________________________________________.运算法则有:__________________________________________________________________.例:计算2++=___________.5 一般地,函数___________________叫做指数函数.其性质是:____________________.例:若函数1x y a b =+-(0a >且1a ≠)的图象经过第二、三、四象限,则,a b 的取值范围是____________________.6 一般地,函数___________________叫做对数函数.其性质是:____________________.例:若110x <<,则22(lg ),lg ,lg(lg )x x x 的大小顺序是_________________________.7 指数函数x y a =与对数函数log a y x =是互为_____________.(其中0a >且1a ≠).互为反函数的图象关于直线y x =对称.例: 在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称.而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值是____________.8 一般地,形如函数_________________叫做幂函数.其性质是:______________.例:设1{1,1,,3}2α∈-,则使函数y x α=的定义域为R ,且为奇函数的所有α值为_______.三 题型回归1函数y =__________,值域是_________,函数的单调性_____.函数y =_______,值域是________,函数的单调性______. 2 已知9log 5a =,9log 7b =,则35log 9=_____________.3 比较0.524log 5,2,log 15这三个数的大小:___________________________.4 计算:22223log (log 32log log 6)4-+=____________. 5 已知函数2()log ()f x x =-,()1g x x =+,当()()f x g x <,x 的取值范围是______. 6 设函数(lg )f x 的定义域是[0.1,100],则函数()2xf 的定义域是_______________. 7 判断下列函数的奇偶性: (1) ()2x xa a f x --= (0a >且1a ≠); (2) (1)()1x x a x f x a +=- (0a >且1a ≠); (3) 142()2f x x x --=+. 8 设函数1221,0(),0x x f x x x -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是______________.9 所有指数函数的图象都通过点________;所有对数函数的图象都通过点___________;所有幂函数的图象都通过点____________.10解方程: (1)80339x x --=; (2)252log 253log 1x x -=. 11 函数1()2()2x x f x =+的对称轴是_______________.12一件产品的年产量原来是a 件,在今后的m 年内,计划使年产量平均每年比上一年增加p %,则年产量随着年数变化的函数关系式是____________________.13 设函数()f x 的定义域是R ,它的图象关于直线1x =对称,且当1x ≥时,()31x f x =-,则当1x <时, ()f x =________________. 14 函数212()log (32)f x x x =--的单调递增区间是__________________.15 已知函数2log (2)y ax =-在[0,1]上是x 的减函数,则函数2()1f x x ax =-+在[0,1]上的最小值是____________________.16 函数221(2)log (3)x y x x --=-+-的定义域是_____________________.17 函数()f x 对x R ∀∈,满足()(4)f x f x =-,如果方程()0f x =恰有2010个实根,则所有这些实根之和为________________.18 已知函数2()lg[2(3)2]f x x m x m =+++.若函数()f x 的定义域是R ,则实数m 的取值集合为A ,若函数()f x 的值域是R ,则实数m 的取值集合为B .那么集合A 与B 的关系是_____________.19 已知函数(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是R 上的减函数,则a 的取值范围是______.20 函数()f x 与函数1()()2x g x =的图象关于直线y x =对称,则函数2(4)f x -的单调增区间是______________.21 已知函数3()log f x x =,[1,9]x ∈,则函数22()[()]y f x f x =+的值域是_______. 22设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为 ( ).A 2{|1}a a <≤B {|}2a a ≥C 3|}2{a a ≤≤D {2,3}23设函数()|1|||f x x x a =++-的图象关于直线1x =对称,则实数a =_______. 24已知函数()1,21x f x a =-+若()f x 为奇函数,则a =________. 四 高考回望(09广东理)若函数()y f x =是函数(0,1)x y a a a =>≠且的反函数,其图像经过点)a ,则()f x =( ).A. 2log xB. 12log xC.12x D. 2x。
高中数学第三章函数的概念与性质知识点总结全面整理(带答案)
高中数学第三章函数的概念与性质知识点总结全面整理单选题1、若函数f (x )=2x+m x+1在区间上的最大值为52,则实数m =( ) A .3B .52C .2D .52或3答案:B分析:函数f (x )化为f (x )=2+m−2x+1,讨论m =2,m >2和m <2时函数的单调性,运用单调性可得最小值,解方程即可得到所求值.函数f (x )=2x+m x+1,即f (x )=2+m−2x+1,x ∈[0,1],当m =2时,f (x )=2不成立;当m −2>0,即m >2时,f (x )在递减,可得f (0)为最大值, 即f (0)=0+m 1=52,解得m =52成立;当m −2<0,即m <2时,f (x )在递增,可得f (1)为最大值, 即f (1)=2+m 2=52,解得m =3不成立;综上可得m =52.故选:B .2、下列函数中,在区间(1,+∞)上为增函数的是( )A .y =−3x +1B .y =2xC .y =x 2−4x +5D .y =|x −1|+2答案:D分析:根据一次函数、反比例函数和二次函数单调性直接判断可得结果.对于A ,y =−3x +1为R 上的减函数,A 错误;对于B ,y =2x 在(−∞,0),(0,+∞)上单调递减,B 错误; 对于C ,y =x 2−4x +5在(−∞,2)上单调递减,在(2,+∞)上单调递增,C 错误;[]0,1[]0,1[]0,1对于D ,y =|x −1|+2={x +1,x ≥13−x,x <1,则y =|x −1|+2在(1,+∞)上为增函数,D 正确. 故选:D.3、已知f (2x +1)=4x 2+3,则f (x )=( ).A .x 2−2x +4B .x 2+2xC .x 2−2x −1D .x 2+2x +3答案:A分析:利用配凑法直接得出函数的解析式.因为f (2x +1)=4x 2+3=(2x +1)2−2(2x +1)+4,所以f (x )=x 2−2x +4.故选:A4、函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,则m 的取值范围是( )A .[−3,+∞)B .[3,+∞)C .(−∞,5]D .(−∞,−3]答案:D分析:先求出抛物线的对称轴x =−2(1−m)−2=1−m ,而抛物线的开口向下,且在区间(−∞,4]上单调递增,所以1−m ≥4,从而可求出m 的取值范围解:函数f(x)=−x 2+2(1−m)x +3的图像的对称轴为x =−2(1−m)−2=1−m ,因为函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,所以1−m ≥4,解得m ≤−3,所以m 的取值范围为(−∞,−3],故选:D5、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( )A .1B .2C .3D .4答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y =x a 形式,故y =x 3,y =x 满足条件,共2个故选:B6、已知函数f (x )={−√x 3(x ≥a )x 2(x <a),若函数f(x)的值域为R ,则实数a 的取值范围为( ) A .(−1,0)B .(−1,0]C .[−1,0)D .[−1,0]答案:D分析:求出分段函数在各段上的函数值集合,再根据给定值域,列出不等式求解作答.函数y =−√x 3在[a,+∞)上单调递减,其函数值集合为(−∞,−√a 3],当a >0时,y =x 2的取值集合为[0,+∞),f (x )的值域(−∞,−√a 3]∪[0,+∞)≠R ,不符合题意,当a ≤0时,函数y =x 2在(−∞,a)上单调递减,其函数值集合为(a 2,+∞),因函数f(x)的值域为R ,则有−√a 3≥a 2,解得−1≤a ≤0,所以实数a 的取值范围为[−1,0].故选:D7、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( ) A .B .C .D .答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可.设幂函数为y =x α,因为该幂函数得图象经过点P (4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B ,故选:A8、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可求出答案.解:∵函数f (x )=x ln (x +√a +x 2)为偶函数,x ∈R ,∴设g (x )=ln (x +√a +x 2)是奇函数,则g (0)=0,即ln √a =0,则√a =1,则a =1.故选:B .多选题9、已知函数f (x )=x |x |,若对任意的x ∈[t ,t +1],不等式f (x +t )≥3f (x )恒成立,则整数t 的取值可以是( )A .−1B .1C .3D .5答案:CD分析:首先判断f (x )在R 上为增函数,将不等式转化为x +t ≥√3x ,即t ≥(√3−1)x 对任意的x ∈[t ,t +1]恒成立,利用一次函数的单调性,解不等式可得所求范围.f (x )=x |x |,当x ≥0时,f (x )=x 2,在[0,+∞)递增,当x≤0时,f(x)=−x2,在(−∞,0]上递增,且f(0)=0,f(x)为连续函数,所以f(x)在R上为增函数,且3f(x)=f(√3x),由对任意的x∈[t,t+1],不等式f(x+t)≥3f(x)恒成立,即f(x+t)≥f(√3x),即x+t≥√3x,所以t≥(√3−1)x对任意的x∈[t,t+1]恒成立,由y=(√3−1)x在[t,t+1]上递增,可得y=(√3−1)x的最大值为(√3−1)(t+1),即t≥(√3−1)(t+1),解得t≥√3+1.故选:CD小提示:关键点点睛:本题考查了函数的单调性的判断以及应用,解不等式以及不等式恒成立问题的解法,解题的关键是将不等式转化为t≥(√3−1)x对任意的x∈[t,t+1]恒成立,考查了转化思想和运算求解能力.10、已知函数f(x),g(x)的定义域都是R,且f(x)是奇函数,g(x)是偶函数,则()A.f(x)⋅|g(x)|是奇函数B.|f(x)|⋅g(x)是奇函数C.f(x)⋅g(x)是偶函数D.|f(x)⋅g(x)|是偶函数答案:AD分析:由奇偶性的定义逐一证明即可.对于A,F(x)=f(x)⋅|g(x)|,F(−x)=f(−x)⋅|g(−x)|=−f(x)|g(x)|=−F(x),即f(x)⋅|g(x)|是奇函数,故A正确;对于B,F(x)=|f(x)|⋅g(x),F(−x)=|f(−x)|g(−x)=|f(x)|g(x)=F(x),即|f(x)|⋅g(x)是偶函数,故B 错误;对于C,F(x)=f(x)⋅g(x),F(−x)=f(−x)⋅g(−x)=−f(x)g(x)=−F(x),即f(x)⋅g(x)是奇函数,故C 错误;对于D,F(x)=|f(x)⋅g(x)|,F(−x)=|f(−x)⋅g(−x)|=|−f(x)⋅g(x)|=|f(x)⋅g(x)|=F(x),即|f(x)⋅g(x)|是偶函数,故D正确;故选:AD小提示:关键点睛:解决本题的关键在于利用定义证明奇偶性.11、关于函数f(x)=√x2−x4|x−1|−1的性质描述,正确的是()A.f(x)的定义域为[−1,0)∪(0,1]B.f(x)的值域为(−1,1)C.f(x)在定义域上是增函数D.f(x)的图象关于原点对称答案:ABD解析:由被开方式非负和分母不为0,解不等式可得f(x)的定义域,可判断A;化简f(x),讨论0<x≤1,−1≤x<0,分别求得f(x)的范围,求并集可得f(x)的值域,可判断B;由f(−1)=f(1)=0,可判断C;由奇偶性的定义可判断f(x)为奇函数,可判断D;对于A,由{x2−x4≥0|x−1|−1≠0,解得−1≤x≤1且x≠0,可得函数f(x)=√x2−x4|x−1|−1的定义域为[−1,0)∪(0,1],故A正确;对于B,由A可得f(x)=√x2−x4−x ,即f(x)=|x|√1−x2−x,当0<x≤1可得f(x)=−√1−x2∈(−1,0],当−1≤x<0可得f(x)=√1−x2∈[0,1),可得函数的值域为(−1,1),故B正确;对于C,由f(−1)=f(1)=0,则f(x)在定义域上是增函数,故C 错误;对于D,由f(x)=|x|√1−x2−x的定义域为[−1,0)∪(0,1],关于原点对称,f(−x)=|x|√1−x2x=−f(x),则f(x)为奇函数,故D正确;故选:ABD小提示:本题考查了求函数的定义域、值域、奇偶性、单调性,属于中档题.12、已知函数f(x)=2x+12x−1,g(x)=2x,则下列结论正确的是()A.f(x)g(x)为奇函数B.f(x)g(x)为偶函数C.f(x)+g(x)为奇函数D.f(x)+g(x)为非奇非偶函数答案:BC解析:先判断函数f(x),g(x)的奇偶性,再利用函数奇偶性的性质判断选项正误.f(x)=2x+12x−1,其定义域为(−∞,0)∪(0,+∞),f(−x)=2−x+12−x−1=(2−x+1)⋅2x(2−x−1)⋅2x=1+2x1−2x=−f(x),故函数f(x)为奇函数,又g(x)=2x为奇函数,根据函数奇偶性的性质可知:f(x)g(x)为偶函数,f(x)+g(x)为奇函数,故选:BC.小提示:本题考查函数奇偶性的判断及其性质应用,难度不大.13、我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休.在数学学习和研究中,常用函数的图象来研究函数的性质.下列函数中,在(0,+∞)上单调递增且图象关于y轴对称的是()A.f(x)=x3B.f(x)=x2C.y=x−2D.f(x)=|x|答案:BD解析:根据函数解析式,逐项判断函数的单调性与奇偶性,即可得出结果.A选项,f(x)=x3定义域为R,在(0,+∞)上显然单调递增,但f(−x)=−x3≠f(x),即f(x)=x3不是偶函数,其图象不关于y轴对称,A排除;B选项,f(x)=x2定义域为R,在(0,+∞)上显然单调递增,且f(−x)=(−x)2=x2=f(x),所以f(x)=x2是偶函数,图象关于y轴对称,即B正确;C选项,y=x−2定义域为(−∞,0)∪(0,+∞),在(0,+∞)上显然单调递减,C排除;D选项,f(x)=|x|的定义域为R,在(0,+∞)上显然单调递增,且f(−x)=|−x|=|x|=f(x),所以f(x)=|x|是偶函数,图象关于y轴对称,即D正确.故选:BD.填空题14、已知函数f(x)=x2−2ax+3在区间[2,8]是单调递增函数,则实数a的取值范围是______.答案:a≤2分析:求出二次函数的对称轴,即可得f(x)的单增区间,即可求解.函数f(x)=x2−2ax+3的对称轴是x=a,开口向上,若函数f(x)=x2−2ax+3在区间[2,8]是单调递增函数,则a≤2,所以答案是:a≤2.15、已知函数f(x)的图象为如图所示的两条线段组成,则下列关于函数f(x)的说法:①f(f(1))=3;②f(2)>f(0);③f(x)=2|x−1|−x+1,x∈[0,4];,2].④∃a>0,不等式f(x)≤a的解集为[13其中正确的说法有_________.(写出所有正确说法的序号)答案:①③解析:根据图象,可求得f(1)的值,即可判断①的正误;根据图中数据及f(x)在[1,4]上的单调性,可判断②的正误;分别讨论1≤x≤4和0≤x<1两种情况,求得f(x)解析式,检验即可判断③的正误;根据不等式f(x)≤a解集,即求f(x)=a的根,根据f(x)解析式,即可判断④的正误,即可得答案.对于①:由图象可得:f(1)=0,所以f(f(1))=f(0)=3,故①正确;对于②:f(0)=f(4)=3,且f(x)在[1,4]上为单调递增函数,所以f(2)<f(4)=3,所以f(2)<f(0),故②错误;对于③:当1≤x≤4时,f(x)=2|x−1|−x+1=2(x−1)−x+1=x−1,f(1)=0,f(4)=3,满足图象;当0≤x <1时,f(x)=2|x −1|−x +1=2(1−x)−x +1=3−3x ,f(0)=3,斜率k =−3,满足图象,故③正确;对于④:由题意得f (x )≤a 的解集为[13,2],即f (x )=a 的根为13,2,根据f (x )解析式可得f(13)=2,当1≤x ≤4时,令x −1=2,解得x =3,所以解集为[13,3],故④错误. 所以答案是:①③16、已知a >0,b >0,且a +b =1,则1a+2b−3ab 的最大值是______. 答案:32分析:利用a >0,b >0,且a +b =1,求出a 的范围,将1a+2b−3ab 消元得13a 2−4a+2,利用二次函数的最值及倒数法则即可求得1a+2b−3ab 的最大值.解:因为a >0,b >0,且a +b =1,所以a ∈(0,1),b ∈(0,1),1a +2b −3ab =11+b −3ab=11+(1−a )(1−3a ) =13a 2−4a+2,当a =23时,3a 2−4a +2取最小值23,所以13a 2−4a+2取最大值32,故1a+2b−3ab 的最大值是32. 所以答案是:32.解答题17、已知函数f (x )=√x +3+1x+2.(1)求f (x )的定义域和f (−3)的值;(2)当a >0时,求f (a ),f (a −1)的值.答案:(1)定义域为[−3,−2)∪(−2,+∞),f (−3)=−1;(2)f (a )=√a +3+1a+2,f (a −1)=√a +2+1a+1.分析:(1)由根式、分式的性质求函数定义域,将自变量代入求f (−3)即可.(2)根据a 的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.(1)由{x +3≥0x +2≠0,则定义域为[−3,−2)∪(−2,+∞), 且f (−3)=√−3+3+1−3+2=−1.(2)由a >0,结合(1)知:f (a ),f (a −1)有意义.所以f (a )=√a +3+1a+2,f (a −1)=√a −1+3+1a−1+2=√a +2+1a+1. 18、已知幂函数f (x )=x −m2+4m (m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值; (2)求满足不等式f (2a −1)<f (a +1)的实数a 的取值范围.答案:(1)m =2(2)0<a <2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m 2+4m >0,再验证其图象关于y 轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f (x )=x −m 2+4m 在区间(0,+∞)上是严格增函数,所以−m 2+4m >0,解得0<m <4,又因为m ∈Z ,所以m =1或m =2或m =3,当m =1或m =3时,f (x )=x 3为奇函数,图象关于原点对称(舍);当m =2时,f (x )=x 4为偶函数,图象关于y 轴对称,符合题意;综上所述,m =2.(2)解:由(1)得f (x )=x 4为偶函数,且在区间(0,+∞)上是严格增函数,则由f (2a −1)<f (a +1)得|2a −1|<|a +1|,即(2a −1)2<(a +1)2,即a 2−2a <0,解得0<a <2,所以满足f (2a −1)<f (a +1)的实数a 的取值范围为0<a <2.。
高等数学第三章: 函数的极值与最值
所以f(x)在1处没有极值 同理 f(x)在1处也没有极值
16
运用第一、第二充分条件需要注意:
(1) 若函数有导数不存在的点时, 则可用第一 充分条件来判定有无极值;
(2) 对于只有驻点而没有导数不存在的点, 则 可用第二充分条件判断有无极值.
17
例 证明x 1时, ex 1 1 x
2
y
比较得: 最大值为 3 4 ,
最小值为 3 4 3 3.
1
2 1O 1
2
2
2x
26
求函数 f ( x) | x 2 | ex 在[0,3]上的
最大值与最小值.
解
( x 2)e x
f
(x)
(x
2)e x
f
(
x)
( x 1)e
(x
1)e x
应用. 事实上,当f ( x0 ) 0, f ( x0 ) 0时, f ( x)在点x0处可能有极大值,也可能有极小值, 也可能没有极值. 如, f1( x) x4, f2( x) x4, f3( x) x3 在x 0处分别属于上述三种情况.
仍用第一充分条件
15
例 求函数f(x)(x21)31的极值
一定是驻点或不可导点;此外最值也可能在区间 的端点处取得.
y
y
y
oa
bx o a
bx o a
bx
21
求连续函数 f (x)在闭区间[a, b]上的最大(小) 值的方法: (1) 将闭区间[a, b]内所有驻点和导数不存在的 点(即为极值可疑点)处的函数值和 区间端点的 函数值 f (a), f (b)比较, 其中最大(小)者就是 f (x) 在闭区间[a, b]上的最大(小)值. (2) 当 f (x)在闭区间[a, b]上单调时, 最值必在端 点处达到.
第三章 函数的概念和性质
A 、 第三章 函数的概念和性质Ⅰ 教学要求(1)了解映射的概念.(2)理解函数的概念,了解函数的三种表示法,理解分段函数的定义及表示法.(3)理解函数的单调性和奇偶性.(4)了解反函数的概念,掌握简单函数的反函数的求法,了解函数)(x f y =的图像与它的反函数)(1x f y -=的图像之间的关系.(5)掌握一元二次函数的性质及其图像,掌握解一元二次不等式与一元二次函数之间的关系.(6)会用待定系数法求一次函数和二次函数的解析式.(7)了解函数的实际应用.Ⅱ 教材分析、教学建议和练习题解答现实世界中许多量之间有依赖关系,一个量变化时另一个量随着起变化,函数是研究各个量之间确定性依赖关系的数学模型,在工业革命时代,函数是数学中最基本的概念之一. 现在的世界已进入信息时代,计算机和互联网迅速普及,计算机科学和信息科学蓬勃发展. 由此促使了离散数学的地位日益上升,于是映射成了数学中最基本的概念之一.映射也是日常生活中许多现象的抽象.中学生学习映射的概念,至少有三方面的好处:作为现代社会的居民,能看懂信息时代的书报、电视;在日常生活中把事情做好;能更好理解函数的概念,反函数的概念.函数的图像是数形结合的基础,要让学生理解函数的图像的意义.本教材从函数的图像引出奇函数与偶函数的概念,既直观,同时又揭示了其本质. 本教材运用映射的观点阐述反函数的概念,给出反函数的求法,这与传统的方法不同.我们有创新,使得反函数概念的本质容易理解,使得反函数的求法严谨且易于掌握. 本章第三单元讲一元二次函数,这是在初中讲一元二次函数的基础上进一步讲清楚道理,运用第二单元函数的单调性和奇偶性的一般理论来具体地研究一元二次函数的性质和图像,既让学生学习如何运用理论研究具体函数的性质和图像,又使画函数图像的方法严谨、科学.待定系数法是数学中的一种重要方法,本章用一节介绍如何用待定系数法求一次函数和二次函数的解析式.总之,本章首先介绍映射和函数的概念,然后讨论函数的一般性质,最后运用函数的单调性和奇偶性的一般理论研究一元二次函数,并且介绍了一元二次不等式的解法. 本章的重点是:映射的概念,函数的概念,函数的图像,函数的单调性、奇偶性;一元二次函数的性质和图像,一元二次函数的最大值或最小值;解一元二次不等式的图像法;待定系数法.本章的难点是:映射的概念,点M在函数的图像上的充分必要条件,反函数的概念,函数的实际应用.学好本章的关键是:了解映射的概念,理解函数的图像的意义.本章教学时间约需15课时,具体分配如下:3.1 映射1课时3.2 函数的定义及记号1课时3.3 函数的三种表示法1课时3.4 分段函数1课时3.5 函数的单调性1课时3.6 函数的奇偶性2课时3.7 函数的图像2课时3.8 反函数1课时3.9 一元二次函数的性质及其图像1课时3.10 用待定系数法求函数的解析式1课时3.11 函数的实际应用1课时本章小结2课时3.1 映射1. 集合的概念与映射的概念是现代数学中最基本的两个概念. 在信息时代,映射的概念比函数的概念更基本. 理解了映射的概念,就能更深刻地理解函数的概念.2. 在讲映射的定义时,要着重指出:有两个集合和一个对应法则,并且这个对应法则使第一个集合的每一个元素,都有第二个集合中唯一确定的元素与它对应.3. 设f是集合A到集合B的一个映射,则把A叫做定义域,把B叫做值域.许多教材没有给第二个集合起名字,有的教材把第二集合叫做陪域.4. 一个映射f:BA→由定义域、值域和对应法则组成,它们称为映射的三要素,因此两个映射相等的定义应当是:定义域相等,值域相等,对应法则相同.3.1的练习答案1.(1)不是;(2)是.2.(1)是;(2)是;(3)不是;(4)不是;(5)不是.3.(1)不是;(2)是;(3)是;(4)不是;(5)不是.4. 是3.2 函数的定义及记号1. 在现实世界中有不少变量之间有确定性的依赖关系,函数就是研究这种关系的有力工具. 研究各种各样的函数的性质是数学的重要内容之一.2. 函数的概念包含三个要素:定义域,值域和对应法则. 从而两个函数相等当且仅当它们的定义域相等,并且对应法则相同.3. 例1(1)求函数值,例如求3xx=xf在处的函数值,实质上就是求-x,253)(=-=3,2=-=x x 处的函数值,实质上就是求3,2=-=x x 时,代数式35-x 的值,因此12335)3(,133)2(5)2(=-⨯=-=--⨯=-f f .由于在初中一年级已经学过代数式求值,因此给学生讲:求函数值实质上就是求代数式的值,学生便容易学会.在上述例子中,不要给学生说:“35)(-=x x f 的对应法则是‘乘5减3’,因此求处的函数值就是在2)(-x f -2乘5减3,即133)2(5)2(-=--⨯=-f .”这种讲法会使学生感到求函数值难学,因为要把一个函数的对应法则用语言叙述是很啰嗦的,再由对应法则来求函数值,显然是增加了难度.3.2的练习答案1.(1)是;(2)是;(3)不是;(4)不是.2. 是,定义域为{,,,,d c b a …,y ,z },值域为{0,1,2,…,24,25}.3. f (1)=-37, f (2)=-34. 4. (1)31)2(;13-=+=b a a b . 5.(1)是;(2)是.6. (1) f (1)=1,g (1)=-1;(2) 1)]1([,3)]1([-==f g g f ; (3) 5496)]([,1639)13(22--=--=-x x x g f x x x f . 3.3 函数的三种表示法1. 函数的概念包含三个要素:定义域、值域和对应法则.目前中职阶段,值域通常取为实数集,因此表示一个函数就要指明它的定义域和对应法则.当函数f 的定义域A 是有限集时,可以用一张表格来表示函数,第一行写出A 的各个元素,第二行写出相应的函数值,这种表示函数的方法叫做列表法.2. 当f 的定义域A 是无限集或有限集时,通常要寻找一个或几个式子来表示对应法则,即用一个或几个等式来表示函数,这种方法叫做公式法. 这一个或几个等式叫做这个函数的解析表达式,简称为解析式.教材中公式法下的第(2)个例子,设}1,0{B },6,5,4,3,2,1,0{A ==.考虑A 到B 的一个对应法则f :⎪⎩⎪⎨⎧∉∈=A,,0A,,1)(x x x f 当当 这是A 到B 的一个映射,从而是定义域为A 、值域为B 的一个函数这个例子来自组合设计与现代通信和密码的关系.本教材有意识地举一些信息时代的例子,目的是使中职数学不要囿于传统的教材中,而能透出信息时代的一些气息.在上面这个例子中,集合A 到集合B 的一个对应法则f 用了两个等式来表示;当A∈x时,0)(,A ;1)(=∉=x f x x f 时当.习惯上把这样的函数叫做分段函数. 其实不必用这个术语,因为不管用几个等式表示函数,都无非是给出了定义域到值域的一个对应法则,多一个术语,会使学生多一份负担,所以我们在教材中没有出现“分段函数”这个术语,希望教师不要补充这个术语.3. 在用公式法表示定义域为数集的函数时,如果没有标明定义域,那么我们约定:函数)(x f 的定义域是指所有使解析式有意义(即,在解析式给出的对应法则下有象)的实数x 组成的集合,不再每次声明. 此外要注意,在实际问题中,还必须结合问题的实际意义来确定自变量x 的取值范围.在上面一段话里,我们阐明了什么叫做“使解析式有意义”,即“在解析式给出的对应法则下有象”. 例如,求函数31)(-=x x f 的定义域,解法如下: 03)(≠-⇔x x f 的解析式有意义3≠⇔x .因此函数),3()3,()(+∞-∞ 的定义域是x f .在上面这个例子中,“)(x f 的解析式有意义”指的是“在解析式给出的对应法则下有象”. 由于x 在)(x f 的解析式给出的对应法则下没有象当且仅当03=-x ,因此)(x f 的解析式有意义当且仅当)3(03≠≠-x x 即. 这样讲是确切的,因为表达式31-x 是一个分式,它当然是有意义的;只是分式函数31)(-=x x f 当3=x 时没有象,此时称分式函数31)(-=x x f 的解析式当3=x 时没有象,此时称为分式函数31)(-=x x f 的解析式当3=x 时没有意义.在这里我们区分了“分式”与“分式函数”这两个不同的概念:分式..指的是表达式...),,),(),(()()(等等或y x g y x f x g x f 其中)()(x g x f 与是一元多项式,且)(x g 不是零多项式(或),(),(y x g y x f 与是二元多项式,且),(y x g 不是零多项式,等等),而分式函数....指的是由分式给出的映射..,这一段话是为教师写的,不要给学生讲. 在求函数的定义域时,我们采用等价术语来叙述,既严谨又简捷.4. 用平面直角坐标系里的圆形表示函数的方法称为图像法.用图像法表示函数的最大优点是直观,因为函数的图像是数形结合的基础. 为此首先要把什么是函数的图像搞清楚. 教材中给函数的图像下了一个定义:设)(x f 是定义域为A 的一个函数,任取A ∈a ,在平面直角坐标系Oxy 里,描出坐标为M a f a 的点))(,(.当a 取遍A 的所有元素时,坐标为))(,(a f a 的点组成的集合,称为函数)(x f 的图像.从这个定义应即得出:点)(A,)(),(a f b a x f b a M =∈⇔且的图像上在.即,点)(),(x f b a M 在的图像上当且仅当它的横坐标a 属于定义域,纵坐标b 等于a 处的函数值.这个结论十分重要,它是利用函数的图像研究函数性质的基础.3.3的练习答案1.(1)f (x )的解析式有意义⇔53035≠⇔≠-x x ,因此)(x f 定义域为),53()53,(+∞-∞ ; (2)f (x )的解析式有意义⇔x 37-≥0⇔x ≤37,因此)(x f 定义域为]37,(-∞; (3)f (x )的解析式有意义⇔162-x ≥0⇔x ≤-4或x ≥4, 因此)(x f 定义域为);,4[]4,(+∞--∞(4)f (x )的解析式有意义⇔216x -≥0⇔-4≤x =4,因此)(x f 定义域为]4,4[-;(5)f (x )的解析式有意义⇔1523-+x x ≥0⇔-32≤x <51,因此)(x f 定义域为)51,32[-; (6)f (x )的解析式有意义⇔x x 5123-+≥0⇔x ≤-32或x >51,因此)(x f 定义域为),51(]32,(+∞--∞ . 2.(1)532)2(;)1(4122+-+x x a . 3.图略4.点M 、Q 都不在函数)(x f 的图像上.5.(1)(a , f (a ));(2) (-a , f (-a )).6.(1));,31()31,0)[4(];3,2)[3(];23,0)[2();,21()21,0[+∞-+∞ (5)(-∞,-5) ]7,6)(6(]; 7,5-(.7. 图像略8. 证明:)0()(≠+=k b kx x f 的图像经过原点 ⇔ f (0)=0 ⇔ k ·0+b =0⇔ b =03.4 分段函数1. 自变量在不同变化范围中,对应法则用不同式子表示的函数,称为分段函数.2. 教材给出了分段函数f (x )=⎪⎩⎪⎨⎧+∞∈+∈),1(.1]1,0[,2x x x x .要求作出此函数的图像.3.4的练习答案1.1)0()}5({-==f f f .2.(1).8101)]3([,7)]5([,161)]3([-=--==f f f f f f (2)⎪⎪⎪⎩⎪⎪⎪⎨⎧∈-<-=-R ,132·3.313,2.313 ≥,529)]([133x x x x x f f x x 3.(1))0 ≥()]([4x x x g f =;(2))0(1)]([>-=x xx f g . 4.图略 二、函数的性质3.5 函数的单调性1. 判断函数f (x )在区间上是增函数还是减函数,如果我们在画函数f (x )的图像时没有默让函数的单调性,那么用图像法判断f (x )的单调性,它具有直观易懂的优点,但是要注意:我们不能默认函数f (x )的单调性,去用一条光滑的曲线联结描出的各点,然后又让学生从这样画出的图像去判断f (x )的单调性,在画基本初等函数时在某个区间上的图像时,往往是要先用定义证明函数的单调性,然后才能用一条光滑曲线联结描出的各点,得到该函数在某个区间上的图像,之后利用对称性等画出该函数在另一个区间上的图像,这样对于该函数在另一个区间上的单调性就可以从图像来判断了.2. 对于任意的一次函数)0(≠+=k b kx y 的单调性,自然应当用定义法去判断. 教材的例1写出了求解过程,先统一写出)()(21x f x f -的表达式,然后分k >0和k <0两种情形判断)()(21x f x f -的正负.例2是讨论二次函数[)+∞--+=,13)1(21)(2在x x f 上的单调性. 必须先用定义法判断),1[3)1(21)(2+∞--+=在x x f 上是增函数,才能用一条光滑曲线联结描出的各点,得到),1[3)1(21)(2+∞--+=在x x f 上的一段图像.利用对称性.就能判定函数在]1,(--∞上是减函数,在),1[+∞-上是增函数.还有一种方法判定函数单调性,我们将在第三册中讲到. 定理:设函数f (x )在闭区间),(,],[b a b a 在开区间上连续内可导.(1)如果在内),(b a )('x f >0,那么],[)(b a x f 在上是增函数;(2)如果在内),(b a )('x f <0,那么],[)(b a x f 在上是减函数;(3)如果在内),(b a )('x f =0,那么],[)(b a x f 在上是常数.3.5的练习答案1. 任取121),,(,x x x 且+∞-∞∈<2x ,有-3x 1>-3x 2⇒-3x 1-2>-3x 2-2⇒)(1x f >)(2x f因此),(23)(+∞-∞--=在x x f 上是减函数.2. 任取),,0[,21+∞∈x x 且x 1<x 2,有212x <222x⇒212x +5<222x +5⇒)(1x f <)(2x f因此上在),0[52)(2+∞+=x x f 是增函数.3. 任取),0(,21+∞∈x x ,且x 1<x 2,有21122121)(555)()(x x x x x x x f x f -=-=-, 由于,x 2>x 1,x 1x 2>0,因此)(1x f -)(2x f >0从而 )(1x f >)(2x f 这表明()+∞=,05)(在xx f 上是减函数. 4. 任取),3[,21+∞x x ,且1x <2x ,有2x >1x ≥3⇒2x -3>1x -3≥0⇒(2x -3)2>(1x -3) 2≥0⇒-5)3(3122+-x <-5)3(3121+-x ⇒)(2x f <)(1x f所以),3[5)3(31)(2+∞+--=在x x f 上是减函数. 3.6 函数的奇偶性1. 本教材在阐述奇函数和偶函数的定义和性质上有创新.我们抓住了讨论函数奇偶性的实质是研究函数图像的对称性. 因此我们先复习图形关于直线对称的概念, 然后探索定义域为A 的函数)(x f 的图像在什么条件下关于原点对称?运用点P (a , b )在)(x f 的图像上的充分必要条件,我们推导出定义域为A 的函数)(x f 的图像E 关于原点对称 ⇔ E 上每一点))(,(a f a P 关于原点的对称点))(,(a f a M --仍在E 上⇔ A ),()(A,∈-=-∈-a a f a f a 对一切且.由此引出了奇函数的定义,并且上述推理也就证明了奇函数的图像关于原点对称,起了一箭双雕的作用.对于奇函数也是先复习圆形关于原点O 对称的概念,然后探索函数)(x f 的图像关于原点O 对称的充分必要条件:由此引出奇函数的定义,并且证明了奇函数的图像关于原点对称.我们这种讲法阐明了为什么要引进奇函数和偶函数的概念,而且简捷地证明了奇函数和偶函数的图像的对称性.2. 我们在教材中结合图形推导出“点),(b a P 关于y 轴的对称点Q 的坐标是),(b a -.关于原点的对称点M 的坐标是(b a --,)”这两个结论. 它们在探索)(x f 的图像的对称性时有用.3. 我们在例1中给出了判断一个函数)(x f 是不是奇函数的方法:求出)(x f 的定义域A.如果对于任意的)()(A,A,x f x f x x -=-∈-∈并且有都有,那么)(x f 是奇函数. 如果能找到一个)()(A,c f c f c -≠-∈使得,那么)(x f 不是奇函数.例2中给出了判断一个函数)(x f 是不是偶函数的方法:求出)(x f 的定义域A ,如果对于任意的A ∈x ,都有-A ∈x ,并且有)()(x f x f =-,那么)(x f 是偶函数.如果能找一个A ∈d ,使得)()(d f d f ≠-,那么)(x f 不是偶函数.例1和例2给出的方法是教学的基本要求,应让学生学会.3.6的练习答案1.(1)是;(2)是;(3)是;(4)不是.2.(1)是;(2)是;(3)不是;(4)不是.3. 证明:由于)(x f 、)(x g 都是定义域相同的偶函数,因此对于任意A ∈x ,有A ∈-x ,并且)F()()()()()F(x x g x f x g x f x =+=-+-=-.因此)(x F 是偶函数.4. )5(-f =-3.5.)3(f >)1(f .6. 证明:由于)(x f 、)(x g 都是定义域为A 的奇函数.因此对于任意A A,∈-∈x x 有,并且[])()()()()()()()(x h x g x f x g x f x g x f x h -=+-=--=-+-=-,)()()()]()][([)()()(x P x g x f x g x f x g x f x P ==--=--=-, 因此)(x h 是奇函数,)(x P 是偶函数.3.7 函数的图像1. 如果已经判断出)(x f 是奇函数,那么在画)(x f 的图像时,可以先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分. 这里的基本作图是,会作出点P 关于原点的对称点N ,这只要联结PO ,且延长至N ,使线段ON 的长度等于线段PO 的长度,则点N 就是点P 关于原点的对称点.2. 如果已经判断出)(x f 是偶函数,那么在画)(x f 的图像时,只要先画出y 轴右边的部分,然后利用对称性画出y 轴左边的部分,这里的基本作图法是,会作出点P 关于y 轴的对称轴Q ,这只要过点P 作y 轴垂线,设垂足为M ,把这垂线往左延长至点Q ,使线段MQ 的长度等于线段PM 的长度,则点Q 就是点P 关于y 轴的对称点.3.7的练习答案1. (1) (2)是偶函数,(3) (4) (5) (6)不是偶函数.2. (1)是;(2)是;(3)不是;(4)不是.3. 图略4.(1)2123)2(;3432--=+-=x x y x y . 5 ~7. 图略.3.8 反函数1. 我们在反函数的概念和求法上与传统的讲法不同,我们有创新. 传统的讲法大致是:给了函数的解析式,例如x y 3=.反解出y x 31=. 于是对于y 在R 中的任何一个值,通过式子y x 31=,x 在R 中都有唯一确定的值和它对应.因此也可以把y 作为自变量(∈y R ),x 作为y 的函数,我们一般用x 表示自变量,用y 表示函数,为此我们对调函数式y x 31=中的字母x 、y ,把它与成x y 31=.传统的讲法没有清晰地揭示反函数概念的本质,通过对调字母x 与y ,学生很难看清楚反函数与原来函数的关系.传统的讲法在反解出)(y g x =时,由于没有写出反解过程. 因此导致一些误会和差错. 传统的讲法对于用列表法表示的函数(不知道函数的解析式),没有给出反函数的概念. 而当今信息时代,由于计算机科学和信息科学的迅速发展,离散数学的地位加强,遇到的函数不一定能用公式表示,因此传统的讲法已不适应时代的要求.基本上述原因,我们对于反函数的概念和求法采取了新的讲法.2. 对于反函数的概念,我们给出这样的定义:如果函数)(x f y =有反函数,那么我们的讲法可以立即得出,严格单调函数一定有反函数. 3. 关于反函数的求法,我们给出了函数)(x f 的解析式,求它的反函数(仍用函数式表示). 对于用公式法表示的函数,我们给出的求反函数的方法是科学的. 以教材中例1的(3)为例:解b a x x y 对应到把2213-≠+-= )2(213-≠+-=⇔a a a b )2(13)2(-≠-=+⇔a a a b)3,2(12)3(≠-≠+=-⇔b a b a b)3,2(312≠-≠-+=⇔b a bb a a b xx y 对应到把3312≠-+=⇔ 因此函数213+-=x x y 的反函数是 ∈-+=x xx y (,313R 且3≠x ). 求213+-=x x y 的反函数,就是要寻找一个函数使得,对于原来函数的值域中的每一个b ,当原来的函数把a 对应到b 时,所求的函数把b 对应到a . 上述求解过程满足这一要求. 从反函数的定义知道,我们首先要知道原来的函数)(x f y =的值域;才能判断出所求出的函数是不是反函数(因为反函数必须是对于)(x f y =的值域中每一个元素b ,都有)(x f y =的定义域中唯一的一个元素a 与它对应).我们求反函数的方法是在求解过程中先求出了原来函数的值域,然后才求出了反函数. 这是符合反函数定义的要求的.我们是怎样求出原来函数的值域的呢?上述例子中,在第二步等价于b (a +2)=3a -1(a ≠-2),3.3=≠b b 因为假如从此式看出,则上式左边=3(a +2)=3a +6,而上式右边=3a -1.由此推出6=1-,矛盾,所以3≠b .即原来函数的值域是{b ∈R|(b ≠3)}. 于是对于原来函数值域中的每一个元素b ,在(3-b )a =2b +1而边除以(3-b )(此时3-b ≠0,因此可以用它作除数)得,b b a -+=312.从而求出了反函数为)3(312≠-+=x x x y .4. 有的教材在讲求反函数时是像下述那样讲的: “由213+-=x x y ,可得y y x -+=312,所以函数213+-=x x y 的反函数是xx y -+=312(∈x R 且3≠x ).”这种讲法没有详细写出反解的过程,在得出y y x -+=312时,没有讨论3≠y . 就把y -3当除数用了,这是不严谨的. 这种讲法没有事先求出原来函数的值域,因此所求出的函数xx y -+=312是否为反函数无从判断. 这种讲法容易引起误会以至产生差错,不少复习资料由此引出求原来函数值域的方法:“先求反函数,再从反函数的解析式求出定义域,它就是原来函数的值域.”这种方法是错误的,以213+-=x x y 为例,在反解时,如果不讨论3≠y ,就用)3(y -去除两边,得出y y x -+=312,然后又说从3312≠-+=x xx y 看出,因此得出反函数的定义域为{x ∈R |x ≠3},于是原来函数的值域为{y ∈R |y ≠3}. 这是先默认3≠y ,用(3-y )去除两边得到y y x -+=312,然后又说从x =yy -+312看出3≠y ,这在逻辑上是混乱的,这种思维方式是错误的. 由此看出,教数学不能只是教计算,而不管计算过程是否合理;教数学不能只是看答案对不对,而不管其思维方式是否正确. 这些都是直接关系到我们培养的学生的素质啊!定理1 如果函数)(x f y =有反函数,那么)(x f y =的图像与它的反函数)(1x f y -=的图像关于直线y =x 对称.学习数学一定要掌握基本理论,有了理论的指导,解题就会有思路,就能通过逻辑推理深入揭示事物之间的内在联系以及它们的本质.三、一元二次函数及其应用3.9 一元二次函数的性质及其图像1. 一元二次函数的图像在初中时已讲过,但是一些道理没有讲. 鉴于一元二次函数是非常重要的一类函数,有必要在中学阶段打下扎实的基础,因此我们在教材中用一节来讲一元二次函数的性质和图像, 这是在初中的基础上的提高.2. 我们在教材一开始就让学生动脑筋:如何正确..、简便..地画一元二次函数25212-+=x x y 的图像?然后分析:先把函数的表达式配方得,()31212-+=x y . 利用3.7节例3的结论,()31212-+=x y 的图像有对称轴1-=x . 因此只要先画出图像在直线1-=x 的右边的一半. 从而列表时只需要列出1-=x ,0,1,2,3,…时相应的函数值. 接着在平面直角坐标系Oxy 中描点. 描完点后,不是马上连线,而是先利用3.4节例3的结论:3)1(212-+=x y 在区间),1[+∞-上是增函数,这时才知道可以用一条光滑曲线把描出的各点联结起来. 最后利用对称性,画出图像在直线1-=x 的左边的部分.这样画函数的图像既简便又科学.传统的画函数图像的方法是:列表,描点,连线.前两步虽然正确,但是较麻烦(如果先讨论对称性,则可减少一半的工作量).第三步连线是不科学的. 在还没有讨论函数的单调性时,怎么知道如何联结描出的有限几个点?更不应该的是,事先不讨论单调性,但是却默认函数有单调性,“用一条光滑曲线联结各点”,然后又让学生从图像上看出函数是增函数或减函数. 这在逻辑上是混乱的,这种思维方式是不正确的.也许有人会说,让中学生讨论函数的单调性要求太高了,那么让我们来看一看,)(x f =),1[3)1(212+∞--+在x 上是单调性的讨论: 任取1x ,2x ),1[+∞-∈,且1x <2x ,有2x >1x ≥-1⇒12+x >11+x ≥0⇒(12+x )2>(11+x )2 ⇒()312122-+x >()312121-+x ⇒()2x f >()1x f , 因此),1[3)1(21)(2+∞--+=在区间x x f 上是增函数. 从上述讨论过程看到,用的都是不等式的性质,并不困难,而且正好是复习巩固不等式的性质. 我们又注意了分散难点,把这个讨论放在3.4节的例3,到3.8节时只是引用这个结论. 因此中学生是能够接受先讨论函数的单调性,再连线的.3. 在讲完()31212-+=x y 的图像后,我们给出顶点的概念,并且让学生观察顶点坐标)3,1(--与表达式有什么联系?观察顶点坐标与函数的最小值有什么联系?从函数的图像(我们已正确地画出了函数的图像)看出函数在顶点横坐标往左的区间上的单调性,以及图像的开口方向. 在观察的基础上,我们抽象出一般的一元二次函数()02≠++=a c bx ax y 的性质和图像. 由于其论证与()31212-+=x y 的性质和图像的论证类似,因此我们在教材中就不写出了.4. 在让学生画一个具体的一元二次函数的图像时,先配方,然后求出对称轴,接着先画图像在对称轴右边的一半(列表,描点,连线. 由于已经讲了一般的一元二次函数的单调性,因此在连线之前不用再讨论单调性了),最后利用对称性画出图像在对称轴左边的部分.5. 本节的练习除了画二次函数的图像以外,还有写出顶点坐标,求函数的最大值或最小值,求一元二次函数的最大(小)值的基本方法是将表达式配方. 这应让学生掌握. 这是因为配方在数学中是常用的一种技巧.至于直接利用顶点坐标来求最大 (小)值的方法,对于课时较充裕的学校也可以介绍. 我们在教材中把它作为思考题,让学生思考.3.9的练习答案1.(1)对称轴为5=x ,顶点坐标为)223,5(-,图略; (2)对称轴为41=x ,顶点坐标为)87,41(-,图略. 2.(1)当1-=x 时,y 达到最小值2;(2)当2-=x 时,y 达到最大值5;(3)当23=x 时,y 达到最小值41-; (4)当2=x 时,y 达到最大值1. 3.(1)顶点坐标)421,3(-,对称轴为x =3; (2)841)25(-=f ; (3))415()41(f f >-. 4.(1)对称轴为45=x ,顶点坐标为)825,45(-,函数最小值为825-,]45,(-∞为单调递减区间,),45[+∞为单调递增区间,函数图像开口向上; (2)对称轴为3=x ,顶点坐标为)27,3(,函数最大值为27,]3,(-∞为单调递增区间,),3[+∞为单调递减区间,函数图像开口向下.5.(1)顶点坐标为(3,-2).),63()63,(+∞+--∞∈ x 时,y >0;()63,63+-∈x 时,y <0.]3,(-∞∈x 时,函数为单调递减函数; ),3[+∞∈x 时,函数为单调递增函数. (2)顶点坐标为(-1,3). )261,261(+---∈x 时,y >0;),261()261,(+∞+----∞∈ x 时,y <0.]1,(--∞∈x 时,函数为单调递增函数;),,1[+∞-∈x 时,函数为单调递减函数.3.10 用待定系数法求函数的解析式1. 在许多数学问题或实际问题中,建立了函数的模型后,需要求其中的未知的系数,这可以通过列方程组并且解这个方程组求出,从而求出函数的解析式,这种方法叫做待定系数法.它是数学中重要的一种方法.本节主要是介绍如何用待定系数法求一元一次函数和一元二次函数的解析式,并且介绍了它们在实际问题中的应用.2. 一次函数的解析式)0(≠+=k b kx y 有2个系数k ,b ,因此需要列出两个彼此独立的方程来求未知系数k ,b ,于是需要已知两个条件来列两个方程.3. 一元二次函数)0(2≠++=a c bx ax y 的解析式有3个系数,因此用待定系数法求这3个系数时,需要列出3个彼此独立的方程,于是通常要给出这个函数当自变量取3个不同数时相应的函数值.4. 如果知道一元二次函数g (x )的图像的顶点坐标为(e , d ),则可以假设g (x )的解析式为d e x a x g +-=2)()(.这时只要再知道图像所经过的一个点的坐标,就可以求出系数a .5. 如果知道一元二次函数)(x g 的图像的对称轴是直线e x =,则可以假设)(x g 的解析式为d e x a x g +-=2)()(.这时只要再知道图像上两个点的坐标,就可以列出两个方程,从而求出待定系a 、d.6. 为了让学生了解待定系数法在日常生活中的应用,教材的例3求出了扔铅球时铅球在空中飞行轨道(抛物线的一段)的解析表达式.3.10的练习答案1. 设这个一次函数的解析式为b kx y +=,其中k ,b 待定.由于P (2,-5),Q (-1,7)在这个函数的图像上,因此有⎩⎨⎧=+--=+.7,52b k b k 解得 3,4=-=b k因此所求一次函数的解析式为34+-=x y .2. 设这个正比例函数的解析式为kx y =,其中k 待定,由于点(2,8)在这个函数的图像上,因此有8=2k ,解得 k =4.。
讲义-第三章《函数》
例:求函数y=3x2+2x+1的最小值及它图像的对称轴,并说明图像的单调区间。
(3)图像法:用图像来表示两个变量的函数关系。特点是直观表示变化趋势。
2.分段函数:在函数定义域内,对于自变量x的不同取值区间,有着不同的对应法则。
★3.3函数的单调性:
1.内涵:是指函数的增减性,反应在图像上就是看函数是增函数还是减函数。
2.增函数、减函数的等价说法:增函数就是在给定的区间上随着自变量x的增大(减小)而增大(减小),减函数是随着自变量x的增大(减小)而减小(增大)。
第三章函数
★3.1函数的概念(难点)
1.定义:有两个变量x和y,如果给定一个x值,就相应的确定了唯一的y值,那么我们就称y是x的函数。其中x表示自变量,y表示因变量。
2.函数的实质:是表示两个数集的元素之间按照某种对应法则确定的一种对应关系。
3.函数符号y=f(x)是一个抽象的数学符号,它是“y是x的函数”这句话的数学表示,并非表示f与x的乘积。在该符号中,f表示对应法则,等式y=f(x)表明,对于定义域中的任意x,在“对应法则f”的作用下,即可得到y。
★3.4函数的奇偶性
1.内涵:指函数的对称性。
2.奇偶性:奇函数:图像是以坐标原点为对称中心的中心对称图形(中心对称)
偶函数:图像是以y轴为对称轴的对称图形(轴对称)
3.判断函数的奇偶性的方法:
如满足f(-x)=-f(x)时,函数为奇函数;如满足f(-x)=f(x)时,函数为偶函数。
4.重点:(1)函数的奇偶性是函数在整个定义域上的一种性质;
3.根据函数的解析式判断一个函数在给定区间上是增函数还是减函数的一般步骤是:
离散数学第三章 函数
第三章 函数
二、反函数
1、定义1:设f:AB是双射,则逆关系 f -1:BA
是从B到A的函数,称为 f 的反函数。
记 f -1 :BA。 由定义可知:当函数 f:AB的反函数存在,若 f (x) = y,则f -1 (y) = x 且
f f 1 I A , f 1 f I B
f 0 ( x) x n 1 n f ( x ) f ( f ( x ))
第三章 函数
(2) 定理2: 设f: A→B,则 f。IB=IA。f=f
(3) 定理3:设有函数f:AB,g:BC
① 若f ,g是单射,则f g也是单射。
② 若f ,g是满射,则f g也是满射。
所以 f。g={(x, 4x 2+4x+2)}, g。f={(x, 2x 2+3)}
f。f={(x, 4x+3)}, g。g={(x, x 4+2x 2+2)}
第三章 函数
2、性质:
⑴ 定理1:设有函数f:AB,g:BC,h:
CD,则f ( g h) 和( f g ) h都是函数,且
③ 若f ,g是双射,则f g也是双射。
注:定理3的逆不成立。
第三章 函数
例3:设A={ 1, 2, 3 }, B={ a, b, c, d }, C={ x, y, z }
令 f = {(1, a), (2, b), (3, c)},
g = {(a , x), (b, y), (c, z), ( d, z)}
f ( g h) = ( f g ) h = f g h 证明: f。(g。h)(x) =(g。h) (f (x))=h (g (f (x)) =h((f。g) (x))=(f。g)。h (x)
新教材人教版高中数学必修第一册 第三章 知识点总结
必修第一册第三章函数的概念与性质3.1 函数的概念及其表示1.函数的概念:一般地,设A、B是非空的数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
2.构成函数的三要素:定义域、对应关系和值域(1)函数的定义域的求法:①自然型:解析式自身有意义,如分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数;②实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域的方法:①配方法(将函数转化为二次函数);②不等式法(运用不等式的各种性质);③函数法(运用函数的单调性、函数图象等)。
(3)两个函数的相等:当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
3.常用的函数表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式;(2)列表法:就是列出表格来表示两个变量的函数关系;(3)图象法:就是用函数图象表示两个变量之间的关系。
4.分段函数:若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数;5.区间的概念:设a,b是两个实数,且a<b,我们规定:(1)满足不等式a≤x≤b的实数x的集合叫做闭区间,表示[a,b];(2)满足不等式a<x<b的实数x的集合叫做开区间,表示(a,b);(3)满足不等式a≤x<b或a<x≤b的实数x的集合叫做半开半闭区间,表示[a,b)或(a,b];a,b都叫做区间的端点。
(4)代数与几何表示对照表(数轴上用实心点表示包括在区间内的端点,用空心点表示不包括在区间内的端点)(5)3.2 函数的基本性质⊆: 1.单调性:(1)定义:一般地,设函数y=f(x)的定义域为I,区间D I①∀ x1,x2∈D,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数;特别地,当函数f(x)在它的定义域上单调递增时,我们成它是增函数。
C++第三章 函数
int step;
step=m;
m=n;
n=step;
}
运行结果:
x=5 y=10
x=5 y=10
分析:从上面的运行结果可以看出,并没有达到交换的目的。这是因为,这里采用的值调用,函数调用是传递的是实参的值,是单向传递过程。形参质的改变对实参不起作用。
2.引用调用
if(symm(m)&&symm(m*m)&&symm(m*m*m))
cout<<"m="<<m<<" m*m="<<m*m<<" m*m*m="<<m*m*m<<endl;
}
//****************以下是判断回文数的函数**********************
bool symm(long n)
{
k=(n-1)/2;
sum+=power(-1,k)*power(x,n)/n;
}
return sum;
}
double power(double y,int m)
{
int i;
double val=1;
for(i=1;i<=m;i++)
val*=y;
return val;
main函数也可以有形参和返回值,其形参也称为命令行参数,由操作系统在启动程序时初始化,其返回值传递给操作系统。不过命令行参数的类型与个数有特殊要求。
函数在没有被调用的时候是静止的,此时的形参只是一个符号,它标志着在形参出现的位置应该有一个什么类型的数据。函数在被调用时才由主调函数将实际参数(实参)赋予形参。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8
• 函数概念的第五次扩张,提出了“近代函数定义”。 • 美国数学家维布伦的函数定义,这个定义是建立在重新定 义变量、变域和常量的基础上的。 • 所谓变量,是代表某集合中任意一个“元素”的记号,由 变量所表示的任一元素,称为该变量的值。变量x代表的 “元素”的集合,为该变量的变域,而常量是上述集合中只 包含一个“元素”情况下的特殊变量。这样的变量与常量 的定义,比原来的定义更趋一般化了,而且克服了以往变 量定义的缺陷,变量“变动”改进为变量在变域(集合) 中代表一个个元素。 • 利用这一变量的定义,维布伦给出了近代函数定义:“设 集合X、Y,如果X中每一个元素x都有Y中唯一确定的元素 y与之对应,那么我们就把此对应叫做从集合X到集合Y的 映射,记作f:XY,y=f(x)”。 • 从“数集”到“集”仅一字之差,但含意却大不相同。从 而使函数概念摆脱了数的束缚,使得函数概念能广泛地应 用于数学的各个分支及其它学科中。
(2) f2={(3, 6),(1, 8),(2, 6),(4, 7)}
(3) f3={(3, 6),(2, 9),(1, 9),(4, 9),(5, 9)}
(
N )
( Y )
N )
(4) f4={(2, 9),(3, 8),(1, 7),(2, 6),(4, 7),(5, 10)} (
23
2.对下列每一函数,确定是否内射,是否 满射,是否双射。分别将“内”、“满”或 “双”填入相应的括号内。 i i是偶数 2 (1) f : I I ( 满 ) f 1 1 i 1 i是奇数 2
函数function
总之,函数实质是:量与量之间的某种关系 它不再局限于数与数之间的对应关系
11
3.1
一、 函数的概念
1.函数
函
数
例1.设A={1, 2, 3, 4},B={2, 3, 4, 5, 6}, A到B的 关 系 ={(2, 2),(2, 4),(2, 6),(3, 3),(3, 6),(4, 4)} 定义3-1 设有集合A、B, f 是一由 A 到 B 的关系,如果 对于每一个 a∈A ,均存在唯 一的 b∈B ,使得 afb (或 (a , b)∈f),则称关系f是由A到B 的一个函数。记作 f : A→B 。
的值域满足Rf B.但对于函数f,常将Rf记作f(A)。
即f(A)=Rf ={b|b∈B且存在a∈A使f (a)=b}
例如 例2中f (2)=6, f (4)=4, g (1)=3, g (3)= 6
Df =Dg=A
f(A)=Rf={2, 4, 6} g (A)=Rg={2, 3, 5, 6}
14
• • • • • • • • • • • • • • Not one-to-one • • • • • • • • • • • • • Not even a function!
One-to-one
Illustration of Onto
• Some functions that are, or are not, onto their codomains:
第三章
主要内容如下: 3.1 3.3 3.5 函数 逆函数 置换
函
数
3.2 3.4 3.6
函数的复合运算 集合的基数 数学归纳法
1
函数概念的产生与发展
• 函数概念的起源 函数概念的萌芽,可以追溯到古代对图形轨迹 的研究,随着社会的发展,人们开始逐渐发现, 在所有已经建立起来的数的运算中,某些量之 间存在着一种规律:一个或几个量的变化,会 引起另一个量的变化,这种从数学本身的运算 中反映出来的量与量之间的相互依赖关系,就 是函数概念的萌芽。在代数学的方程理论中, 对不定方程的求解,使得人们对函数概念逐步 由模糊趋向清晰。
7
• 函数概念的第四次扩张,可称为“科学函数定义”进入精确 化阶段。 • 德国数学家狄利克雷于1837年给出了函数定义:“若对 x(a≤x≤b)的每一个值,y总有完全确定的值与之对应,不 管建立起这种对应的法则的方式如何,都称y是x的函数”。 • 这一定义彻底地抛弃了前面一些定义中解析式的束缚,强调 和突出函数概念的本质,即对应思想,使之具有更加丰富的 内涵。因而,此定义才真正可以称得上是函数的科学定义, 为理论研究和实际应用提供了方便。 • 为使函数概念适用范围更加广泛,人们对函数定义作了如下 补充:“函数y=f(x)的自变量,可以不必取[a,b]中的一切值, 而可以仅取其任一部分”,换句话说就是x的取值可以是任 意数集,这个集合中可以有有限个数、也可以有无限多个数, 可以是连续的、也可以是离散的。这样就使函数成了一个非 常广泛的概念。
(a)是内射,但不是满射; (b)是满射, 但不是内射; (c)既不是内射,也不是满射; (d)既是内射,又是满射,因此是双射。
19
One-to-One Illustration
• Bipartite (2-part) graph representations of functions that are (or not) one-to-one:
• • • • • • • • • • • • • • • • • • Not Onto (or 1-1) • • • • • • • • Both 1-1 and onto • • • •
• • • • • 1-1 but not onto
Onto (but not 1-1)
两个有用的、特殊的函数介绍
12
例2 对例1中关系的序偶进行调整或修改,使
f={(1,2),(2,6),(3,6),(4,4)} 或g={(1,3),(2,2),(3,6),(4,5)}
则f和g都是由A到B的函数。 若f是一由A到B的函数,且(a,b)∈f,则常记 作f(a)=b。
13
2. 函数的定义域和值域
函数的定义域Df=A,而不会是A的真子集。 函数
5
• 函数概念的第二次扩张是从几何方而的扩张,提出了 “几何的函数概念”。
• 十八世纪中期的一些数学家发展了莱布尼兹将函数看 作几何量的观点,而把曲线称为函数(因为解析表达式 在几何上表示为曲线)。 • 达朗贝尔在1746年研究弦振动问题时,提出了用单独 的解析表达式给出的曲线是函数,后来欧拉发现有些 曲线不一定是由单个解析式给出的,因此提出了一个 新的定义,函数是:“ 平面上随手画出来的曲线所表 示的x与y的关系”。即把函数定义为由单个解析式表 达出的连续函数,也包括由若干个解析式表达出的不 连续函数(不连续函数的名称是由欧拉提出的)。
16
例3 设A={a, b, c}, B={1, 2}, 构造出
所有由A到B的函数,并验证#(BA)=(#B)#A
解: 由A到B的函数如下: f1={(a,1),(b,1),(c,1)} f2={(a,1),(b,2),(c,1)} f3={(a,1),(b,1),(c,2)} f5={(a,2),(b,1),(c,1)} f6={(a,2),(b,2),(c,1)}
者说当f (ai)=f (aj) 时, 有ai = aj)则称f是由A
到 B的内射( one-to-one)。 ( 2 )若对任意b∈B,必存在a∈A, 使f(a)=b,则称f是A到B的满射 (onto)。 (3)若f既是内射,又是满射,则称 f是由A到B的双射 (bijection)。 18
例4
9
• 函数概念的第六次扩张,提出了“现代函数定 义”。
• 19世纪康托尔创建了集合论,函数概念进入了 集合论的范畴,使函数概念纯粹地使用集合论 语言进行定义。 • 在这种情形下,函数、映射又归结为一种更为 广泛的概念——关系。 • 这就是现代的函数定义,它在形式上回避了 “对应”术语,使用的全部是集合论的语言, 一扫原来定义中关于“对应”的含义存在着的 模糊性,而使函数念更为清晰、正确,应用范 围更加广泛了。 10
注意
• • • • f要是集合A到B的函数, 必须满足以下条件: 1. A中的每个元素都要有像 2. A中的一个元不可以有两个不同的像 3. A中不同的元素可关系 • 学生举例: 不是函数的关系的例子,并说明为什么 不是. 15
3.函数的相等
定义3-2 设f和g都是由集合A到B的函数,如果对于 所有的a∈A , 均有 f(a)=g(a), 则称函数 f 和 g 相等 , 记作 f=g 。 根据定义3-2,若在A中有一个元素a,使得 f(a) ≠g (a) , 则f≠g 。 设 A 和 B 都 是 有 限 集 , # A = n , # B = m , 设 A={a1, a2, …, an}, B={b1, b2, …, bm}。 A中n个元素的取值方式是 m m m 种, 因 此由A到B的函数有m n个, n个 记BA={f|f: A→B}, 则#(BA)=(#B)#A 问题:从R到R的函数f(x)=2x,与从I到I的函数g(x)=2x相等吗?为 什么?
• • • • 顶函数(ceiling function) 底函数(floor function) 恒等函数(identity function) 不动点函数( fix point)
22
练习
3 -1
B={6, 7, 8, 9,
1 . 设 A = {1, 2, 3, 4, 5} ,
10}, 判断下列由A到B的关系哪些是函数,哪些不是函 数。在相应的括号中键入“Y”或“N”。 (1) f1={(1, 10),(2, 9),(3, 8),(4, 7),(5, 6)} ( Y )
3
函数概念的扩张
• 函数概念被提出后,由于微积分学的发展,函 数概念也不断进行扩张,日趋深化。致使函数 概念日趋精确化、科学化。函数概念在发展过 程中,大致经过了以下六个阶段的扩张。
4
• 第一次扩张主要是解析扩张,提出了“解析的 函数概念”。 • 瑞士数学家约翰.伯努利于1698年给出了函数 新的定义:由变量x和常量用任何方式构成的 量都可以叫做x的函数。这里的“任何方式” 包括了代数式子和超越式子。 • 1748年欧拉在《无穷小分析引论》中给出的 函数定义是:“变量的函数是一个解析表达 式,它是由这个变量和一些常量以任何方式 组成的”。1734年欧拉还曾引入了函数符号 , 并区分了显函数和隐函数、单值函数和多值 函数、一元函数和多元函数等。