第4章_定量数据描述性统计分析.
描述性统计分析方法
定义 通过对现象进行调查研究,将大量数据加
以整理,简化,制成图标,并就这些数据的 分布特征进行计算,如集中趋势、离中趋势 等。
主要内容 (1)整理。主要是做统计分组及频数统计。 (2)计算分布特征指标。如平均数、众数、
中位数、标准差,等。
(3)做图表。如条形图、饼图、直方图等。
第二节 统计整理
一般的图形:箱式图、茎叶图 考察数据是否为正态分布 (1)正态QQ概率图、去势QQ正态概率图。 (2)正态性检验 分组情况下对不同组别方差齐性进行检验
第四节 统计图制作
略
百分位数指标 四分位数、各个百分位数等。
分布指标 偏度系数、峰度系数。
其它 M统计量、极端值等。
二、数据类型及SPSS一般实现操作
基于未分组的原始数据资料 基于某种标志的分组数据资料
三、EXPLORE模块
Explore过程(探索性分析)主要用于对 资料的性质、分布特点等完全不清楚的情况 下。在常用描述性统计指标的基础上,又增 加了有关数据详细分布特征的文字及图形 等。
对考试成绩进行统计分组组距式分组对考试成绩进行可视离散化即将原始数据转化为统计组别的离散数据如123对分组后的离散数据进行频数分析
描述性统计分析方法
第一节 基本问题
意义 一般的数据资料都来源于样本的调查。只
有通过对样本的研究,才能做好对实际问题 的可能的推断。因此,描述性分析是统计数 据分析的第一步。
(三)SPSS相关操作
定义多选题变量集 (分析——多重响应——定义变量集) 频数表 (分析——多重响应——频率) 注意:缺失值的处理问题。 交叉分析
第三节 统计指标计算
一、指标类型 集中趋势指标
《医学统计学》第6版单项选择题
《医学统计学》单项选择题摘自:李康,贺佳主编.医学统计学.第6版.北京:人民卫生出版社,2013第一章绪论1. 医学统计学研究的对象是()A. 医学中的小概率事件B. 各种类型的数据C. 动物和人的本质D. 有变异的医学事物E.疾病的预防与治疗2. 用样本推论总体,具有代表性的样本通常指的是()A.总体中最容易获得的部分个体B.在总体中随意抽取任意个体C.挑选总体中的有代表性的部分个体D.用方法抽取的部分个体E.依照随机原则抽取总体中的部分个体3. 下列观测结果属于有序数据的是()A.收缩压测量值B.脉搏数C.住院天数D.病情程度E.四种血型4. 随机误差指的是()A. 由某些固定因素引起的误差B. 由不可预知的偶然因素引起的误差C. 选择样本不当引起的误差D. 选择总体不当引起的误差E. 由操作失误引起的误差5. 系统误差指的是()A. 由某些固定因素引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 样本统计量与总体参数间的误差E. 由不可预知的偶然因素引起的误差6. 抽样误差指的是()A. 由某些固定因素引起的误差B. 由操作失误引起的误差C. 选择样本不当引起的误差D. 样本统计量与总体参数间的误差E. 由不可预知的偶然因素引起的误差7. 收集资料不可避免的误差是()A. 随机误差B. 系统误差C. 过失误差D. 记录误差E.仪器故障误差8. 统计学中所谓的总体通常指的是()A. 自然界中的所有研究对象B. 概括性的研究结果C. 同质观察单位的全体D. 所有的观察数据E.具有代表性意义的数据9. 医学统计学中所谓的样本通常指的是A. 可测量的生物样品B. 统计量C. 某一变量的测量值D. 数据中有代表性的一部分E.总体中有代表性的部分观察单位10. 医学研究中抽样误差的主要来源是()A. 测量仪器不够准确B. 检测出现错误C. 统计设计不够合理D. 生物个体的变异E.样本量不够答案:1.D 2.E 3.D 4.B 5.A 6.D 7.A 8.C 9.E 10.D第二章定量数据的统计描述1. 某医学资料数据大的一端没有确定数值,描述其集中趋势适用的统计指标是()A. 中位数B. 几何均数C. 均数D. P95百分位数E. 频数分布2. 算术均数与中位数相比,其特点是()A.不易受极端值的影响B.能充分利用数据的信息C.抽样误差较大D.更适用于偏态分布资料E.更适用于分布不明确资料3. 将一组计量资料整理成频数表的主要目的是A.化为计数资料 B. 便于计算C. 提供原始数据D. 为了能够更精确地检验E. 描述数据的分布特征4. 6人接种流感疫苗一个月后测定抗体滴度为1:20、1:40、1:80、1:80、1:160、1:320,求平均滴度应选用的指标是A. 均数B. 几何均数C. 中位数D. 百分位数E. 倒数的均数5. 变异系数主要用于()A. 比较不同计量指标的变异程度B. 衡量正态分布的变异程度C. 衡量测量的准确度D. 衡量偏态分布的变异程度E. 衡量样本抽样误差的大小6. 对于正态或近似正态分布的资料,描述其变异程度应选用的指标是()A. 变异系数B. 离均差平方和C. 极差D. 四分位数间距E. 标准差7.已知动脉硬化患者载脂蛋白B的含量(mg/dl)呈明显偏态分布,描述其个体差异的统计指标应使用()A.全距B.标准差C.变异系数D.方差E.四分位数间距8. 一组原始数据呈正偏态分布,其数据的特点是A. 数值离散度较小B. 数值离散度较大C. 数值分布偏向较大一侧D. 数值分布偏向较小一侧E. 数值分布不均匀9. 对于正偏态分布总体,其均数与中位数的关系是()A. 均数与中位数相同B. 均数大于中位数C. 均数小于中位数D. 两者有一定的数量关系E. 两者数量关系不定10. 在衡量数据的变异度时,标准差与方差相比,其主要特点是()A. 标准差小于方差B. 标准差大于方差C. 标准差更容易计算D. 标准差更为准确E. 标准差的计量单位与原始数据相同答案 1. A 2. B 3. E 4. B 5. A 6. E 7. E 8. D 9. B 10. E第三章正态分布与医学参考值范围1. 正态曲线下,横轴上从均数到+∞的面积为()A.50% B.95% C. 97.5% D.99% E.不能确定(与标准差的大小有关)2. 标准正态分布的形态参数和位置参数分别为()A.0,1 B. 1,0 C. µ,σ D. σ,µ E. S,X3. 正态分布的均数、中位数和几何均数之间的关系为()A. 均数与几何均数相等B. 均数与中位数相等C. 中位数与几何均数相等D. 均数、中位数、几何均数均不相等E. 均数、中位数、几何均数均相等4.正常成年男子的红细胞计数近似服从正态分布,已知X =4.78×1012/L ,S=0.38×1012/L ,z=(4.00-4.78)/0.38=-2.05,1-Φ (z)= 1-Φ (-2.05)=0.9798,则理论上红细胞计数为( )A .高于4.78×1012/L 的成年男子占97.98%B .低于4.78×1012/L 的成年男子占97.98%C .高于4.00×1012/L 的成年男子占97.98%D .低于4.00×1012/L 的成年男子占97.98%E .在4.00×1012/L 至4.78×1012/L 的成年男子占97.98%5. 某项指标95%医学参考值范围表示的是( )A. 在此范围 “异常”的概率大于或等于95%B. 在此范围 “正常”的概率大于或等于95%C. 在“异常”总体中有95%的人在此范围之外D. 在“正常”总体中有95%的人在此范围E. 在人群中检测指标有5%的可能超出此范围6. 确定某项指标的医学参考值范围时,“正常人”指的是( )A. 从未患过疾病的人B. 患过疾病但不影响研究指标的人C. 排除了患过某种疾病的人D. 排除了影响研究指标的疾病或因素的人E. 健康状况良好的人7. 确定某项指标的医学参考值范围时,“正常人”指的是( )A. 从未患过疾病的人B. 患过疾病但不影响研究指标的人C. 排除了患过某种疾病的人D. 排除了影响研究指标的疾病或因素的人E. 健康状况良好的人8. 要评价某地区一名5岁男孩的身高是否偏高,其统计学方法是( )A. 用均数来评价B. 用中位数来评价C. 用几何均数来评价D. 用变异系数来评价E. 用参考值范围来评价9.应用百分位数法估计参考值范围的条件是( )A .数据服从正态分布B .数据服从偏态分布C .有大样本数据D .数据服从对称分布E .数据变异不能太大10.某市1974年238名居民的发汞含量(µmol/kg )如下,则该地居民发汞值的95%医学参考值范围是( )发汞值(µmol/kg )15~ 35~ 55~ 75~ 95~ 115~ 135~ 155~ 175~ 195~215 人数 20 66 60 48 18 16 6 1 0 3A .<P 95B .>P 5C .(P 2.5,P 97.5)D .S X 96.1±E .S X 96.1±答案 1. A 2. B 3. B 4. C 5. D 6. D 7. C 8. E 9. B 10. A第四章定性数据的统计描述1. 如果一种新的治疗方法能够使不能治愈的疾病得到缓解并延长生命,则应发生的情况是()A. 该病患病率增加B. 该病患病率减少C. 该病的发病率增加D. 该病的发病率减少E. 该疾病的死因构成比增加2. 计算乙肝疫苗接种后血清学检查的阳转率,分母为()A. 乙肝易感人数B. 平均人口数C. 乙肝疫苗接种人数D. 乙肝患者人数E. 乙肝疫苗接种后的阳转人数3. 计算标准化死亡率的目的是A. 减少死亡率估计的偏倚B. 减少死亡率估计的抽样误差C. 便于进行不同地区死亡率的比较D. 消除各地区内部构成不同的影响E. 便于进行不同时间死亡率的比较4. 已知男性的钩虫感染率高于女性,今欲比较甲乙两乡居民的钩虫感染率,但甲乡女性居民多,而乙乡男性居多,适当的比较方法是()A. 两个率直接比较B. 两个率间接比较C. 直接对感染人数进行比较D. 计算标准化率比较E. 不具备可比性5. 甲县恶性肿瘤粗死亡率比乙县高,经标准化后甲县恶性肿瘤标化死亡率比乙县低,其原因最有可能是()A. 甲县的诊断水平高B. 甲县的肿瘤防治工作比乙县好C. 甲县的人口健康水平高D. 甲县的老年人口在总人口中所占比例更小E. 甲县的老年人口在总人口中所占比例更大6. 相对危险度RR的计算方法是()A. 两个标准化率之比B. 两种不同疾病的发病人数之比C. 两种不同疾病患病率之比D. 两种不同疾病的发病率之比E. 两种不同条件下某疾病发生的概率之比7. 比数比OR值表示的是()A. 两个标准化率的差别大小B. 两种不同疾病的发病率差别程度C. 两种不同疾病患病率差别程度D. 两种不同疾病的严重程度E. 两种不同条件下某疾病发生的危险性程度8. 计算患病率时的平均人口数的计算方法是()A. 年初人口数和年末人口数的平均值B. 全年年初的人口数C. 全年年末人口数D. 生活满一年的总人口数E. 生活至少在半年以上的总人口数9. 死因构成比反映的是()A. 各种疾病发生的严重程度B. 疾病发生的主要原因C. 疾病在人群的分布情况D. 各种死因的相对重要性E. 各种疾病的死亡风险大小10. 患病率与发病率的区别是()A. 患病率高于发病率B. 患病率低于发病率C. 计算患病率不包括新发病例D. 发病率更容易获得E. 患病率与病程有关答案 1. A 2. C 3. D 4. D 5. E 6. E 7. E 8. A 9. D 10. E第五章统计表与统计图1.统计表的主要作用是()A. 便于形象描述和表达结果B. 客观表达实验的原始数据C. 减少论文篇幅D. 容易进行统计描述和推断E. 代替冗长的文字叙述和便于分析对比2.描述某疾病患者年龄(岁)的分布,应采用的统计图是()A.线图B.直条图C.百分条图D.直方图E.箱式图3.高血压临床试验分为试验组和对照组,分析考虑治疗0周、2周、4周、6周、8周血压的动态变化和改善情况,为了直观显示出两组血压平均变动情况,宜选用的统计图是()A.半对数线图B.线图C.直条图D.直方图E.百分条图4.研究三种不同麻醉剂在麻醉后的镇痛效果,采用计量评分法,分数呈偏态分布,比较终点时分数的平均水平及个体的变异程度,应使用的图形是()A. 复式条图B. 复式线图C. 散点图D. 直方图E. 箱式图5. 研究血清低密度脂蛋白LDL与载脂蛋白B-100的数量依存关系,应绘制的图形是()A. 直方图B. 箱式图C. 线图D. 散点图E. 直条图6.下列统计图适用于表示构成比关系的是()A. 直方图B. 箱式图C. 误差条图、条图D. 散点图、线图E. 圆图、百分条图7. 有些资料构成统计表时,下列哪一项可以省略()A. 标题B. 标目C. 线条D. 数字E. 备注8.绘制下列统计图纵轴坐标刻度必须从“0”开始的有()A. 圆图B. 百分条图C. 线图D. 半对数线图E. 直方图9.描述某现象频数分布情况可选择()A. 圆图B. 百分条图C. 箱式图D. 误差条图E. 直方图10.对比某种清热解毒药物和对照药物的疗效,其单项指标为口渴、身痛、头痛、咳嗽、流涕、鼻塞、咽痛和发热的有效率,应选用的统计图是()A. 圆图B. 百分条图C. 箱式图D. 复式条图E. 直方图答案 1. E 2. D 3. B 4. E 5. D 6. E 7. E 8. E 9. E 10. D第六章参数估计与假设检验1. 样本均数的标准误越小说明()A. 观察个体的变异越小B. 观察个体的变异越大C. 抽样误差越大D. 由样本均数估计总体均数的可靠性越小E. 由样本均数估计总体均数的可靠性越大2. 抽样误差产生的原因是()A. 样本不是随机抽取B. 测量不准确C. 资料不是正态分布D. 个体差异E. 统计指标选择不当3. 要减少抽样误差,通常的做法是()A. 减少系统误差B. 将个体变异控制在一定范围内C. 减小标准差D. 控制偏倚E. 适当增加样本含量4. 对于正偏态分布的的总体, 当样本含量足够大时, 样本均数的分布近似为()A. 正偏态分布B. 负偏态分布C. 正态分布D. t分布E. 标准正态分布5. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L~9.1×109/L,其含义是()A. 估计总体中有95%的观察值在此范围内B. 总体均数在该区间的概率为95%C. 样本中有95%的观察值在此范围内D. 该区间包含样本均数的可能性为95%E. 该区间包含总体均数的可能性为95%6. 根据样本资料算得健康成人白细胞计数的95%可信区间为7.2×109/L ~9.1×109/L ,其含义是( )A. 估计总体中有95%的观察值在此范围内B. 总体均数在该区间的概率为95%C. 样本中有95%的观察值在此范围内D. 该区间包含样本均数的可能性为95%E. 该区间包含总体均数的可能性为95%7. 某地抽取正常成年人200名,测得其血清胆固醇的均数为3.64mmol/L ,标准差为1.20 mmol/L ,则该地正常成年人血清胆固醇均数的95%可信区间是( )A. 3.64±1.96×1.20B. 3.64±1.20C. 200/20.196.164.3×±D. 200/20.158.264.3×±E. 3.64±2.58×1.208. 假设检验的目的是A. 检验参数估计的准确度B. 检验样本统计量是否不同C. 检验样本统计量与总体参数是否不同D. 检验总体参数是否不同E. 检验样本的P 值是否为小概率9. 假设检验差别有统计学意义时,P 值越小,说明( )A. 样本均数差别越大B. 总体均数差别越大C. 认为样本之间有差别的统计学证据越充分D. 认为总体之间有差别的统计学证据越充分E. 认为总体之间有差别的统计学证据越不充分10. 关于假设检验,正确的说法( )A. 检验水准必须设为0.05B. 必须采用双侧检验C. 必须根据样本大小选择检验水准D. 必须建立无效假设E. 要说明无效假设正确,必须计算P 值答案 1. E 2. D 3. E 4. C 5. B 6. E 7. C 8. D 9. D 10. D第七章 t 检验1. 两样本均数之差的标准误反映的是( )A. 两样本数据集中趋势的差别B. 两样本数据的变异程度C. t 分布的不同形状D. 数据的分布特征E. 两样本均数之差的变异程度2. 两样本均数比较,检验结果05.0>P 说明( )A. 两总体均数的差别较小B. 两总体均数的差别较大C. 支持两总体无差别的结论D. 不支持两总体有差别的结论E. 可以确认两总体无差别3. 由两样本均数的差别推断两总体均数的差别, 其差别有统计学意义是指( )A. 两样本均数的差别具有实际意义B. 两总体均数的差别具有实际意义C. 两样本和两总体均数的差别都具有实际意义D. 有理由认为两样本均数有差别E. 有理由认为两总体均数有差别4. 两样本均数比较,差别具有统计学意义时,P 值越小说明( )A. 两样本均数差别越大B. 两总体均数差别越大C. 越有理由认为两样本均数不同D. 越有理由认为两总体均数不同E. 越有理由认为两样本均数相同5. 假设检验中的Ⅱ类错误指的是( )A. 可能出现的误判错误B. 可能出现的假阳性错误C. 可能出现的假阴性错误D. 可能出现的无效假设错误E. 可能出现的备择假设错误6. 减少假设检验的Ⅱ类错误,应该使用的方法是( )A. 减少Ⅰ类错误B. 减少测量的系统误差C. 减少测量的随机误差D. 提高检验界值E. 增加样本含量7. 以下不能用配对检验方法的是( )A. 比较15名肝癌患者癌组织和癌旁组织中的Sirt1基因的表达量B. 比较两种检测方法测量15名肝癌患者组织中Sirt1基因的表达量C. 比较早期和晚期肝癌患者各15例癌组织中的Sirt1基因的表达量D. 比较糖尿病患者经某种药物治疗前后糖化血红蛋白的变化E. 比较15名受试者针刺檀中穴前后的痛阈值8. 两独立样本均数 t 检验,其前提条件是( )A. 两总体均数相等B. 两总体均数不等C. 两总体方差相等D. 两总体方差不等E. 两总体均数和两总体方差都相等9. 若将配对设计的数据进行两独立样本均数 t 检验,容易出现的问题是( )A. 增加出现I 类错误的概率B. 增加出现II 类错误的概率C. 检验结果的P 值不准D. 方差齐性检验的结果不准E. 不满足t 检验的应用条件10.两组定量资料比较,当方差不齐时,应该使用的检验方法是( )A. 配对 t 检验B. Satterthwaite t ′ 检验C. 两独立样本均数t 检验D. 方差齐性检验E. z 检验答案 1. E 2. D 3. E 4. D 5. C 6. E 7. C 8. C 9. B 10. B第八章 方差分析1. 方差分析的基本思想是( )A .组间均方大于组内均方B .组内均方大于组间均方C .不同来源的方差必须相等D .两方差之比服从F 分布E .总变异及其自由度可按不同来源分解2. 方差分析的应用条件之一是方差齐性,它是指( )A. 各比较组相应的样本方差相等B. 各比较组相应的总体方差相等C. 组内方差=组间方差D. 总方差=各组方差之和E. 总方差=组内方差 + 组间方差3. 完全随机设计方差分析中的组间均方反映的是( )A. 随机测量误差大小B. 某因素效应大小C. 处理因素效应与随机误差综合结果D. 全部数据的离散度E. 各组方差的平均水平4. 对于两组资料的比较,方差分析与t 检验的关系是( )A. t 检验结果更准确B. 方差分析结果更准确C. t 检验对数据的要求更为严格D. 近似等价E. 完全等价5.多组均数比较的方差分析,如果0.05P <,则应该进一步做的是( )A .两均数的t 检验B .区组方差分析C .方差齐性检验D .SNK-q 检验E .确定单独效应6.完全随机设计的多个样本均数比较,经方差分析,如果0.05P <,则结论为( )A .各样本均数全相等B .各样本均数全不相等C .至少有两个样本均数不等D .至少有两个总体均数不等E .各总体均数全相等7.完全随机设计资料的多个样本均数的比较,若处理无作用,则方差分析的F 值在理论上应接近于( )A .()21,F νναB .误差处理SS SS / C. 0 D. 1 E. 任意值8.对于多个方差的齐性检验,若P < α,可认为( )A .多个样本方差全不相等B .多个总体方差全不相等C .多个样本方差不全相等D .多个总体方差不全相等E .多个总体方差相等9.析因设计的方差分析中,两因素X 与Y 具有交互作用指的是( )A .X 和Y 的主效应相互影响B .X 与Y 对观察指标的影响相差较大C .X 与Y 有叠加作用D .X 对观察指标的作用受Y 水平的影响E .X 与Y 的联合作用较大10.多组均数比较的方差分析,如果0.05P <,则应该进一步做的是( )A .两均数的t 检验B .区组方差分析C .方差齐性检验D .SNK-q 检验E .确定单独效应答案: 1. E 2. B 3. C 4. E 5. D 6. D 7. D 8. D 9. D 10. C第八章 χ2 检验1. 两样本率比较,差别有统计学意义时,P 值越小说明( )A. 两样本率差别越大B. 两总体率差别越大C. 越有理由认为两样本率不同D. 越有理由认为两总体率不同E. 越有理由认为两样本率相同2.欲比较两组阳性反应率, 在样本量非常小的情况下(如1210,10n n <<), 应采用的假设检验方法是( )A. 四格表χ2检验B. 校正四格表χ2检验C. Fisher 确切概率法D. 配对χ2检验E. 校正配对χ2检验3.进行四组样本率比较的χ2检验,如220.01,3χχ>,可认为( ) A. 四组样本率均不相同 B. 四组总体率均不相同C. 四组样本率相差较大D. 至少有两组样本率不相同E. 至少有两组总体率不相同4. 从甲、乙两文中,查到同类研究的两个率比较的χ2检验,甲文220.01,1χχ>,乙文220.05,1χχ>,可认为( ) A. 两文结果有矛盾 B. 两文结果完全相同C. 甲文结果更为可信D. 乙文结果更为可信E. 甲文说明总体的差异较大5. 两组有效率比较的检验功效相关因素是()A. 检验水准和样本率B. 总体率差别和样本含量C. 样本含量和样本率D. 总体率差别和理论频数E. 容许误差和检验水准6. 通常分析四格表需用连续性校正χ2检验的情况是()A. T< 5B. T < 1或n < 40C. T< 5且n < 40D. 1≤T< 5且n > 40E. T< 5或n < 407. 当四格表的周边合计数不变时,如果某格的实际频数有变化,则其理论频数是()A. 增大B. 减小C. 不变D. 不确定E. 随该格实际频数的增加而增减8. 对四种药物进行临床试验,计算有效率,规定检验水准α=0.05,若需要进行多重比较,用Bonferroni方法校正后的检验水准应该是()A. 0.017B. 0.008C. 0.025D. 0.005E. 0.0139. 对药物的四种剂量(0剂量、低剂量、中剂量和高剂量)进行临床试验,计算有效率,规定检验水准α=0.05,若需要进行多重比较(多个实验组与对照组比较),用Bonferroni方法校正后的检验水准应该是()A. 0.050B. 0.010C. 0.025D. 0.005E. 0.01710. 利用χ2检验公式不适合解决的实际问题是()A. 比较两种药物的有效率B. 检验某种疾病与基因多态性的关系C. 两组有序试验结果的药物疗效D. 药物三种不同剂量显效率有无差别E. 两组病情“轻、中、重”的构成比例答案: 1. D 2. C 3. E 4. C 5. B 6. D 7. C 8. B 9. E 10. C第九章非参数检验1.对医学计量资料成组比较, 相对参数检验来说,非参数秩和检验的优点是()A. 适用范围广B. 检验效能高C.检验结果更准确 D. 充分利用资料信息E. 不易出现假阴性错误2. 对于计量资料的比较,在满足参数法条件下用非参方法分析,可能产生的结果是()A. 增加Ⅰ类错误B. 增加Ⅱ类错误C. 减少Ⅰ类错误D. 减少Ⅱ类错误E. 两类错误都增加3. 两样本比较的秩和检验,如果样本含量一定,两组秩和的差别越大说明A. 两总体的差别越大B. 两总体的差别越小C. 两样本的差别可能越大D. 越有理由说明两总体有差别E. 越有理由说明两总体无差别4. 多个计量资料的比较,当分布类型未知时,应选择的统计方法是()A. 方差分析B.Wilcoxon T检验C. Kruskal-Wallis H检验D. u检验E. 列联表χ2检验5. 两组数据的秩和检验和t检验相比,其优点是()A. 计算简便B. 检验假设合理C. 检验效能高D. 抽样误差更小E. 对数据分布不做限制6. 两样本比较的秩和检验,其检验统计量T是()A. 例数较小的秩和B. 例数较大的秩和C. 较小的秩和D. 较大的秩和E. 任意一组数据的秩和7. 两样本比较的秩和检验,其无效假设是()A. 两样本有相同的秩和B. 两总体有相同的秩和C. 两样本分布相同D. 两总体分布相同E. 两总体分布的位置相同8. 两样本比较的Wilcoxon秩和检验结果为P值小于0.05,判断孰优孰劣的根据是()A. 比较两样本的秩和大小B. P值大小C. 检验统计量T值大小D. 两样本秩和的差别大小E. 比较两样本平均秩(Mean Rank)的大小9.在一项临床试验研究中,疗效分为“痊愈、显效、有效、无效”四个等级,现欲比较试验组与对照组治疗效果有无差别,宜采用的统计方法是×列联表χ2检验A. Wilcoxon秩和检验B. 24C. 四格表χ2检验D. Fisher确切概率法E. 计算标准化率10. 两样本比较的秩和检验中,甲组中最小数据有2个0.2,乙组中最小数据有3个0.2,则数据0.2对应的秩次是( )A. 0.2B. 1.0C. 5.0D. 2.5E. 3.0答案 1. A 2. B 3. D 4. C 5. E 6. A 7. E 8. E 9. A 10. E第十章 线性相关与回归1. 两数值变量相关关系越强,对应的是( )A. 相关系数越大B. 相关系数的绝对值越大B. 回归系数越大C. 回归系数的绝对值越大E. 相关系数检验统计量的t 值越大2. 回归分析的决定系数2R 越接近于1,说明( )A. 相关系数越大B. 回归方程的显著程度越高C. 应变量的变异越大D. 应变量的变异越小E. 自变量对应变量的影响越大3. 对两变量X 和Y 作简单线性相关分析,要求的条件是( )A. X 和Y 服从双变量正态分布B. X 服从正态分布C. Y 服从正态分布D. X 和Y 有回归关系E. X 和Y 至少有一个服从正态分布4. 两组资料作回归分析,直线回归系数b 较大的一组,表示( )A .相关系数r 也较大较大B .假设检验的P 值较小C .决定系数R 2较大D .决定系数R 2较小E .Y 随X 变化其数量关系有更大的变化 5. 1~7岁儿童可以用年龄(岁)估计体重(市斤),回归方程为ˆ144YX =+,若将体重换成国际单位kg ,则此方程( )A .常数项改变B .回归系数改变C .常数项和回归系数都改变D .常数项和回归系数都不改变E .决定系数改变6. 对同一资料进行线性回归与相关分析时,下列正确的情形是( )A .ρ=0时,r=0B .ρ>0时,r>0C .r>0时,b<0D .r<0时,b<0E .ρ<0时,r>07. 下列双变量中,适用于进行线性相关分析的是( )A .年龄与体重B .民族与血型C .体重与体表面积D .母亲文化水平与子女智商E .工龄与患病率8. 对同一资料进行线性回归与相关分析时,下列正确的情形是( )A .有密切的关系B .有一定的因果关系C .相关关系密切D .存在数量依存关系E .有较强的回归关系9. 作线性相关分析时,当n=12,r=0.767,查r 界值表823.010,2/001.0=r ,795.010,2/002.0=r ,750.010,2/005.0=r ,则P 值范围为( )A .0.001<P<0.002B .P<0.001C .P<0.002D .P>0.005E .0.002<P<0.00510. 通过线性回归分析(n =48),得决定系数R 2=0.49,则下列说法中错误的是( )A .两个变量具有回归关系B .一定有相关系数r=0.70或r= - 0.70C .假设检验的自由度ν=46D .回归平方和大于剩余平方和E .Y 的总变异有49%可以由X 的变化解释答案 1. B 2. E 3. A 4. E 5. C 6. D 7. C 8. D 9. E 10. D第十一章 多元线性回归1. 在疾病发生危险因素的研究中,采用多变量回归分析的主要目的是( )A .节省样本B .提高分析效率C .克服共线影响D .减少异常值的影响E .减少混杂的影响2. 多元线性回归分析中,反映回归平方和在应变量Y 的总离均差平方和中所占比重的统计量是( )A. 简单相关系数 B .复相关系数C. 偏回归系数D. 回归均方E. 决定系数R 23. 对同一资料作多变量线性回归分析,若对两个具有不同个数自变量的回归方程进行比较,应选用的指标是( )A .决定系数 B. 相关系数C. 偏回归平方和D. 校正决定系数E. 复相关系数4. 多元线性回归分析中,反映自变量对应变量作用大小的是( )A .决定系数 B. 标准化偏回归系数C. 偏回归平方和D. 校正决定系数E. 复相关系数。
【医学统计学】第4章 定量资料的描述(12-17)
4. 归组计数,整理成表 用计算机或手工划记法汇总,得到各组段观察单位个数,绘制成频
数分布表
定量资料的统计描述
表4-1 某市2010年120名正常成年男子红细胞计数值(×1012/L)的频数表
组段(×1012/L) (1)
组中值 (2)
3.20~ 3.50~ 3.80~ 4.10~ 4.40~ 4.70~ 5.00~ 5.30~ 5.60~ 5.90~6.20 合计
频数分布表(frequency table):由变 量值及其频数编制而成的表
定量资料的统计描述
(一)频数表的编制
1. 求极差(range): 极差又称全距,是指全部观察值中最大值与
最小值之差,用符号R表示 R=xmax-xmin
R 6.183.29 2.89cm
定量资料的统计描述
2. 确定组数和组距
组段(×1012/L) (1) 3.20~ 3.50~ 3.80~ 4.10~ 4.40~ 4.70~ 5.00~ 5.30~ 5.60~
5.90~6.20 合计
频数fi (2)
2 5 10 19 22 24 21 11 4 2 120( )
组中值xi (3) 3.35 3.65 3.95 4.25 4.55 4.85 5.15 5.45 5.75 6.05 47
1
86.9977 50
lg
11.7399
54
即50名麻疹易感儿接种麻疹疫苗后血凝 抑制抗体的平均滴度为1/54
2. 应用及注意事项
•几何均数应用于: •等比资料,如抗体平均滴度 •对数正态分布资料
• 使用几何均数时应注意:
• 观察值不能有0
• 观察值不能同时有正值和负值。若全为负值, 在计算时先把负号去掉,得出结果再加上负 号
描述性统计分析
描述性统计分析作者:清华大学中国企业研究中心阅读次数:24704次发布日期:2005-07-04在数据分析的时候,一般首先要对数据进行描述性统计分析(Descriptive Analysis),以发现其内在的规律,再选择进一步分析的方法。
描述性统计分析要对调查总体所有变量的有关数据做统计性描述,主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布、以及一些基本的统计图形。
(1)数据的频数分析:在数据的预处理部分,我们曾经提到利用频数分析和交叉频数分析来检验异常值。
此外,频数分析也可以发现一些统计规律。
比如说,收入低的被调查者用户满意度比收入高的被调查者高,或者女性的用户满意度比男性低等。
不过这些规律只是表面的特征,在后面的分析中还要经过检验。
(2)数据的集中趋势分析:数据的集中趋势分析是用来反映数据的一般水平,常用的指标有平均值、中位数和众数等。
各指标的具体意义如下:平均值:是衡量数据的中心位置的重要指标,反映了一些数据必然性的特点,包括算术平均值、加权算术平均值、调和平均值和几何平均值。
中位数:是另外一种反映数据的中心位置的指标,其确定方法是将所有数据以由小到大的顺序排列,位于中央的数据值就是中位数。
众数:是指在数据中发生频率最高的数据值。
如果各个数据之间的差异程度较小,用平均值就有较好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况,用中位数或众数有较好的代表性。
(3)数据的离散程度分析:数据的离散程度分析主要是用来反映数据之间的差异程度,常用的指标有方差和标准差。
方差是标准差的平方,根据不同的数据类型有不同的计算方法。
(4)数据的分布:在统计分析中,通常要假设样本的分布属于正态分布,因此需要用偏度和峰度两个指标来检查样本是否符合正态分布。
偏度衡量的是样本分布的偏斜方向和程度;而峰度衡量的是样本分布曲线的尖峰程度。
一般情况下,如果样本的偏度接近于0,而峰度接近于3,就可以判断总体的分布接近于正态分布。
第1章_SAS系统简介
常用统计软件简介
• SAS目前已由最初的统计分析系统发展成为用于决策 支持的大型集成信息系统, 从SAS8开始已有“数据 仓库” (warehouses );“数据挖掘”;“决策支 持”等方面的功能。但强大的统计分析功能仍是它的 重要组成部分和核心功能。是国际上最为流行的一种 大型统计分析系统,被誉为统计分析的标准软件。 • 产品面向的企业主要集中于金融、电讯、大型制造、 能源等。 • 缺点:用户要具备一定的统计背景并需要一定的训练 才可以使用;价格亦不菲 ; • 依然是统计工作者和科研工作者的首选。
现代统计软件
信息学院 张悦今 邮箱:zhangyj8268@
课程介绍Biblioteka • 课程内容:– 本课程讨论如何使用SAS进行统计分析
• 课程目标:
– 1.掌握SAS基本操作及各统计模块的用法 – 2.熟悉SAS编程语言 – 3.会使用SAS编写简单的统计分析程序
• 总学时:54
2
课程介绍 • 参考书
常用统计软件简介
• 3、S-PLUS
• 是由美国MathSoft 公司开发的一种基于S 语言的统计学软 件,是世界上公认的三大统计软件之一,主要用于数据挖 掘、统计分析和统计作图等等。 • 特点: – 可以交互地从各方面发现数据中的信息,并可以很容易 地实现一个新的统计方法。 – 强大的统计功能和绘图能力。 – 功能齐全,强大的编程功能,是统计学家喜爱的软件, 研究人员可以编制自己的程序来实现自己的理论和方法 。 – 数据可以直接的来源于Excel,Lotus,Access,SAS, SPSS等软件,其兼容性极好。
下载R软件
学习网站 /pages/newhtm/r/schtml/
为什么要选择SAS?
• 点菜单 VS 编程
spss第四章,描述性统计分析。。
第4章描述性统计分析(重点是频数分析、描述统计量、交叉列联表)4.1 频数分析(使用表3.2)---单击“analyze”---“frequencies”—出现对话框,并将数学、语文和英语选到“variable”中。
如图:---单击“statistics”----出现对话框,选中如图4个选项-----单击“continue”回到前一对话框----单击“OK”结果如表4.1-----如图,重新选择语文---单击“charts”---得到一个对话框,如图选中2个选项----单击“continue”----回到前一对话框---单击“OK”。
结果如表4.24.2 基本描述统计量(使用表3.2)---单击“analyze”---“descriptive statistics”—“Descriptives”---得到对话框,并将数据进行如图选入:-----单击“options”—得到对话框,并选中如图6个选项:----单击“continue”----回到前一对话框---单击“OK”。
结果如表4.34.3 探索性分析(使用表3.2)---单击“analyze”---“descriptive statistics”—“Explore”---得到对话框,并将数据进行如图选入:----单击“Plots”—得到对话框,并选中如图4个选项:----单击“continue”----回到前一对话框---单击“OK”。
结果如表4.6(与书有不同)4.4交叉列联表分析(使用表化环0708)(1)T ransform(修改)----Recode into Different variable----选定身高------点击“向右箭头”------在“name”下写个名字:eg:T1-------change-------(此处T1和T2是已经做好的分组)点击-----old and new values对其分组---例:Range LOWEST through values :160 new values :1Rang :160 through :170 2Range HIGHEST through values :170 3 点击continue-----回到前一个对话框点击------OK同样的方法做好T2---------点击“analyze(分析)”-----“Descriptive Statistics(描述性统计)”------“Crosstabs(交叉列联表)”选中行列------点击“Exat….“则弹出“exct tests(精确检测)对话框”点“Statistics…”则弹出“Crosstabs:statistics(交叉表统计)对话框”-------点击“Chi—square(卡方检验)”----“continue”点“Cells…”则弹出“Crosstabs:Cells display(交叉表统计)对话框”-------选择“Counts”中的“Observed”和“Expected”为期望频数,-------选择“Percentages”中的“Row”“Column”“Total”选项,分别计算“频数”“列频数”“总频数”-------选择“Residuals”中的“Standardized”分别计算单元格的非标准化残差、标准化残差、调整后的残差----“continue”回到前一页点----“OK”4.5比率分析(课本71页)不需要掌握英语未写完作业:1-10,11-25,26-30。
定量资料数据的统计描述.
对数形式:G=lg-1{(lgX1+lgX2+lgX3+…lgXn)/n} =lg-1(∑lgX/n)
例2-5
7名慢性迁延性肝炎患者的HBsAg滴度资
料为1:16,1:32,1:32,1:64,1:64,1:128,
1:512。求其平均效价。
7份HBsAg的平均滴度为1:64
2) 加权法:适用于样本例数n较多的资料。
1. 中位数和百分位数的计算 1) 直接法:适用于样本例数n较少的资料。 将观察值按大小顺序排列,当n为奇数时,中
间那个数就是中位数。当 为偶数时,中间两个数 M Xn n 1
的平均数就是中位数。 例2-7
2
M Xn Xn / 2 1 某药厂观察9只小鼠口服高山红景天醇 2 2
49 243 726 1352 2700 5780 9747 7938 6348 5000 2916 841
合计
120(∑f)
43640(
)
2. 均数的两个重要特性
1). 各离均差的总和等于0。(总体中各变量值X与均 数之差称为离均差) 2). 离均差的平方和小于各观察值X与任何数a之差的 平方和。( ) 即 < 设:a≠ ,则a= ±d,d>0
集中趋势指标
统计指标: 离散趋势指标
利用统计表对数据进行概括,用统计图对分布形态 及分布间的关系做直观的表达,用于描述定量资料的统 计指标的意义与计算。
第一节
频数与频数分布
一、连续型定量变量的频数分布 频数表的编制:
频数(frequency):对一个随机变量做重复观察,
其中某变量值出现的次数。 频数分布表(frequency distribution table):将各变 量值及其相应的频数列成表格的形式。 例2-2 抽样调查某地120名18岁~35岁健康男性居
《医学统计学》第四章定性资料的统计描述
1、不要把构成比与率相混淆。即分析时不能以构成 比代率;这是常见的错误。
某文章作者根据上述资料认为,沙眼在20~组的患病率最高,以后随年 龄增大而减少。该作者把构成比当作率进行分析,犯了以比代率的错误。
2、使用相对数时分母不宜过小。分母过小时相对数 不稳定。
3、注意资料的可比性;
不同时期、不同地区、不同条件下的资料比较时应注意具有 可比性。
12965.2
46.3
否
265
660291.4
40.1
说明该地市区非吸烟女性饮酒者的肺癌发病率是
非吸烟女性不饮酒者的1.15倍。
3.比数比
比数比( Odds ratio ,OR) : 常用于流行病学
中病例-对照研究资料,表示病例组和对照组中的 暴露比例与非暴露比例的比值之比,是反映疾病 与暴露之间关联强度的指标。其计算公式为
一般的,两个地方的出生率、死亡率、发病率、不同级别 医院某病的治愈率等不能直接比较。
无可比性的实例:
由表2-7可见,无论有无腋下淋巴结转移,省医院的5年生存 率均高于市医院,但从总生存率看,省医院的5年生存率低于市 医院。这不符合常理。因此,省医院与市医院的总生存率就不能 直接比较(标准化后再比)。
感谢聆听
率
某事物或现象发生的实 际数 某事物或现象发生的所 有可能数
比例基数
公式中的“比例基数”通常依据习惯而定。
需要注意的是,率在更多情况下是一个具有时间 概念的指标,即用于说明在某一段时间内某现象 发生的强度或频率,如出生率、死亡率、发病率 、患病率等,这些指标通常是指在1年时间内发 生的频率。
例4-1 某单位在2009年有3128名职工,该单位 每年对职工进行体检,在这一年新发生高血压 病人12例,则
《统计学:思想、方法与应用》第4章 定量数据的描述方法
19:11
2
4.1 展示数据的分布
表4.1 安然公司1997-2001年股票价格变化的数据(单位:元)
一月
1998 0.78 1999 4.28
二月
0.62 4.34
三月
-0.69 2.44 -1.22 4.5
四月
-0.88 -0.28 0.47 4.56
五月
0.12 2.22
六月 七月 八月
0.75 0.81 -1.75 -0.5 2.06 -0.88 8
19:11
27
4.1.5 累积频数分布
除了对数据的分布形态有所了解,有时候我 们希望了解股价变化值低于0元的月份数量,累积 频数分布或累积频数折线图可以帮助我们获得这 样的信息。
股价变化值(元) -20~-10 频数 6 累积频数 6 由此得到
-10~0
0~10 10~20 20~30
19:11
1. 直方图:主要用于表示分组数据分布的一 种图形。 2. 用矩形的宽度和高度来表示频数分布 3. 在直角坐标中,用横轴表示数据分组,纵 轴表示频数或频率,各组与相应的频数就 形成了一个矩形,即直方图
本质上是用矩形的面积来
Excel
表示频数分布
19:11
19
4.1.2 分组数据看分布—直方图
(直方图与条形图的区别)
变量值变动区间的长度相等
异距分组 变量值变动区间的长度不完全相等
19:11
7
相关概念 组限
组距 组中值 指每组两端表示各组界限的变量值, 各组的最小值为下限,最大值为上限 每组变量值变动区间的长度,为上下 限之差
每组变量取值范围的中点数值
组中值=
19:11
人卫第七版医学统计学课后答案及解析-李康、贺佳主编
人卫第七版医学统计学课后答案李康、贺佳主编第一章绪论一、单项选择题答案 1. D 2. E 3. D 4. B 5. A 6. D 7. A 8. C 9. E 10. D11、E 12、C 13、E 14、A 15、C二、简答题1答由样本数据获得的结果,需要对其进行统计描述和统计推断,统计描述可以使数据更容易理解,统计推断则可以使用概率的方式给出结论,两者的重要作用在于能够透过偶然现象来探测具有变异性的医学规律,使研究结论具有科学性。
2答医学统计学的基本内容包括统计设计、数据整理、统计描述和统计推断。
统计设计能够提高研究效率,并使结果更加准确和可靠,数据整理主要是对数据进行归类,检查数据质量,以及是否符合特定的统计分析方法要求等。
统计描述用来描述及总结数据的重要特征,统计推断指由样本数据的特征推断总体特征的方法,包括参数估计和假设检验。
3答统计描述结果的表达方式主要是通过统计指标、统计表和统计图,统计推断主要是计算参数估计的可信区间、假设检验的P 值得出相互比较是否有差别的结论。
4答统计量是描述样本特征的指标,由样本数据计算得到,参数是描述总体分布特征的指标可由“全体”数据算出。
5答系统误差、随机测量误差、抽样误差。
系统误差由一些固定因素产生,随机测量误差是生物体的自然变异和各种不可预知因素产生的误差,抽样误差是由于抽样而引起的样本统计量与总体参数间的差异。
第二章定量数据的统计描述一、单项选择题答案 1. A 2. B 3. E 4. B 5. A 6. E 7. E 8. D 9. B 10. E 11、D 12、E 13、E 14、C 15、E二、计算与分析第三章正态分布与医学参考值范围一、单项选择题答案 1. A 2. B 3. B 4. C 5. D 6. D 7. C 8. E 9. B 10. A11、E 12、C 13、C 14、B 15、A二、计算与分析2[参考答案] 题中所给资料属于正偏态分布资料,所以宜用百分位数法计算其参考值范围。
医学统计学知识点
第一章绪论1、统计学,是关于数据收集、整理、分析、表达和解释的普遍原理和方法。
2、研究对象:具有不确定性结果的事物.3、统计学作用:能够透过偶然现象来探测其规律性,使研究结论具有科学性。
4、统计分析要点:正确选用统计分析方法,结合专业知识作出科学的结论。
5、医学统计学基本内容:统计设计、数据整理、统计描述、统计推断。
6、医学统计学中的基本概念(1)同质与变异同质,指根据研究目的所确定的观察单位其性质应大致相同。
变异,指总体内的个体间存在的、绝对的差异。
统计学通过对变异的研究来探索事物。
(2)变量与数据类型变量,是反映实验或观察对象生理、生化、解剖等特征的指标。
变量的观测值,称为数据分为三种类型:定量数据,也称计量资料,指对每个观察单位某个变量用测量或其他定量方法准确获得的定量结果.(如身高、体重、血压、温度等)定性数据,也称计数资料,指将观察单位按某种属性分组计数的定性观察结果。
包括二分类、无序多分类。
(进一步分为二分类和多分类,如性别分为男和女,血型分为A、B、O、A B等)有序数据,也称半定量数据或等级资料,指将观察单位按某种属性的不同程度或次序分成等级后分组计数的观察结果,具有半定量性质。
统计方法的选用与数据类型有密切的关系。
(3)总体与样本总体,指根据研究目的确定的所有同质观察单位的全体,包括所有定义范围内的个体变量值。
样本,是从研究总体中随机抽取部分有代表性的观察单位,对变量进行观测得到的数据。
抽样,是从研究总体中随机抽取部分有代表性的观察单位。
参数,指描述总体特征的指标。
统计量,指描述样本特征的指标。
(4)误差误差,指观测值与真实值、统计量与参数之间的差别。
可分为三种:系统误差,也称统计偏倚,是某种必然因素所致,不是偶然机遇造成的,误差的大小通常恒定,具有明确的方向性。
随机测量误差,是偶然机遇所致,误差没有固定的大小和方向。
抽样误差,是抽样引起的统计量与参数间的差异。
抽样误差主要来源于个体的变异。
Chap04_数据的描述性分析
i 1
n
1 xi
加权调和平均数
xH m1 m2 ...... mn m m1 m2 ...... n x1 x2 xn
m
i 1 n
n
i
mi i 1 x i
调和平均数是算术平均数的变形
xH
m
i 1 n
n
i
mi i 1 xi
x
i 1 n
n
相对指标应用的原则
1、可比性原则 (1)正确选择对比基数 (2)保持对比指标的可比性 2、相对指标与总量指标结合运用原则 3、多种相对指标结合运用原则
集中趋势
集中趋势(Central Tendency)反映 的是一组数据向某一中心值靠拢的倾向, 在中心附近的数据数目较多,而远离中心 的较少。对集中趋势进行描述就是寻找数 据一般水平的中心值或代表值。
例题
峰度
峰度(Kurtosis)是分布集中趋势高峰的形状。在 变量数列的分布特征中,常常以正态分布为标准, 观察变量数列分布曲线顶峰的尖平程度,统计上称 之为峰度。
v4
4
3
x
n i 1
i
x fi
4
i 1
n
3
fi 4
正态分布的峰度系数为0,当>0时为尖峰分布, 当<0时为平顶分布。 例题
例题
离散系数 离散程度的绝对指标 对应的平均指标
V
x
100%
是非标志的平均数和方差
π是一个比率,它表示具有某种特征的个体的 数量占总体中个体总数的比重,即总体成数。 是非标志的平均数为:
x
定量研究的描述性统计分析
4、数据清理
在资料的录入过程中肯定会难免出现一些 小差错。因而在进行统计分析之前,应用仔细 的进行数据清理工作,不让有错误的数据进入 运算过程。 分为有效范围清理、逻辑一致性清理、数据质 量抽查。
(二)描述性统计分析
数据在录入完毕之后,就要就行数据分析了。 在数据分析的时候,一般首先要对数据进行描 述性统计分析(Descriptive Analysis),以 发现其内在的规律,再选择进一步分析的方法。
集中趋势分析指的是用一个典型值或代表值来反映一组数据 的一般水平,或者说反应这组数据向这个典型值集中的情况。 最最常见的集中趋势有:算术平均数(简称平均数,也称为 均值)、众数和中位数三种。 (1)平均数:加总多个观察值,除以观察单位总数所得到 的一个平均值。 公式: x ,如果是单值分组资料,那么计算平均数
收入(元)
100-199 200-299 300-399 400-499 500-599 合计
职工数(人)
10 10 40 20 20 100
组中值
150 250 350 450 550
xf
1500 2500 14000 9000 11000 38000
=1500+2500+14000+9000+11000=380
二、定量资料的分析
当我们运用各种方法收集到一些数据 资料后,接下来的任务就是对这些资料 进行统计分析。
Hale Waihona Puke (一)资料的整理与录入1、资料的审核 主要包括两部分:一是检查出问卷资料中的问题; 二是重新向被调查者审核。 资料审核有两种: ①实地审核。在收集资料过程中审核,即边收集边审 核。 优点:及时,效果好。 缺点:资料收集工作的组织和安排要特别仔细,对 调查员处理问题的能力要求比较强。
医学统计学4. 定性数据的统计描述
已知健康男童体重近似服从正态分布,某年某地 150名12岁健康男童体重的均数为35kg,标准差为 6kg,试估计
1)该地12岁健康男童体重在50kg以上者占该地12岁健康男 童总数的百分比;
2)该地12岁健康男童体重30-40公斤占该地12岁健康男童的 百分比;
3)该地80%的12岁健康男童集中在哪个范围;
应用相对数的注意事项
例如,某医师对口腔门诊不同年龄龋齿患病情况 (表5-3)进行了分析,得出40~49岁组患病率高, 0~9岁组和70岁及以上组患病率低的错误结论。
年龄组(岁)
0~ 10~ 20~ 30~ 40~ 50~ 60~ 70~ 合计
表 5-3 口腔门诊龋齿患者年龄构成
患者人数
患者构成比(%)
一、统计学指标
绝对数:反应实际水平 相对数----两个数值的比,包括: 率 构成比 相对比
(一)率
率:
说明某现象或某事物在它可能发生的范围内实际发 生的频率或强度,又称频率指标或强度指标。
常以百分率(%)、千分率(‰)、万分率(1/ 万)、十万分率(1/10万)等表示,计算公式为:
率
某时期内实际发生某现象的观察单位数 同时期可能发生某现象的观察单位总数
比例基数
需要注意的是,分母中所规定的平均人口是指可 能会发生该病的人群。
2.患病率: 也称现患率,表示某一时点某人群人口 中患某病的频率,通常用来表示病程较长的慢性
病的发生或流行情况,其计算公式为
某病患病率
某地某时点某病患病例数 该地同期内平均人口数
比例基数
以上比例基数可为100%、1000‰、10000/万、 100000/10万,实际中患病率的分母通常为调查 的总人数,分子为患病的人数。
统计学练习题及答案
统计学练习题及答案第一章绪论四、最佳选择题1.随机事件是指E。
A.发生概率为0的事件B.发生概率为1的事件C.发生概率很小(如P<0.05)的事件D.发生概率未知的事件E.在一次实验中可能发生也可能不发生的事件,其发生概率为0<p<1< bdsfid="70" p=""></p<1<>2.抽样研究的目的是D。
A.研究样本的特征B.研究总体的参数C.用总体的信息推断样本的特征D.由样本的信息推断总体的特征E.以上均不对3.下面变量中,其观测值属于定性数据的是B。
A.脉搏B.血型C.肺活量D.红细胞计数E.血压4.下面变量中,其观测值属于定量数据的是B。
A.性别B.体重C.血型D.职业E.民族5.抽样研究中的样本应是 C。
A.总体中典型的一部分B.总体中任意一部分C.总体中随机抽取的一部分D.总体中选取的有意义的一部分E.总体中信息明确的一部分第二章定量数据的统计描述第三章正态分布与医学参考值范围四、最佳选择题1.为了比较同一组儿童身高和体重两项指标的变异程度的大小,可选用的变异指标为( D )。
A.全距B.标准差C.方差D.变异系数E.四分位数间距2.适用于用算术均数反映其平均水平的资料应服从( A )。
A.正态分布B.偏态分布C.对数正态分布D.正偏态分布E.负偏态分布3.描述一组计量资料的分布特征时应选用( E )。
A.XB.SC.X和SD.M和QRE根据资料的分布类型选用相应的集中趋势及离散趋势指标4.用均数和标准差可全面描述(C )资料的特征。
A.正偏态分布B.负偏态分布C.正态分布D.对称分布E.对数正态分布5.比较身高和胸围两组数据变异度大小宜采用( A )。
A.变异系数B.方差C.极差D.标准差E.四分位数间距6.计算150名12岁正常男童身高的平均数一般选用( A )。
A.算术均数B.几何均数C.中位数D.百分位数E.方差7.描述一组食物中毒患者的平均潜伏期,一般选择( C )。
医学统计学(李晓松主编 第2版 高等教育出版社)附录 思考与练习95%答案
一、SPSS 基本功能SPSS基本功能数据管理统计分析图表分析:条图、直方图、饼图、线图、散点图等输出管理:对输出结果复制、编辑等描述性分析均数比较一般线性模型相关与回归分析非参数检验生存分析FrequenciesDescriptivesExploreCrosstabs 统计资料的类型资料类型定量资料:用定量的方法获得的数值资料计数资料:按性质或类别分组后清点各组个数等级资料:半定量资料定量资料的统计推断正态分布两组均数比较单样本设计t检验配对设计t检验成组设计t检验三组及以上均数比较完全随机设计方差分析随机区组设计方差分析重复测量方差分析析因设计方差分析偏态分布配对设计秩和检验单样本设计秩和检验成组设计秩和检验资料类型定量资料计数资料等级资料统计分析统计描述统计推断相对数总体率的估计假设检验u检验卡方检验4假设检验参数检验非参数检验正态分布等级资料偏态分布资料分布类型未知方差不齐,且不易变换达到齐性数据一端或两端不确定的资料1.参数检验:已知总体分布类型,对未知的总体参数做推断的假设检验方法。
故参数检验依赖于特定的分布类型,比较的是总体参数2.非参数检验:不依赖于总体分布类型、不针对总体参数的检验方法。
故非参数检验对总体的分布类型不做任何要求,不受总体参数的影响,比较的是分布或分布位置。
适用范围广,可适用于任何类型资料 参数检验➢ 优点:资料信息利用充分;检验效能较高 ➢ 缺点:对资料的要求高;适用范围有限 2.非参数检验➢ 优点:适用范围广,可适用于任何类型的资料 ➢ 缺点:检验效能低,易犯Ⅱ型错误 凡适合参数检验的资料,应首选参数检验对于符合参数检验条件者,采用非参数检验,其 检验效能低,易犯Ⅱ型错误研究人员通常需要了解和研究某一类个体,这个类就是总体。
总体是根据研究目的所确定的所有同质观察单位某种观察值(即变量值)的集合,通常有无限总体和有限总体之分,前者指总体中的个体是无限的,如研究药物疗效,某病患者就是无限总体,后者指总体中的个体是有限的,它是指特定时间、空间中有限个研究个体。
第四章 定量资料的统计描述(终板).
二、频数表的用途
1、揭示资料的分布特征和分布类型; 2、便于进一步计算指标和统计分析; 3、便于发现特大或特小的可疑值; 4、据此绘制频数分布图。
频数分布的特征
1、集中趋势:观察值向某一数值集中的 倾向(用平均数指标说明);
2、离散趋势:观察值大小不等的倾向 (用变异指标说明)。
频数分布的类型
19695258999509901962582580505252595099019619625825805052525二选定适当的百分界值三决定正常参考值范围的单侧或双四选择正常参考值范围的估计方法一选择样本含量足够大的正常人25975059959599频数累计频数累计频率1260317208400766863613116014661341548194815119182128908231622895802723498323123598743523699163923810000合计238上表为某市238名健康人发汞含量求该市健康人发汞含量95正常值范围
第一节 频数表与频数图
• 一、定义: • 相同观察结果出现的次数称为频数(frequ
ency)。 • 将所有观察结果的频数按一定顺序排列在
一起,表达变量取值及其不同取值频数分 布情况的统计表称为频数分布表,简称频 数表(frequency table)。
二、频数分布表的编制
原始资料分组
按数量分组
n
n
• 故5个人抗体的平均滴度是1/70。
加权法:若相同观察值较多或资料已编制成频数
表则可利用加权法计算,其公式为:
G lg 1( f1 lg x1 f2 lg x2 ... fn lg xn ) lg 1( f lg X )
f1 f2 ... fn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xi x 3 n ( ) (n 1)(n 2) s
主要衡量数据的对称性,若其值大于0则表示位于均值右边数据较分散 ,若小于0则表示均值左边数据较分散。 KURTOSIS(峰度系数):计算公式为
xi x n(n 1) 3(n 1)2 KURT ( ) (n 1)(n 2)(n 3) s (n 2)(n 3)
PORC GPLOT DATA=数据集 ; PLOT 纵坐标变量Y*横坐标变量X……</选项列表>; SYMBOLN <选项列表> ; AXISN <选项列表> ; RUN;
n
描述性统计分析指标
MIN(最小值):样本中的最小观察值。 SUM(和):样本观察值的总和。 RANGE(极差):最大与最小观测值之差。 STD DEV(标准差):计算公式为 Std Dev (n为样本量)。
(x x )
n 1
2
VAR(方差):为标准差的平方,用来衡量相对于均值的分散性和变 异性。数据的集中程度高则方差小,反之则大。 STDERR(标准误):计算公式为 STDERR STD / N CV(变异系数):计算公式为 CV
第4章 定量数据描述性统计分析
主要内容
Hale Waihona Puke 描述性统计分析指标MEANS/UNIVARIATE过程
常见统计图
GPLOT/GCHART过程
描述性统计分析指标
(1)基本统计分析指标
基本概念: 总体:研究对象的全体。 样本:从总体中抽取的个体。 随机抽样:从总体中抽取样本,且每个样本被抽到的机会均等。
xi ) / n (n为样本量N)。 MEAN(均值):计算公式为 mean ( i 1 MODE(众数):样本中出现次数最多的数据。 MEDIAN(中位数):指将数据按大小顺序排列起来,形成一个数列, 居于数列中间位置的数据。若总数为奇数,取中间值;若总数为偶数, 取中间两个值的平均值。 PX(分位数):它将全部观察值分成两个部分,其中有X%个观察值小 于PX,(100-X)%个观察值大于PX。 MAX(最大值):样本中的最大观察值。
菜单法
描述性统计图形
(1)常见统计图形介绍
图形类 型 条形图 圆饼图 主要特征 表示相互独立的统计指标的数量大小。通常纵轴表示数量,横轴 为分组标志。绝对数或相对数均可表示数量,图中各长条的高度 反映了数值大小。 表示事物内部的构成情况。图中每个扇形面积的大小表示百分比 数量大小,将 360 °圆心角看成是 100%,把每一部分所占的百分 比数折算成圆心角的度数,画出对应的扇形。 表示计量资料(测定每个观察单位某项指标值的大小)各组段上 的频数的分布情况。图中各长条的面积表示各组数量的大小。 用于资料中包含两个数量指标,放在横轴上的数量指标通常是时 间。适用于表示一个或多个事物随着时间的推移,在数量上的增 减幅度。 举例 绘制不同城市的 年度GDP情况。 绘制某种食物的 不同营养成分所 占的百分比。 如绘制某班学生 中考平均得分的 分布情况。 如绘制某城市某 年12个月的CPI情 况。
描述性统计分析指标
(3)UNIVARIATE过程
一般使用格式 PROC UNIVARIATE DATA=SAS数据集 <选项列表> ; VAR 变量列表; BY 变量列表; FREQ 变量; WEIGHT 变量; ID 变量列表; OUTPUT <OUT=输出数据集名> <统计量关键字=变量名列表> <PCTLPTS=百分位数 PCTLPRE=变量前缀名 PCTLNAME=变量后缀名>; RUN;
s 100% x
n i 1
2 USS w x USS(加权平方和):计算公式为 ii
其中 wi 代表权重
描述性统计分析指标
CSS(加权离差平方和):计算公式为 CSS
SKEWNESS(偏度系数):计算公式为 SKEW
2 w ( x x ) i i i 1
n
描述性统计分析指标
(3)SAS实例——描述小麦单穗粒数分布
在某农业试验基地进行试验,从某块农田中随机抽取50株 小麦,并且测出其单穗粒数(count)(相应的SAS数据集在 光盘中的存储路径为data/chap4/wheat),请据此计算其描述 性统计指标,以得到小麦单穗粒数的分布状况。
29 29 25 26 30 25 34 33 36 25 28 31 36 29 27 31 22 32 32 27 26 22 33 29 43 32 21 29 29 25
27
32
27
24
30
28
26
28
27
34
18
25
29
27
28
26
30
25
27
32
描述性统计分析指标
编程法:
proc means data=chap4.wheat MAXDEC=2; /*调用means过程,输出结果保留两位小数*/ var count; /*指定分析变量为count*/ run; proc univariate data=chap4.wheat plot ; var count; run; /*调用univariate过程,输出图形*/
直方图
折线图
散点图
用于资料中包含两个数量指标,且两个变量之间有自变量和因变 量之分。通常把自变量放在横轴上,因变量放在纵轴上。将成对 的数据点(X, Y)在X和Y直角坐标系中用点表示出来,所以称 为散布图或散点图。
如绘制某一组随 机样本的身高和 体重的散点图。
描述性统计图形
(2)GPLOT过程
一般使用格式:
峰值反映分布的尖锐度或平坦度,正峰值表示相对尖锐的分布,负峰 值表示相对平坦的分布。 PROB>|T|:在总体均值是0的假设条件下,学生T统计量大于临界T的绝 对值的概率。
4
描述性统计分析指标
(2)MEANS过程
一般使用格式 PROC MEANS DATA=SAS数据集 <选项列表> ; VAR 变量列表; CLASS 变量列表; BY 变量列表; FREQ 变量; WEIGHT 变量; ID 变量列表; OUTPUT <OUT=输出数据集名> <统计量关键字=变量名 列表> ; RUN;