2007——2010全国高考卷新课标海南宁夏卷试题及答案

合集下载

2007年普通高等学校招生考试宁夏海南理

2007年普通高等学校招生考试宁夏海南理

2007年普通高等学校招生全国统一考试理科数学(宁夏、 海南卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--,B.(21)-,C.(10)-,D.(12)-, 【答案】:D【分析】:1322-=a b (12).-,3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )0,4.已知10A.23-D.23110)a +=5S =A.C.6F ,点1(P 3)y 在抛物线上, 且2132x x x =+, 则有( ) A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+ D.2213FP FP FP =·【答案】:C【分析】:由抛物线定义,2132()()(),222p p px x x +=+++即:2132FP FP FP =+.BA7.已知0x>,0y>,x a b y,,,成等差数列,x c d y,,,成等比数列,则2()a bcd+的最小值是()A.0B.1C.2D.4【答案】:D【分析】:,,a b x y cd xy+=+=8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.34000cm3B.38000cm3C.32000cmD.34000cm【答案】:B【分析】:如图,18000202020.33V=⨯⨯⨯=9.若cos2πsin4αα=⎛⎫-⎪⎝⎭,则cos sinαα+的值为()A.B.12-C.12【答案】:C【分析】:22cos2cos)π2sin4αααα==+=-⎛⎫-⎪⎝⎭10.曲线12e xy=在点2(4e),处的切线与坐标轴所围三角形的面积为()A.29e2B.24eC.22eD.2e【答案】:D【分析】:11221(),2x xy e e''⇒==曲线在点2(4e),处的切线斜率为212e,因此切线方程正视图侧视图为221(4),2y e e x -=-则切线与坐标轴交点为2(2,0),(0,),A B e -所以:123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >> D.231s s s >>【答案】:B 【分析】:(78910)58.5,20x +++⨯==甲12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱.这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( )2:222【答案】:B【分析】:如图,设正三棱锥P ABE -的各棱长为a ,则四棱锥P ABCD -的各棱长也为a , 于是1,2h a == 第II 卷本卷包括必考题和选考题两部分,第13题-第21必考题,每个试题考生都必须做答,第22生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2的距离为6,则该双曲线的离心率为 . 【答案】:3【分析】:如图,过双曲线的顶点A 、焦点F 分别向其渐近线作垂线,垂足分别为B 、C ,则:||||63.||||2OF FC c OA AB a =⇒== 14.设函数(1)()()x x a f x x++=为奇函数,则a = .【答案】:-1【分析】:(1)(1)02(1)00, 1.f f a a +-=⇒++=∴=-15.i 是虚数单位,51034ii-+=+ .(用a bi +的形式表示,a b ∈R ,)【答案】:12i + 【分析】:510(510)(34)255012.34(34)(34)25i i i ii i i i -+-+-+===+++-16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答) 【答案】:240【分析】:由题意可知有一个工厂安排2个班,另外三个工厂每厂一个班,共有123453240.C C A ⋅⋅=种安排方法。

2007年高考语文(海南、宁夏卷)

2007年高考语文(海南、宁夏卷)

2007年普通高等学校招生全国统一考试语文(宁夏卷)本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,第Ⅰ卷三、四题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在答题卡的指定位置。

2、答题时使用0.5毫米黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3、请按照题号在答题卡上各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卡面清洁,不折叠,不破损。

5、作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑。

第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,完成1~3题。

现在不断有人提问,为什么在我们这个堪称伟大的时代里却出不了伟大的作家?对此我的想法是,现在是一个无权威的、趣味分散的时代,一个作家很难得到全民集中的认可。

事实上,要成为一位大家公认的伟大作家,需要时间的考验,甚至包括几代人的阅读和筛选。

而且在今天这样一个时代,消费与享受往往消磨作家敏锐的洞察力和浪漫的激情,以至那种具有巨大原创力的作品很难产生。

当然,当代中国缺少伟大的作家,出了这些外在的方面,也有作家自身主体弱化的问题。

比如市场需求之多与作家生活经验不足的矛盾、市场要求产出快与文学创作本身求慢求精的矛盾等等。

而这当中,正面精神价值的匮乏与无力,无疑是当下文学创作中最为重要的缺失。

所谓正面精神价值,指的就是那种引向善、呼唤爱、争取光明、辨明是非,正面造就人的能力。

这种价值在文学作品中的体现,与作家对民族的精神资源的利用密切相关。

我们民族的精神资源很丰富,但是也还需要作必要的整合和转化,才能化为作家内心深处的信仰,运用到创作中去。

还有一些作家表现出“去资源化”的倾向,他们不知如何利用资源,索性不作任何整合与转化,以为只要敢于批判和暴露,就会写出最深刻的作品。

2010年高考新课标全国卷理科数学试题及答案

2010年高考新课标全国卷理科数学试题及答案

2010年高考新课标全国卷理科数学试题及答案2010年高考新课标全国卷理科数学试题及答案( 宁夏、吉林、黑龙江、海南)(新课标)理科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分,其中第II卷第(22)-(24)题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。

2、选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚。

3、请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卷面清洁,不折叠,不破损。

5、做选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的题号涂黑。

参考公式: 样本数据nx x x ,,21的标准差锥体体积公式(n s x x =++- 13V Sh = 其中x为样本平均数其中S 为底面面积,h 为高柱体体积公式球的表面积,体积公式V Sh=24S R π= 343V R π= 其中S为底面面积,h为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{||2,}A x x x R =≤∈},{|4,}B x x Z =≤∈,则A B ⋂=(A)(0,2) (B)[0,2](C){0,2] (D){0,1,2} (2)已知复数23(13)i z i +=-,z 是z 的共轭复数,则z z •=A. 14B.12C.1D.2(3)曲线2xy x =+在点(-1,-1)处的切线方程为 (A )y=2x+1 (B)y=2x-1 C y=-2x-3 D.y=-2x-2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为 (5)已知命题1p :函数22xxy -=-在R 为增函数,P 0Poyx22p :函数22xxy -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为(A )100 (B )200 (C )300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A )54 (B )45 (C )65 (D )56(8)设偶函数()f x 满足3()8(0)f x xx =-≥,则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或(D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan 21tan2αα+=-(A)12-(B) 12(C) 2 (D) -2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2a π (B) 273a π (C) 2113a π (D) 25a π(11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc 的取值范围是(A) (1,10)(B)(5,6)(C)(10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A) 22136x y -= (B) 22145x y -=(C)22163x y -= (D)22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。

2007年高考数学宁夏、海南试题(文科)

2007年高考数学宁夏、海南试题(文科)

2007年普通高等学校招生全国统一考试 文科数学(宁夏、 海南卷)全解全析本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂基他答案标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式s =13V Sh =其中x 为标本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B = ( ) A.{}|2x x >-B.{}1x x >-|C.{}|21x x -<<-D.{}|12x x -<<【答案】:A【分析】:由{}{}|1|22A x x B x x =>-=-<<,,可得A B = {}|2x x >-. 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥B.:p x ⌝∀∈R ,sin 1x ≥C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >3.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是( )【答案】:A【分析】:π()sin 23f ππ⎛⎫=-= ⎪⎝⎭排除B、D,π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭ 排除C。

2007年高考试题——数学理(宁夏卷)(精品解析)

2007年高考试题——数学理(宁夏卷)(精品解析)

2007年普通高等学校招生全国统一考试理科数学(宁夏、 海南卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式s =13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【解析】p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x > 答案:C2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( )A.(21)--,B.(21)-,C.(10)-,D.(12)-,【解析】1322-=a b (12).-,答案:D3.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )【解析】π3()sin 232f ππ⎛⎫=-=- ⎪⎝⎭排除B、D, π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭排除C。

(海南、宁夏.文)

(海南、宁夏.文)

2007年普通高等学校招生全国统一考试(海南、宁夏)文科数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上. 2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂基他答案标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据1x ,2x , ,n x 的标准差锥体体积公式222121[()()()]m s x x x x x x n=-+-++-13V Sh =其中x 为标本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B = ( ) A.{}|2x x >-B.{}1x x >-|C.{}|21x x -<<-D.{}|12x x -<<2.已知命题:p x ∀∈R ,sin 1x ≤,则( )A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤-⎢⎥⎣⎦,的简图是( )4.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12),5.如果执行右面的程序框图,那么输出的S =( )A.2450 B.2500 C.2550 D.26526.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( )A.3B.2C.1D.2-7.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+,则有( ) A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+ D.2213FP FP FP =· y x11-2π- 3π- O 6π πyx11-2π- 3π- O 6π π y x11-2π- 3πO6π- πyxπ 2π- 6π- 1O1-3π A.B.C.D.开始1k = 0S =50?k ≤是2S S k =+1k k =+否输出S 结束8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A.34000cm 3B.38000cm 3C.32000cmD.34000cm 9.若cos 22π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( ) A.72-B.12-C.12D.7210.曲线xy e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e11.已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,2AC r =,则球的体积与三棱锥体积之比是( )A.π B.2π C.3π D.4π12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >>D.213s s s >>甲的成绩 环数 7 8 9 10 频数 5 5 5 5乙的成绩 环数 7 8 9 10 频数 6 4 46丙的成绩 环数 7 8 9 10 频数 4 6 642020正视图20侧视图10 1020俯视图第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .14.设函数()(1)()f x x x a =++为偶函数,则a = .15.i 是虚数单位,238i 2i 3i 8i ++++= .(用i a b +的形式表示,a b ∈R ,) 16.已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = . 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个侧点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .18.(本小题满分12分) 如图,A B C D ,,,为空间四点.在ABC △中,22AB AC BC ===,.等边三角形ADB 以AB 为轴运动.(Ⅰ)当平面ADB ⊥平面ABC 时,求CD ; (Ⅱ)当A D B △转动时,是否总有AB CD ⊥?证明你的结论. 19.(本小题满分12分) 设函数2()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性;(Ⅱ)求()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值和最小值.DBAC20.(本小题满分12分)设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率. 21.(本小题满分12分)在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,. (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA OB + 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.22.请考生在A、B两题中选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.A(本小题满分10分)选修4-1:几何证明选讲 如图,已知AP 是O 的切线,P 为切点,AC 是O 的割线,与O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点. (Ⅰ)证明A P O M ,,,四点共圆;(Ⅱ)求OAM APM ∠+∠的大小.22.B(本小题满分10分)选修4-4:坐标系与参数方程1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程; (Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程.A P OM CB2007年普通高等学校招生全国统一考试文科数学试题参考答案一、选择题 1.A 2.C 3.A 4.D 5.C 6.B7.C 8.B 9.C 10.D 11.D 12.B二、填空题 13.3 14.115.44i -16.12三、解答题17.解:在BCD △中,πCBD αβ∠=--. 由正弦定理得sin sin BC CDBDC CBD=∠∠. 所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·. 在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ=∠=+·.18.解:(Ⅰ)取AB 的中点E ,连结DE CE ,,因为ADB 是等边三角形,所以DE AB ⊥. 当平面ADB ⊥平面ABC 时,因为平面ADB 平面ABC AB =, 所以DE ⊥平面ABC , 可知DE CE ⊥由已知可得31DE EC ==,,在D E C Rt △中,222CD DE EC =+=.(Ⅱ)当ADB △以AB 为轴转动时,总有AB CD ⊥.证明:(ⅰ)当D 在平面ABC 内时,因为AC BC AD BD ==,,所以C D ,都在线段AB 的垂直平分线上,即AB CD ⊥.(ⅱ)当D 不在平面ABC 内时,由(Ⅰ)知A B D E ⊥.又因AC BC =,所以AB CE ⊥. 又DE CE ,为相交直线,所以AB ⊥平面CDE ,由CD ⊂平面CDE ,得AB CD ⊥. 综上所述,总有AB CD ⊥.19.解:()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞. EDBCA(Ⅰ)224622(21)(1)()2232323x x x x f x x x x x ++++'=+==+++. 当312x -<<-时,()0f x '>;当112x -<<-时,()0f x '<;当12x >-时,()0f x '>.从而,()f x 分别在区间312⎛⎫-- ⎪⎝⎭,,12⎛⎫-+ ⎪⎝⎭,∞单调增加,在区间112⎛⎫--⎪⎝⎭,单调减少. (Ⅱ)由(Ⅰ)知()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最小值为11ln 224f ⎛⎫-=+ ⎪⎝⎭.又31397131149ln ln ln 1ln 442162167226f f ⎛⎫⎛⎫⎛⎫--=+--=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0<. 所以()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值为117ln 4162f ⎛⎫=+ ⎪⎝⎭.20.解:设事件A 为“方程2220a ax b ++=有实根”.当0a >,0b >时,方程2220x ax b ++=有实根的充要条件为a b ≥.(Ⅰ)基本事件共12个:(00)(01)(02)(10)(11)(12)(20)(21)(22)(30)(31)(32),,,,,,,,,,,,,,,,,,,,,,,.其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为93()124P A ==. (Ⅱ)试验的全部结束所构成的区域为{}()|0302a b a b ,,≤≤≤≤. 构成事件A 的区域为{}()|0302a b a b a b ,,,≤≤≤≤≥. 所以所求的概率为2132222323⨯-⨯==⨯.21.解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P ,且斜率为k 的直线方程为2y kx =+.代入圆方程得22(2)12320x kx x ++-+=, 整理得22(1)4(3)360k x k x ++-+=. ①直线与圆交于两个不同的点A B ,等价于2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,,由方程①,1224(3)1k x x k-+=-+ ② 又1212()4y y k x x +=++. ③而(02)(60)(62)P Q PQ =-,,,,,. 所以OA OB + 与PQ共线等价于1212()6()x x y y +=+,将②③代入上式,解得34k =-. 由(Ⅰ)知304k ⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k . 22.A(Ⅰ)证明:连结OP OM ,.因为AP 与O 相切于点P ,所以OP AP ⊥. 因为M 是O 的弦BC 的中点,所以OM BC ⊥. 于是180OPA OMA ∠+∠=°. 由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得A P O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°.22.B解:以有点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=. 所以224x y x +=.即2240x y x +-=为1O 的直角坐标方程. 同理2240x y y ++=为2O 的直角坐标方程.APOM CB(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩ 解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即1O ,2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-.。

2007-2010年宁夏高考试题答案

2007-2010年宁夏高考试题答案

2007参考解答及评分标准二、选择题:本题共8小题,每小题6分,共48分。

选对但不全的得3分,有错项或不答得0分。

14. C 根据题意,已知行星绕恒星运动的轨道半径r 和周期T ,则恒星对行星的万有引力提供行星运动的向心力。

由2224T m r r Mm G π=得,2324GTr M π=,因此C 正确。

15. B 行星的运动和地球上物体的运动都属于经典力学范畴,应该遵循相同的规律,A 错。

物体在转弯时的运动是曲线运动,即变速运动,因此有加速度,合外力不能为零,B 正确。

月球绕地球运动时受到地球的引力提供了向心力,而不是同时受这两个力的作用,C 错。

物体在光滑斜面下滑时只受重力和斜面的支持力,“下滑力”只是对重力沿斜面的分力的说法,D 错。

16. C 由图象可知,甲乙两辆汽车在5-15秒内的位移大小分别等于相应时间内的矩形面积和梯形面积,而根据几何关系,这两部分面积相等,故C 正确。

在0-10秒内两车逐渐远离;在10-20秒内两车逐渐靠近;在t =10秒时两车速度相等,则A 、B 、D 错误。

17. BD 由图象可知,电压的最大值为100=m U V ,周期04.0=T s ,所以频率04.011==T f s=25s ;有效值为21002==m U U V=250V ;若将该交流电压加在阻值为R =100Ω的电阻两端,则电阻消耗的功为100)250(22==R U P W=50W ;该交流电的表达式为t t f U u m ⋅⨯⨯=⋅=252sin 1002sin ππV=t ⋅π50sin 100V ,故A 、C 错,B 、D 正确。

18. A 如图,先以两小球整体为研究对象,有方程:ma F F 221=+,即ma Eq Eq 221=+;再以小球1为研究对象,有方程:ma T Eq =-1,联立两方程可解得:E q q T )(2121-=,故A 对。

19.B 当R 2的滑动触点向b 端移动时,电路中的总电阻R ↓,由r R EI +=可知,I ↑,而Ir E U -=,故U ↓;又33IR U =,即3U ↑,U U U =+31,所以21U U =↓,111R U I =,即1I ↓;I I I =+21,故2I ↑,B 对。

2007年普通高等学校招生考试宁夏海南文

2007年普通高等学校招生考试宁夏海南文

2007年普通高等学校招生全国统一考试 文科数学(宁夏、 海南卷)全解全析本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂基他答案标号,非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整、笔迹清楚. 3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损. 5.作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑.参考公式: 样本数据1x ,2x ,,n x 的标准差锥体体积公式(n s x x =++-13V Sh =其中x 为标本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B =( )A.{}|2x x >-B.{}1x x >-|C.{}|21x x -<<-D.{}|12x x -<<【答案】:A【分析】:由{}{}|1|22A x x B x x =>-=-<<,,可得A B ={}|2x x >-.2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥B.:p x ⌝∀∈R ,sin 1x ≥C.:p x ⌝∃∈R ,sin 1x > D.:p x ⌝∀∈R ,sin 1x >【答案】:C【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >3.函数πsin 23y x ⎛⎫=-⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是( )【答案】:A【分析】:π()sin 23f ππ⎛⎫=-= ⎪⎝⎭排除B、D,π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭ 排除C。

宁夏2007-2010新课标高考文综_政治试题(含答案和分析)

宁夏2007-2010新课标高考文综_政治试题(含答案和分析)

2007宁夏文综政治部分12. 假定甲商品和乙商品是替代品,甲商品和丙商品是互补品。

如果市场上甲商品的价格大幅度下降,那么,在其他条件不变时( )①乙商品的需求量减少②乙商品的需求量增加③丙商品的需求量减少④丙商品的需求量增加A.①②B.②③C.③④D.①④〖解析〗在互为替代商品中,一种商品价格下降会导致另一种商品需求量减少,故①正确,排除②;在互为互补商品中,一种商品价格下降,相关商品的需求量会增加,故④正确,排除③。

故应选D。

答案:D。

13.在活期储蓄与国债这两种投资对象之间,某投资者如果选择活期储蓄,那么,他看中的是活期储蓄的( )A.流动性强B.风险小C.收益率高D.信用度高〖解析〗国债与活期储蓄相比较,活期储蓄流动怀强,便于随时取用,故A项符合题意。

答案:A。

14.我国现行税法规定,工资薪金收入的个人收入所得税“起征点”为1600元;全月应纳税所得额不超过500元(含)的部分,税率为5%;超过500元至2000元(含)的部分,税率为10%;超过2000元至5000元(含)的部分,税率为15%。

小明的爸爸月工资为3500元,则每月应纳的个人收入所得税为( )A.165元B.190元C.400元D.525元〖解析〗本题考查超额累进税率的计算方法。

根据题干信息可直接列式计算:首先算出应税所得额为3500-1600=1900(元);然后分段计算即可,500×5%+1400×10%=165(元)。

应选A。

答案:A。

15.在现代市场经济中,政府越来越多地运用税收、利率等经济杠杆调节经济运行。

经济杠杆能够起到调节作用的根本原因在于,它们( )A.是以政府强制为后盾的B.直接关系着市场主体的利益C.能够弥补市场经济的缺陷D.能够熨平经济发展中的波动〖解析〗经济杠杆本质上是通过对市场主体经济利益的调节来引导其行为,故经济杠杆的运用直接关系市场主体利益,故应选B。

A、C、D项不符合题意。

海南(宁夏)高考文科数学试题及答案

海南(宁夏)高考文科数学试题及答案

2010年高考文科数学试题及答案-海南卷(同宁夏卷)数学(文史类)参考公式: 样本数据12,n x x x 的标准差 锥体体积公式s ==13V sh其中x 为样本平均数 其中S 为底面面积,h 为高 柱体体积公式 球的表面积,体积公式V Sh = 2334,4S R V R ππ==其中S 为底面面积,h 为高 其中R 为球的半径第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2,,|4,|A x x x R B x x Z =≤∈=≤∈,则A B = (A )(0,2) (B )[0,2] (C )|0,2| (D )|0,1,2| (2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于(A )865 (B )865- (C )1665 (D )1665-(3)已知复数z =,则i = (A)14 (B )12(C )1 (D )2 (4)曲线2y 21x x =-+在点(1,0)处的切线方程为 (A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+(5)中心在远点,焦点在x 轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为(A ) (B(C (D (6)如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p ),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为(7) 设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为(A )3πa 2 (B )6πa 2 (C )12πa 2 (D ) 24πa 2(8)如果执行右面的框图,输入N=5,则输出的数等于(A )54(B )45(C )65(D )56(9)设偶函数f(x)满足f(x)=2x -4 (x ≥0),则(){}20x f x ->= (A ){}24x x x <->或 (B ){}04 x x x <>或 (C ){}06 x x x <>或 (D ){}22 x x x <->或 (10)若sin a = -45,a 是第一象限的角,则sin()4a π+=(A )- (B (C ) (D (11)已知 ABCD 的三个顶点为A (-1,2),B (3,4),C (4,-2),点(x ,y )在 ABCD 的内部,则z=2x-5y 的取值范围是 (A )(-14,16) (B )(-14,20) (C )(-12,18) (D )(-12,20)(12)已知函数f(x)=lg 1,01016,02x x x x <≤-+>⎧⎨⎩ 若a ,b ,c 均不相等,且f(a)= f(b)= f(c),则abc 的取值范围是 (A )(1,10) (B )(5,6) (C )(10,12) (D )(20,24)第Ⅱ卷本卷包括必考题和选考题两部分。

2010年全国新课标地区高考真题(含答案+解析)语文(宁夏、吉林、黑龙江、海南、陕西)

2010年全国新课标地区高考真题(含答案+解析)语文(宁夏、吉林、黑龙江、海南、陕西)

2010年普通高等学校招生全国统一考试(新课标)语文(宁夏、吉林、黑龙江、海南、陕西)第I卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面文字,完成1~3题。

‚书‛本是指文字符号,现在提到的‚书‛不是从文字符号讲,也不是从文字学‚六书‛来讲,而是从书法艺术讲。

书法对中华民族有很深远的影响,‚书‛与‚金‛、‚石‛与‚画‛并称,在中国文化中占很重要的位臵。

书法是一种艺术,而且是广大人民喜闻乐见的艺术。

中国的汉字刚一出现,写字的人就有‚写得好看‛的要求和欲望。

如甲骨文就是如此,虽然字形繁难复杂,但是不论单个的字还是全篇的字,结构章法都要好看。

可见,自从有写字的行动以来,就伴随着艺术的要求,美观的要求。

不论是秦隶还是汉隶,都是刚从篆书演变过来的,写起来单调而且费事。

所以到了晋朝后,真书(又叫楷书、正书)开始出现并逐渐定型。

真书虽然各家写法不同、风格不同,但字形的结构是一致的。

在历史上篆书、隶书等使用的时间都不如真书时间长久,真书至今仍在运用,就是因为它字形比较固定,笔画转折自然,并且可以连写,多写一笔少写一笔也容易被人发现。

真书写得萦连便是行书,再写得快一点就是草书。

草书另一个来源是从汉朝的章草,就是用真书的笔法写草书,与用汉隶的笔法写章草不同,到东晋以后与真书变来的草书合流。

真书的书写很方便,所以千姿百态的作品不断涌现,艺术风格多样,出现了各种字体,比如颜体、柳体、欧体、褚体等。

在这以前没有人专门写字并靠书法出名的,就连王羲之也不是专门写字的人,古代也没有‚书法家‛这个称呼。

当时许多碑都是刻碑的工匠写的,到了唐朝开始文人写碑成风。

唐太宗爱写字,写了《晋词铭》《温泉铭》两个碑,还把这两个碑的拓本送外国使臣。

当时的文人和名臣如虞世南、欧阳询、褚遂良以及后来的颜真卿、柳公权等都写碑,这样书法的流派也逐渐增多,他们的碑帖一直流传至今。

其实,今天看见的敦煌、吐鲁番等地出土的文书、写经等,其水平真有超过传世碑版的。

2007年高考.海南、宁夏卷.理科数学试题及解答

2007年高考.海南、宁夏卷.理科数学试题及解答

2007年普通高等学校招生全国统一考试理科数学(海南、宁夏卷)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第II 卷第22题为选考题,其他题为必考题.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项: 1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在指定位置上. 2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据1x ,2x ,,n x 的标准差 锥体体积公式(n s x x =++- 13V Sh =其中x 为样本平均数 其中S 为底面面积、h 为高柱体体积公式 球的表面积、体积公式V Sh =24πS R =,34π3V R =其中S 为底面面积,h 为高其中R 为球的半径第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >2.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12)-,3.函数πsin 2y x ⎛⎫=- ⎪在区间ππ2⎡⎤-⎢⎥⎦,的简图是()xA.B.C.D.4.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差d =( ) A.23-B.13-C.13D.235.如果执行右面的程序框图,那么输出的S =( ) A.2450 B.2500 C.2550 D.26526.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上, 且2132x x x =+, 则有( ) A.123FP FP FP +=B.222123FP FP FP +=C.2132FP FP FP =+ D.2213FP FP FP =·7.已知0x >,0y >,x a b y ,,,成等差数列,x c d y ,,,成等比数列,则2()a b cd+的最小值是( ) A.0 B.1 C.2 D.4 8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A.34000cm 3 B.38000cm 3C.32000cm D.34000cm9.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭,则cos sin αα+的值为( )A.B.12-C.1210.曲线12e x y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( ) A.29e 2B.24eC.22eD.2e123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >>D.231s s s >>正视图侧视图俯视图12.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等.设四棱锥、三棱锥、三棱柱的高分别为1h ,2h ,h ,则12::h h h =( ) A.3:1:1B.3:2:2C.3:2:2D.3:2:3第II 卷本卷包括必考题和选考题两部分,第13题-第21题为必考题,每个试题考生都必须做答,第22题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 .14.设函数(1)()()x x a f x x++=为奇函数,则a = .15.i 是虚数单位,51034ii-+=+ .(用a bi +的形式表示,a b ∈R ,)16.某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有 种.(用数字作答)三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .18.(本小题满分12分)如图,在三棱锥S ABC -中,侧面SAB 与侧面SAC 均为等边三角形,90BAC ∠=°,O 为BC 中点.(Ⅰ)证明:SO ⊥平面ABC ;(Ⅱ)求二面角A SC B --的余弦值.O S B C19.(本小题满分12分)在平面直角坐标系xOy中,经过点(0且斜率为k 的直线l 与椭圆2212x y +=有两个不同的交点P 和Q . (I )求k 的取值范围;(II )设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A B ,,是否存在常数k ,使得向量OP OQ +与AB 共线?如果存在,求k 值;如果不存在,请说明理由.20.(本小题满分12分)如图,面积为S 的正方形ABCD 中有一个不规则的图形M ,可按下面方法估计M 的面积:在正方形ABCD 中随机投掷n 个点,若n 个点中有m 个点落入M 中,则M 的面积的估计值为mS n,假设正方形ABCD 的边长为2,M 的面积为1,并向正方形ABCD 中随机投掷10000个点,以X 表示落入M 中的点的数目.(I )求X 的均值EX ;(II )求用以上方法估计M 的面积时,M 的面积的估计值与实际值之差在区间(0.03)-0.03,内的概率. 附表:1000010000()0.250.75ktt t t P k C-==⨯⨯∑21.(本小题满分12分) 设函数2()ln()f x x a x =++(I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于eln2. 22.请考生在A B C ,,三题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.A(本小题满分10分)选修4-1:几何证明选讲 如图,已知AP 是O 的切线,P 为切点,AC 是O 的割线,与O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明A P O M ,,,四点共圆; (Ⅱ)求OAM APM ∠+∠的大小.22.B(本小题满分10分)选修4-4:坐标系与参数方程1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,. (Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程;(Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程.D CA22.C(本小题满分10分)选修45-;不等式选讲 设函数()214f x x x =+--. (I )解不等式()2f x >; (II )求函数()y f x =的最小值.2007年普通高等学校招生全国统一考试理科数学试题参考答案(宁夏)一、选择题 1.C 2.D 3.A 4.D 5.C 6.C7.D 8.B 9.C 10.D 11.B 12.B二、填空题 13.3 14.1- 15.12i + 16.240 三、解答题17.解:在BCD △中,πCBD αβ∠=--.由正弦定理得sin sin BC CDBDC CBD =∠∠. 所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·.在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ=∠=+·.18.证明: (Ⅰ)由题设AB AC SB SC ====SA ,连结OA ,ABC△为等腰直角三角形,所以2OA OB OC SA ===,且AO BC ⊥,又SBC △为等腰三角形,故SO BC ⊥,且2SO SA =,从而222OA SO SA +-.所以SOA △为直角三角形,SO AO ⊥. 又AO BO O =. 所以SO ⊥平面ABC .(Ⅱ)解法一:取SC 中点M ,连结AM OM ,,由(Ⅰ)知SO OC SA AC ==,,得OM SC AM SC ⊥⊥,.OMA ∠∴为二面角A SC B --的平面角.由AO BC AO SOSO BC O ⊥⊥=,,得AO ⊥平面SBC . 所以AO OM ⊥,又AM =,故sin 3AO AMO AM ∠===. 所以二面角A SC B --OSBCM解法二:以O 为坐标原点,射线OB OA ,分别为x 轴、y 轴的正半轴,建立如图的空间直角坐标系O xyz -. 设(100)B ,,,则(100)(010)(001)C A S -,,,,,,,,.SC 的中点11022M ⎛⎫- ⎪⎝⎭,,,111101(101)2222MO MA SC ⎛⎫⎛⎫=-=-=-- ⎪ ⎪⎝⎭⎝⎭,,,,,,,,. 00MO SC MA SC ==,∴··.故,MO SC MA SC MO MA ⊥⊥>,,<等于二面角A SCB --的平面角.3cos MO MA MO MA MO MA<>==,··所以二面角A SC B --19.解:(Ⅰ)由已知条件,直线l的方程为y kx =代入椭圆方程得22(12x kx +=. 整理得221102k x ⎛⎫+++= ⎪⎝⎭①直线l 与椭圆有两个不同的交点P 和Q 等价于2221844202k k k ⎛⎫∆=-+=->⎪⎝⎭,解得2k <-或2k >.即k 的取值范围为222⎛⎫⎛⎫--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,,∞∞. (Ⅱ)设1122()()P x y Q x y ,,,,则1212()OP OQ x x y y +=++,,由方程①,12212x x k+=-+. ② 又1212()22y y k x x +=++. ③而(20)(01)(A B AB =-,,,,. 所以OP OQ +与AB 共线等价于1212)x x y y +=+,将②③代入上式,解得2k =. 由(Ⅰ)知2k <-或2k >,故没有符合题意的常数k .20.解:每个点落入M 中的概率均为14p =. 依题意知1~100004X B ⎛⎫⎪⎝⎭,. (Ⅰ)11000025004EX =⨯=.(Ⅱ)依题意所求概率为0.03410.0310000X P ⎛⎫-<⨯-< ⎪⎝⎭,0.03410.03(24252575)10000X P P X ⎛⎫-<⨯-<=<< ⎪⎝⎭2574100001000024260.250.75tt t t C-==⨯⨯∑ 25742425100001000011000010000242600.250.750.250.75ttttt t t CC --===⨯⨯-⨯⨯∑∑ 0.95700.04230.9147=-=.21.解:(Ⅰ)1()2f x x x a'=++,依题意有(1)0f '-=,故32a =.从而2231(21)(1)()3322x x x x f x x x ++++'==++. ()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞,当312x -<<-时,()0f x '>; 当112x -<<-时,()0f x '<;当12x >-时,()0f x '>.从而,()f x 分别在区间31122⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭,,,∞单调增加,在区间112⎛⎫-- ⎪⎝⎭,单调减少.(Ⅱ)()f x 的定义域为()a -+,∞,2221()x ax f x x a++'=+. 方程22210x ax ++=的判别式248a ∆=-.(ⅰ)若0∆<,即a <<,在()f x 的定义域内()0f x '>,故()f x 的极值.(ⅱ)若0∆=,则aa =若a =()x ∈+∞,2()f x '=当x =时,()0f x '=,当222x ⎛⎛⎫∈--+ ⎪ ⎪⎝⎭⎝⎭,∞时,()0f x '>,所以()f x 无极值.若a=)x ∈+∞,2()0f x '=>,()f x 也无极值.(ⅲ)若0∆>,即a>a <22210xax ++=有两个不同的实根1x=,2x =.当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点,故()f x 无极值.当a >1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点,由根值判别方法知()f x 在12x x x x ==,取得极值.综上,()f x 存在极值时,a的取值范围为)+∞. ()f x 的极值之和为2221211221()()ln()ln()ln 11ln 2ln 22ef x f x x a x x a x a +=+++++=+->-=.22.A(Ⅰ)证明:连结OP OM ,.因为AP 与O 相切于点P ,所以OP AP ⊥.因为M 是O 的弦BC 的中点,所以OM BC ⊥. 于是180OPA OMA ∠+∠=°.由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆.(Ⅱ)解:由(Ⅰ)得A P O M ,,,四点共圆,所以OAM OPM ∠=∠.由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°. 22.B解:以极点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=. 所以224x y x +=. 即2240x y x +-=为1O 的直角坐标方程. 同理2240x y y ++=为2O 的直角坐标方程.(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩,解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即1O ,2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-.22.C解:(Ⅰ)令214y x x =+--,则1521334254x x y x x x x ⎧---⎪⎪⎪=--<<⎨⎪⎪+⎪⎩, ,, ,, .≤≥...............3分 作出函数214y x x =+--的图象,它与直线2y =的交点为(72)-,和23⎪⎝⎭,. 所以2142x x +-->的解集为5(7)3x x ⎛⎫--+ ⎪⎝⎭,,. (Ⅱ)由函数214y x x =+--的图像可知,当12x =-时,214y x x =+--取得最小A值92 .。

2007年高考语文试题及参考答案(宁夏卷)

2007年高考语文试题及参考答案(宁夏卷)

绝密★启用前2007年高考语文试题及参考答案(宁夏卷)语文(宁夏卷)本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分。

第Ⅰ卷第三、四题为选考题,其他题为必考题。

考生作答时,将答案答在答题卡上,在本试卷上答题无效。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1、答题前,考生务必将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的准考证号、姓名,并将条形码粘贴在答题卡的指定位置。

2、答题时使用0.5毫米黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。

3、请按照题号在答题卡上各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。

4、保持卡面清洁,不折叠,不破损。

5、作选考题时,考生按照题目要求作答,并用2B铅笔在答题卡上把所选题目对应的标号涂黑。

第Ⅰ卷阅读题甲必考题一、现代文阅读(9分,每小题3分)阅读下面的文字,文成1 - 3题。

现在不断有人提问,为什么我们这个堪称伟大的时代却出不了伟大的作家?对此我的想法是,现在是一个无权威的、趣味分散的时代,一个作家很难得到全民集中的认可。

事实上,要成为一位大家公认的伟大作家,需要时间的考验,甚至包括几代人的阅读和筛选。

而且在今天这样一个时代,消费与享受往往消磨作家敏锐的洞察力和浪漫的激情,以致那种具有巨大原创力的作品很难产生。

当然,当代中国缺少伟大的作家,除了这些外在的方面,也有作家自身主体弱化的问题。

比如市场需求之多与作家生活体验不足的矛盾,市场要求产出快与创作本身求慢求精的矛盾等等。

而这当中,正面精神价值的匮乏或无力,无疑是当下文学创作中最为重要的缺失。

所谓正面精神价值,指的就是那种引导向善、呼唤爱、争取光明、辨明是非、正面造就人的能力。

这种价值在文学作品中的体现,与作家对民族的精神资源的利用密切相关。

我们民族的精神资源很丰富,但是也还需要作必要的整合和转化,才能化为作家内心深处的信仰,运用到创作中去。

还有一些作家表现出“去资源化”的倾向,他们不知如何利用资源,索性不作任何整合与转化,以为只要敢于批判和暴露,就会写出最深刻的作品,但如果都是暴力、血腥,就让人看不到一点希望,而真正深刻的作品不仅要能揭露和批判,还要有正面塑造人的灵魂的能力。

07年高考数学宁夏、海南试题(文科)

07年高考数学宁夏、海南试题(文科)

2007年普通高等学校招生全国统一考试 文科数学(宁夏、 海南卷)全解全析第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{}{}|1|22A x x B x x =>-=-<<,,则A B = ( ) A.{}|2x x >-B.{}1x x >-|C.{}|21x x -<<-D.{}|12x x -<<【答案】:A 【分析】:由{}{}|1|22A x x B x x =>-=-<<,,可得A B = {}|2x x >-. 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥B.:p x ⌝∀∈R ,sin 1x ≥C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >【答案】:C 【分析】:p ⌝是对p 的否定,故有:,x ∃∈R sin 1.x >3.函数πsin 23y x ⎛⎫=- ⎪⎝⎭在区间ππ2⎡⎤⎢⎥⎣⎦,的简图是( )【答案】:A 【分析】:π()sin 23f ππ⎛⎫=-= ⎪⎝⎭排除B、D,π()sin 20,663f ππ⎛⎫=⨯-= ⎪⎝⎭ 排除C。

也可由五点法作图验证。

xA.B.C.D.BA4.已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( ) A.(21)--, B.(21)-,C.(10)-,D.(12)-, 【答案】:D 【分析】:1322-=a b (12).-, 5.如果执行右面的程序框图,那么输出的S =( )A.2450 B.2500C.2550D.2652【答案】:C【分析】:由程序知,15021222502502550.2S +=⨯+⨯++⨯=⨯⨯= 6.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( ) A.3B.2C.1D.2-【答案】:B【分析】:曲线223y x x =-+的顶点是(12),,则:1, 2.b c ==由a b c d ,,,成等比数列知,12 2.ad bc ==⨯=7.已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+,则有( )A.123FP FP FP +=B.222123FP FP FP += C.2132FP FP FP =+D.2213FP FP FP =· 【答案】:C 【分析】:由抛物线定义,2132()()(),222p p px x x +=+++即:2132FP FP FP =+. 8.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( ) A.34000cm 3B.38000cm 3C.32000cm D.34000cm【答案】:B 【分析】:如图,180********.33V =⨯⨯⨯=正视图 侧视图俯视图ASCB9.若cos 2π2sin 4αα=-⎛⎫- ⎪⎝⎭cos sin αα+的值为() A.B.12-C.12【答案】:C【分析】:22cos 2cos )π2sin 4αααα==+=-⎛⎫- ⎪⎝⎭1cos sin .2αα⇒+=10.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( )A.294eB.22eC.2eD.22e【答案】:D 【分析】:(),x x y e e ''⇒==曲线在点2(2)e ,处的切线斜率为2e ,因此切线方程为22(2),y e e x -=-则切线与坐标轴交点为2(1,0),(0,),A B e -所以:2211.22AOBe S e ∆=⨯⨯= 11.已知三棱锥S ABC -的各顶点都在一个半径为r 的球面上,球心O 在AB 上,SO ⊥底面ABC ,AC =,则球的体积与三棱锥体积之比是( )A.π B.2π C.3π D.4π【答案】:D 【分析】:如图,2,90,,AB r ACB BC ⇒=∠==31111,3323ABC V SO S r r ∆∴=⨯⨯=⋅⋅=三棱锥333441,::4.333V r V V r r πππ=∴==球球三棱锥12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表123s s s ,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( )A.312s s s >>B.213s s s >> C.123s s s >>D.213s s s >>甲的成绩 环数 7 8 9 10 频数 5 5 5 5 乙的成绩 环数 7 8 9 10 频数 6 4 4 6丙的成绩 环数 7 8 9 10频数 4 6 6 4yx【答案】:B 【分析】:(78910)58.5,20x +++⨯== 甲2222215[(78.5)(88.5)(98.5)(108.5)]1.25,20s ⨯-+-+-+-== (710)6(89)48.5,20x +⨯++⨯==乙 2222226[(78.5)(108.5)]4[(88.5)(98.5)]1.45,20s ⨯-+-+⨯-+-== (710)4(89)68.5,20x +⨯++⨯==丙2222234[(78.5)(108.5)]6[(88.5)(98.5)]1.05,20s ⨯-+-+⨯-+-== 22213213.s s s s s s >>>>2由得第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知双曲线的顶点到渐近线的距离为2,焦点到渐近线的距离为6,则该双曲线的离心率为 . 【答案】:3【分析】:如图,过双曲线的顶点A 、焦点F 分别向其渐近线作垂线,垂足分别为B 、C ,则:||||63.||||2OF FC c OA AB a =⇒== 14.设函数()(1)()f x x x a =++为偶函数,则a = .【答案】:-1 【分析】:(1)(1)2(1)0, 1.f f a a =-⇒+=∴=-15.i 是虚数单位,238i 2i 3i 8i ++++= .(用i a b +的形式表示,a b ∈R ,)【答案】:44i - 【分析】:238i 2i 3i 8i i -2-3i +4+5i -6+7i +8=4-4i.++++=16.已知{}n a 是等差数列,466a a +=,其前5项和510S =,则其公差d = .【答案】:12 【分析】:46563,a a a +=⇒=1515135510 1.22a a a S a ++=⨯=⨯=⇒= 511.512a a d -∴==-三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D .现测得BCD BDC CD s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解:在BCD △中,πCBD αβ∠=--.由正弦定理得sin sin BC CDBDC CBD=∠∠.所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·.在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ=∠=+·.18.(本小题满分12分)如图,AB C D ,,,为空间四点.在ABC △中,2AB AC BC ===, 等边三角形ADB 以AB 为轴运动.(Ⅰ)当平面ADB ⊥平面ABC 时,求CD ; (Ⅱ)当ADB △转动时,是否总有AB CD ⊥?证明你的结论.解:(Ⅰ)取AB 的中点E ,连结DE CE ,, 因为ADB 是等边三角形,所以DE AB ⊥. 当平面ADB ⊥平面ABC 时,因为平面ADB 平面ABC AB =, 所以DE ⊥平面ABC , 可知DE CE ⊥ 由已知可得1DE EC ==,在DEC Rt △中,2CD =.(Ⅱ)当ADB △以AB 为轴转动时,总有AB CD ⊥. 证明:(ⅰ)当D 在平面ABC 内时,因为AC BC AD BD ==,,所以C D ,都在线段AB 的垂直平分线上,即AB CD ⊥.(ⅱ)当D 不在平面ABC 内时,由(Ⅰ)知AB DE ⊥.又因AC BC =,所以AB CE ⊥.EDBA又DE CE ,为相交直线,所以AB ⊥平面CDE ,由CD ⊂平面CDE ,得AB CD ⊥. 综上所述,总有AB CD ⊥.19.(本小题满分12分)设函数2()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性;(Ⅱ)求()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值和最小值.解:()f x 的定义域为32⎛⎫-+ ⎪⎝⎭,∞.(Ⅰ)224622(21)(1)()2232323x x x x f x x x x x ++++'=+==+++. 当312x -<<-时,()0f x '>;当112x -<<-时,()0f x '<;当12x >-时,()0f x '>. 从而,()f x 分别在区间312⎛⎫-- ⎪⎝⎭,,12⎛⎫-+ ⎪⎝⎭,∞单调增加,在区间112⎛⎫--⎪⎝⎭,单调减少. (Ⅱ)由(Ⅰ)知()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最小值为11ln 224f ⎛⎫-=+ ⎪⎝⎭.又31397131149lnln ln 1ln 442162167226f f ⎛⎫⎛⎫⎛⎫--=+--=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0<. 所以()f x 在区间3144⎡⎤-⎢⎥⎣⎦,的最大值为117ln 4162f ⎛⎫=+ ⎪⎝⎭.20.(本小题满分12分)设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数, 求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数, 求上述方程有实根的概率.解:设事件A 为“方程2220a ax b ++=有实根”.当0a >,0b >时,方程2220x ax b ++=有实根的充要条件为a b ≥.(Ⅰ)基本事件共12个:(00)(01)(02)(10)(11)(12)(20)(21)(22)(30)(31)(32),,,,,,,,,,,,,,,,,,,,,,,.其中第一个数表示a 的取值,第二个数表示b 的取值. 事件A 中包含9个基本事件,事件A 发生的概率为93()124P A ==.(Ⅱ)试验的全部结束所构成的区域为{}()|0302a b a b ,,≤≤≤≤. 构成事件A 的区域为{}()|0302a b a b a b ,,,≤≤≤≤≥. 所以所求的概率为2132222323⨯-⨯==⨯.21.(本小题满分12分)在平面直角坐标系xOy 中,已知圆2212320x y x +-+=的圆心为Q ,过点(02)P , 且斜率为k 的直线与圆Q 相交于不同的两点A B ,. (Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量OA OB + 与PQ共线?如果存在,求k 值;如果不存在,请说明理由.解:(Ⅰ)圆的方程可写成22(6)4x y -+=,所以圆心为(60)Q ,,过(02)P , 且斜率为k 的直线方程为2y kx =+. 代入圆方程得22(2)12320x kx x ++-+=, 整理得22(1)4(3)360k x k x ++-+=. ① 直线与圆交于两个不同的点A B ,等价于2222[4(3)]436(1)4(86)0k k k k ∆=--⨯+=-->,解得304k -<<,即k 的取值范围为304⎛⎫- ⎪⎝⎭,. (Ⅱ)设1122()()A x y B x y ,,,,则1212()OA OB x x y y +=++,,由方程①,1224(3)1k x x k-+=-+ ② 又1212()4y y k x x +=++. ③而(02)(60)(62)P Q PQ =-,,,,,.所以OA OB + 与PQ共线等价于1212()6()x x y y +=+,将②③代入上式,解得34k =-. 由(Ⅰ)知304k ⎛⎫∈ ⎪⎝⎭,,故没有符合题意的常数k .22.请考生在A、B两题中任选一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 22.A(本小题满分10分)选修4-1:几何证明选讲如图,已知AP 是O 的切线,P 为切点,AC 是O 的割线,与O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明AP O M ,,,四点共圆; (Ⅱ)求OAM APM ∠+∠的大小.(Ⅰ)证明:连结OP OM ,.因为AP 与O 相切于点P ,所以OP AP ⊥. 因为M 是O 的弦BC 的中点,所以OM BC ⊥.于是180OPA OMA ∠+∠=°.由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以AP O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得AP O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°.22.B(本小题满分10分)选修4-4:坐标系与参数方程1O 和2O 的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把1O 和2O 的极坐标方程化为直角坐标方程; (Ⅱ)求经过1O ,2O 交点的直线的直角坐标方程. 解:以有点为原点,极轴为x 轴正半轴,建立平面直角坐标系,两坐标系中取相同的长度单位.(Ⅰ)cos x ρθ=,sin y ρθ=,由4cos ρθ=得24cos ρρθ=.所以224x y x +=.即2240x y x +-=为1O 的直角坐标方程. 同理2240x y y ++=为2O 的直角坐标方程.(Ⅱ)由22224040x y x x y y ⎧+-=⎪⎨++=⎪⎩解得1100x y =⎧⎨=⎩,,2222x y =⎧⎨=-⎩. 即1O ,2O 交于点(00),和(22)-,.过交点的直线的直角坐标方程为y x =-. A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年普通高等学校招生全国统一考试(海南、宁夏卷)
语文试卷
本试卷分第Ⅰ卷(阅读题)和第Ⅱ卷(表达题)两部分,第Ⅰ卷三、四题为选考题,其他题为必考题。

第Ⅰ卷阅读题
甲必考题
一、现代文阅读(9分,每小题3分)
阅读下面的文字,完成1~3题。

现在不断有人提问,为什么在我们这个堪称伟大的时代里却出不了伟大的作家?对此我的想法是,现在是一个无权威的、趣味分散的时代,一个作家很难得到全民集中的认可。

事实上,要成为一位大家公认的伟大作家,需要时间的考验,甚至包括几代人的阅读和筛选。

而且在今天这样一个时代,消费与享受往往消磨作家敏锐的洞察力和浪漫的激情,以至那种具有巨大原创力的作品很难产生。

当然,当代中国缺少伟大的作家,除了这些外在的方面,也有作家自身主体弱化的问题。

比如市场需求之多与作家生活经验不足的矛盾、市场要求产出快与文学创作本身求慢求精的矛盾等等。

而这当中,正面精神价值的匮乏与无力,无疑是当下文学创作中最为重要的缺失。

所谓正面精神价值,指的就是那种引向善、呼唤爱、争取光明、辨明是非,正面造就人的能力。

这种价值在文学作品中的体现,与作家对民族的精神资源的利用密切相关。

我们民族的精神资源很丰富,但是也还需要作必要的整合和转化,才能化为作家内心深处的信仰,运用到创作中去。

还有一些作家表现出“去资源化”的倾向,他们不知如何利用资源,索性不作任何整合与转化,以为只要敢于批判和暴露,就会写出最深刻的作品。

但如果都是暴力、血腥,就让人看不到一点希望,而真正深刻的作品不仅要能揭露和批判,还要有正面塑造人的灵魂的能力。

还有另外一种主体精神弱化的现象,很多作品没完没了地写油盐酱醋和一地鸡毛,缺少一种人文关怀。

作家的责任是把叙事从趣味推向存在,真正找到生命的价值所在。

当他们丧失了对生活的敏感和疼痛感,把创作变成了制作,批量化地生产的时候,文学就不会有什么真正的生命了。

老舍先生曾将长篇小说《大明湖》浓缩成《月牙儿》,篇幅几近短篇,却也创造了了中国现代文学中公认的经典。

他幽默地说:“我在经济上吃了亏,在艺术上占了便宜。

”如果今天的作家都肯下这种苦功,那么消费的时代再汹汹然,我们仍然可以对震撼人的好作品的出现满怀期望。

1、从原文看,下列不属于“当代中国缺少伟大的作家”外在原因的一项是(D )
A.现在是一个缺乏权威的时代,也是一个受众趣味分散的时代。

B.要成为一个伟大的作家,需要相当长的时间才能得到普遍的公认。

C.在今天,消费与享受往往会消磨作家敏锐的洞察力和浪漫的激情。

D.作家对生活的体验还不够,同时文学创作本身的规律是求慢求精。

1、 D
解析:根据原文第一段“当然,当代中国缺少伟大的作家,除了这些外在的方面,也有作家自身主体弱化的问题。

比如市场需求之多与作家生活经验不足的矛盾、市场要求产出快与文学创作本身求慢求精的矛盾等等”这句话可知,D 项应属于“当代中国缺少伟大的作家”内在原因的一项。

2、从原文看,下列理解和分析,正确的一项是(C )
A.我们的民族精神资源很丰富,现在面临的问题是如何保持原貌并移植到创作中。

1。

相关文档
最新文档