(完整word版)高中数学新定义类型题

合集下载

高中数学论文“新定义”高考新题型的新宠儿

高中数学论文“新定义”高考新题型的新宠儿

“新定义”——近年高考创新题型的新宠儿近年来全国各地的高考试卷都相继推出了以能力立意为目标,以增大思维容量为特色,具有相当浓度和明确导向的创新题型,使高考试题充满活力。

纵观全国各地高考试卷的创新题,不难发现,“新定义”型这种题目正可谓创新题型的新宠儿。

“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

一、 新概念型例1(2006福建卷)对于直角坐标平面内的任意两点A (x 1,y 1)、B (x 2,y 2),定义它们之间的一种“距离”:‖AB ‖=︱x 1-x 2︱+︱y 1-y 2︱.给出下列三个命题: ①若点C 在线段AB 上,则‖AC ‖+‖CB ‖=‖AB ‖;②在△ABC 中,若∠C =90°,则‖AC ‖2+‖CB ‖2=‖AB ‖2;③在△ABC 中,‖AC ‖+‖CB ‖>‖AB ‖.其中真命题的个数为 ( )A.0B.1C.2D.3解析:对于直角坐标平面内的任意两点1122(,),(,)A x y B x y ,定义它们之间的一种“距离”:2121||.AB x x y y =-+- ①若点C 在线段AB 上,设C 点坐标为(x 0,y 0),x 0在x 1、x 2之间,y 0在y 1、y 2之间, 则01012020||||||||AC CB x x y y x x y y +=-+-+-+-=2121||.x x y y AB -+-= ③在ABC ∆中,01012020||||||||AC CB x x y y x x y y +=-+-+-+->01200120|()()||()()|x x x x y y y y -+-+-+- =2121||.x x y y AB -+-= ∴命题① ③成立,而命题②在ABC ∆中,若90,o C ∠=则222;AC CB AB +=明显不成立,选C.评析:对于此题中的新概念,对阅读理解能力有一定的要求。

高中数学——集合新定义题目(教案)

高中数学——集合新定义题目(教案)

集合新定义题目1.(已知集合22{(,)3,,}A x y x y x Z y Z =+≤∈∈,则A 中元素的个数为( ) A. 9 B. 8 C. 5 D. 4 【答案】A2211311x x y y -≤≤⎧+≤⎨-≤≤⎩,解得,又因为x Z y Z ∈∈,,所以1,0,11,01x y =-=-;,339⨯=,故A 中的元素有9个.2.已知集合{}1,2,3,4,5A =,,,,{()|}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A .3B .6C .8D .10 【答案】D 解:,,,{()|}B x y x A y A x y A =∈∈-∈,{}1,2,3,4,5A =,2x ∴=,1y =;3x =,1,2y =;4x =,1,2,3y =;5x =,1,2,3,4y =.()()()()()()()()()(){}2,13,13,24,14,24,35,15,,,,,,25,,,3,5,4,B ∴=,B ∴中所含元素的个数为10.3.已知集合A ,B 满足运算{|A B x x A *=∈且}x B ∉,若集合{}1,2,3A =,{}2,4B =,则A B *=( )A.{}1,2,3B.{}2,4C.{}1,3D.{}2【答案】C4.在集合{},,,a b c d 上定义两种运算⊕和⊗如下:a b c d a a b c d b b b b b c c b cbddb b d⊕ a b c d a a a a a b a b c d c accada d a d⊗ 那么()d a c ⊗⊕=( )A. aB. bC. cD. d 【答案】A5.若集合,1{}1A =-,{}0,2B =,则集合{|}z z x y x A y B =+∈∈,,中的元素个数为( )A .5个B .4个C .3个D .2个 【答案】C6.集合M 中的元素都是正整数,且若a M ∈,则6a M -∈,则所有满足条件的集合M 共有( )A .6个B .7个C .8个D .9个 【答案】B7.已知元素为实数的集合S 满足下列条件:①0S ∉,1S ∉;②若a S ∈,则11S a∈-. (1)若{22}S -⊆,,求使元素个数最少的集合S ; (2)若非空集合S 为有限集,则你对集合S 的元素个数有何猜测?并请证明你的猜测正确.【答案】(1)1132,1,,2,,232⎧⎫--⎨⎬⎩⎭; 解:(1)2S ∈,则1S -∈,12S ∈,可得2S ∈;2S -∈,则13S ∈,32S ∈,可得2S -∈,∴{22}S -⊆,,使元素个数最少的集合S 为1132,1,,2,,232⎧⎫--⎨⎬⎩⎭. (2)非空有限集S 的元素个数是3的倍数. 证明如下:①设a S ∈则0a ≠,1且a S ∈,则11S a ∈-,11111a S a a-=∈--,111a S a a=∈--, 假设11a a =-,则2101a a a -+=≠()无实数根,故11a a≠-.同理可证a ,11a -,1a a-两两不同.即若有a S ∈,则必有11,,1a a S a a -⎧⎫⊆⎨⎬-⎩⎭. ②若存在()b S b a ∈≠,必有11,,1b b S b b -⎧⎫⊆⎨⎬-⎩⎭1111,,,,11a b a b a a b b --⎧⎫⎧⎫=∅⎨⎬⎨⎬--⎩⎭⎩⎭于是1111,,,,,11a b a b S a ab b --⎧⎫⊆⎨⎬--⎩⎭.上述推理还可继续,由于S 为有限集,故上述推理有限步可中止,∴S 的元素个数为3的倍数. 8.已知集合(){}22,1A x y xy =+≤,{}()|,11,11B x y x y =≤≤-≤≤-,则集合()()(){}12121122,,,,,,x y x x x y y y x y A x N y B =+=∈=+∈表示的区域的面积是________.【答案】12π+解:由N 解得1212,x x x y y y =-=-,代入221x y +≤,得()()22221x x y y -+-≤,该解析式表示圆心在区域{()|,}1111x y x y ≤≤-≤≤-,内变动,变动过程中形成如图所示的平面区域,这个区域含有1个边长为2的正方形区域,以及4个四分之一圆形(半径为1)区域,个边长分别为2,1的矩形区域,故其面积是2242112ππ⨯+⨯⨯=++9. 设整数4n ≥,集合1,2,3,},{X n =⋯.令集合{(),,,|,S x y z x y z X =∈,且三个条件:x y z <<,y z x <<,z x y <<中恰有一个成立},若(,,)x y z 和(,,)z w x 都在S 中,则下列选项正确的是( )A .,,()y z w S ∈,,,()x y w S ∉B .,,()y z w S ∈,,,()x y w S ∈C .,,()y z w S ∉,,,()x y w S ∈D .,,()y z w S ∉,,,()x y w S ∉ 【答案】B解:方法一:(一般方法)因为,,()x y z S ∈,,,()z w x S ∈,所以x y z <<①,y z x <<②,z x y <<③三个式子中恰有一个成立;z w x <<④,w x z <<⑤,x z w <<⑥三个式子中恰有一个成立.则x ,y ,z ,w 的大小有四种情况.第一种:①⑤成立,此时w x y z <<<,于是,,()y z w S ∈,,,()x y w S ∈;第二种:①⑥成立,此时x y z w <<<,于是,,()y z w S ∈,,,()x y w S ∈;第三种:②④成立,此时y z w x <<<,于是,,()y z w S ∈,,,()x y w S ∈;第四种:③④成立,此时z w x y <<<,于是,,()y z w S ∈,,,()x y w S ∈.综合上述四种情况,可得,,()y z w S ∈,,,()x y w S ∈.方法二:(特殊值法)不妨令2x =,3y =,4z =,1w =,则()(),1,4,,3y z w S =∈,()(),1,3,,2x y w S =∈,故选B.10.已知集合{(),|,}A x y x y R =∈,若,x y A ∈,已知()()1122,,,x x y y x y ==,定义集合A 中元素间的运算x y *,称为“*”运算,此运算满足以下运算规律: ①任意,x y A ∈有x y y x *=*;②任意,,x y z A ∈有()x y z x z y z +*=*+*,其中1212(),x x x y y y +=++;③任意,x y A ∈,a R ∈有()()ax y a x y *=*;④任意x A ∈有0x x *≥,且0x x *=成立的充分必要条件是)0(0x =,. 如果()()1122,,,x x y y x y ==,那么下列运算满足“*”运算的是( ) A .11222x y x y x y *=+ B .1122x y x y x y *=- C .11221x y x y x y *=++ D .12122x y x x y y *=+ 【答案】D易知A 、B 选项中的运算均不满足规律①;C 选项中,若令)0(0x =,,则0011x x *=++=,不满足规律④.故选D。

高中数学新定义型问题(解析版)

高中数学新定义型问题(解析版)

新定义型问题1(新高考北京卷)生物丰富度指数d =S -1ln N是河流水质的一个评价指标,其中S ,N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由N 1变为N 2,生物丰富度指数由2.1提高到3.15,则()A.3N 2=2N 1B.2N 2=3N 1C.N 22=N 31 D.N 32=N 21【答案】D【分析】根据题意分析可得S -1ln N 1=2.1,S -1ln N 2=3.15,消去S 即可求解.【详解】由题意得S -1ln N 1=2.1,S -1ln N 2=3.15,则2.1ln N 1=3.15ln N 2,即2ln N 1=3ln N 2,所以N 32=N 21.故选:D .2(新高考上海卷)定义一个集合Ω,集合中的元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得λ1OP 1+λ2OP 2 +λ3OP 3 =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是()A.0,0,0 ∈Ω B.-1,0,0 ∈ΩC.0,1,0 ∈ΩD.0,0,-1 ∈Ω【答案】C【分析】首先分析出三个向量共面,显然当1,0,0 ,0,0,1 ,0,1,0 ∈Ω时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量OP 1,OP 2 ,OP 3 共面,即这三个向量不能构成空间的一个基底,对A ,由空间直角坐标系易知0,0,0 ,(1,0,0),(0,0,1)三个向量共面,则当-1,0,0 ,(1,0,0)∈Ω无法推出(0,0,1)∉Ω,故A 错误;对B ,由空间直角坐标系易知-1,0,0 ,(1,0,0),(0,0,1)三个向量共面,则当0,0,0 ,(1,0,0)∈Ω无法推出(0,0,1)∉Ω,故A 错误;对C , 由空间直角坐标系易知1,0,0 ,0,0,1 ,0,1,0 三个向量不共面,可构成空间的一个基底,则由1,0,0 ,0,1,0 ∈Ω能推出0,0,1 ∉Ω,对D ,由空间直角坐标系易知1,0,0 ,0,0,1 ,0,0,-1 三个向量共面,则当0,0,-1 (1,0,0)∈Ω无法推出(0,0,1)∉Ω,故D 错误.故选:C .3(新高考上海卷)已知函数f (x )的定义域为R ,定义集合M =x 0x 0∈R ,x ∈-∞,x 0 ,f x <f x 0 ,在使得M =-1,1 的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x =2处取最大值C.存在f x 是严格增函数D.存在f x 在x =-1处取到极小值【答案】B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【详解】对于A ,若存在 y =f (x ) 是偶函数, 取 x 0=1∈[-1,1],则对于任意 x ∈(-∞,1),f (x )<f (1), 而 f (-1)=f (1), 矛盾, 故 A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .4(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1qn -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1qn -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.5(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m+2.下面证明,对1≤i<j≤4m+2,如果下面两个命题同时成立,则数列1,2,...,4m+2一定是i,j-可分数列:命题1:i∈A,j∈B或i∈B,j∈A;命题2:j-i≠3.我们分两种情况证明这个结论.第一种情况:如果i∈A,j∈B,且j-i≠3.此时设i=4k1+1,j=4k2+2,k1,k2∈0,1,2,...,m.则由i<j可知4k1+1<4k2+2,即k2-k1>-14,故k2≥k1.此时,由于从数列1,2,...,4m+2中取出i=4k1+1和j=4k2+2后,剩余的4m个数可以分为以下三个部分,共m组,使得每组成等差数列:①1,2,3,4,5,6,7,8,...,4k1-3,4k1-2,4k1-1,4k1,共k1组;②4k1+2,4k1+3,4k1+4,4k1+5,4k1+6,4k1+7,4k1+8,4k1+9,...,4k2-2,4k2-1,4k2,4k2+1,共k2-k1组;③4k2+3,4k2+4,4k2+5,4k2+6,4k2+7,4k2+8,4k2+9,4k2+10,...,4m-1,4m,4m+1,4m+2,共m-k2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m+2是i,j-可分数列.第二种情况:如果i∈B,j∈A,且j-i≠3.此时设i=4k1+2,j=4k2+1,k1,k2∈0,1,2,...,m.则由i<j可知4k1+2<4k2+1,即k2-k1>14,故k2>k1.由于j-i≠3,故4k2+1-4k1+2≠3,从而k2-k1≠1,这就意味着k2-k1≥2.此时,由于从数列1,2,...,4m+2中取出i=4k1+2和j=4k2+1后,剩余的4m个数可以分为以下四个部分,共m组,使得每组成等差数列:①1,2,3,4,5,6,7,8,...,4k1-3,4k1-2,4k1-1,4k1,共k1组;②4k1+1,3k1+k2+1,2k1+2k2+1,k1+3k2+1,3k1+k2+2,2k1+2k2+2,k1+3k2+2,4k2+2,共2组;③全体4k1+p,3k1+k2+p,2k1+2k2+p,k1+3k2+p,其中p=3,4,...,k2-k1,共k2-k1-2组;④4k2+3,4k2+4,4k2+5,4k2+6,4k2+7,4k2+8,4k2+9,4k2+10,...,4m-1,4m,4m+1,4m+2,共m-k2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k2-k1-2个行,4个列的数表以后,4个列分别是下面这些数:4k1+3,4k1+4,...,3k1+k2,3k1+k2+3,3k1+k2+4,...,2k1+2k2,2k1+2k2+3,2k1+2k2+3,...,k1+3k2,k1+3k2+3,k1+3k2+4,...,4k2.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k1+1,4k1+2,...,4k2+2中除开五个集合4k1+1,4k1+2,3k1+k2+1,3k1+k2+2,2k1+2k2+1,2k1+2k2+2,k1+3k2+1,k1+3k2+2,4k2+1,4k2+2中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k1+2和4k2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m+2是i,j-可分数列.至此,我们证明了:对1≤i<j≤4m+2,如果前述命题1和命题2同时成立,则数列1,2,...,4m+2一定是i,j-可分数列.然后我们来考虑这样的i,j的个数.首先,由于A∩B=∅,A和B各有m+1个元素,故满足命题1的i,j总共有m+12个;而如果j-i=3,假设i∈A,j∈B,则可设i=4k1+1,j=4k2+2,代入得4k2+2-4k1+1=3.但这导致k2-k1=12,矛盾,所以i∈B,j∈A.设i=4k1+2,j=4k2+1,k1,k2∈0,1,2,...,m,则4k2+1-4k1+2=3,即k2-k1=1.所以可能的k1,k2恰好就是0,1,1,2,...,m-1,m,对应的i,j分别是2,5,6,9,..., 4m-2,4m+1,总共m个.所以这m+12个满足命题1的i,j中,不满足命题2的恰好有m个.这就得到同时满足命题1和命题2的i,j的个数为m+12-m.当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.6(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C的不同于P n的交点为Q n2ky n-x n-k2x n1-k2,y n+k2y n-2kx n1-k2,而注意到Q n的横坐标亦可通过韦达定理表示为-y n-kx n2-91-k2x n,故Q n一定在C的左支上.所以P n+1x n+k2x n-2ky n1-k2,y n+k2y n-2kx n1-k2.这就得到x n+1=x n+k2x n-2ky n1-k2,y n+1=y n+k2y n-2kx n1-k2.所以x n+1-y n+1=x n+k2x n-2ky n1-k2-y n+k2y n-2kx n1-k2=x n+k2x n+2kx n1-k2-y n+k2y n+2ky n1-k2=1+k2+2k1-k2x n-y n=1+k1-kx n-y n.再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2.这就表明Sn 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.7(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.8(新高考上海卷)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x 取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.【答案】(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【详解】(1)当M (0,0)时,s x =(x -0)2+1x -02=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x2=1x2即x=1时取等号,故对于点M0,0,存在点P1,1,使得该点是M0,0在f x 的“最近点”.(2)由题设可得s x =(x-1)2+e x-02=(x-1)2+e2x,则s x =2x-1+2e2x,因为y=2x-1,y=2e2x均为R上单调递增函数,则s x =2x-1+2e2x在R上为严格增函数,而s 0 =0,故当x<0时,s x <0,当x>0时,s x >0,故s x min=s0 =2,此时P0,1,而f x =e x,k=f 0 =1,故f x 在点P处的切线方程为y=x+1.而k MP=0-11-0=-1,故k MP⋅k=-1,故直线MP与y=f x 在点P处的切线垂直.(3)设s1x =(x-t+1)2+f x -f t +g t2,s2x =(x-t-1)2+f x -f t -g t2,而s 1x =2(x-t+1)+2f x -f t +g tf x ,s 2x =2(x-t-1)+2f x -f t -g tf x ,若对任意的t∈R,存在点P同时是M1,M2在f x 的“最近点”,设P x0,y0,则x0既是s1x 的最小值点,也是s2x 的最小值点,因为两函数的定义域均为R,则x0也是两函数的极小值点,则存在x0,使得s1 x0=s2 x0=0,即s1 x0=2x0-t+1+2f x0f x0-f(t)+g(t)=0①s2 x0=2x0-t-1+2f x0f x0-f(t)-g(t)=0②由①②相等得4+4g(t)⋅f x0=0,即1+f x0g(t)=0,即f x0=-1g(t),又因为函数g(x)在定义域R上恒正,则f x0=-1g(t)<0恒成立,接下来证明x0=t,因为x0既是s1x 的最小值点,也是s2x 的最小值点,则s1x0≤s(t),s2x0≤s(t),即x0-t+12+f x0-f t +g t2≤1+g t2,③x0-t-12+f x0-f t -g t2≤1+g t2,④③+④得2x0-t2+2+2f x0-f(t)2+2g2(t)≤2+2g2(t)即x0-t2+f x0-f t2≤0,因为x0-t2≥0,f x0-f t2≥0则x0-t=0f x0-f t =0,解得x=t,则f t =-1g(t)<0恒成立,因为t的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.一、单选题1(2024·湖南怀化·二模)给定整数n ≥3,有n 个实数元素的集合S ,定义其相伴数集T =a -b a ,b ∈S ,a ≠b ,如果min T =1,则称集合S 为一个n 元规范数集.(注:min X 表示数集X 中的最小数).对于集合M =-0.1,-1.1,2,2.5 、N =-1.5,-0.5,0.5,1.5 ,则()A.M 是规范数集,N 不是规范数集B.M 是规范数集,N 是规范数集C.M 不是规范数集,N 是规范数集D.M 不是规范数集,N 不是规范数集【答案】C【分析】利用规范数集的定义,逐项判断即可得解.【详解】集合M =-0.1,-1.1,2,2.5 中,2∈M ,2.5∈M ,则|2-2.5|=0.5<1,即M 的相伴数集中的最小数不是1,因此M 不是规范数集;集合N =-1.5,-0.5,0.5,1.5 ,|-1.5-(-0.5)|=1,|-0.5-0.5|=1,|0.5-1.5|=1,|-1.5-0.5|=|-0.5-1.5|=2,|-1.5-1.5|=3,即N 的相伴数集中的最小数是1,因此N 是规范数集.故选:C2(2024·四川绵阳·模拟预测)一般地,任意给定一个角α∈R ,它的终边OP 与单位圆的交点P 的坐标,无论是横坐标x 还是纵坐标y ,都是唯一确定的,所以点P 的横坐标x 、纵坐标y 都是关于角α的函数.下面给出这些函数的定义:①把点P 的纵坐标y 叫作α的正弦函数,记作sin α,即sin α=y ;②把点P 的横坐标x 叫作α的余弦函数,记作cos α,即cos α=x ;③把点P 的纵坐标y 的倒数叫作α的余割函数,记作csc α,即csc α=1y ;④把点P 的横坐标x 的倒数叫作α的正割函数,记作sec α,即sec α=1x.下列结论错误的是()A.sin α⋅csc α=1B.sec2π3=-2C.函数f x =sec x 的定义域为x x ≠k π,k ∈Z D.sec 2α+sin 2α+csc 2α+cos 2α≥5【答案】C【分析】根据定义可判断A ;利用定义转化为余弦求解可判断B ;转化为余弦表示,根据分母不为0求解可判断C ;转化为正弦和余弦,利用平方关系和二倍角公式化简,由正弦函数性质可判断D .【详解】由题知,csc α=1sin α,sec α=1cos α,对于A ,sin α⋅csc α=y ⋅1y=1,A 正确;对于B ,sec2π3=1x =1cos 2π3=1cos π-π3 =1-cos π3=-2,B 正确;对于C ,函数f x =sec x =1cos x ,由cos x ≠0得x ≠k π+π2,k ∈Z所以f x 的定义域为x x ≠k π+π2,k ∈Z ,C 错误;对于D ,sec 2α+sin 2α+csc 2α+cos 2α=1+1cos 2α+1sin 2α=1+1sin 2αcos 2α=1+4sin 22α≥5,当sin2α=±1时,等号成立,D 正确.故选:C .3(2024·河北邯郸·二模)对任意两个非零的平面向量a 和b ,定义:a ⊕b =a ⋅ba 2+b2,a ⊙b=a ⋅bb2.若平面向量a ,b 满足a >b >0,且a ⊕b 和a ⊙b 都在集合n 4|n ∈Z ,0<n ≤4 中,则a ⊕b +a ⊙b =()A.1B.32C.1或74D.1或54【答案】D【分析】根据a >b >0,得到a 2+b 2>2a b ,再利用题设中的定义及向量夹角的范围,得到a ⊕b <12,a ⊙b >12,再结合条件,即可求出结果.【详解】因为n 4|n ∈Z ,0<n ≤4=14,12,34,1,设向量a 和b 的夹角为θ,因为a >b >0,所以a 2+b 2>2a b,得到a⊕b =a ⋅b a 2+b 2=a b cos θa 2+b 2<a b cos θ2a ⋅b=cos θ2,又θ∈0,π ,所以cos θ2≤12,又a ⊕b 在集合n 4|n ∈Z ,0<n ≤4 中,所以cos θ2>14,即cos θ>12,得到a ⊕b =14,又因为a ⊙b =a ⋅b b 2=a ⋅b cos θb 2=a b cos θ>cos θ>12,所以a ⊙b =34或1,所以a ⊕b +a ⊙b =1或54,故选:D .4(2024·上海杨浦·二模)平面上的向量a 、b 满足:a =3,b =4,a ⊥b.定义该平面上的向量集合A ={x ||x +a |<|x +b |,x ⋅a >x ⋅b}.给出如下两个结论:①对任意c ∈A ,存在该平面的向量d ∈A ,满足c -d=0.5②对任意c ∈A ,存在该平面向量d ∉A ,满足c -d =0.5则下面判断正确的为()A.①正确,②错误B.①错误,②正确C.①正确,②正确D.①错误,②错误【答案】C【分析】根据给定条件,令a =(3,0),b =(0,4),设x =(m ,n ),利用向量模及数量积的坐标表示探求m ,n 的关系,再借助平行线间距离分析判断得解.【详解】由|a |=3,|b |=4,a ⊥b ,不妨令a =(3,0),b =(0,4),设x=(m ,n ),|x +a |<|x +b |,得|x +a |2<|x +b |2,而x +a =(m +3,n ),x +b =(m ,n +4),则(m +3)2+n 2<m 2+(n +4)2,整理得6m -8n -7<0,由x ⋅a >x ⋅b,得3m -4n >0,平行直线6m -8n -7=0和3m -4n =0间的距离为d =0-(-7)62+82=0.7,到直线6m -8n -7=0和直线3m -4n =0距离相等的点到这两条直线的距离为0.35,如图,阴影部分表示的区域为集合A ,因此无论d 是否属于A ,都有c -d=0.5,所以命题①②都正确.故选:C【点睛】思路点睛:已知几个向量的模,探求向量问题,可以在平面直角坐标系中,借助向量的坐标表示,利用代数方法解决.5(2024·甘肃兰州·一模)球面上两点间距离的定义为:经过球面上两点的大圆在这两点间劣弧的长度(大圆就是经过球心的平面截球面所得的圆).设地球的半径为R ,若甲地位于北纬45°东经120°,乙地位于北纬45°西经60°,则甲、乙两地的球面距离为()A.2π6R B.2π3R C.π2R D.2π2R 【答案】C【分析】分析甲、乙两地的球心角,即可得解.【详解】甲、乙两地在北纬45°线上,所对圆心角为120°+60°=180°,即甲、乙两地在北纬45°线所在小圆的直径的两端,且小圆的半径r =R sin45°=22R ,则R 2+R 2=2R 2,所以甲、乙两地的球心角为π2,故甲、乙两地的球面距离为π2R .故选:C .二、多选题6(2024·安徽芜湖·二模)在平面直角坐标系xOy 中,角θ以坐标原点O 为顶点,以x 轴的非负半轴为始边,其终边经过点M a ,b ,OM =m m ≠0 ,定义f θ =b +a m ,g θ =b -am,则()A.f π6 +g π6 =1 B.f θ +f 2θ ≥0C.若f θg θ=2,则sin2θ=35 D.f θ g θ 是周期函数【答案】ACD【分析】根据题意分别求出cos θ=a m ,sin θ=b m ,则f θ =2sin θ+π4 ,g θ =2sin θ-π4,从而可对A 判断求解,利用换元法令t =sin θ+cos θ=2sin θ+π4 ∈-2,2 可对B 判断求解,由f θ g θ=tan θ+1tan θ-1=2求出tan θ=3,并结合sin2θ==2tan θtan 2θ+1从而可对C 判断求解,由f θ g θ =-cos2θ可对D 判断求解.【详解】由题意得M a ,b 在角θ的终边上,且OM =m ,所以cos θ=a m ,sin θ=b m,则f θ =b +a m =sin θ+cos θ=2sin θ+π4 ,g θ =b -a m =sin θ-cos θ=2sin θ-π4,对A :f π6+g π6 =sin π6+cos π6+sin π6-cos π6=1,故A 正确;对B :f θ +f 2θ =sin θ+cos θ+sin θ+cos θ 2,令t =sin θ+cos θ=2sin θ+π4∈-2,2 ,所以f θ +f 2θ =t +t 2=t +122-14≥-14,故B 错误;对C :f θ g θ =sin θ+cos θsin θ-cos θ=tan θ+1tan θ-1=2,解得tan θ=3,又由sin2θ=2sin θcos θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=2×332+1=35,故C 正确;对D :f θ g θ =sin θ+cos θ sin θ-cos θ =sin 2θ-cos 2θ=-cos2θ,因为y =cos2θ为周期函数,故D 正确.故选:ACD .7(2024·全国·模拟预测)已知函数f x 和实数m ,n ,则下列说法正确的是()A.定义在R 上的函数f x 恒有f x =f m -nx ,则当n =1时,函数的图象有对称轴B.定义在R 上的函数f x 恒有f x =f m -nx ,则当n =-1时,函数具有周期性C.若m =1,n =2,f x =-3x 2+2x ,x ≤13f m -nx ,x >13,则∀t ∈-∞,13 ,f t >f 23-t 恒成立D.若m =4,n =1,f x =ln x -a ,x ∈0,2 f m -nx ,x ∈2,4,且f x 的4个不同的零点分别为x 1,x 2,x 3x 4,且x 1<x 2<x 3<x 4,则x 1x 2+x 3x 4-4x 3+x 4 =-14【答案】ACD【分析】根据函数的对称性和周期性可分别判断AB ;求出x >13时的解析式,然后根据自变量范围代入相应表达式解不等式即可判断C ;将问题转化为直线y =a 与函数g x =ln x ,x ∈0,2ln 4-x ,x ∈2,4 有四个交点,结合图象求得四根的关系即可判断D .【详解】对于A ,若n =1,则f x =f m -x ,所以函数f x 的图象的对称轴为直线x =m2,故A 正确.对于B ,当n =-1时,f x =f m +x .若m =0,则f x =f x ,函数不具有周期性,故B 错误.对于C ,若m =1,n =2,则f x =-3x 2+2x ,x ≤13f 1-2x ,x >13,当x >13时,1-2x <13,则f x =-31-2x 2+21-2x =-34x 2-4x +1 +21-2x =-12x 2+8x -1,即当x >13时,f x =-12x 2+8x -1.当t ∈-∞,13 时,23-t ∈13,+∞ ,所以f t -f 23-t=-3t 2+2t --1223-t 2+823-t -1 =9t 2-6t +1=3t -1 2>0,所以f t >f 23-t恒成立,C 正确.对于D ,当x ∈2,4 时,4-x ∈0,2 ,则f x =ln x -a ,x ∈0,2ln 4-x -a ,x ∈2,4 ,令g x =ln x ,x ∈0,2ln 4-x ,x ∈2,4,作出函数g x 的图象和直线y =a ,如图.要使f x 有4个不同的零点,则函数g x 的图象与直线y =a 有4个不同的交点.又x 1<x 2<x 3<x 4,则-ln x 1=ln x 2=ln 4-x 3 =-ln 4-x 4 ,所以ln x 1+ln x 2=0,ln 4-x 3 +ln 4-x 4 =0, 所以x 1x 2=1,4-x 3 4-x 4 =1,则16-4x 3+x 4 +x 3x 4=1,所以x 1x 2+x 3x 4-4x 3+x 4 =-14,D 正确.故选:ACD .【点睛】思路点睛:关于函数零点个数的有关问题,一般转化为两个函数图象交点问题,利用函数图象分析求解即可.8(2024·浙江绍兴·模拟预测)对于任意的两点A x 1,y 1 ,B x 2,y 2 ,定义A ,B 间的折线距离d AB =x 1-x 2 +y 1-y 2 ,反折线距离l AB =x 1-y 2 +x 2-y 1 ,O 表示坐标原点. 下列说法正确的是()A.d AB +d BC ≥d AC .B.若d AB <l AB ,则y 1-x 1 y 2-x 2 ≥0.C.若AB 斜率为k ,d AB =1+k1+k2AB .D.若存在四个点P x ,y 使得d OP =1,且x 2+y -r 2=r 2r >0 ,则r 的取值范围2-1,12 .【答案】ABD【分析】对于A ,直接使用绝对值不等式即可证明;对于B ,在使用绝对值不等式的同时考虑到绝对值不等式取等的条件(即a +b =a +b ,a +b ≥a -b ,ab ≥0两两等价,对两个不等式两边同时平方即得结论),即可判断;对于C ,举出一个反例即可否定;对于D ,先将问题转化为方程组的解的个数问题,然后利用解析几何工具直观理解,猜出答案,最后再严格论证结果即可.【详解】对于A ,设C x 3,y 3 ,我们有d AB +d BC =x 1-x 2 +y 1-y 2 +x 2-x 3 +y 2-y 3 =x 1-x 2 +x 2-x 3 +y 1-y 2 +y 2-y 3 ≥x 1-x 2 +x 2-x 3 +y 1-y 2 +y 2-y 3 =x 1-x 3 +y 1-y 3 =d AC ,故A 正确;对于B ,若d AB <l AB ,则l AB >d AB =x 1-x 2 +y 1-y 2 ≥x 1-x 2 +y 1-y 2 =x 1-y 2 +y 1-x 2 ,这意味着x 1-y 2 +y 1-x 2 =x 1-y 2 +x 2-y 1 =l AB >x 1-y 2 +y 1-x 2 .从而由x 1-y 2 +y 1-x 2 >x 1-y 2 +y 1-x 2 ,知x 1-y 2 y 1-x 2 <0,即y 2-x 1 y 1-x 2 >0,所以y 2-x 1 +y 1-x 2 =y 2-x 1 +y 1-x 2 .故y 1-x 1 +y 2-x 2 =y 2-x 1 +y 1-x 2 =y 2-x 1 +y 1-x 2 =l AB .而d AB =x 1-x 2 +y 1-y 2 ≥y 1-y 2 -x 1-x 2 =y 1-x 1 -y 2-x 2 .故y 1-x 1 +y 2-x 2 =l AB >d AB ≥y 1-x 1 -y 2-x 2 .从而由y 1-x 1 +y 2-x 2 >y 1-x 1 -y 2-x 2 ,知y 1-x 1 y 2-x 2 ≥0,故B 正确;对于C ,考虑A 1,0 ,B 0,1 ,此时k =-1,所以1+k1+k 2AB =0.但d AB =1-0 +0-1 =2>0,故C 错误;对于D ,条件等价于关于x ,y 的方程组x +y =1x 2+y -r 2=r2,即x +y =1x 2+y 2=2ry 有四个解.如下图所示,该方程组可以直观地理解为正方形x +y =1和圆x 2+y 2=2ry 有四个公共点,直观的理解即为圆x 2+y 2=2ry 与矩形上方的两条边所在的直线均相交,且交点都在边的内部,而当r =2-1时,圆与上方的两条边相切,当r =12时,圆与上方的边的交点恰落在端点上,故可猜测取值范围是2-1,12,下面再使用二次方程工具严格证明此结论(也可以使用距离公式等其它方法证明).若x ,y 满足原方程组,则y =x 2+y 22r>0,故x +y =1.而r 2=x 2+y -r 2=x 2+1-x -r 2=2x 2-21-r x +1-r 2,故2x 2-21-r x +1-2r =0,同时还有x =1-y ≤1.由于当x 确定后,y 只有唯一可能的取值1-x ,而方程组有四个解,所以使得相应的y 存在的x 至少有四个.根据前面的讨论,这样的x 必满足2x 2-21-r x +1-2r =0,且x ≤1,所以方程2x 2-21-r x +1-2r =0必定在-1,1 上有四个解.这表明关于t 的方程2t 2-21-r t +1-2r =0在0,1 上一定有两个解,所以首先有判别式为正数,结合Δ=41-r 2-81-2r =41-2r +r 2-2+4r =4r 2+2r -1 ,就有r >2-1.同时,由于两根都在0,1 内,故两根乘积为正数,故1-2r >0,即r <12.这就证明了2-1<r <12.最后,当2-1<r <12时,原方程组的确存在四组不同的解:x =1-r +r 2+2r -12y =1+r -r 2+2r -12,x =-1-r +r 2+2r -12y =1+r -r 2+2r -12,x =1-r -r 2+2r -12y =1+r +r 2+2r -12,x =-1-r -r 2+2r -12y =1+r +r 2+2r -12.所以r 的取值范围是2-1,12,D 正确.故选:ABD .三、填空题9(2024·湖南长沙·三模)已知函数y =f x ,任取t ∈R ,定义集合A t ={y ∣y =f x ,点P t ,f t 、Q x ,f x 满足PQ ≤2 . 设M t ,m t 分别表示集合A t 中元素的最大值和最小值,记h t =M t -m t ,试解答以下问题:(1)若函数f x =x 2,则h 0 =;(2)若函数f x =sin π2x ,则h t 的最小正周期为.【答案】12【分析】(1)把t =0代入,然后计算A t 的最大值和最小值即可.(2)先表示出P t ,sin π2t 、Q x ,sin π2x ,然后根据P 的位置分类分析M t ,m t 的值.【详解】对于 1 ,因为函数 f x =x 2,当 t =0 时,P 0,0 、Q x ,x 2 且 x -0 2+x 2-0 2≤2,即 x 2+x 4≤2,令 x 2=m ,即 m 2+m ≤2,解得 0≤m ≤1,所以 M t =1,m t =0,所以 h 0 =1-0=1 ;对于 2 ,如图所示,若函数 f x =sin π2x ,此时,函数的最小正周期为 2ππ2=4,点 P t ,sin π2t 、Q x ,sin π2x ,当点 P 在 A 点时,点 Q 在曲线 OAB 上,M t =1,m t =0,h t =M t -m t =1;当点 P 在曲线上从 A 接近 B 时,h t 逐渐增大,当点 P 在 B 点时,M t =1,m t =-1h t =M t -m t =2;当点 P 在曲线上从 B 接近 C 时,h t 逐渐减小,当点 P 在 C 点时,M t =1,m t =0,h t =M t -m t =1;当点 P 在曲线上从 C 接近 D 时,h t 逐渐增大,当点 P 在 D 点时,M t =1,m t =-1,h t =M t -m t =2;当点 P 在曲线上从 D 接近 E 时,h t 逐渐减小,当点 P 在 E 点时,M t =1,m t =0,h t =M t -m t =1;依此类推,发现 h t 的最小正周期为 2 ,故答案为:(1)1;(2)2.10(2024·四川成都·模拟预测)定义在封闭的平面区域D 内任意两点的距离的最大值称为平面区域D 的“直径”.如图,已知锐角三角形的三个顶点A ,B ,C 在半径为1的圆上,角的对边分别为a ,b ,c ,A =π3.分别以△ABC 各边为直径向外作三个半圆,这三个半圆和△ABC 构成平面区域D ,则平面区域D 的“直径”的取值范围是.【答案】3+32,332【分析】(1)根据给定条件,利用正弦定理边化角,结合和角的正弦公式求出A ;(2)利用向量线性运算,结合向量的三角不等式求出区域D 的“直径”关系式,再利用三角恒等变换结合正弦函数性质求出范围即得.【详解】如图,F ,G 是AC ,BC 的中点,E ,F ,G ,H 四点共线,设P ,Q 分别为BC 、AC 上任意一点,PQ =PG +GF +FQ,PQ =PG +GF +FQ ≤PG +GF +FQ=HG +GF +FE =HE =a +b +c2,即PQ 的长小于等于△ABC 周长的一半,当PQ 与HE 重合时取等,同理,三个半圆上任意两点的距离最大值等于△ABC 周长的一半,因此区域D 的“直径”为△ABC 的周长l 的一半,由正弦定理得:a =2sinπ3=3,b =2sin B ,c =2sin C ,则l =3+2sin B +2sin 2π3-B =3+3sin B +3cos B =3+23sin B +π6.由△ABC 为锐角三角形,得0<B <π20<2π3-B <π2 ,即π6<B <π2,则π3<B +π6<2π3,32<sin B +π6≤1,于是3+3<l ≤33,所以平面区域D 的“直径”的取值范围是3+32,332.故答案为:3+32,332.11(2024·广东佛山·二模)近年,我国短板农机装备取得突破,科技和装备支撑稳步增强,现代农业建设扎实推进.农用机械中常见有控制设备周期性开闭的装置.如图所示,单位圆O 绕圆心做逆时针匀速圆周运动,角速度大小为2πrad /s ,圆上两点A ,B 始终满足∠AOB =2π3,随着圆O 的旋转,A ,B 两点的位置关系呈现周期性变化.现定义:A ,B 两点的竖直距离为A ,B 两点相对于水平面的高度差的绝对值.假设运动开始时刻,即t =0秒时,点A 位于圆心正下方:则t =秒时,A ,B 两点的竖直距离第一次为0;A ,B 两点的竖直距离关于时间t 的函数解析式为f t =.【答案】133sin 2πt +π3【分析】以O 为原点,以OA 所在直线为y 轴建立平面直角坐标系,利用三角函数定义表示点A ,B 的坐标,由已知结合和角的正弦公式化简即得.【详解】以O 为原点,以OA 所在直线为y 轴,建立平面直角坐标系,由于角速ω=2πrad /s ,设点A cos 2πt -π2 ,sin 2πt -π2 ,圆上两点A 、B 始终保持∠AOB =2π3,则B cos 2πt +π6 ,sin 2πt +π6,要使A 、B 两点的竖直距高为0,则sin 2πt -π2 =sin 2πt +π6 ,第一次为0时,4πt -π3=π,解得t =13,f (t )=sin 2πt +π6 -sin 2πt -π2=32sin2πt +12cos2πt +cos2πt=32sin2πt +32cos2πt=3sin 2πt +π3.故答案为:13;3sin 2πt +π3【点睛】关键点点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x 轴非负半轴.12(2024·山东枣庄·模拟预测)设A x 1,y 1 ,B x 2,y 2 为平面上两点,定义d (A ,B )=x 1-x 2 +y 1-y 2 、已知点P 为抛物线C :x 2=2py (p >0)上一动点,点Q (3,0),d (P ,Q )的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则d (P ,M )的最小值为.【答案】 232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作PN ⎳x 并构造直角三角形,根据d (P ,M )。

(完整word版)高考数学题型归纳完整版

(完整word版)高考数学题型归纳完整版

第一章集合与常用逻辑用语第一节集合题型1-1 集合的基本概念题型1-2 集合间的基本关系题型1-3 集合的运算第二节命题及其关系、充分条件与必要条件题型1-4 四种命题及关系题型1-5 充分条件、必要条件、充要条件的判断与证明题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围第三节简单的逻辑联结词、全称量词与存在量词题型1-7 判断命题的真假题型1-8 含有一个量词的命题的否定题型1-9 结合命题真假求参数的取值范围第二章函数第一节映射与函数题型2-1 映射与函数的概念题型2-2 同一函数的判断题型2-3 函数解析式的求法第二节函数的定义域与值域(最值)题型2-4 函数定义域的求解题型2-5 函数定义域的应用题型2-6 函数值域的求解第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断题型2-8 函数单调性(区间)的判断题型2-9 函数周期性的判断题型2-10 函数性质的综合应用第四节二次函数题型2-11 二次函数、一元二次方程、二次不等式的关系题型2-12 二次方程的实根分布及条件题型2-13 二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14 指数运算及指数方程、指数不等式题型2-15 指数函数的图象及性质题型2-16 指数函数中恒成立问题第六节对数与对数函数题型2-17 对数运算及对数方程、对数不等式题型2-18 对数函数的图象与性质题型2-19 对数函数中恒成立问题第七节幂函数题型2-20 求幂函数的定义域题型2-21 幂函数性质的综合应用第八节函数的图象题型2-22 判断函数的图象题型2-23 函数图象的应用第九节函数与方程题型2-24 求函数的零点或零点所在区间题型2-25 利用函数的零点确定参数的取值范围题型2-26 方程根的个数与函数零点的存在性问题第十节函数综合题型2-27 函数与数列的综合题型2-28 函数与不等式的综合题型2-29 函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1 导数的定义题型3-2 求函数的导数第二节导数的应用题型3-3 利用原函数与导函数的关系判断图像题型3-4 利用导数求函数的单调性和单调区间题型3-5 函数的极值与最值的求解题型3-6 已知函数在区间上单调或不单调,求参数的取值范围题型3-7 讨论含参函数的单调区间题型3-8 利用导数研究函数图象的交点和函数零点个数问题题型3-9 不等式恒成立与存在性问题题型3-10 利用导数证明不等式题型3-11 导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12 定积分的计算题型3-13 求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1 终边相同角的集合的表示与识别题型4-2 α2是第几象限角题型4-3 弧长与扇形面积公式的计算题型4-4 三角函数定义题型4-5 三角函数线及其应用题型4-6 象限符号与坐标轴角的三角函数值题型4-7 同角求值——条件中出现的角和结论中出现的角是相同的题型4-8 诱导求值与变形第二节三角函数的图象与性质题型4-9 已知解析式确定函数性质题型4-10 根据条件确定解析式题型4-11 三角函数图象变换第三节三角恒等变换题型4-12 两角和与差公式的证明题型4-13 化简求值第四节解三角形题型4-14 正弦定理的应用题型4-15 余弦定理的应用题型4-16 判断三角形的形状题型4-17 正余弦定理与向量的综合题型4-18 解三角形的实际应用第五章平面向量第一节向量的线性运算题型5-1 平面向量的基本概念题型5-2 共线向量基本定理及应用题型5-3 平面向量的线性运算题型5-4 平面向量基本定理及应用题型5-5 向量与三角形的四心题型5-6 利用向量法解平面几何问题第二节向量的坐标运算与数量积题型5-7 向量的坐标运算题型5-8 向量平行(共线)、垂直充要条件的坐标表示题型5-9 平面向量的数量积题型5-10 平面向量的应用第六章数列第一节等差数列与等比数列题型6-1 等差、等比数列的通项及基本量的求解题型6-2 等差、等比数列的求和题型6-3 等差、等比数列的性质应用题型6-4 判断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合第二节数列的通项公式与求和题型6-6 数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式第二节均值不等式和不等式的应用题型7-3 均值不等式及其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 绝对值不等式的解法第四节二元一次不等式(组)与简单的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简单线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球第二节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图⟹直观图——简单几何体基本量的计算题型8-7三视图⟹直观图——简单组合体基本量的计算题型8-8 部分三视图⟹其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”、“点共面”或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12证明空间中直线、平面的垂直关系第六节空间向量及其应用题型8-13 空间向量及其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程第二节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的判断题型9-9 圆的一般方程的充要条件题型9-10 与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的判断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值及取值范围题型10-3 焦点三角形第二节双曲线题型10-4 双曲线的标准方程题型10-5 双曲线离心率的求解及其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面向量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 根据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简单排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简单排列组合问题的结合第二节排列问题题型12-4 特殊元素或特殊位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和分配问题第四节二项式定理题型12-12 证明二项式定理题型12-13 T r+1的系数与x幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式展开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率及其计算题型13-1 古典概型题型13-2 几何概型的计算第二节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回归方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理第二节直接证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{a n}通项公式的猜证及有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节几何证明选讲(选修4-1)题型16-1 圆和直角三角形中长度和角的计算题型16-2 证明题题型16-3 空间图形问题转化为平面问题第二节坐标系与参数方程(选修4-4)题型16-4 参数方程化为普通方程题型16-5 普通方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第三节不等式选讲(选修4-5)题型16-7含绝对值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。

(完整word版)求函数定义域和值域方法和典型题归纳,推荐文档

(完整word版)求函数定义域和值域方法和典型题归纳,推荐文档

<一>求函数定义域、值域方法和典型题归纳一、基础知识整合1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。

则称f:为A 到B 的一个函数。

2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。

由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。

3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是:(1)自变量放在一起构成的集合,成为定义域。

(2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。

4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。

(1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。

(2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。

二、求函数定义域(一)求函数定义域的情形和方法总结1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。

(1)常见要是满足有意义的情况简总:①表达式中出现分式时:分母一定满足不为0;②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。

③表达式中出现指数时:当指数为0时,底数一定不能为0.④根号与分式结合,根号开偶次方在分母上时:根号下大于0.⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1)⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1.(2()log (1)x f x x =-)注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

2024年高考数学新题型之19题压轴题专项汇编(学生版)

2024年高考数学新题型之19题压轴题专项汇编(学生版)

2024新题型之19压轴题1.命题方向2024新题型之19压轴题以大学内容为载体的新定义题型以数列为载体的新定义题型以导数为载体的新定义题型两个知识交汇2.模拟演练题型01以大学内容为载体的新定义题型1(2024·安徽合肥·一模)“q-数”在量子代数研究中发挥了重要作用.设q是非零实数,对任意n∈N*,定义“q-数”(n)q=1+q+⋯+q n-1利用“q-数”可定义“q-阶乘”n !q=(1)q(2)q⋯(n)q,且0 !q=1.和“q-组合数”,即对任意k∈N,n∈N*,k≤n,nk q=n !qk !q n-k!q(1)计算:53 2;(2)证明:对于任意k,n∈N*,k+1≤n,nk q=n-1k-1q+q kn-1kq(3)证明:对于任意k,m∈N,n∈N*,k+1≤n,n+m+1 k+1q -nk+1q=∑mi=0q n-k+in+ikq.2(2024·广东江门·一模)将2024表示成5个正整数x1,x2,x3,x4,x5之和,得到方程x1+x2+x3+x4+x5 =2024①,称五元有序数组x1,x2,x3,x4,x5为方程①的解,对于上述的五元有序数组x1,x2,x3,x4,x5,当1≤i,j≤5时,若max(x i-x j)=t(t∈N),则称x1,x2,x3,x4,x5是t-密集的一组解.(1)方程①是否存在一组解x1,x2,x3,x4,x5,使得x i+1-x i i=1,2,3,4等于同一常数?若存在,请求出该常数;若不存在,请说明理由;(2)方程①的解中共有多少组是1-密集的?(3)记S=5i=1x2i,问S是否存在最小值?若存在,请求出S的最小值;若不存在,请说明理由.3(2024·江苏四校一模)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A,B,C,D是直线l上互异且非无穷远的四点,则称ACBC⋅BDAD(分式中各项均为有向线段长度,例如AB=-BA)为A,B,C,D四点的交比,记为(A,B;C,D).(1)证明:1-(D,B;C,A)=1(B,A;C,D);(2)若l1,l2,l3,l4为平面上过定点P且互异的四条直线,L1,L2为不过点P且互异的两条直线,L1与l1,l2,l3,l4的交点分别为A1,B1,C1,D1,L2与l1,l2,l3,l4的交点分别为A2,B2,C2,D2,证明:(A1,B1;C1,D1)= (A2,B2;C2,D2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG与△E′F′G′的对应边不平行,对应顶点的连线交于同一点,则ΔEFG与△E′F′G′对应边的交点在一条直线上.题型02以数列为载体的新定义题型4(2024·安徽黄山·一模)随着信息技术的快速发展,离散数学的应用越来越广泛.差分和差分方程是描述离散变量变化的重要工具,并且有广泛的应用.对于数列a n ,规定Δa n 为数列a n 的一阶差分数列,其中Δa n =a n +1-a n n ∈N * ,规定Δ2a n 为数列a n 的二阶差分数列,其中Δ2a n =Δa n +1-Δa nn ∈N *.(1)数列a n 的通项公式为a n =n 3n ∈N * ,试判断数列Δa n ,Δ2a n 是否为等差数列,请说明理由?(2)数列log a b n 是以1为公差的等差数列,且a >2,对于任意的n ∈N *,都存在m ∈N *,使得Δ2b n =b m ,求a 的值;(3)各项均为正数的数列c n 的前n 项和为S n ,且Δc n 为常数列,对满足m +n =2t ,m ≠n 的任意正整数m ,n ,t 都有c m ≠c n ,且不等式S m +S n >λS t 恒成立,求实数λ的最大值.5(2024·辽宁葫芦岛·一模)大数据环境下数据量积累巨大并且结构复杂,要想分析出海量数据所蕴含的价值,数据筛选在整个数据处理流程中处于至关重要的地位,合适的算法就会起到事半功倍的效果.现有一个“数据漏斗”软件,其功能为;通过操作L M ,N 删去一个无穷非减正整数数列中除以M 余数为N 的项,并将剩下的项按原来的位置排好形成一个新的无穷非减正整数数列.设数列a n 的通项公式a n =3n -1,n ∈N +,通过“数据漏斗”软件对数列a n 进行L 3,1 操作后得到b n ,设a n +b n 前n 项和为S n .(1)求S n ;(2)是否存在不同的实数p ,q ,r ∈N +,使得S p ,S q ,S r 成等差数列?若存在,求出所有的p ,q ,r ;若不存在,说明理由;(3)若e n =nS n2(3n-1),n ∈N +,对数列e n 进行L 3,0 操作得到k n ,将数列k n 中下标除以4余数为0,1的项删掉,剩下的项按从小到大排列后得到p n ,再将p n 的每一项都加上自身项数,最终得到c n ,证明:每个大于1的奇平方数都是c n 中相邻两项的和.6(2024·山东青岛·一模)记集合S =a n |无穷数列a n 中存在有限项不为零,n ∈N * ,对任意a n ∈S ,设变换f a n =a 1+a 2x +⋯+a n x n -1+⋯,x ∈R .定义运算⊗:若a n ,b n ∈S ,则a n ⊗b n∈S ,f a n ⊗b n =f a n ⋅f b n .(1)若a n ⊗b n =m n ,用a 1,a 2,a 3,a 4,b 1,b 2,b 3,b 4表示m 4;(2)证明:a n ⊗b n ⊗c n =a n ⊗b n ⊗c n ;(3)若a n =n +12+1n n +1,1≤n ≤1000,n >100,b n =12203-n,1≤n ≤5000,n >500,d n =a n ⊗b n ,证明:d 200<12.7(2024·江苏徐州·一模)对于每项均是正整数的数列P:a1,a2,⋯,a n,定义变换T1,T1将数列P变换成数列T1P :n,a1-1,a2-1,⋯,a n-1.对于每项均是非负整数的数列Q:b1,b2,⋯,b m,定义S(Q)=2(b1+2b2+⋯+mb m)+b21+b22+⋯+b2m,定义变换T2,T2将数列Q各项从大到小排列,然后去掉所有为零的项,得到数列T2Q .(1)若数列P0为2,4,3,7,求S T1P0的值;(2)对于每项均是正整数的有穷数列P0,令P k+1=T2T1P k,k∈N.(i)探究S T1P0与S P0的关系;(ii)证明:S P k+1.≤S P k题型03以导数为载体的新定义题型8(2024·广东惠州·一模)黎曼猜想是解析数论里的一个重要猜想,它被很多数学家视为是最重要的数学猜想之一.它与函数f x =x s-1e x-1(x>0,s>1,s为常数)密切相关,请解决下列问题.(1)当1<s≤2时,讨论f x 的单调性;(2)当s>2时;①证明f x 有唯一极值点;②记f x 的唯一极值点为g s ,讨论g s 的单调性,并证明你的结论.9(2024·湖北·一模)英国数学家泰勒发现的泰勒公式有如下特殊形式:当f x 在x=0处的n n∈N*阶导数都存在时,f x =f0 +f 0 x+f 02!x2+f3 03!x3+⋯+f n 0n!x n+⋯.注:f x 表示f x 的2阶导数,即为f x 的导数,f n x n≥3表示f x 的n阶导数,该公式也称麦克劳林公式.(1)根据该公式估算sin12的值,精确到小数点后两位;(2)由该公式可得:cos x=1-x22!+x44!-x66!+⋯.当x≥0时,试比较cos x与1-x22的大小,并给出证明;(3)设n∈N*,证明:nk=11(n+k)tan1n+k>n-14n+2.10(2024·山东菏泽·一模)帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m,n,函数f(x)在x=0处的[m,n]阶帕德近似定义为:R(x)=a0+a1x+⋯+a m x m1+b1x+⋯+b n x n,且满足:f(0)=R(0),f (0)=R (0),f (0)=R (0),⋯,f(m+n)(0)=R(m+n)(0).(注:f (x)=f (x),f (x)= f (x),f(4)(x)=f (x),f(5)(x)=f(4)(x),⋯;f(n)(x)为f(n-1)(x)的导数)已知f(x)=ln(x+1)在x=0处的1,1阶帕德近似为R(x)=ax1+bx.(1)求实数a,b的值;(2)比较f x 与R(x)的大小;(3)若h(x)=f(x)R(x)-12-mf(x)在(0,+∞)上存在极值,求m的取值范围.题型04两个知识交汇11【概率与数列】(2024·山东聊城·一模)如图,一个正三角形被分成9个全等的三角形区域,分别记作A,B1,P,B2,C1,Q1,C2,Q,C3. 一个机器人从区域P出发,每经过1秒都从一个区域走到与之相邻的另一个区域(有公共边的区域),且到不同相邻区域的概率相等.(1)分别写出经过2秒和3秒机器人所有可能位于的区域;(2)求经过2秒机器人位于区域Q的概率;(3)求经过n秒机器人位于区域Q的概率.12【概率与函数】(2024·广东汕头·一模)2023年11月,我国教育部发布了《中小学实验教学基本目录》,内容包括高中数学在内共有16个学科900多项实验与实践活动.我市某学校的数学老师组织学生到“牛田洋”进行科学实践活动,在某种植番石榴的果园中,老师建议学生尝试去摘全园最大的番石榴,规定只能摘一次,并且只可以向前走,不能回头.结果,学生小明两手空空走出果园,因为他不知道前面是否有更大的,所以没有摘,走到前面时,又发觉总不及之前见到的,最后什么也没摘到.假设小明在果园中一共会遇到n颗番石榴(不妨设n颗番石榴的大小各不相同),最大的那颗番石榴出现在各个位置上的概率相等,为了尽可能在这些番石榴中摘到那颗最大的,小明在老师的指导下采用了如下策略:不摘前k(1≤k<n)颗番石榴,自第k+1颗开始,只要发现比他前面见过的番石榴大的,就摘这颗番石榴,否则就摘最后一颗.设k=tn,记该学生摘到那颗最大番石榴的概率为P.(1)若n=4,k=2,求P;(2)当n趋向于无穷大时,从理论的角度,求P的最大值及P取最大值时t的值.(取1k +1k+1+⋯+1n-1=ln nk)13【解析几何与立体几何】(2024·山东日照·一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12经过点F1且倾斜角为θ0<θ<π2的直线l与椭圆交于A,B两点(其中点A在x轴上方),且△ABF2的周长为8.将平面xOy沿x轴向上折叠,使二面角A-F1F2-B为直二面角,如图所示,折叠后A,B在新图形中对应点记为A ,B .(1)当θ=π3时,①求证:A O⊥B F2;②求平面A'F1F2和平面A'B'F2所成角的余弦值;(2)是否存在θ0<θ<π2,使得折叠后△A B F2的周长为152?若存在,求tanθ的值;若不存在,请说明理由.14【导数与三角函数】(2024·山东烟台·一模)如图,在平面直角坐标系xOy 中,半径为1的圆A 沿着x 轴正向无滑动地滚动,点M 为圆A 上一个定点,其初始位置为原点O ,t 为AM 绕点A 转过的角度(单位:弧度,t ≥0).(1)用t 表示点M 的横坐标x 和纵坐标y ;(2)设点M 的轨迹在点M 0(x 0,y 0)(y 0≠0)处的切线存在,且倾斜角为θ,求证:1+cos2θy 0为定值;(3)若平面内一条光滑曲线C 上每个点的坐标均可表示为(x (t ),y (t )),t ∈[α,β],则该光滑曲线长度为F (β)-F (α),其中函数F (t )满足F (t )=[x (t )]2+[y (t )]2.当点M 自点O 滚动到点E 时,其轨迹OE为一条光滑曲线,求OE 的长度.15【导数与数列】(2024·山东济宁·一模)已知函数f x =ln x -12ax 2+12a ∈R .(1)讨论函数f x 的单调性;(2)若0<x 1<x 2,证明:对任意a ∈0,+∞ ,存在唯一的实数ξ∈x 1,x 2 ,使得f (ξ)=f x 2 -f x 1 x 2-x 1成立;(3)设a n =2n +1n2,n ∈N *,数列a n 的前n 项和为S n .证明:S n >2ln (n +1).。

2020年中考复习——新定义问题专题训练(含答案)

2020年中考复习——新定义问题专题训练(含答案)

2020中考复习——新定义问题专题训练(二)班级:___________姓名:___________ 得分:___________ 一、选择题1. 现规定一种新运算“*”:a *b =a b ,如3*2=32=9,则(12)*3=( )A. 16B. 8C. 18D. 322. 对有理数a ,b ,规定运算如下:a※b =a +ab ,则−2※3的值为( )A. −10B. −8C. −6D. −43. 定义一种运算“※”,其规则为a ※b =√a 2+b 2,如3※4=√32+42=√25=5,根据这个规则,计算5※12的值是( )A. √13B. 13C. 5D. 64. 在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x),如f(2,3)=(3,2); ②g(x,y)=(−x,−y),如g(2,3)=(−2,−3).按照以上变换有:f(g(2,3))=f(−2,−3)=(−3,−2),那么g(f(−6,7))等于( )A. (7,6)B. (7,−6)C. (−7,6)D. (−7,−6)5. 我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么3⊗8为( )A. 24B. 1024C. 1011D. 11106. 在平面直角坐标系xOy 中,点P 的坐标为(a,b),点P 的“变换点”P′的坐标定义如下:当a ≥b 时,点P′的坐标为(b,−a);当a <b 时,点P′的坐标为(a,−b),则点A(5,3),B(1,6),C(−2,4)的变换点坐标分别为( ).A. (3,−5),(1,6),(2,4)B. (3,5),(1,−6),(−2,−4)C. (3,−5),(1,−6),(−2,−4)D. (−3,5),(1,−6),(−2,−4)7. 定义运算:对于任意两个有理数a ,b ,有a ∗b =(a −1)(b +1),则计算−3∗4的值是( )A. 12B. −12C. 20D. −208. 阅读材料:对于任何实数,我们规定符号|a b cd|的意义是|a b cd|=ad −bc.按照这个规定,请你计算:当x 2−4x +4=0时,|x +12xx −12x −3|的值( )A. −9B. −1C. 5D. −5二、填空题9.定义:a∗b=a2−b,则(1∗2)∗3=____.10.定义新运算:对于任意实数a,b,都有a※b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2※5=2×(2-5)+1=2×(-3)+1=-5,则3※(-2)=(1);[(-2)※3]-[2※(-1)]的值为(2).括号(1)处填括号(2)处填11.若=a+b–c–d,则=_________.=______ .12.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,100!98!13.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为110°,那么这个“特征三角形”的最小内角的度数为________.14.设[x]表示不超x的整数中最大的整数,如:[1.99]=1,[−1.02]=−2,根据此规律计算:[−2.4]−[−0.6]=____.15.阅读理解:引入新的i,新的i满足分配律、结合律、交换律,已知i2=−1,那么(2+i)(2−i)=_______.三、解答题16.对于有理数a、b定义一种新运算,规定a☆b=a2-ab.(1)求2☆(-3)的值;(2)若(-2)☆(3☆x)=4,求x的值.17.a⊗b是新规定的这样一种运算法则:a⊗b=a2+ab,例如3⊗(-2)=32+3×(-2)=3.(1)若(−3)⊗x=5,求x的值;(2)若3⊗(2⊗x)=−4+x,求x的值.18.对于a、b定义两种新运算“∗”和“※”:a∗b=a+kb,a※b=ka+b(其中k为常数,且k≠0).若平面直角坐标系xOy中的点P(a,b),有点P的坐标为(a∗b,a※b)与之相对应,则称点P为点P的“k衍生点”例如:P(1,4)的“2衍生点”为P′(l+2×4,2×1+4),即P′(9,6).(1)点P(−1,6)的“2衍生点”P′的坐标为_____.(2)若点P的“3衍生点”P′的坐标为(5,7),求点P的坐标.19.请耐心阅读,然后解答后面的问题:上周末,小明在书城随手翻阅一本高中数学参考书时,无意中看到了几个等式:sin51°cos12°+cos51°·sin12°=sin63°,sin25°cos76°+cos25°sin76°= sin101°.一个猜想出现在他脑海里,回家后他马上用科学计算器进行验证,发现自己的猜想成立,并能推广到一般情况.其实这是大家将在高中学的一个三角函数知识.你是否和小明一样也有想法了?下面考考你,看你悟到了什么.(1)根据你的猜想填空:sin37°cos48°+cos37°sin48°=__________,sinαcosβ+cosαsinβ=__________.(2)尽管75°角不是特殊角,请你用发现的规律巧算出sin75°的值.20.阅读理解:若A,B,C为数轴上三点,点C是线段AB上一点,且点C到点A的距离是点C到点B的距离的2倍,我们就称点C是【A,B】的好点.如图1,点A 表示的数为−1,点B表示的数为2,表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是【A,B】的好点,但点D是【B,A】的好点.知识运用:如图2,M,N为数轴上两点,点M所表示的数为−2,点N所表示的数是4.(1)数________所表示的点是【M,N】的好点;(2)如图3,A,B为数轴上两点,点A所表示的数为−20,点B所表示的数为40,现有一只电子蚂蚁P从点B出发,以每秒2个单位的速度向左运动,到达点A时停止,运动的时间为t秒.当t为何值时,点P,A和B中恰有一个点为其余两点的好点⊕21.已知A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A,B重合),我们称∠APB是⊙O上关于A、B的滑动角.已知∠APB是⊙O上关于A、B的滑动角.(1)若AB是⊙O的直径,则∠APB=____;(2)若⊙O的半径是1,AB=√2,求∠APB的度数.22. 规定:求若干个相同的有理数(不等于0)的除法运算叫做除方,如2÷2÷2÷2÷2÷2,(−3)÷(−3)÷(−3)÷(−3)等.类比有理数的乘方,(−3)÷(−3)÷(−3)÷(−3)记作(−3)④”,读作“−3的圈4次方”,一般地,我们把a ÷a ÷a ÷⋯÷a ⏟n 个a(a ≠0)记作a ,读作“a 的圈n 次方”. (1)直接写出计算结果:2③=________,(−12)④=________.(2)有理数的除方可以转化为乘方幂的形式.如(−3)④=(−3)÷(−3)÷(−3)÷(−3)=(−3)×(−13)×(−13)×(−13)=(−13)×(−13)=(−13)2直接将下列的除方形式写成乘方幂的形式:(−2)④=________;5※=________. (3)计算:22018×.答案和解析1. C解:(12)∗3=(12)3=18.2. B解:根据题中的新定义得:原式=−2+(−2)×3=−2−6=−8,3. B解:∵a ※b =√a 2+b 2, ∴5※12=√52+122=13.4. C解:由题意得g(f(−6,7))=g(7,−6)=(−7,6).5. C解:∵a ⊗b =10a ×10b ∴3⊗8=103×108=1011,6. C解:∵A(5,3),5>3, ∴A′(3,−5), ∵B(1,6),1<6, ∴B′(1,−6), ∴C(−2,4),−2<4, ∴C′(−2,−4).7. D解:∵对于任意两个有理数a 、b ,有a ∗b =(a −1)(b +1) ∴−3∗4=(−3−1)(4+1)=−20.8. B解:∵x 2−4x +4=0, ∴(x −2)2=0, ∴x 1=x 2=2,由题意可得:|x +12xx −12x −3|=(x +1)(2x −3)−2x(x −1), =2x 2−3x +2x −3−2x 2+2x=x−3当x=2时,x−3=2−3=−1,9.−2解:∵a∗b=a2−b,∴(1∗2)∗3=(12−2)∗3=(−1)∗3=(−1)2−3=−2,10.(1)16(2)4解:由题意得3※(-2)=3×[3−(−2)]+1=3×(3+2)+1=3×5+1=16,故答案为16.解:由题意得(-2)※3=−2×(−2−3)+1=−2×(−5)+1=10+1=11,2※(-1)=2×(2+1)+1=2×3+1=7,[(-2)※3]-[2※(-1)]=11−7=4.11.−4解:=1+2−3−4=−4.12.9900解:∵100!=100×99×98×97×...×1,98!=98×97× (1)∴100!98!=100×99×98×…×198×97×⋯×1=100×99=9900.13. 15∘解:由题意知α=110∘, 则β=110∘÷2=55∘,则这个三角形的第三个内角的度数为180∘−110∘−55∘=15∘,14. −2解:[−2.4]−[−0.6] =−3−(−1) =−3+1 =−2,15. 5解:由题意可知:原式=22−i 2=4−(−1)=5,16. 解:(1)2※(−3) =22−2×(−3) =4+6=10;(2)(−2)※(3※x) =(−2)※(9−3x) =(−2)2−(−2)×(9−3x) =22−6x 即22−6x =4 解得:x =3.17. 解:(1)利用题中新定义化简(−3)⊗x =5得:9−3x =5,解得:x =43;(2)根据题中的新定义化简2⊗x =4+2x ,3⊗(2⊗x)=3⊗(4+2x)=9+12+6x =6x +21,3⊗(2⊗x)=−4+x ,得:6x +21=−4+x , 解得:x =−5.18. 解:(1)(11,4);(2)设点P 的坐标为:(a,b),由题意可得: {a +3b =53a +b =7, 解得,{a =2b =1,∴点P 的坐标为:(2,1).解:(1)由题意可得,点P(−1,6)的“2衍生点”P′的坐标为:[−1+2×6,2×(−1)+6],即(11,4);故答案为(11,4);19. 解:(1)sin85°,sin (α+β); (2)sin75°=sin (30°+45°) =sin30°cos45°+cos30°sin45°=12×√22+√32×√22=√2+√64. 解:(1)根据题目信息,sin37°cos48°+cos37°sin48°=sin (37°+48°)=sin85°, sinαcosβ+cosαsinβ=sin (α+β); 故答案为:sin85°,sin (α+β);20. 解:(1)2;(2)设点P 表示的数为y ,分两种情况讨论: ①P 为[A,B]的好点.由题意,得y −(−20)=2(40−y), 解得y =20,t =(40−20)÷2=10(秒); ②P 为[B,A]的好点.由题意,得40−y =2[y −(−20)], 解得y =0,t =(40−0)÷2=20(秒).综上所述,当t 为10秒或20秒时,P 、A 和B 中恰有一个点为其余两点的好点. 解:(1)设所求数为x ,由题意得 x −(−2)=2(4−x), 解得x =2. 故答案为2.21. 解:(1)90°;②连接OA ,OB ,AB , ∵⊙O 半径为1,AB =√2, ∴OA 2+OB 2=AB 2, ∴∠AOB =90°,若点P 在优弧APB ⏜上,则∠APB =12∠AOB =45°; 若点P 在劣弧AB⏜上,则∠AP′B =180°−∠APB =135°; ∴∠APB 的度数为45°或135°.解:(1)∵AB 为⊙O 的直径, ∴∠APB =90°.故答案为90°;22. 解:(1)12; 4(2)(−12)2,(15)n−2.(3)22018×22018=22018×(−12)2016=22=4解:(1)2③=2÷2÷2=12,(−12)④=(−12)÷(−12)÷(−12)÷(−12)=4.故答案为:12;4.(2)(−2)④=(−2)÷(−2)÷(−2)÷(−2) =(−2)×(−12)×(−12)×(−12)=(−12)2,5※=5÷5÷5÷⋯÷5⏟n 个5=5×15×15×⋯×15⏟n−1个15=(15)n−2.故答案为:(−12)2,(15)n−2.。

(完整word)高中数学新定义类型题.doc

(完整word)高中数学新定义类型题.doc

同步练习学校 :___________姓名: ___________班级: ___________考号:___________第 I 卷(选择题)请点击修改第I 卷的文字说明评卷人得分一、选择题(本题共22 道小题,每小题 5 分,共 110分)a, a b x 2 1.定义max{a, b} ,设实数 x, y 满足约束条件y ,则b, a b 2z max{4 x y,3 x y} 的取值范围是()(A)[ 8,10] ( B)[ 7,10] ( C)[ 6,8] (D)2.对于复数a,b,c,d ,若集合S= a,b,c,d 具有性质“对任意x,y S,必有 xy S”,则当a=1b2=1时 , b+c+d等于( )c2 =bA、 1 B 、 -1 C 、 0 D 、 i3.在实数集 R 中定义一种运算“”,a, b R ,a b 为唯一确定的实数,且具有性质:(1)对任意a R , a 0 a ;( 2)对任意a, b R ,a b ab (a 0) (b 0) .关于函数 f ( x) (e x ) 1 的性质,有如下说法:①函数 f (x) 的最小值为 3 ;②函数e xf ( x) 为偶函数;③函数 f ( x) 的单调递增区间为 ( ,0] .其中正确说法的序号为()A.①B.①②C.①②③D.②③4.设A 是整数集的一个非空子集,对于∈ ,如果k - 1? A 且k +1? ,那么称k 是集k A A合 A的一个“好元素”.给定集合S={1,2,3,4,5,6,7,8} ,由 S 的3 个元素构成的所有集合中,不含“好元素”的集合共有()A .2 个B . 4 个C .6 个D.8个5.对于集合S { x x 2k 1,k N} 和集合 T { x x a b, a, b S} ,若满足 T S ,则集合 T 中的运算“”可以是A.加法 B .减法 C .乘法 D .除法6. 设函数f ( x)的定义域为 R,如果存在函数g (x) ax(a为常数),使得f ( x)g (x)对于一切实数x都成立,那么称g( x)为函数f (x)的一个承托函数. 已x知对于任意k(0,1) , g(x) ax 是函数f (x) e k 的一个承托函数,记实数a 的取值范围为集合 M,则有()A. e 1 M , e MB. e 1 M , e MC. e 1 M , e MD. e 1 M , e M7. 用C( A) 表示非空集合 A 中的元素个数,定义| AC( A) C(B), C( A) C( B)B |C( A), C( A).C(B) C( B)若 A {1,2} ,B { x | x2 2x 3| a} ,且|A-B|=1 ,由 a 的所有可能值构成的集合为S,那么 C( S) 等于 ( )A.1 B.2C.3D.48. 对于集合M、 N,定义M -N= { x|x∈ M 且 x N} , M⊕ N=(M-N)∪ (N- M),设 A = { y|y= 3x, x∈ R} , B= { y|y=-x2 2x 1,x∈R},则A⊕B等于()A . [0,2)B .(0,2]C. (-∞, 0]∪(2,+∞ ) D . (-∞, 0)∪ [2,+∞)9.在实数集R中定义一种运算“”,a, b R, a b 为唯一确定的实数,且具有性质:( 1)对任意aR , a 0 a ;(2)对任意a, b R,ab ab (a 0) (b0) .f ( x) (e x )1f (x)的最小值为3;②函数关于函数e x 的性质,有如下说法:①函数f ( x)为偶函数;③函数f ( x)的单调递增区间为 ( ,0] . 其中所有正确说法的个数为 ()A .B . 1C . 2则称集合 A 对于运算“”构成“对称集”.下面给出三个集合及相应的运算“ ”:① A整数 ,运算“”为普通加法;② A复数,运算“”为普通减法;③A正实数,运算“”为普通乘法.其中可以构成“对称集”的有()A ①②B ①③C ②③ D①②③ D .3x (m1, m 1]10.给出定义 : 若22 (其中m为整数) , 则m叫做与实数 x“亲密的整数” , 记作 { x}m , 在此基础上给出下列关于函数 f ( x) x { x} 的四个命题 : ①函14.设f (x) 与g( x)是定义在同一区间在 x [ a, b]上有两个不同的零点,则称间[ a, b]称为“关联区间”.若f ( x)联函数”,则 m 的取值范围是 ()[a , b] 上的两个函数,若函数y f ( x) g( x)f ( x) 和 g( x) 在 [ a,b] 上是“关联函数”,区x 2 3x 4 与 g(x) 2xm在 [0,3] 上是“关数yf ( x) 在 x(0,1)上是增函数 ; ②函数yf (x)的图象关于直线 xk(kZ )2对称 ; ③ 函 数yf ( x)是 周 期 函 数 , 最 小 正 周 期 为 1; ④ 当x(0, 2] 时 , 函 数g( x)f ( x)ln x有两个零点 . 其中正确命题的序号是 ____________.A .②③④ B.①③ C .①② D .②④a b bc ,若函数 fxx 12在 (, m) 上单调递减,11.定义运算cad xx 3d则实数 m 的取值范围是A . ( 2, )B . [ 2, )C . ( , 2)D . ( , 2]12.对于函数 fx ,若 a,b,c R ,fa , fb , fc 为某一三角形的三边长,则称fxf x e x t为“可构造三角形函数”,已知函数e x1 是“可构造三角形函数”,则实数 t的取值范围是1A .0,. 0,1. 1,2[ , 2]B C D. 213.对于集合 A ,如果定义了一种运算“ ”,使得集合A 中的元素间满足下列4 个条件:(ⅰ) a, b A,都有ab A ;(ⅱ)e A,使得对aA,都有ea a e a ; (ⅲ) aA ,aA,使得 a aaa e ;(ⅳ) a, b, cA ,都有abc a b c ,9 ,29 ,A.4B . [ - 1,0]C .( -∞,- 2]D.415.设函数f ( x)的定义域为 D ,如果对于任意的 x 1D,存在唯一的x 2 D,使得f ( x 1 ) f ( x 2 )Cy f ( x)在 D 上的均值为2C 为常数),则称函数成立(其中 C , 现 在 给 出 下 列 4 个 函 数 : ① y x 3 ② y4sin x③ylg x④y 2x ,则在其定义域上的均值为 2 的所有函数是下面的()A. ①②B. ③④C.①③④D.①③16.对任意实数 a, b 定义运算 " " 如下 a ba a bb a ,则函数bf ( x) log 1 (3x 2) log 2 x 的值域为()2A. 0,B. ,0C. log 2 2D.2,0 log 2 ,33 17.设 A, B 是非空集合,定义 A B { x | x A B , 且 x A B} ,已知 A { x | 0 x 2} , B { x | x 0} ,则 AB 等于()A. (2,)B. [0,1][ 2, )C . [ 0,1) (2,)D. [ 0,1](2, )18.设集合 A ? R ,如果 x ∈R 满足:对任意 a > 0,都存在 x ∈A ,使得 0< |x ﹣ x |<a ,那么称 x 0 为集合 A 的一个聚点.则在下列集合中:( 1) Z +∪ Z ﹣ ; ( 2)R +∪ R ﹣;(3) {x|x= ,n ∈N *} ; ( 4) {x|x=, n ∈N *} .其中以 0 为聚点的集合有()A . 1 个B . 2 个C . 3 个D . 4 个19.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y = 2x 2+ 1,值域为 {9} 的“孪生函数”三个:( 1) y = 2x 2+ 1, x {2} ; ( 2) y = 2x 2+1, x { 2} ; ( 3) y = 2x 2+ 1,x { 2,2} 。

高中数学:新定义题型新高考新结构

高中数学:新定义题型新高考新结构

大题新定义题型继2024年九省联考的第19题考查了新定义问题,已有部分地区考试采用了该结构考试。

2024年的新高考试卷第19题极大可能也会考查新定义问题,难度较大。

新定义题型内容新颖,题目中常常伴随有“定义”“规定”等字眼,题目一般使用抽象的语言给出新定义、运算或符号,没有过多的解释说明,要求考生自己仔细揣摩、体会和理解定义的含义,在阅读新定义要求后马上运用它解决相关问题,考查考生的理解与运算、信息迁移的能力。

题型一:集合的新定义问题题型二:函数与导数的新定义问题题型三:复数与不等式的新定义问题题型四:三角函数的新定义问题题型五:平面向量的新定义问题题型六:数列的新定义问题题型七:立体几何的新定义问题题型八:平面解析几何的新定义问题题型九:概率统计的新定义问题题型十:高等数学背景下的新定义问题题型一:集合的新定义问题1(2024·广东·惠州一中校联考模拟预测)已知集合A中含有三个元素x,y,z,同时满足①x<y<z;②x+y>z;③x+y+z为偶数,那么称集合A具有性质P.已知集合S n=1,2,3,⋯,2n(n∈N*,n≥4),对于集合S n的非空子集B,若S n中存在三个互不相同的元素a,b,c,使得a+b,b+c,c+a均属于B,则称集合B是集合S n的“期待子集”.(1)试判断集合A=1,2,3,5,7,9是否具有性质P,并说明理由;(2)若集合B=3,4,a具有性质P,证明:集合B是集合S4的“期待子集”;(3)证明:集合M具有性质P的充要条件是集合M是集合S n的“期待子集”.集合新定义问题的方法和技巧:(1)可通过举例子的方式,将抽象的定义转化为具体的简单的应用,从而加深对信息的理解;(2)可用自己的语言转述新信息所表达的内容,如果能清晰描述,那么说明对此信息理解的较为透彻;(3)发现新信息与所学知识的联系,并从描述中体会信息的本质特征与规律;(4)如果新信息是课本知识的推广,则要关注此信息与课本中概念的不同之处,以及什么情况下可以使用书上的概念.1(2023·北京·北京四中校考模拟预测)已知集合M =1,2,3,⋯,n n ∈N * ,若集合A =a 1,a 2,⋯,a m ⊆M m ∈N * ,且对任意的b ∈M ,存在a i ,a j ∈A 1≤i ≤j ≤m ,使得b =λ1a i +λ2a j (其中λ1,λ2∈-1,0,1 ),则称集合A 为集合M 的一个m 元基底.(1)分别判断下列集合A 是否为集合M 的一个二元基底,并说明理由;①A =1,5 ,M =1,2,3,4,5 ;②A =2,3 ,M =1,2,3,4,5,6 .(2)若集合A 是集合M 的一个m 元基底,证明:m m +1 ≥n ;(3)若集合A 为集合M =1,2,3,⋯,19 的一个m 元基底,求出m 的最小可能值,并写出当m 取最小值时M 的一个基底A .2(2024·北京海淀·高三人大附中校考开学考试)设m 为正整数,集合A ⊆α∣α=t 1,t 2,⋯,t m ,t j ∈-1,1 ,j =1,2,⋯,m . 任取集合A 中的2n +1n ∈N *个元素(可以重复)α1=α1.1,α1.2,⋅⋅⋅,α1.m ,α2=α2.1,α2.2,⋅⋅⋅,α2.m ,⋅⋅⋅,α2n +1=α2n +1.1,α2n +1.2,⋅⋅⋅,α2n +1.m ,M α1,α2,⋅⋅⋅,α2n +1 =y 1,y 2,⋅⋅⋅,y m ,其中y j =α1.j +α2.j +⋅⋅⋅+α2n +1.jα1.j +α2.j +⋅⋅⋅+α2n +1.jj =1,2,⋅⋅⋅,m .(1)若α1=1,-1,-1,-1 ,α2=-1,1,1,-1 ,α3=-1,-1,-1,1 ,α4=1,1,-1,1 ,α5=-1,-1,-1,1 ,直接写出M α1,α2,α3 ,M α1,α2,α3,α4,α5 ;(2)对于α,β,γ∈A ,证明:M α,⋯,αk 个 ,β,⋯,βk 个,γ=M α,β,γ ;(3)对于某个正整数n ,若集合A 满足:对于A 中任意2n +1个元素α1,α2,⋅⋅⋅,α2n +1,都有M α1,α2,⋅⋅⋅,α2n +1 ∈A ,则称集合A 具有性质P n . 证明:若∃n 0∈N *,集合A 具有性质P n 0 ,则∀n ∈N *,集合A 都具有性质P n .题型二:函数与导数的新定义问题1(2024·陕西安康·高三校联考阶段练习)记函数f x 的导函数为f x ,f x 的导函数为f x ,设D 是f x 的定义域的子集,若在区间D 上f x ≤0,则称f x 在D 上是“凸函数”.已知函数f x =a sin x -x 2.(1)若f x 在0,π2上为“凸函数”,求a 的取值范围;(2)若a =2,判断g x =f x +1在区间0,π 上的零点个数.函数新定义问题,命题新颖,常常考虑函数的性质,包括单调性,奇偶性,值域等,且存在知识点交叉,会和导函数,数列等知识进行结合,很好的考虑了知识迁移,综合运用能力,对于此类问题,一定要解读出题干中的信息,正确理解问题的本质,转化为熟悉的问题来进行解决。

2022届高中数学导数通关练习专题21 导数新定义问题(解析版)

2022届高中数学导数通关练习专题21 导数新定义问题(解析版)

分别为, ,则, 的大小关系为( )
A.
B.
C. a
D.
【解析】由题知, g x 2 , x 3x2 ,由“新驻点”的概念知, 2 2 , 3 1 3 2 ,

1,
3
1 2
3
,故选:D
2.已知函数 f x 的定义域为 0, ,若 y
f (x) xk
k N*
14.设函数 f (x) 与 g(x) 是定义在同一区间a,b 上的两个函数,若对任意的 x a,b ,都有| f (x) g(x) | 1, 则称 f (x) 与 g(x) 在a,b 上是“密切函数”,区间a,b 称为“密切区间”.设函数 f (x) ln x 与 g(x) 2m x, 在
学科 网(北 京)股 份有限 公司
区间内某点的局部变化率的关系.其定理表述如下:如果函数 f (x) 在闭区间[a,b] 上的图象不间断,在开区间 (a, b) 内可导,那么在开区间 (a, b) 内至少有一个点 (a b) 使得等式 f (b) f (a) f ( )(b a) 成立,其中 称为函数 f (x) 在闭区间[a,b] 上的中值点,函数 f (x) x sin x 在闭区间[0, ]上的中值点为________
(2)若当 a 0 时,函数 f x 无好点,求 a 的取值范围.
学科 网(北 京)股 份有限 公司
19.已知函数 f x 1 ln x .
x
(1)求函数 f x 的图象在 x e ( e 为自然对数的底数)处的切线方程;
ห้องสมุดไป่ตู้
(2)若对任意的 x D ,均有 m x n x ,则称 m x 为 n x 在区间 D 上的下界函数, n x 为 m x 在区

(完整word版)高考数学题型归纳完整版,推荐文档

(完整word版)高考数学题型归纳完整版,推荐文档

第一章集合与常用逻辑用语第一节集合题型1-1集合的基本概念题型1-2集合间的基本关系题型1-3集合的运算第二节命题及其关系、充分条件与必要条件题型1-4四种命题及关系题型1-5充分条件、必要条件、充要条件的判断与证明题型1-6求解充分条件、必要条件、充要条件中的参数取值范围第三节简单的逻辑联结词、全称量词与存在量词题型1-7判断命题的真假题型1-8含有一个量词的命题的否疋题型1-9结合命题真假求参数的取值范围第二章函数第一节映射与函数题型2-1映射与函数的概念题型2-2同一函数的判断题型2-3函数解析式的求法第二节函数的定义域与值域(最值)题型2-4函数定义域的求解题型2-5函数定义域的应用题型2-6函数值域的求解第三节函数的性质一一奇偶性、单调性、周期性题型2-7函数奇偶性的判断题型2-8函数单调性(区间)的判断题型2-9函数周期性的判断题型2-10函数性质的综合应用第四节二次函数题型2-11二次函数、一元二次方程、二次不等式的关系题型2-12二次方程的实根分布及条件题型2-13二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14指数运算及指数方程、指数不等式题型2-15指数函数的图象及性质题型2-16指数函数中恒成立问题第六节对数与对数函数题型2-17对数运算及对数方程、对数不等式题型2-18对数函数的图象与性质题型2-19对数函数中恒成立问题第七节幕函数题型2-20求幕函数的定义域题型2-21幕函数性质的综合应用第八节函数的图象题型2-22判断函数的图象题型2-23函数图象的应用第九节函数与方程题型2-24求函数的零点或零点所在区间题型2-25利用函数的零点确定参数的取值范围题型2-26方程根的个数与函数零点的存在性问题第十节函数综合题型2-27函数与数列的综合题型2-28函数与不等式的综合题型2-29函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1导数的定义题型3-2求函数的导数第二节导数的应用题型3-3利用原函数与导函数的关系判断图像题型3-4利用导数求函数的单调性和单调区间题型3-5函数的极值与最值的求解题型3-6已知函数在区间上单调或不单调,求参数的取值范围题型3-7讨论含参函数的单调区间题型3-8利用导数研究函数图象的交点和函数零点个数问题题型3-9不等式恒成立与存在性问题题型3-10利用导数证明不等式题型3-11导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12定积分的计算题型3-13求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1终边相同角的集合的表示与识别题型4-2 a是第几象限角2题型4-3弧长与扇形面积公式的计算题型4-4三角函数定义题型4-5三角函数线及其应用题型4-6象限符号与坐标轴角的三角函数值题型4-7同角求值----- 条件中出现的角和结论中出现的角是相同的题型4-8诱导求值与变形第二节三角函数的图象与性质题型4-9已知解析式确定函数性质题型4-10根据条件确定解析式题型4-11三角函数图象变换第三节三角恒等变换题型4-12两角和与差公式的证明题型4-13化简求值第四节解三角形题型4-14正弦定理的应用题型4-15余弦定理的应用题型4-16判断三角形的形状题型4-17正余弦定理与向量的综合题型4-18解三角形的实际应用第五章平面向量第一节向量的线性运算题型5-1平面向量的基本概念题型5-2共线向量基本定理及应用题型5-3平面向量的线性运算题型5-4平面向量基本定理及应用题型5-5向量与三角形的四心题型5-6利用向量法解平面几何问题第二节向量的坐标运算与数量积题型5-7向量的坐标运算题型5-8向量平行(共线)、垂直充要条件的坐标表示题型5-9平面向量的数量积题型5-10平面向量的应用第六章数列第一节等差数列与等比数列题型6-1等差、等比数列的通项及基本量的求解题型6-2等差、等比数列的求和题型6-3等差、等比数列的性质应用题型6-4判断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合第二节数列的通项公式与求和题型6-6数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式第二节均值不等式和不等式的应用题型7-3 均值不等式及其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 绝对值不等式的解法第四节二元一次不等式(组)与简单的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简单线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球第二节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图? 直观图——简单几何体基本量的计算题型8-7 三视图? 直观图——简单组合体基本量的计算题型8-8 部分三视图? 其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”“、点共面” 或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12 证明空间中直线、平面的垂直关系第六节空间向量及其应用题型8-13 空间向量及其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程第二节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的判断题型9-9 圆的一般方程的充要条件题型9-10与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的判断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值及取值范围题型10-3 焦点三角形第二节双曲线题型10-4 双曲线的标准方程题型10-5双曲线离心率的求解及其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面向量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 根据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简单排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简单排列组合问题的结合第二节排列问题题型12-4 特殊元素或特殊位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和分配问题第四节二项式定理题型12-12 证明二项式定理题型12-13 ????+1的系数与??幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式展开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率及其计算题型13-1 古典概型题型13-2 几何概型的计算第二节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回归方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理第二节直接证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{???} 通项公式的猜证及有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节几何证明选讲(选修4-1)题型16-1 圆和直角三角形中长度和角的计算题型16-2 证明题题型16-3 空间图形问题转化为平面问题第二节坐标系与参数方程(选修4-4)题型16-4 参数方程化为普通方程题型16-5 普通方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第三节不等式选讲(选修4-5)题型16-7 含绝对值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。

【高中数学考点精讲】考点五 新定义题

【高中数学考点精讲】考点五 新定义题

考点五新定义题
40.【多选】(2022·全国·高一课时练习)定义:角与都是任意角,若满足,则称与“广义互余”.已知,则下列角中,可能与角“广义互余”的是()
A.B.C.D.
【解析】AC
【分析】由条件结合诱导公式化简可得,根据“广义互余”的定义结合诱导公式同角关系判断各选项的对错.
【详解】∵,∴,若,则,所以
,故A符合条件;
,故B不符合条件;
,即,又,∴,故C符合条件;
,即,又,∴,故D不符合条件.
故选:AC.
41.(2022·江苏·连云港高中高一期中)对于角的集合和角,定义:
为集合相对角的“余弦方差”,则集合相对角的“余弦方差”为__________.
【解析】
【分析】利用两角和差余弦公式化简已知等式,结合诱导公式和同角三角函数平方关系即可
求得结果.
【详解】
. 故答案为:.。

高中数学平面向量新定义 问题(解析版)

高中数学平面向量新定义 问题(解析版)

平面向量新定义问题求解“新定义”题目,主要分如下几步:1.对新定义进行信息提取,明确新定义的名称和符号;2.对新定义所提取的信息进行加工,探求解决方法和相近的知识点,明确它们的相同点和相似点;3.对定义中提取的知识进行转换、提取和转换,这是解题的关键,如果题目是新定义的运算、法则,直接按照法则计算即可;若新定义的性质,一般要判断性质的适用性,能否利用定义的外延,可用特质排除,注意新定义题目一般在高考试卷的压轴位置,往往设置三问,第一问的难度并不大,所以对于基础差的考生也不要轻易放弃。

题型一与线性运算有关的新定义1对于n 个向量a 1 ,a 2 ,a 3 ,⋯,a n ,若存在n 个不全为0的实数k 1,k 2,k 3,⋯,k n ,使得k 1a 1 +k 2a 2+k 3a 3 +⋯+k n a n =0 成立,则称向量a 1 ,a 2 ,a 3 ,⋯,a n 是线性相关的.按此规定,能使向量a 1 =(1,0),a 2 =(1,-1),a 3=(2,2)是线性相关的实数为k 1,k 2,k 3,则k 1+4k 3的值为()A.-1B.0C.1D.2【答案】B【解析】因为向量a 1 =(1,0),a 2 =(1,-1),a 3 =(2,2)是线性相关的,所以k 1a 1 +k 2a 2 +k 3a 3 =0 ,即k 1(1,0)+k 2(1,-1)+k 3(2,2)=0 ,即k 1+k 2+2k 3,-k 2+2k 3 =0 ,所以k 1+k 2+2k 3=0,①-k 2+2k 3=0.② 由①加②得k 1+4k 3=0.故选B【跟踪训练】2定义平面向量之间的一种运算“⊙”如下:对任意的a =m ,n ,b =p ,q ,令a ⊙b=mq -np ,对于如下说法:①若a 与b 共线,则a ⊙b =0;②a ⊙b =b ⊙a ;③对任意的λ∈R ,有λa ⊙b =λa ⊙b;④a ⊙b 2+a ⋅b 2=a 2b 2.正确的是.【答案】①③④【解析】对于①,若a 与b 共线,则mq -np =0,即a ⊙b =0,故①正确;对于②,因a ⊙b =mq -np ,b ⊙a =np -mq ,所以a ⊙b ≠b ⊙a,故②错;对于③,λa ⊙b =λmq -λnp ,λ(a ⊙b ) =λmq -λnp ,所以λa ⊙b =λa ⊙b,故③正确;对于④,因a ⊙b 2+a ⋅b 2=mq -np 2+mp +nq 2=m 2+n 2 p 2+q 2 ,a 2b 2=m 2+n 2 p 2+q 2 ,所以a ⊙b 2+a ⋅b 2=a 2b 2,故④正确.题型二运算法则的新定义3定义:a ,b 两个向量的叉乘a ×b =a ⋅b ⋅sin a ,b ,则以下说法正确的是()A.若a ×b =0,则a ∥bB.λa ×b =λa×bC.若四边形ABCD 为平行四边形,则它的面积等于AB ×ADD.若a ×b =3,a ⋅b =1,则a +b 的最小值为7【解析】对于A ,a ×b =a ⋅b ⋅sin a ,b =0,若a ,b 至少有一个为零向量,则满足a ⎳b ;若a ,b 均不为零向量,则sin ‹a ,b ›=0,即a ,b 同向或反向,即a ∥b ,故A 正确,对于B ,λ(a ×b )=λ|a |⋅|b |⋅sin ‹a ,b ›,(λa )×b =|λa |⋅|b |⋅sin ‹λa ,b›,若λ≥0,则(λa )×b =λ|a |⋅|b |⋅sin ‹a ,b ›,此时λ(a ×b )=(λa)×b ;若λ<0,(λa )×b =-λ|a |⋅|b |⋅sin ‹a ,b ›,此时λ(a ×b )≠(λa)×b ,故B 错误;对于C ,若四边形ABCD 为平行四边形,则它的面积等于|AB |⋅|AD |⋅sin ‹AB ,AD ›,即AB ×AD,故C 正确;对于D ,a ×b =|a |⋅|b |⋅sin ‹a ,b›=3,a ⋅b =|a |⋅|b |⋅cos ‹a ,b ›=1,两式平方后相加得(|a |⋅|b |)2=4,即|a |⋅|b |=2,又|a +b |=a 2+2a ⋅b +b 2=|a |2+|b |2+2≥2|a |⋅|b|+2=6,当且仅当|a |=|b |=2时等号成立,故|a +b|的最小值为6,故D 错误,故选:AC【解题技法】与集合运算有关的创新问题是按照一定的数学规则和要求给出新的集合运算规则,并按照此集合运算规则和要求结合相关知识进行逻辑推理和计算等,从而达到解决问题的目的.【跟踪训练】4对于非零向量a ,b ,定义a ⊕b =a ⋅b ⋅tan <a ,b >.若a ⊕b =a +b =3a -b=3,则tan <a ,b >=.【解析】∵a ⊕b =a ⋅b ⋅tan a ,b =3,∴tan <a ,b >=3a ⋅b.由a +b =3a -b =3可得a 2+2a ⋅b +b 2=3a 2-2a ⋅b +b 2=1,两式相减得a ⋅b =12,∴tan <a ,b>=312=23.题型三向量与三角结合的新定义5给出定义:对于向量b =sin x ,cos x ,若函数f x =a ⋅b ,则称向量a为函数f x 的伴随向量,同时称函数f x 为向量a的伴随函数.(1)设向量m =3,1 的伴随函数为g x ,若g α =1013,且α∈-π6,π3 ,求cos α的值;(2)已知A -1,32 ,B 1,3 ,函数h x 的伴随向量为n =0,1 ,请问函数h x 的图象上是否存在一点P ,使得AP +BP =AB,若存在,求出点P 的坐标;若不存在,请说明理由.【解】(1)由题意,g x =3sin x +cos x =2sin x +π6,由g α =2sin α+π6 =1013,得sin α+π6 =513,因为α∈-π6,π3 ,所以α+π6∈0,π2 ,所以cos α+π6=1-sin 2α+π6 =1213,所以cos α=cos α+π6 -π6=cos α+π6 cos π6+sin α+π6 sin π6,即cos α=1213×32+513×12=123+526.(2)由题意,h x =cos x ,设P x ,cos x ,因为A -1,32,B 1,3 ,所以AP =x +1,cos x -32 ,BP =x -1,cos x -3 ,AB =2,32,所以AP +BP =2x ,2cos x -92,由AP +BP =AB ,得2x 2+2cos x -92 2=22+32 2,即cos x -942=2516-x 2,因为-1≤cos x ≤1,所以-134≤cos x -94≤54,所以2516≤cos x -942≤16916,又2516-x 2≤2516,所以当且仅当x =0时,cos x -942和2516-x 2同时等于2516,此时cos x -942=2516-x 2成立,所以在函数h x 的图象上存在一点P 0,1 ,使得AP +BP =AB.【跟踪训练】6已知对任意平面向量AB =(x ,y ),把AB 绕其起点沿逆时针方向旋转θ角得到向量AP=(x cos θ-y sin θ,x sin θ+y cos θ),叫做把点B 绕点A 沿逆时针方向旋转θ角得到点P .已知平面内点A (1,2),点B 1+3,4 ,把点B 绕点A 沿顺时针方向旋转π3后得到点P ,则点P 的坐标为()A.323+1,32B.-323+1,32C.52,323D.52,12 【解析】O 为坐标原点,由已知AB=(3,2),AP =3cos -π3 -2sin -π3 ,3sin -π3 +2cos -π3 =332,-12,又A (1,2),所以P 点坐标为OP =OA +AP =(1,2)+332,-12 =332+1,32,故选:A .7如果向量a ,b 的夹角为θ,我们就称a ×b 为向量a 与b 的“向量积”,a ×b还是一个向量,它的长度为a ×b =a ⋅b sin θ,如果a =10,b =2,a ⋅b =-12,则a ×b=()A.-16B.16C.-20D.20【解析】由于a ×b =a ⋅b sin θ,a =10,b =2,a ⋅b =-12,则a ⋅b =a b cos θ=10×2cos θ=-12,则cos θ=-35,所以sin θ=45,则a ×b =a b sin θ=10×2×45=16.故选:B8定义a ⊗b =a 2-a ⋅b .若向量a =1,-2,2 ,向量b 为单位向量,则a ⊗b的取值范围是()A.0,6B.6,12C.0,6D.-1,5【解析】由题意可知a =12+-2 2+22=3,b =1,设a 与b 的夹角为θ∈0,π ,则a ⊗b =a 2-a ⋅b =a 2-a bcos θ=9-3cos θ,又因为θ∈[0,π],则cos θ∈-1,1 ,所以a ⊗b=9-3cos θ∈[6,12],故选:B .9若向量a =x 1,y 1 ,b =x 2,y 2 ,则以a 、b 为邻边的平行四边形的面积S 可以用a 、b 的外积a×b 表示出来,即S =a ×b =x 1y 2-x 2y 1 .已知在平面直角坐标系xOy 中,A cos α,3 、B sin2α,2cos α ,α∈0,π2,则△OAB 面积的最大值为()A.1B.2C.2D.3【解析】已知在平面直角坐标系xOy 中,A cos α,3 、B sin2α,2cos α ,α∈0,π2,因为S △OAB =12OA ×OB =122cos 2α-3sin2α =123sin2α-2cos 2α=123sin2α-1+cos2α =123sin2α-cos2α-1 =122sin 2α-π6-1 ,因为0≤α≤π2,则-π6≤2α-π6≤5π6,则-12≤sin 2α-π6≤1,则-2≤2sin 2α-π6 -1≤1,则S =122sin 2α-π6-1 ∈0,1 ,当2α-π6=-π6时,即当α=0时,△OAB 面积取最大值1.故选:A .10记min x ,y =y ,x ≥yx ,x <y,设a ,b为平面内的非零向量,则()A.min a +b , a -b ≤min a , bB.min a +b |2, a -b |2 ≥a 2+b 2C.min a +b , a -b ≥min a , bD.min a +b |2, a -b |2 ≤a 2+b2【解析】对于A 选项:考虑a ⊥b ,根据向量加法减法法则几何意义知:|a +b |=|a -b |>min |a |,|b| ,所以A 错误;B 选项:根据平面向量数量积可知:不能保证±a ⋅b ≥0恒成立,|a +b |2=a 2+b 2+2a ⋅b ,|a -b |2=a 2+b 2-2a ⋅b ,所以它们的较小者一定小于等于a 2+b2,所以B 错误D 正确;C 选项:考虑a ⎳b ,a =5,b =4min |a +b |,|a -b | =1,min |a |,|b | =4,所以C 错误.故选:D11定义两个非零平面向量a ,b 的一种新运算:a *b =a ⋅b sin a ,b ,其中a ,b 表示向量a ,b的夹角,则对于非零平面向量a ,b ,则下列结论一定成立的是()A.a +b *a +b =a *a +2a *b +b *bB.(a *b )2+(a ⋅b )2=a 2⋅b 2C.a *b =0,则a ⎳bD.λa *b =λa *b【解析】对于A 项,a +b *a +b =a +b 2=a 2+b 2+2a b cos a ,b,a *a +2a *b +b *b =a 2+b 2+2a b sin a ,b ,故A 项错误;对于B 项,a *b 2+a ⋅b 2=a *b 2+a ⋅b 2=a 2b 2sin 2a ,b +a 2b 2cos 2a ,b =a 2b 2,故B 项正确;对于C 项,由已知可得,a *b =a ⋅b sin a ,b =0,所以sin a ,b =0.因为0≤a ,b ≤π,所以a ,b =0或a ,b =π,所以a ⎳b ,故C 项正确;对于D 项,因为λa ,b 与a ,b 相同或互补,所以sin λa ,b =sin a ,b .λa *b =λa ⋅b sin a ,b ,λa *b =λa b sin λa ,b =λ a ⋅b sin a ,b ,故D 项错误.故选:BC .12已知两个单位向量e 1 、e 2 的夹角为θθ≠π2,若c =x e 1 +y e 2 ,则把有序数对x ,y 叫做向量c 的斜坐标,若a=x 1,y 1 ,b =x 2,y 2 ,则()A.a -b=x 1-x 2,y 1-y 2 B.a =x 21+y 21C.λa=λx 1,λy 1D.a ⋅b=x 1x 2+y 1y 2【解析】由已知a=x 1e 1 +y 1e 2 ,b =x 2e 1 +y 2e 2 ,因此a -b =(x 1-x 2)e 1 +(y 1-y 2)e 2 ,所以a -b的斜坐标为(x 1-y 1,x 2-y 2),A 正确;λa =λx 1e 1 +λy 1e 2 ,因此λa的斜坐标是(λx 1,λy 1),C 正确;a =(x 1e 1 +y 1e 2 )2=x 21+y 21+2x 1y 1e 1 ⋅e 2 ,a ⋅b=x 1x 2+y 1y 2+(x 1y 2+x 2y 1)e 1 ⋅e 2 ,在e 1 与e 2 不垂直时,BD 错;故选:AC .13若非零向量a ,b 的夹角为锐角θ,且ab=cos θ,则称a 被b“同余”.已知b 被a “同余”,且a =2,b =1则a -b 在a上的投影=【解析】b 被a “同余”,则b =a cos θ.所以a (a -b )=a 2-a b cos θ=a 2-|b |2,a -b 在a 上的投影为a (a -b )a =a 2-b 2a=2-12=22.14已知对任意平面向量AB =x ,y ,把AB 绕其起点A 沿逆时针方向旋转θ角得到向量AP=x cos θ-y sin θ,x sin θ+y cos θ ,叫做把点B 绕点A 沿逆时针方向旋转θ角得到点P ,已知平面内点A 1,2 ,点B 1+2,2-22 ,把点B 绕点A 沿逆时针方向旋转π4角得到点P ,则点P 的坐标.【解析】由题意可得AB =2,-22 ,因为点B 绕点A 沿逆时针方向旋转π4角得到点P ,所以AP =2cos π4--22 sin π4,2sin π4+-22 cos π4=3,-1 ,设P 点坐标为a ,b ,则AP=a -1,b -2 =3,-1 ,解得a =4,b =1,即点P 的坐标为4,115我们把由平面内夹角成60°的两条数轴Ox ,Oy 构成的坐标系,称为“@未来坐标系”.如图所示,e 1 ,e 2 两分别为Ox ,Oy 正方向上的单位向量.若向量OP =x e 1 +y e 2,则把实数对x ,y 叫做向量OP 的“@未来坐标”,记OP =x ,y ,已知x 1,y 1 ,x 2,y 2 分别为向量a ,b 的@未来坐标.(1)证明:x 1,y 1 ⋅x 2,y 2 =x 1x 2+y 1y 2+12x 1y 2+x 2y 1 (2)若向量a ,b 的“@未来坐标”分别为sin x ,1 ,cos x ,1 ,已知f x =a ⋅b,x ∈R ,求函数f x 的最值.【解】(1)证明:因为e 1 ,e 2两分别为Ox ,Oy 正方向上的单位向量,且夹角为60°,所以e 1 ⋅e 2 =e 1 e 2 cos60°=12,所以x 1,y 1 ⋅x 2,y 2 =x 1e 1 +y 1e 2 ⋅x 2e 1 +y 2e 2=x 1x 2e 1 2+x 1y 2e 1 ⋅e 2 +x 2y 1e 1 ⋅e 2 +y 1y 2e 2 2=x 1x 2e 1 2+12x 1y 2+12x 2y 1+y 1y 2e 2 2=x 1x 2+y 1y 2+12x 1y 2+x 2y 1 ,即x 1,y 1 ⋅x 2,y 2 =x 1x 2+y 1y 2+12x 1y 2+x 2y 1 ,(2)因为向量a ,b的“@未来坐标”分别为sin x ,1 ,cos x ,1 ,所以f x =a ⋅b=sin x e 1 +e 2 ⋅cos x e 1 +e 2=sin x cos x e 1 2+sin x e 1 ⋅e 2 +cos x e 1 ⋅e 2 +e 22=sin x cos x +1+12(sin x +cos x ),令t =sin x +cos x =2sin x +π4 ,则sin x cos x =12(t 2-1),因为x ∈R ,所以-2≤2sin x +π4≤2,即-2≤t ≤2,令g (t )=12(t 2+t +1)(-2≤t ≤2),因为对称轴为t =-12,函数图象开口向上,所以当t =-12时,g (t )取得最小值g -12 =12×14-12+1 =38,当t =2时,g (t )取得最大值g 2 =12×2+2+1 =3+22,所以f x 的最小值为38,最大值为3+22.16记所有非零向量构成的集合为V ,对于a ,b ∈V ,a ≠b ,定义V (a ,b )=x ∈V ∣x ⋅a =x ⋅b ,(1)若a =-1,3 ,b =2,-6 ,求出集合V a ,b中的三个元素;(2)若V a ,b =V a ,c ,其中b ≠c ,求证:一定存在实数λ1,λ2,且λ1+λ2=1,使得a =λ1b +λ2c .【解】(1)设x =(m ,n ),由x ⋅a =x ⋅b 得-m +3n =2m -6n ,即m =3n ,不妨令n 取1,2,3,则m 取3,6,9,故V a ,b中的三个元素为(3,1),(6,2),(9,3);(2)先证明V a ,b中向量都是共线向量,不妨设a=a 1,a 2 ,b =b 1,b 2 ,因为a ≠b ,所以a 1-b 1,a 2-b 2中至少有一个不为0,若a 2-b 2≠0,记e =1,-a 1-b 1a 2-b 2,显然e ⋅a -b =0,即e ⋅a =e ⋅b ,故e ∈V a ,b ,任取v =x ,y ∈V a ,b ,因为v ⋅a =v ⋅b ,所以v ⋅a -b =0,故x a 1-b 1 +y a 2-b 2 =0,则y =-a 1-b 1a 2-b 2x ,故v =x ,y =xe ,则V a ,b ={v |v =λe ,λ∈R },则问题得证;若a 2-b 2=0,a 1-b 1≠0,同理可证明V a ,b ={v |v =λe ,λ∈R ,其中e =-a 2-b 2a 1-b 1,1;故综合上述V a ,b中向量都是共线向量,因为V a ,b =V a ,c ,所以不妨设v 1 ,v 2 ∈V a ,b ,v 1≠v 2 ,则由V a ,b定义知v 1 ⋅a =v 1 ⋅b ,即v 1 ⋅a -b =0,同理v 2 ⋅a -b =0,故v 1 ⋅a -b =v 2 ⋅a -b ,则a -b ∈V v 1 ,v 2 ,同理可得a -c ∈V v 1 ,v 2 ,故a -b ,a -c 为共线向量,即存在实数λ,使a -c =λa -b ,即1-λ a =-λb +c ,因为b ≠c ,所以λ≠1,所以a =-λ1-λ b +11-λc,记λ1=-λ1-λ ,λ2=11-λ,则λ1+λ2=1,即一定存在实数λ1,λ2,且λ1+λ2=1,使得a =λ1b +λ2c.17对于一个向量组a 1 ,a 2 ,a 3 ,⋅⋅⋅,a n n ≥3,n ∈N * ,令b n =a 1 +a 2 +⋅⋅⋅+a n ,如果存在a tt ∈N * ,使得a t ≥a t -b n ,那么称a t是该向量组的“好向量”(1)若a 3 是向量组a 1 ,a 2 ,a 3 的“好向量”,且a n=n ,x +n ,求实数x 的取值范围;(2)已知a 1 ,a 2 ,a 3 均是向量组a 1 ,a 2 ,a 3 的“好向量”,试探究a 1 ,a 2 ,a 3的等量关系并加以证明.(2)由“好向量”的定义得三个不等式,平方转化为向量的数量积,三式相加整理后可得.【解析】(1)由题意a 3 ≥a 1 +a 2 ,而a 1 =(1,x +1),a 2 =(2,x +2),a 3=(3,x +3),a 1 +a 2=(3,2x +3),所以9+(x +3)2≥9+(2x +3)2,解得-2≤x ≤0,所以x 的范围是[-2,0];(2)a 1 ,a 2 ,a 3 的等量关系是a 1 +a 2 +a 3 =0 ,证明如下:由题意a 1 是向量组a 1 ,a 2 ,a 3的“好向量”,所以a 1 ≥a 2 +a 3 ,则a 1 2≥a 2 +a 3 2,即a 1 2≥(a 2 +a 3 )2,所以a 1 2≥a 2 2+2a 2 ⋅a 3 +a 3 2,同理a 2 2≥a 1 2+2a 1 ⋅a 3 +a 3 2,a 3 2≥a 2 2+2a 2 ⋅a 1 +a 12,三式相加并整理得0≥a 1 2+a 2 2+a 3 2+2a 1 ⋅a 2 +2a 2 ⋅a 3 +2a 1 ⋅a 3,所以(a 1 +a 2 +a 3 )2≤0,a 1 +a 2 +a 3 ≤0,所以a 1 +a 2 +a 3 =0.。

(完整word版)高中数学函数的凸凹性例讲

(完整word版)高中数学函数的凸凹性例讲

高中数学函数的凸凹性例讲山西忻州五寨一中摄爱忠、凸凹函数定义:设函数f 为定义在区间I 上的函数,若对( a, b )上任意两点x1、x2 ,恒有:(1) f(x1 x2)f(x1) f ( x2 ),则称f 为( a, b )上的下凸函数;(2) f(x1 x2)f(x1) f (x2),则称f为(a, b)上的上凸函数。

22、凹凸函数的几何特征:1. 形状特征图1(下凸函数) 图 2 (上凸函数)下凸函数的形状特征是:其函数曲线任意两点A1与A2 之间的部分位于弦A1A2的下方;上凸函数的形状特征是:其函数曲线任意两点A1与A2 之间的部分位于弦A1 A2的上方。

2 切线斜率特征下凸函数的切线斜率特征是:切线的斜率y 上凸函数的切线斜率特征是:切线的斜率y f (x)随x 增大而增大;f(x)随x增大而减小;简记为:斜.率.凹.增.凸.减.下凸函数的增量特征是:y i越来越大;上凸函数的增量特征是:y i 越来越小;3 增量特征:图 5 (下凸函数)图6(凸函数)简记为:增.量.下.大.上.小.弄清了上述两类凸函数及其图象的本质区别和变化的规律,就可准确迅速、简捷明了地解决有关凸的曲线问题.三、凸函数与导数的关系定理1( 可导函数与凹凸函数的等价命题 ):1) 设f(x)为区间I 上的可导函数,则:f(x)为I 上的下凸函数 f (x) 为I 上的增函数;2) 设f(x)为区间I 上的可导函数,则:f(x)为I 上的上凸函数 f /(x) 为I 上的减函数;定理2(可导函数与二阶导数的关系) :(1)设f(x)为区间I 上的可导函数,则:f(x)为I 上的下凸函数任一子区间上恒为零.(2)设f(x)为区间I 上的可导函数,则:f(x)为I 上的上凸函数f (x) 0 且f (x) 不在I 上的f (x) 0 且f (x) 不在I 上的任一子区间上恒为零四、函数凹凸性的应用题型 1:图形与图像问题高为H满缸水量为V的鱼缸的截面如图 7 所示,其底部碰了一个小洞,满缸水从洞中流出.若鱼缸水深为h时水的体积为V,则函数 V f (h) 的大致图象可能是图 8 中的(◇题目: ).图7解:据四个选项提供的信息(h从O→H),我们可将水“流出”设想成“流入”,这样,每当h增加一个单位增量Δh时,根据鱼缸形状可知V 的变化开始其增量越来越大,但经过中截面后则越来越小,故V关于h的函数图象是先凹后凸的,因此,选B.练一练:◇题目:向高为H的水瓶中注水,注满为止,如果注水量V 与水深h的函数关系的图象如图9 所示,那么水形状是(图的)).(1998 年全国高考题)图9 图107解:因为容器中总的水量(即注水量) V 关于h的函数图象是凸的,即每当h增加一个单位增量Δh, V 的相应增量ΔV越来越小.这说明容器的上升的液面越来越小,故选B.讲一讲:◇题目: 在某种金属材料的耐高温实验中,温度随着时间变化的情况由微机记录后再显示的图象如下图所示.现给出下面说法:①前 5 分钟温度增加的速度越来越快; ③5 分钟以后温度保持匀速增加;其中正确的说法是( ).解:因为温度y关于时间t的图象是先上凸后平行直线,即 5 分钟前每当t增加一个单位增量Δt,则y 相应的增量Δy越来越小,而 5 分钟后是y关于t的增量保持为0,故选B.注: 本题也选自《中学数学教学参考》 2001 年第 1~2 合期的《试题集绵》,用了增量法就反成了“看 图说画”.A.①④ B.②④ C.②③ D.①③②前 5 分钟温度增加的速度越来越慢; ④ 5 分钟以后温度保持不变.练一练:◇题目: ( 06 重庆 理)如下图所示,单位圆中弧 x ,f(x) 表示弧 AB 与弦 AB 所围成的弓形面积解:易得弓形 AxB 的面积的 2 倍为 f(x)= x-sin x.由于y 1 =x是直线, 每当x增加一个单位增量Δx, y 1的对应增量Δy不变;而y 2 =sin x是正弦曲线,在[ 0 ,π]上是上凸的,在[π,2π]上是 下凸的,故每当x增加一个单位增量Δx时,y2对应的增量i(i =1 , 2, 3 ,⋯)在[ 0,π]上越来越小,在[π, 2π]上是越来越大,故当x增加一个单位增量Δx时,对应的 f(x) 的变化,在x∈[ 0,π]上其增量Δ f(x) i(i= 1, 2, 3 ,⋯)越来越大,在x∈[π, 2π]上,其增量Δf(x) i则越来越小,故 f(x) 关于x的函数图象,开始时在[ 0 ,π]上是下凸的,后来在[π, 2 π]的2倍,则函数 y=f(x) 的图象是(A图 17CAB 的长为上是上凸的,故选 D .◇题目: ( 07 江西) 四位好朋友在一次聚会上,他们按照各自的爱好选择了形状不同、内空高度相等、A . h 2>h 1>h 4B .h 1> h 2> h 3C .h 3> h 2>h 4D .h 2>h 4>h 1解: 设内空高度为 H, 剩余酒的高度关于酒杯中酒的体积函数从左到右依次V 3(h )、V 4(h ),根据酒杯的形状可知函数 V 1(h )、 V 2(h )、 V 4(h )因为函数 V 1(h )、V 2(h )为下凸函数, V 1(h )当h 从O→ H ,Δh 增加一个单位增量, ΔV i(i = 1 ,2 ,3,⋯)增大,则 h 1> 0.5H =h 4;同理 V 2(h )当 h 从O→ H ,Δh 增加一个单位增量,ΔV i(i=1,2,3,⋯)增大,则 h 2> 0.5H =h 4;所以 h 1> h 4、 h 2> h 4;由 V 1( h )、 V 2 ( h )图象可知, h 从 H →h 2,ΔV 1(h )>ΔV 2(h ),而 0.5 V 1(h )>ΔV 1(h ),Δ杯口半径相等的圆口酒杯,如图所示.盛满酒后他们约定:先各自饮杯中 酒的一半.设剩余酒的高度从左到右依次为 h1 ,h2 ,h3 , h4 ,则它们的 大小关系正确的是( )为 V 1(h )、 V 2(h )、 的图象可为上右 图.V2(h)=0.5 V 2(h),则当ΔV1(h)=0.5 V 1(h)时h1> h 2,所以答案为 A.题型2:函数与图像问题◇题目:在y 2x,y log2 x,y2x ,y cos2x 这四个函数中,当0 x1 x2 时,f (x1 x2) f (x1) f (x2 )恒成立的函数的个数是( ).22A.0B.1C.2D.3分析】:运用数形结合思想,考察各函数的图象.注意到对任意x1,x2∈I,且x1<x2,当f(x)总满足f(x1 x2) f(x1) f(x2)时,函数f(x)在区间I上的图象是“上凸”的,由此否定22y=2 x,y=x 2,y=cos2x ,应选B。

中考数学专项突破——新定义阅读理解创新题型(word版+详细解答)

中考数学专项突破——新定义阅读理解创新题型(word版+详细解答)

中考数学专项突破——新定义阅读理解创新题型1.阅读下列材料,解答下列问题:材料一:一个三位以上的自然数,如果该自然数的末三位表示的数与末三位之前的数字表示的数之差是11的倍数,我们称满足此特征的数叫“网红数”.如:65362,362-65=297=11×27,称65362是“网红数”.材料二:对任意的自然数p 均可分解为p =100x +10y +z (x ≥0,0≤y ≤9,0≤z ≤9且想,x ,y ,z 均为整数),如:5278=52×100+10×7+8,规定:G (p )= zx x z x x -++-+112)( . (1)求证:任意两个“网红数”之和一定能被11整除;(2)已知:s =300+10b +a ,t =1000b +100a +1142(1≤a ≤7,0≤b ≤5,且a 、b 均为整数),当s +t 为“网红数”时,求G (t )的最大值.(1)证明:设两个“网红数”为mn ,ab (n ,b 分别为mn ,ab 末三位表示的数,m ,a 分别为mn ,ab 末三位之前的数字表示的数), 则n -m =11k 1,b -a =11k 2, ∴mn +ab =1001m +1001a +11(k 1+k 2)=11(91m +91a +k 1+k 2). 又∵k 1,k 2,m ,n 均为整数,∴91m +91a +k 1+k 2为整数,∴任意两个“网红数”之和一定能被11整除.(2)解:s =3×100+10b +a ,t =1000(b +1)+100(a +1)+4×10+2, S +t =1000(b +1)+100(a +4)+10(b +4)+a +2,①当1≤a ≤5时,s +t =))()()((2a 4b 4a 1b ++++, 则))()((2a 4b 4a +++-(b +1)能被11整除,∴101a +9b +441=11×9a +2a +11b -2b +40×11+1能被11整除, ∴2a -2b +1能被11整除.∵1≤a ≤5,0≤b ≤5,∴-7≤2a -2b +1≤11,∴2a -2b +1=0或11,∴a =5,b =0,∴t =1642,G (1642)=17141, ②当6≤a ≤7时,s +t =))()()((2a 4b 6a 2b ++-+, 则))()((2a 4b 6a ++--(b +2)能被11整除,∴101a +9b -560=11×9a +2a +11b -2b -51×11+1能被11整除,∴2a -2b +1能被11整除.∵6≤a ≤7,0≤b ≤5,∴3≤2a -2b +1≤15,∴2a -2b +1=11,∴⎩⎨⎧==1b 6a ,⎩⎨⎧==2b 7a , ∴t =2742或3842,G (2742)=28251,G (3842)=39361, 综上,G (t )的最大值为39361. 2.若将自然数中能被3整除的数,在数轴上的对应点称为“3倍点”,取任意的一个“3倍点”P ,到点P 距离为1的点所对应的数分别记为a ,b .定义:若数K =a 2+b 2-ab ,则称数K 为“尼尔数”.例如:若P所表示的数为3,则a =2,b =4,那么K =22+42-2×4=12;若P 所表示的数为12,则a =11,b =13,那么K =132+112-13×11=147,所以12,147是“尼尔数”.(1)请直接判断6和39是不是“尼尔数”,并且证明所有“尼尔数”一定被9除余3;(2)已知两个“尼尔数”的差是189,求这两个“尼尔数”.解:(1)6不是尼尔数,39是尼尔数.证明:设P 表示的数为3m ,则a =(3m -1),b =(3m +1), K =(3m -1)2+(3m +1)2-(3m -1)(3m +1)=9m 2+3,∵m 为整数,∴m 2为整数,∴9m 2+3被9除余3;(2)设这两个尼尔数分别是K 1,K 2,将两个“尼尔数”所对应的“3倍点数”P 1,P 2分别记为3m 1,3m 2.∴K 1-K 2=9m 12-9m 22=189,∴m 12-m 22=21,∵m 1,m 2都是整数,∴m 1+m 2=7,m 1-m 2=3,∴⎩⎨⎧==2m 5m 21, ∴⎩⎨⎧==39k 228k 21.3.若在一个两位正整数 N 的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为 N 的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数 M 加 2 后得到一个新数,我们称这个新数为 M 的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数 A ,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数 B 的“立达数”的各位数字之和是 B 的各位数字之和的一半,求 B 的值.解:(1)设A 的十位数字为a ,个位数字为b ,则A =10a +b ,它的“诚勤数”为100a +20+b ,它的“立达数”为10a +b +2, ∴100a +20+b -(10a +b +2)=90a +18=6(15a +3),∵a 为整数,∴15a +3是整数,则“诚勤数”与“立达数”之差能被6整除;(2)设B =10m +n ,1≤m ≤9,0≤n ≤9(B 加上2后各数字之和变小,说明个位发生了进位),∴B +2=10m +n +2,则B 的“立达数”为10(m +1)+(n +2-10),∴m +1+n +2﹣10=21(m +n ),整理,得m +n =14,∵1≤m ≤9,0≤n ≤9,∴⎩⎨⎧==6n 8m 、⎩⎨⎧==8n 6m 、⎩⎨⎧==5n 9m 、⎩⎨⎧==9n 5m 、⎩⎨⎧==7n 7m , 经检验:77、86和95不符合题意,舍去,∴所求两位数为68或59.4.一个正偶数k 去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与19的商是一个整数,则称正偶数k 为“魅力数”,把这个商叫做k 的魅力系数,记这个商为F (k ).如:722去掉个位数字是72,2的2倍与72的和是76,76÷19=4,4是整数,所以722是“魅力数”,722的魅力系数是4,记(722)4F =.(1)计算:(304)(2052)F F +;(2)若m 、n 都是“魅力数”,其中3030101m a =+,40010n b c =++(0≤a ≤9,0≤b ≤9,0≤c ≤9,a 、b 、c 是整数),规定:(,)a c G m n b-=.当()()24F m F n +=时,求(,)G m n 的值. 解:(1)∵30+2×4=38,38÷19=2,∴F (304)=2.∵205+2×2=209,209÷19=11, ∴F (2025)=11.∴F (304)+F (2052)=13;(2)∵m =3030+101a =3000+100a +30+a ,∴F (m )=19a 23a 10300+++=19a 12303+=15+19a 1218+. ∵m 是“魅力数”, ∴19a 1218+是整数. ∵0≤a ≤9,且a 是偶数,∴a =0,2,4,6,8.当a =0时,19a 1218+=1918不符合题意. 当a =2时,19a 1218+=1942不符合题意. 当a =4时,19a 1218+=1966不符合题意.当a =6时,19a 1218+=1990不符合题意. 当a =8时,19a 1218+=19114=6符合题意. ∴a =8,此时m =3838,F (m )=F (3838)=6+15=21.又∵F (m )+F (n )=24,∴F (n )=3.∵n =400+10b +c ,∴F (n )=19c 2b 40++=3, ∴b +2c =17,∵n 是“魅力数”,∴c 是偶数,又∵0≤c ≤9,∴c =0,2,4,6,8.当c =0时,b =17不符合题意.当c =2时,b =13不符合题意.当c =4时,b =9符合题意.此时,G (m ,n )=b c a -=948-=94. 当c =6时,b =5符合题意.此时,G (m ,n )=b c a -=568-=52. 当c =8时,b =1符合题意.此时,G (m ,n )=b c a -=188-=0. ∵ 94>52>0, ∴G (m ,n )的最大值是94. 5.已知一个正整数,把其个位数字去掉,再将余下的数加上个位数字的4倍,如果和是13的倍数,则称原数为“超越数”.如果数字和太大不能直接观察出来,就重复上述过程.如:1131:113+4×1=117,117÷13=9,所以1131是“超越数”;又如:3292:329+4×2=337,33+4×7=61,因为61不能被13整除,所以3292不是“超越数”.(1)请判断42356是否为“超越数”(填“是”或“否”),若ab+4c =13k(k为整数),化简abc除以13的商(用含字母k的代数式表示).(2)一个四位正整数N=abcd,规定F(N)=|a+d2﹣bc|,例如:F (4953)=|4+32﹣5×9|=32,若该四位正整数既能被13整除,个位数字是5,且a=c,其中1≤a≤4.求出所有满足条件的四位正整数N中F(N)的最小值.解:(1)否,4235+4×6=4259,425+4×9=461,46+4×1=50,因为50不能被13整除,所以42356不是超越数.∵ab+4c=13k,∴10a+b+4c=13k,∴10a+b=13k﹣4c,∵abc=100a+10b+c=10(10a+b)+c=130k﹣40c+c=130k﹣39c=13(10k﹣3c),abc=10k﹣3c;∴13(2)由题意得d=5,a=c,∴N=1000a+100b+10c+5,∵N能被13整除,∴设100a+10b+c+4×5=13k,∴101a +10b +20=13k ,且a 为正整数,b ,k 为非负整数, 1≤a ≤4,∴a =2,b =9,k =24 或a =3,b =8,k =31,或a =4,b =7,k =38,∴F (N )=|2+25﹣18|=9,或F (N )=|3+25﹣24|=4,或 F (N )=|4+25﹣28|=1,∴F (N )最小值为1.6.一个两位正整数n ,如果n 满足各数位上的数字互不相同且均不为0,那么称n 为“启航数”,将n 的两个数位上的数字对调得到一个新数'n .把'n 放在n 的后面组成第一个四位数,把n 放在'n 的后面组成第二个四位数,我们把第一个四位数减去第二个四位数后再除以11所得的商记为()F n ,例如:23n =时,32n '=,23323223(23)8111F -==-. (1)计算(42)_____;F = 若m 为“启航数”,()F m 是一个完全平方数,求()F m 的值;(2)s t 、为“启航数”,其中10,10s a b t x y =+=+(1≤b ≤a ≤9,1≤x 、y ≤5,且y x b a ,,,为整数) 规定:(,)s t K s t t-=,若()F s 能被7整除,且()()81162F s F t y +-=,求(,)K s t 的最大值.解:(1)F (42)=162,设m =pq (1≤p ≤q ≤9,且p 、q 为整数), 则()=81()11pqqp qppq F m p q -=-,∵()F m 完全平方数,∴p q -为完全平方数,∵1≤p ≤q ≤9,且p 、q 为整数,∴0<p -q ≤8,∴14p q -=或,∴F (m )=81或324;(2)由题意知:s =ab ,t =xy (1≤b ≤a ≤9,1≤x 、y ≤5,且a b x y 、、、为整数),∴()81()F s a b =-,()81()F t x y =-,∵()F s 能被7整除,∴81()7a b -为整数, 又∵1≤b ≤a ≤9,∴0<a -b ≤8,∴7a b -=,∴9,28,1a b a b ====或,∴s =92或81.又∵()()81162F s F t y +-=,∴81(a -b )+81(x -y )-81y =162,∴2y =x +5,∵1≤x ,y ≤5且x y ≠,∴1,33,4x y x y ====或,∴t =13 或34, ∴79(92,13)13K =,K (92,34)=3458,68(81,13)13K =,47(81,34)34K = K max =1379. 7.若一个三位数,其个位数加上十位数等于百位数,可表示为t =100(x +y )+10y +x (x +y ≤9),则称实数t 为“加成数”,将t 的百位作为个位,个位作为十位,十位作为百位,组成一个新的三位数q,例如:321是一个“加成数”,将其h.规定q=t﹣h,f(m)=9百位作为个位,个位作为十位,十位作为百位,得到的数h=213,108=12.∴q=321﹣213=108,f(m)=9(1)当f(m)最小时,求此时对应的“加成数”的值;(2)若f(m)是24的倍数,则称f(m)是“节气数”,猜想这样的“节气数”有多少个,并求出所有的“节气数”.q,解:(1)∵f(m)=9∴当f(m)最小时,q最小,∵t=100(x+y)+10y+x=101x+110y,h=100y+10x+x+y=101y+11x,∴q=t﹣h=101x+110y﹣(101y+11x)=9y+90x,且1≤y≤9,0≤x ≤9,x、y为正整数,当x=0,y=1时,q=9,此时对应的“加成数”是110;(2)∵f(m)是24的倍数,设f(m)=24n(n为正整数),q,q=216n,则24n=9由(1)知:q=9y+90x=9(y+10x),∴216n=9(y+10x),24n=y+10x,(x+y<10)①当n=1时,即y+10x=24,解得:x=2,y=4,则这样的“节气数”是24;②当n=2时,即y+10x=48,解得:x=4,y=8,x+y=12>10,不符合题意;③当n=3时,即y+10x=72,解得:x=7,y=2,则这样的“节气数”是72;④当n=4时,即y+10x=96,解得:x=9,y=6,x+y=15>10,不符合题意;⑤当n=5时,即y+10x=120,没有符合条件的整数解,综上,这样的“节气数”有2个,分别为24,72.8.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.(1)解:是;【解法提示】∵361568﹣315668=45900,且45900÷17=2700,∴根据最佳拍档数的定义可知,31568是“最佳拍档数”;故答案为:是设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z +100y +60+x ,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ),∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除, 设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a ,∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ),∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除, 同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.9.若实数a 可以表示成两个连续自然数的倒数差,即a =n 1-1n +1,那么我们称a 为第n 个“1阶倒差数”,例如21=1-21,∴21是第1个“1阶倒差数”,61=21-31,∴16是第2个“1阶倒差数”.同理,若b =n 1-2n 1 ,那么,我们称b 为第n 个“2阶倒差数”.(1)判断132是否为“1阶倒差数”;直接写出第5个“2阶倒差数”;(2)若c ,d 均是由两个连续奇数组成的“2阶倒差数”,且d 1-c 1=22,求c ,d 的值.解:(1)132不是“1阶倒差数”,235;【解法提示】∵32=1×32=2×16=4×8,不是两个连续自然数的积, ∴321不是“1阶倒差数”. 第5个“2阶倒差数”为51-71=352. (2)设m 是由两个连续奇数2x -1,2x +1组成的“2阶倒差数”,则m =1x 21--1x 21+=))(()(1x 21x 21x 21x 2-+--+=1x 422-. ∵c ,d 是两个连续奇数组成的“2阶倒差数”,∴可设c =1y 422-,d =1z 422-, ∵d 1-c 1=22,∴4z 2-12-4y 2-12=22,即z 2-y 2=11,∴(z +y )(z -y )=11>0,∴z >y .∵11=1×11,∴⎩⎨⎧=-=+1y z 11y z ,解得⎩⎨⎧==6z 5y , ∴c =15422-⨯=299,d =16422-⨯=2143. 10.任意一个正整数n ,都可以表示为:n =a ×b ×c (a ≤b ≤c ,a ,b ,c 均为正整数),在n 的所有表示结果中,如果|2b ﹣(a +c )|最小,我们就称a ×b ×c 是n 的“阶梯三分法”,并规定:F (n )=bc a +,例如:6=1×1×6=1×2×3,因为|2×1﹣(1+6)|=5,|2×2﹣(1+3)|=0,5>0,所以1×2×3是6的阶梯三分法,即F(6)=231+=2.(1)如果一个正整数p是另一个正整数q的立方,那么称正整数p 是立方数,求证:对于任意一个立方数m,总有F(m)=2;(2)t是一个两位正整数,t=10x+y(1≤x≤9,0≤y≤9,且x≥y,x+y≤10,x和y均为整数),t的23倍加上各个数位上的数字之和,结果能被13整除,我们就称这个数t为“满意数”,求所有“满意数”中F(t)的最小值.解:(1)∵m为立方数,∴设m=q×q×q,∴|2q﹣(q+q)|=0,∴q×q×q是m的阶梯三分法,∴F(m)=q qq+=2;(2)由已知,[23(10x+y)+x+y]能被13整除,整理得:231x+24y能被13整除,∵231x+24y=13(18x+2y)﹣(3x+2y),∴3x+2y能被13整除,∵1≤x≤9,0≤y≤9,∴3≤3x+2y≤45,∵x,y均为整数,∴3x+2y的值可能为13、26或39,①当3x+2y=13时,∵x ≥y ,x +y ≤10,∴x =3,y =2,t =32,∴32的阶梯三分法为2×4×4, ∴F (32)=23242=+; ②同理,当3x +2y =26时,可得x =8,y =1或x =6,y =4, ∴t =81或64,∴F (81)=4,F (64)=2; ③同理,当3x +2y =39时,可得x =9,y =6(不合题意舍去), ∴综合①②③,F (t )最小值为23.。

人教版最新高中数学复习试题(完整版)Word版

人教版最新高中数学复习试题(完整版)Word版

NUMPAG E S§1.1 集合(附参考答案) 重难点:(1)集合的含义及表示.(2)集合的基本关系 (3)集合的基本运算 经典例题:1.若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件? 2.已知A ={x |x =8m +14n ,m 、n ∈Z },B ={x |x =2k ,k ∈Z },问: (1)数2与集合A 的关系如何? (2)集合A 与集合B 的关系如何? 3.已知集合A={}0,xx x -= B={}240,x ax x -+=且A ⋂B=B ,求实数a 的取值范围.基础训练: 1.下面给出的四类对象中,构成集合的是( )A .某班个子较高的同学B .长寿的人C .2的近似值D .倒数等于它本身的数2.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是__________.3. 平面直角坐标系内所有第二象限的点组成的集合是( )A . {x,y 且0,0x y <>}B . {(x,y)0,0x y <>}C. {(x,y) 0,0x y <>}D. {x,y 且0,0x y <>}4.用适当的符合填空:0__________{0}, a __________{a }, π________Q , 21________Z ,-1________R , 0________N , 0 Φ.{a }_______{a,b,c }.{a }_________{{a },{b },{c }},Φ_______{a,b }5.由所有偶数组成的集合可表示为{x x = }.6.用列举法表示集合D={2(,)8,,x y y x x N y N =-+∈∈}为 . 7.已知集合A={2210,,x ax x a R x R ++=∈∈}.(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围.8.设U 为全集,集合M 、N U ,且M ⊆N ,则下列各式成立的是( )A .M C U ⊇N C UB .MC U ⊆MC .M C U ⊆N C UD .M C U ⊆N9. 已知全集U ={x |-2≤x ≤1},A ={x |-2<x <1 =,B ={x |x 2+x -2=0},C ={x |-2≤x <1 =,则( )A .C ⊆AB .C ⊆C uAC.C uB =C D . CuA =BN U M P A G E S 10.已知全集U ={0,1,2,3}且C UA ={2},则集合A 的真子集共有( )A .3个B .5个C .8个D .7个11.如果M ={x |x =a 2+1,a ∈N*},P ={y |y =b 2-2b +2,b ∈N +},则M 和P 的关系为M _________P . 12.集合A ={x |x 2+x -6=0},B ={x |mx +1=0},若B A ,则实数m 的值是 .13.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形};(2)A={2|20x x x --=},B={|12x x -≤≤},C={2|44x x x +=};(3)A={10|110x x ≤≤},B={2|1,x x t t R =+∈},C={|213x x +≥};(4)11{|,},{|,}.2442k kA x x k ZB x x k Z ==+∈==+∈1.已知集合{}{}{}20,0,2M x x px N x x x q M N =++==--=⋂=且,则q p ,的值为 ( ).A .3,2p q =-=-B .3,2p q =-=C .3,2p q ==-D .3,2p q ==2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆A ∩B 的集合C 的个数是(). A .0 B .1 C .2 D .33.已知集合{}{}|35|141A x x B x a x a =-≤≤=+≤≤+,,A B B ⋂=且,B φ≠,则实数a 的取值范围是( )..1.01A a B a ≤≤≤.0.41C a D a ≤-≤≤4.设全集U=R ,集合{}{}()()0,()0,0()f x M x f x N x g x g x =====则方程的解集是( ).A .MB . M ∩(CuN )C . M ∪(CUN )D .M N ⋃5.有关集合的性质:(1) Cu (A ⋂B)=( Cu A )∪(Cu B ); (2) Cu (A ⋃B)=( Cu A )⋂(Cu B )(3) A ⋃ (Cu A)=U (4) A ⋂ (Cu A)=Φ 其中正确的个数有( )个.A.1 B . 2 C .3 D .46.已知集合M ={x |-1≤x <2=,N ={x |x —a ≤0},若M ∩N ≠Φ,则a 的取值范围是 .7.已知集合A ={x |y =x 2-2x -2,x ∈R },B ={y |y =x 2-2x +2,x ∈R },则A ∩B =8.表示图形中的阴影部分 .9.集合U ,M ,N ,P 如图所示,则图中阴影部分所表示的集合是( )(A )M ∩(N ∪P ) (B )M ∩C U (N ∪P ) (C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P ) A B CNUP MN U M P AG ES10.在直角坐标系中,已知点集A={}2(,)21y x y x -=-,B={}(,)2x y y x =,则 (CuA)⋂ B= . 11.已知集合M={}{}{}2,2,4,3,2,46,2a a N a a a a M N +-=++-+⋂=且,求实数a 的的值 12.已知集合A=}{40x R x x ∈+=,B=}{2(1)10x R x a x a ∈+++-=,且A ∪B=A ,试求a 的取值范围.§1.2函数与基本初等函数重难点:(1)函数(定义域、值域、单调性、奇偶性、最大值、最小值)(2)基本初等函数(指数函数、对数函数、幂函数)(函数基本性质)典型例题:1.设函数f (x )的定义域为[0,1],求下列函数的定义域(1)H (x )=f (x 2+1);(2)G (x )=f (x +m )+f (x -m )(m >0).2.已知函数f (x )=2x 2-mx +3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f (1)等于( )A .-3B .13C .7D .含有m 的变量基础训练:1. 下列四组函数中,表示同一函数的是( )A.(),()f x x g x ==.2(),()f x x g x == C .21(),()11x f x g x x x -==+- D.()()f x g x == 2.函数()y f x =的图象与直线x a =交点的个数为( )A .必有一个B .1个或2个C .至多一个D .可能2个以上3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A .{}1x x ≠B .{}2x x ≠-C .{}1,2x x ≠--D .{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( ) A .5[,)4+∞ B .5(,]4-∞ C . 4[,)3+∞ D .4(,]3-∞ 5.函数()f x 对任何x R +∈恒有122()()f x x f x x ⋅=,已知(8)3f =,则f = .6.规定记号“∆”表示一种运算,即a b a b a b R +∆=+∈,、. 若13k ∆=,则函数()f x k x =∆的值域是___________.7.求函数y x =-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同步练习学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本题共22道小题,每小题5分,共110分)1.定义,max{,},a a b a b b a b ≥⎧=⎨<⎩,设实数,x y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则max{4,3}z x y x y =+-的取值范围是( )(A )[8,10]- (B ) [7,10]-(C )[6,8]- (D )2.对于复数a,b,c,d ,若集合{}S=a,b,c,d 具有性质“对任意x,y S ∈,必有xy S ∈”,则当22a=1b =1c =b ⎧⎪⎨⎪⎩时,b+c+d 等于 ( ) A 、1 B 、-1 C 、0 D 、i 3.在实数集R 中定义一种运算“*”,R b a ∈∀,,a b *为唯一确定的实数,且具有性质:(1)对任意R a ∈,0a a *=; (2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.关于函数1()()x x f x e e=*的性质,有如下说法:①函数)(x f 的最小值为3;②函数)(x f 为偶函数;③函数)(x f 的单调递增区间为(,0]-∞.其中正确说法的序号为( ) A .①B .①②C .①②③D .②③4.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有( )A .2个B .4个C .6个D .8个 5.对于集合∈+==k k x x S ,12{N }和集合}{S b a b a x x T ∈⊕==,,, 若满足S T ⊆,则集合T 中的运算“⊕”可以是A .加法B .减法C .乘法D .除法 6.设函数)(x f 的定义域为R ,如果存在函数()(g x ax a =为常数),使得)()(x g x f ≥对于一切实数x 都成立,那么称)(x g 为函数)(x f 的一个承托函数. 已知对于任意(0,1)k ∈,()g x ax =是函数()e x kf x =的一个承托函数,记实数a 的取值范围为集合M ,则有( )A. 1e ,e M M -∉∉B. 1e ,e M M -∉∈C.1e ,e M M -∈∉ D.1e ,e M M -∈∈ 7.用C (A )表示非空集合A 中的元素个数,定义⎩⎨⎧<-≥-=-)()(),()()()(),()(||B C A C A C B C B C A C B C A C B A . 若}2,1{=A ,2{|23|}B x x x a =+-=,且|A-B|=1,由a 的所有可能值构成的集合为S ,那么C (S )等于( )A .1B .2C .3D .48.对于集合M 、N ,定义M -N ={x |x ∈M 且x ∉N },M ⊕N =(M -N )∪(N -M ),设A ={y |y =3x , x ∈R},B ={y |y =-122++x x ,x ∈R},则A ⊕B 等于( )A .[0,2)B .(0,2]C .(-∞,0]∪(2,+∞)D .(-∞,0)∪[2,+∞)9.在实数集R 中定义一种运算“*”,R b a ∈∀,,a b *为唯一确定的实数,且具有性质:(1)对任意R a ∈,0a a *=;(2)对任意,R a b ∈,(0)(0)a b ab a b *=+*+*.的性质,有如下说法:①函数)(x f 的最小值为3;②函数)(x f 为偶函数;③函数)(x f 的单调递增区间为(,0]-∞.其中所有正确说法的个数为( ) A .0B.1C .2.310.给出定义:(其中m 则m 叫做与实数x “亲密的整数”, 记作{}x m =,数()y f x =在(0,1)x ∈上是增函数;②函数()y f x =的图象关于直线称;③函数()y f x =是周期函数,最小正周期为1;④当(0,2]x ∈时,函数()()ln g x f x x =-有两个零点. 其中正确命题的序号是____________.A .②③④B .①③C .①②D .②④ 11.定义运算a b ad bc c d=-,若函数()123x f x xx -=-+在(,)m -∞上单调递减,则实数m 的取值范围是A .(2,)-+∞B .[2,)-+∞C .(,2)-∞-D . (,2]-∞-12.对于函数()f x ,若,,a b c R ∀∈,()()(),,f a f b f c 为某一三角形的三边长,则称()f x 为“可构造三角形函数”,已知函数()1x xe tf x e +=+是“可构造三角形函数”,则实数t 的取值范围是A .[)0,+∞B .[]0,1C .[]1,2D .1[,2]213.对于集合A ,如果定义了一种运算“⊕”,使得集合A 中的元素间满足下列4个条件:(ⅰ),a b A ∀∈,都有a b A ⊕∈;(ⅱ)e A ∃∈,使得对a A ∀∈,都有e a a e a ⊕=⊕=;(ⅲ)a A ∀∈,a A '∃∈,使得a a a a e ''⊕=⊕=;(ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕,则称集合A 对于运算“⊕”构成“对称集”.下面给出三个集合及相应的运算“⊕”: ①{}A =整数,运算“⊕”为普通加法;②{}A =复数,运算“⊕”为普通减法;③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有( ) A ①②B ①③C ②③D ①②③14.设()f x 与()g x 是定义在同一区间[a ,b]上的两个函数,若函数()()y f x g x =-在[,]x a b ∈上有两个不同的零点,则称()f x 和()g x 在[,]a b 上是“关联函数”,区间[,]a b 称为“关联区间”.若2()34f x x x =-+与()2g x x m =+在[0,3]上是“关联函数”,则m 的取值范围是( )A. 9,24⎛⎤-- ⎥⎝⎦ B .[-1,0] C .(-∞,-2] D. 9,4⎛⎫--∞ ⎪⎝⎭ 15.设函数()f x 的定义域为D,如果对于任意的1x D ∈,存在唯一的2x D ∈,使得12()()2f x f x C+= 成立(其中C 为常数),则称函数()y f x =在D 上的均值为C , 现在给出下列4个函数: ①3y x = ②4sin y x = ③lg y x = ④2x y = ,则在其定义域上的均值为 2的所有函数是下面的 ( )A. ①②B. ③④C. ①③④D. ①③16.对任意实数,a b 定义运算""*如下()()a ab a b b a b ≤⎧⎪*=⎨>⎪⎩,则函数x x x f 221log )23(log )(*-=的值域为( )A. [)0,+∞B. (],0-∞C. ⎥⎦⎤ ⎝⎛0,32log 2D. 22log ,3⎛⎫+∞ ⎪⎝⎭ 17.设B A ,是非空集合,定义},|{B A x B A x x B A ⋂∉⋃∈=⨯且,已知}20|{≤≤=x x A ,}0|{≥=x x B ,则B A ⨯等于( ).A ),2(+∞ .B ),2[]1,0[+∞⋃ .C ),2()1,0[+∞⋃ .D ),2(]1,0[+∞⋃18.设集合A ⊆R ,如果x 0∈R 满足:对任意a >0,都存在x ∈A ,使得0<|x ﹣x 0|<a ,那么称x 0为集合A 的一个聚点.则在下列集合中: (1)Z +∪Z ﹣; (2)R +∪R ﹣;(3){x|x=,n ∈N *}; (4){x|x=,n ∈N *}.其中以0为聚点的集合有( ) A . 1个B . 2个C . 3个D .4个19.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为y =2x 2+1,值域为{9}的“孪生函数”三个:(1)y =2x 2+1,}2{-∈x ; (2)y =2x 2+1,}2{∈x ; (3)y =2x 2+1,}2,2{-∈x 。

那么函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”共有 ( ) A .5个 B .4个 C .3个 D .2个20.已知12345{,,,,}{1,2,3,4,5,6},a a a a a ⊂若21234345,,,a a a a a a a a >>>>,称排列12345,,,,a a a a a 为好排列,则好排列的个数为.20.72.96.120A B C D21.若1,x A A x∈∈且,则称A 是“伙伴关系集合”,在集合11{1,0,,,1,2,3,4}32M =-的所有非空子集中任选一个集合,则该集合是“伙伴关系集合”的概率为 A .117B .151C .7255D .425522.在数学拓展课上,老师定义了一种运算“*”:对于n N ∈,满足以下运算性质: ①221*=;②(22)2(22)3n n +*=*+。

则10202*的数值为 ( )A.1532B.1533C.1528D.1536第II 卷(非选择题)评卷人 得分二、解答题(本题共15道小题,每小题5分,共75分).类似的,我们在平面向量集(){}=,,,D a a x y x R y R =∈∈r r上也可以定义一个称“序”的关系,记为“>>”.定义如下:对于任意两个向量111222a =(x ,y ),a =(x ,y )u u r u u r,“12a >>a u u r u u r”当且仅当“12x x >”或“1212x x y y =>且”。

按上述定义的关系“>>”,给出如下四个命题:①若12e (1,0),(0,1),0(0,0)e ===u r u u r r ,则12e >>e >>0u r u u r r ;②若1223a >>a ,a >>a u u r u u r u u r u u r ,则13a >>a u u r u u r ;③若12a >>a u u r u u r ,则对于任意12a D,a +a >>a +a ∈r u u r r u u r r ;④对于任意向量a >>0,0=(0,0)r r r,若12a >>a u u r u u r ,则12a a >a a ⋅⋅r u u r r u u r 。

相关文档
最新文档