小学数学知识点:典型应用题

合集下载

小学数学典型应用题归类总结(30种)

小学数学典型应用题归类总结(30种)

小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳总结汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)

小学数学应用题典型例题(一)(含答案解析)1、已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。

再根据椅子的价钱,就可求得一张桌子的价钱。

答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。

2、3箱苹果重45千克。

一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。

答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。

3、甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。

即可求甲比乙每小时快多少千米。

答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。

4、李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。

每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。

答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。

5、甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

小学数学典型应用题100道附答案(完整版)

小学数学典型应用题100道附答案(完整版)

小学数学典型应用题100道附答案(完整版)1. 小明有10 个苹果,小红的苹果数是小明的2 倍,小红有多少个苹果?答案:10×2 = 20(个)2. 商店里有30 个篮球,卖出了15 个,还剩下多少个?答案:30 - 15 = 15(个)3. 一辆汽车每小时行驶80 千米,行驶4 小时,一共行驶了多少千米?答案:80×4 = 320(千米)4. 果园里有120 棵桃树,梨树比桃树少20 棵,梨树有多少棵?答案:120 - 20 = 100(棵)5. 一本书有200 页,小明每天看25 页,看了4 天,还剩多少页没看?答案:200 - 25×4 = 100(页)6. 工厂要生产500 个零件,已经生产了200 个,剩下的要在5 天内完成,平均每天生产多少个?答案:(500 - 200)÷5 = 60(个)7. 学校买了8 套桌椅,每套桌椅150 元,一共花了多少钱?答案:8×150 = 1200(元)8. 长方形的长是12 厘米,宽是8 厘米,它的面积是多少平方厘米?答案:12×8 = 96(平方厘米)9. 一根绳子长50 米,剪掉20 米,剩下的占全长的几分之几?答案:(50 - 20)÷50 = 3/510. 小红有80 元零花钱,花了30 元,还剩下零花钱的几分之几?答案:(80 - 30)÷80 = 5/811. 一个三角形的底是6 分米,高是4 分米,面积是多少平方分米?答案:6×4÷2 = 12(平方分米)12. 小明从家到学校,每分钟走60 米,走了10 分钟,小明家到学校有多远?答案:60×10 = 600(米)13. 一批货物,甲车单独运6 小时运完,乙车单独运8 小时运完,两车一起运,需要几小时运完?答案:1÷(1/6 + 1/8) = 24/7(小时)14. 鸡兔同笼,共有20 个头,56 条腿,鸡和兔各有多少只?答案:假设全是鸡,兔有(56 - 20×2)÷(4 - 2) = 8(只),鸡有20 - 8 = 12(只)15. 果园里苹果树和梨树共180 棵,苹果树是梨树的2 倍,苹果树和梨树各有多少棵?答案:梨树有180÷(2 + 1) = 60(棵),苹果树有120 棵。

小学数学重要知识点口诀和典型应用题,学会了当考神

小学数学重要知识点口诀和典型应用题,学会了当考神

典型应用题具有独特的结构特征的和特定的解题规律的复合应用题,通常叫做典型应用题。

(1)平均数问题:平均数是等分除法的发展。

解题关键:在于确定总数量和与之相对应的总份数。

算术平均数:已知几个不相等的同类量和与之相对应的份数,求平均每份是多少。

数量关系式:数量之和÷数量的个数=算术平均数。

加权平均数:已知两个以上若干份的平均数,求总平均数是多少。

数量关系式(部分平均数×权数)的总和÷(权数的和)=加权平均数。

差额平均数:是把各个大于或小于标准数的部分之和被总份数均分,求的是标准数与各数相差之和的平均数。

数量关系式:(大数-小数)÷2=小数应得数最大数与各数之差的和÷总份数=最大数应给数最大数与个数之差的和÷总份数=最小数应得数。

例1.一辆汽车以每小时 100 千米的速度从甲地开往乙地,又以每小时 60 千米的速度从乙地开往甲地。

求这辆车的平均速度。

(2)归一问题:已知相互关联的两个量,其中一种量改变,另一种量也随之而改变,其变化的规律是相同的,这种问题称之为归一问题。

根据求“单一量”的步骤的多少,归一问题可以分为一次归一问题,两次归一问题。

根据球痴单一量之后,解题采用乘法还是除法,归一问题可以分为正归一问题,反归一问题。

一次归一问题,用一步运算就能求出“单一量”的归一问题。

又称“单归一。

”两次归一问题,用两步运算就能求出“单一量”的归一问题。

又称“双归一。

”正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。

反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。

解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。

数量关系式:单一量×份数=总数量(正归一)总数量÷单一量=份数(反归一)例2. 一个织布工人,在七月份织布 4774 米,照这样计算,织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米,就是单一量。

小学数学30个典型应用题

小学数学30个典型应用题

小学数学30个典型应用题1. 甲乙两个人共有80元,甲比乙多10元,甲要减去1/5的钱给乙,剩下的钱甲还有多少元?解析:甲比乙多10元,即甲有x元,乙有x-10元。

甲要减去1/5的钱给乙,剩下的钱为4/5x。

所以4/5x = x-10,解得x=50,甲剩下的钱为(4/5)*50=40元。

2. 两个正整数的和是35,差是5,这两个数分别是多少?解析:设两个正整数分别为x和y,所以有x+y = 35和x-y=5。

将两个方程相加得到2x=40,解得x=20,代入第一个方程解得y=15。

所以这两个数分别是20和15。

3. 一辆汽车开车行驶了200公里,行驶速度为60千米每小时,行驶的时间是多少小时?解析:速度等于路程除以时间,所以时间等于路程除以速度。

这里路程为200公里,速度为60千米每小时,所以时间为200/60=3.33小时。

4. 一袋米重5千克,小明买了3袋米,他付了多少钱?如果他付了480元,那么每袋米多少钱?解析:小明买了3袋米,总重量为5千克*3=15千克。

如果他付了480元,那么每千克米的价格为480元/15千克=32元。

所以每袋米的价格为32元*5千克=160元。

5. 一盒饼干有24块,小明吃掉了其中的1/3,还剩下多少块饼干?解析:小明吃掉了1/3,剩下的饼干为原来的2/3。

所以剩下的饼干数量为24块*2/3=16块。

6. 一个苹果25克,小红买了6个苹果,她买了多少克苹果?解析:小红买了6个苹果,总重量为25克*6=150克。

7. 一路程为120公里的旅程,甲和乙同时从同一地点出发,乙的速度是甲速度的1.5倍,他们多少小时后会相遇?解析:设甲的速度为x千米每小时,乙的速度为1.5x千米每小时。

他们相遇时,甲行驶的时间为t小时,乙行驶的时间为1.5t小时。

根据路程等于速度乘以时间的公式,有xt+1.5xt=120,解得t=24/2.5=9.6小时。

所以他们9.6小时后会相遇。

8. 一辆公交车从A地出发,以每小时50千米的速度向B地行驶,另一辆公交车从B地同时以每小时60千米的速度向A地行驶。

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题分类讲解附带例题和解题过程

小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题. 以下主要研究30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25 、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

(完整)小学数学30种典型应用题及例题完美版

(完整)小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 1辆汽车1次能运多少吨钢材? 100÷5÷4=5 乙班人数=÷2=46 答:甲班有52人,乙班有46人。

例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方出来,这样所形成的题目叫做应用题。

任何一道应用题都两部分构成。

第一部分是已知条件,第二部分是所求问题。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题: 1 归一问题 11 行船问题 21 方阵问题 2 归总问题 12 列车问题 22 商品利润问题 3 和差问题 13 时钟问题 23 存款利率问题 4 和倍问题 14 盈亏问题24 溶液浓度问题 5 差倍问题 15 工程问题 25 构图布数问题 6 倍比问题 16 正反比例问题 26 幻方问题 7 相遇问题 17 按比例分配27 抽屉原则问题 8 追及问题 18 百分数问题 28 公约公倍问题 9 植树问题 19 “牛吃草”问题 29 最值问题 10 年龄问题 xx年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解儿子年龄=27÷=9 爸爸年龄=9×4=36答:父子二人今年的年龄分别是36岁和9岁。

例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则万元就相当于上月盈利的倍,因此上月盈利=÷=18 本月盈利=18+30=48答:上月盈利是18万元,本月盈利是48万元。

五年级数学知识点:应用题集锦

五年级数学知识点:应用题集锦

五年级数学知识点:应用题集锦小学数学是学习生涯的关键阶段,为了能够使同学们在数学方面有所建树,小编特此整理了五年级数学知识点:应用题集锦以供大家参考。

一、行程问题:1.火车从甲城到乙城,现已行了200千米,是剩下路程的4倍。

甲乙两城相距多少千米?2.甲港到乙港的航程有210千米,一艘轮船运货从甲港到乙港,用了6小时,返回时每小时比去时多行7千米,返回时用了几小时?3.小方从家到学校,每分钟走60米,需要14分钟,如果她每分钟多走10米,需要多少分钟?4.一辆汽车3小时行了135千米,一架飞机飞行的速度是汽车的28倍还少60千米,这架飞机每小时行多少千米?5.某工地需水泥240吨,用5辆汽车来运,每辆汽车每次运3吨,需运多少次才能运完?6.甲乙两地相距750千米,一辆汽车以每小时50千米的速度行驶,多少小时可以到达乙地?7.甲乙两地相距560千米,一辆汽车从甲地开往乙地,每小时行48千米,另一辆汽车从乙地开往甲地,每小时行32千米.两车从两地相对开出5小时后,两车相距多少千米?8.一段公路原计划20天修完.实际每天比原计划多修45米,提前5天完成任务.原计划每天修路多少米?9.这辆汽车每秒行18米,车的长度是18米,隧道长324米,这辆汽车全部通过隧道要用多长时间10.石家庄到承德的公路长是546千米.红红一家从石家庄开车到承德游览避暑山庄,如果平均每小时行驶78千米,上午8时出发,那么几时可以到达二、面积问题:1.一个平行四边形四条边长度相等都是5厘米高是3厘米求这个平行四边形面积是多少?2. 一个长方形长是18厘米宽是长的一半多2厘米求这个长方形面积和周长分别是多少?3.一个正方形边长9厘米把它分成四个相等大小的小正方形请问小正方形的面积是多少?4.一个长方形是由两个大小相等的正方形拼成的正方形的边长是4厘米求这个长方形的面积是多少?5.一个正方形纸条周长是64厘米把这个正方形对折变成两个大小相同的长方形求这两个大小相同的长方形的面积是多少?三、综合问题:1、商店运来梨子650千克,运来的苹果是梨子的2倍。

小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版1. 简介数学是我们日常生活中不可或缺的一部分。

在小学数学学习中,了解典型应用题和例题对学生的数学素养和问题解决能力的提升至关重要。

本文将为你介绍小学数学中的30种典型应用题和例题,帮助你更好地掌握数学知识。

2. 加减法例题1:小明有10本书,他借给小红3本,借给小芳2本。

请问小明还剩下几本书?解答:小明还剩下10本 - 3本 - 2本 = 5本书。

例题2:一根绳子长5米,小明用了2米,小华用了1米。

还剩下多长?解答:绳子还剩下5米 - 2米 - 1米 = 2米。

3. 乘除法例题1:小明今年考了六次数学考试,每次的成绩分别是85分、92分、78分、89分、90分和87分。

他的平均分是多少?解答:小明的总分是85分 + 92分 + 78分 + 89分 + 90分 + 87分 = 521分,平均分是521分 ÷ 6次 = 86.83分。

例题2:一个班级有40名学生,老师希望将他们分成4个小组,每个小组有多少名学生?解答:每个小组有40名学生 ÷ 4个小组 = 10名学生。

4. 分数例题1:小明吃了一个苹果的四分之三,还剩下四分之一。

苹果一共有多少份?解答:一个苹果的四分之三 + 四分之一 = 一份,即4分之3 + 4分之1 = 4分之4 = 1份。

例题2:小华走了整条路程的三分之二,还剩下400米。

整条路程有多长?解答:整条路程的三分之二 + 400米 = 整条路程,即3分之2 + 400 = 2分之3 = 整条路程。

5. 长方形和正方形例题1:一块长方形的地板长8米,宽4米。

计算地板的面积。

解答:地板的面积是8米 × 4米 = 32平方米。

例题2:一块正方形的地砖边长为6厘米。

计算地砖的周长。

解答:地砖的周长是4条边相加,即6厘米 × 4 = 24厘米。

6. 圆形例题1:一个圆的半径是5厘米,计算圆的周长。

解答:圆的周长是2 × 3.14 × 5厘米 = 31.4厘米。

(典型)小学数学应用题《圆柱与圆锥》试题附答案解析

(典型)小学数学应用题《圆柱与圆锥》试题附答案解析

(典型)小学数学应用题《圆柱与圆锥》试题附答案解析1、有一个圆柱体的零件,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图)如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方米?解:涂漆的面积等于大圆柱表面积与小圆柱侧面积之和6兀×10+兀×(62)2×2+4兀×5=98兀=307.72平方厘米答:一共要涂307.72平方厘米。

2、如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成个圆柱休,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米?(n=3.14)长方形长与圆周长相等,圆柱底周长为:2×兀×10=62.8厘米(10×4+62.8)×(10×2)=2056(平方厘米)答:长方形铁皮的面积是2056平方厘米。

3、把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积碱少12.56平方厘米原来的圆柱体的体积是多少立方厘米?底周长:12.56÷2=6.28厘米半径6.28÷3.14÷2=1厘米圆柱体的体积 3.14×(1×1)×8=25.12(立方厘米)答:原来的圆柱体的体积是25.12立方厘米?4、一个圆柱体底面周长和高相等如果高缩短4厘米,表面积就减少50.24平方厘米求这个圆柱体的表面积是多少?解:底周长50.24÷4=12.56厘米半径12.56÷3.14÷2=2厘米12.56×12.56+3.14×(2×2)×2=182.8736平方厘米答:这个圆柱体的表面积是182.8736平方厘米。

5、一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积2008cm2,则这个圆柱体木棒的侧面积是多少平方厘米(兀取3.14)解:增加2个长方形面,一个面:2008÷2=1004 cm2即d×h=1004 cm2圆柱侧面积:3.14× d×h=3.14×1004=3152.56 cm2答:圆柱体木棒的侧面积是3152.56平方厘米6、已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分咸相等的两半,表面积增加了40平方厘米,求圆柱休的体积.(兀=3)解:增加两个长方形的面半径:40÷2÷10÷2=1厘米3×(1×1)×10=30(立方厘米)答:求圆柱休的体积是30立方厘米。

小学六年级数学解决问题知识点及典型例题

小学六年级数学解决问题知识点及典型例题

小学六年级数学解决问题知识点及例题一、分数乘除法应用题的一般步骤:1、找出题目中的单位“1”。

2、根据题目给出的条件写出数量关系。

单位“1”×对应分率=对应数量;对应数量÷对应分率=单位“1”3、判断单位“1”是否已知。

若单位“1”已知,根据单位“1”×对应分率=对应数量 算出要求的量 若单位“1”未知,根据 对应数量÷对应分率=单位“1” 算出单位“1”的量典型例题:1、 水果超市运来苹果200kg ,运来柑橘的质量是苹果的54。

这家水果超市运来柑橘多少千克?2、 水果超市运来苹果200kg ,运来柑橘的质量比苹果少51。

这家水果超市运来柑橘多少千克?3、 水果超市运来苹果200kg ,运来柑橘的质量比苹果多41。

这家水果超市运来柑橘多少千克?4、冬季长跑锻炼时,李华每天跑步1800m ,刚好是沈明的109。

沈明每天跑步多少米?5、冬季长跑锻炼时,李华每天跑步1800m ,比沈明每天少跑101。

沈明每天跑步多少米?6、冬季长跑锻炼时,沈明每天跑步2000m ,比李华每天多跑91。

李华每天跑步多少米?二、按比分配应用题的一般类型与解题方法:1、已知两个数的和与这两个数之间的比,求这两个数分别是多少?(先根据两个数的比求出一共有几份,然后求出平均每份是多少,再分别乘相应的份数求出这两个数)典型例题:(1)张叔叔花了340元钱买了一双皮鞋和一件衬衫,买皮鞋和衬衫所花的钱的比是9:8。

他买皮鞋和衬衫各花了多少钱?(2)小君平均每天吃的食物总量是1200克,主食和副食的比是2:3。

小君每天吃的主食和副食分别是多少克?2、已知两个数的差和这两个数之间的比,求这两个数分别是多少?(先根据两个数的比求出两个数相差了几份,然后求出平均每份是多少,再分别乘相应的份数求出这两个数)典型例题:(1)学校图书馆的的故事书比科技书多450本。

已知故事书和科技书的比是5:3,学校图书馆有科技书和故事书多少本?(2)果园里梨树与桃树的比是3:5,已知梨树比桃树少204棵。

小学四年级数学必考知识点清单+专项应用题练习

小学四年级数学必考知识点清单+专项应用题练习

必考知识点清单一、升和毫升1 认识升和毫升2 升和毫升的关系二、三位数除以两位数1 商是一位数的几百几十除以整十数的口算2 商是一位数的三位数除以整十数笔算3 商是一位数的三位数除以两位数(不调商)4 商是一位数的三位数除以两位数(调商)5 除数接近几十五的除法6 商是两位数的三位数除以两位数7 商是两位数(末尾有0)的三位数除以两位数8 商不变的规律9 连除9 应用题三、解决问题1 分步计算改写成连除2 分步计算改写成乘除混合3 分步计算改写成乘除混合、带小括号的综合算式4 探索乐园5 参观植物园四、线和角1 认识线段、直线和射线2 角的表示方法和角的度量3 认识周角、平角、直角及各角的关系4 角的画法5 探索乐园五、倍数和因数1 认识自然数、奇数、偶数2 认识倍数3 2的倍数特征4 5的倍数特征5 3的倍数特征6 认识因数、质数、合数(100以内所有质数)7 认识质因数、分解质因数8 全家的休息日六、认识更大的数1 计算器2 亿以内的数的认识3 以“万”为单位表示整万的数4 把精确数改写成以“万”为单位的近似数5 认识1亿并了解十进制计数法6 用数表示事物七、垂线和平行线1 认识垂线2 画垂线,画长方形或正方形3 认识平行线八、平均数和条形统计图1 进一步认识平均数2 认识众数3 条形统计图应用题50道1、工人叔叔3小时做24个零件, 照这样计算,他8小时做多少个零件?2、王大爷带了花1500元钱去买化肥,买了9袋化肥,找回15元。

每袋化肥多少钱?3、张大爷买15只小猪用7455元,他还想再买30只这样的小猪,他还要准备多少钱?4、一双皮鞋105元,一件衣服的价钱是鞋子的2倍。

妈妈买一双鞋子和一件衣服共要多少元?5、育才小学要把180名少先队员平均分成6个分队,每分队分成5组活动,平均每组有多少名少先队员?6、小荣家养了45只鸡,18只鸭。

如果每只鸡一年可以产蛋13千克,每只鸭产蛋12千克,这些鸡、鸭一年可以产多少千克蛋?7、一支铅笔比一块橡皮贵7分,一支园珠笔可买11支铅笔,已知一块橡皮8分,一支园珠笔多少钱?8、张君今年45岁,小刚今年5岁,再过3年,张君的岁数是小刚的多少倍?9、小明有40元钱,比小强多6元,两人共有多少元?小明给小强多少元两人钱数一样多?10、某厂有男工42名,女工人数比男工的3倍少11名,这个工厂共有多少名工人?11、王叔叔在化肥厂开车送化肥。

小学数学重要知识点口诀和典型应用题(可打印)

小学数学重要知识点口诀和典型应用题(可打印)

小学数学重要知识点口诀和典型应用题小学阶段在学习中知识点比较多,学生在学习中经常会出现遗忘的情况,因此老师给大家整理了1-6年级的数学知识点口诀及典型题,希望对孩子们的学习有帮助。

小数除法法则小数除法高位起,看着除数找规律。

除数是整直接除,除到哪位商哪位。

不够商一零占位,商被除数点对齐。

小数除法变整数,被除数点同位移。

右边数位若不够,应该用零来补齐。

分数加减法法则分数加减很简单,统一单位是关键。

同分母分数相加减,分子加减分母不变。

异分母分数相加减,先通分来后计算。

分数乘法法则分数乘法更简单,分子、分母分别算。

分子相乘作分子,分母相乘作分母。

分子、分母不互质,先约分来后计算。

分数除法法则分数除法最简便,转换乘法来计算。

除号变成乘号后,再乘倒数商出来。

质数、合数分清质数与合数,关键就是看因数。

1的因数只一个,不是质数也非合数;如果因数只两个,肯定无疑是质数;3个因数或更多,那就一定是合数。

分解质因数合数分解质因数,最小质数去整除,得出的商是质数,除数乘商来写出;得出的商是合数,照此方法继续除,直到得出质数商,再用连乘表示出。

求最大公因数要求最大公因数,就用公因数去除,直到商为互质数,除数连乘就得出;如果两数相比较,小是大数的因数,不必再用短除式,小数就是公因数。

求最小公倍数要求最小公倍数,公有质因数去除,直到商为互质数,除数乘商就得出;两数若是互质数,乘积即为公倍数;大是小数的倍数,不必去求已清楚。

100以内的质数二三五七一十一,十三十九和十七,二三二九三十一,三七四三和四一,四七五三和五九,六一六七手拉手,七一七三和七九,还有八三和八九,左看右看没对齐,原来还差九十七。

列方程解应用题列方程解应用题,抓住关键去分析。

已知条件换成数,未知条件换字母,找齐相关代数式,连接起来读一读。

百分数和小数互化小数化成百分数,小数点右移要记住,移动两位并做到:在后面添上百分号。

百分数要化小数,小数点左移要记住,移动两位并做到:一定要去掉百分号。

小学数学13种典型应用题解析与掌握的口诀

小学数学13种典型应用题解析与掌握的口诀

一、正方体展开图:正方体有6个面,12条棱,当沿着某棱将正方体剪开,可以得到正方体的展开图形,很显然,正方体的展开图形不是唯一的,但也不是无限的,事实上,正方体的展开图形有且只有11种,11种展开图形又可以分为4种类型:1、141型中间一行4个作侧面,上下两个各作为上下底面,共有6种基本图形。

4、33型中间没有面,两行只能有一个正方形相连,只有1种基本图形。

二、和差问题已知两数的和与差,求这两个数。

【口诀】:和加上差,越加越大;除以2,便是大的;和减去差,越减越小;除以2,便是小的。

例:已知两数和是10,差是2,求这两个数。

按口诀,则大数=(10+2)/2=6,小数=(10-2)/2=4。

三、鸡兔同笼问题【口诀】:假设全是鸡,假设全是兔。

多了几只脚,少了几只足?除以脚的差,便是鸡兔数。

例:鸡免同笼,有头36 ,有脚120,求鸡兔数。

求兔时,假设全是鸡,则免子数=(120-36X2)/(4-2)=24求鸡时,假设全是兔,则鸡数=(4X36-120)/(4-2)=12四、浓度问题(1)加水稀释【口诀】:加水先求糖,糖完求糖水。

糖水减糖水,便是加糖量。

例:有20千克浓度为15%的糖水,加水多少千克后,浓度变为10%?加水先求糖,原来含糖为:20X15%=3(千克)糖完求糖水,含3千克糖在10%浓度下应有多少糖水,3/10%=30(千克)糖水减糖水,后的糖水量减去原来的糖水量,30-20=10(千克)(2)加糖浓化【口诀】:加糖先求水,水完求糖水。

糖水减糖水,求出便解题。

例:有20千克浓度为15%的糖水,加糖多少千克后,浓度变为20%?加糖先求水,原来含水为:20X(1-15%)=17(千克)水完求糖水,含17千克水在20%浓度下应有多少糖水,17/(1-20%)=21.25(千克)糖水减糖水,后的糖水量减去原来的糖水量,21.25-20=1.25(千克)五、路程问题(1)相遇问题【口诀】:相遇那一刻,路程全走过。

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型

完整版)小学数学典型应用题归纳汇总30种题型小学数学典型应用题归纳汇总30种题型1.归一问题归一问题是指在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

解决这类问题需要掌握以下数量关系:总量÷份数=1份数量,1份数量×所占份数=所求几份的数量,另一总量÷(总量÷份数)=所求份数。

例如,如果买5支铅笔需要0.6元钱,那么买同样的铅笔16支需要多少钱呢?我们可以先求出买1支铅笔多少钱,即0.6÷5=0.12(元),再用该单价乘以16支铅笔的数量,即0.12×16=1.92(元),得出需要1.92元。

2.归总问题归总问题是指解题时,常常先找出“总数量”,然后再根据其他条件算出所求的问题。

这里的“总数量”可以是货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

解决这类问题需要掌握以下数量关系:1份数量×份数=总量,总量÷1份数量=份数,总量÷另一份数=另一每份数量。

例如,如果服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套呢?我们可以先求出这批布总共有多少米,即3.2×791=2531.2(米),再用每套衣服用布的米数除以总米数,即2531.2÷2.8=904(套),得出现在可以做904套。

3.和差问题和差问题是指已知两个数量的和与差,求这两个数量各是多少。

解决这类问题需要掌握以下数量关系:大数=(和+差)÷2,小数=(和-差)÷2.例如,如果甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?我们可以先用公式求出甲班人数,即(98+6)÷2=52(人),再用公式求出乙班人数,即(98-6)÷2=46(人),得出甲班有52人,乙班有46人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年龄问题
求有关人的岁数问题,通常与和倍、差倍等问题结合在一

【知识要点】
1、平均数问题
数量关系:总数量÷份数=平均数
关键:找准总数量和份数的数=每份量,再通过每份量求出要求的数量。 关键:确定不变的每份量。 3、归总问题 数量关系:每份量 x 份数=总数量,再通过总量求出要求的数量。 关键:确定不变的总数量。 4、相遇问题 数量关系:速度和 X 相遇时间=路程;路程÷相遇时间=速度和;路程÷速 度和=相遇时间 关键:弄清物体运动的方向和时间等。 5、追及问题 数量关系:路程差÷速度差=追及时间;速度差 x 追及时间=路程差;路程 差:追及时间=速度差 关键:弄清物体运动的方向和时间等。
10、年龄问题 数量关系:参照和倍、差倍等问题的数量关系分析思考。 关键:抓住两人的年龄差始终不变。 【学法指导】 1、注意认识和掌握典型实际问题的特征。典型问题往往有它独特的构题 方式,认识和掌握了不同问题的构题特征,才便于正确地审题和解答。 2、熟练掌握典型实际问题的解题思路。典型实际问题具有固定的解题模 式和较为明显的解题规律,要注意在理解的基础上熟记它们各自的解题方法 逐步达到熟能生巧的程度。 3、注意变式题的解答。我们所讲的典型实际问题的构题特征和数量关系, 实际讲的是它们的基不题,在实际操作中,会有许多的变化,我们要认真审 题,注意它们的变化,并根据变化,灵活地运用不同的方法来解决相关的问 题。
归总问题
题中的总量保持不变,解题时先求总量,再求未知数量
相遇问题
两个物体同时作相向运动,经过一段时间后在途中相遇
追及问题
两个物体做同向运动,后者在一段时间内追及前者
和倍问题
已知两个量的和及两个量的倍数关系,求这两个量
差倍问题
已知两个量的差及两个量的倍数关系,求这两个量
和差问题
已知两个量的和及差,求这两个量
盈亏问题
一定数量的物品分成若干份,在不同分配中,有余(盈)
或不足(亏),已知余或不足的数量,求物品总数或份数
小学数学知识点:典型应用题
小学数学知识点:典型应用问题
【图表梳理】
类型
构题特征
求未知数量
平均数问题 已知几个不相等的同类数量以及份数,求每份数 归一问题 题中每份的量保持不变,解题时先求出不变的单一量,再
6、和倍问题 数量关系:和÷ (倍数+1) =较小数 关键:确定哪个数是 1 倍数,和相当于几个 1 倍数。 7、 差倍问题 数量关系:差÷(倍数-1)=较小数 关键:确定哪个数是 1 倍数,差相当几个 1 倍数。 8、 和差问题 数量关系:(和+差) ÷2=较大数;(和-差)÷2=较小数 关键:找准两个数的和与差。 9. 盈亏问题 数量关系:( 盈数+亏数)÷(两次分得的差)=份数 关键:找准两次分配数的差与盈亏的总数。
相关文档
最新文档