系统抽样

合集下载

系统抽样》课件

系统抽样》课件
减小抽样误差的方法
采用更科学的抽样方法、增加样本量、提高样本代表性等。
非抽样误差
非抽样误差的定义
01
由于非随机因素引起的误差,如调查员的主观偏见、调查方法
的缺陷等。
非抽样误差的来源
02
调查员的主观偏见、调查方法的缺陷、数据处理的错误等。
减小非抽样误差的方法
03
加强调查员的培训和监督、采用更科学的调查方法、加强数据
的质量控制等。
05
CHAPTER
系统抽样的应用案例
某品牌的市场调研系统抽样应用
总结词:高效准确
详细描述:某品牌在进行市场调研时,采用系统抽样方法,按照一定的间隔从总 体中抽取样本,大大提高了调研效率和准确性,为品牌的市场策略制定提供了有 力支持。
某大学的学生满意度调查系统抽样应用
总结词:覆盖全面
详细描述
起始样本的选择可以采用随机方式或指定方式。随机方式可以借助随机数生成器 等工具进行,而指定方式则需要根据研究目的和实际情况进行合理设定。
进行样本抽取
总结词
在确定总体、样本、抽样间隔和起始样本后,即可按照系统 抽样的规则进行样本抽取。
详细描述
按照设定的抽样间隔和起始样本,依次进行样本抽取,直至 达到所需的样本量。在抽取过程中,应保持随机性和代表性 原则,确保样本的有效性。
详细描述:某大学采用系统抽样方法进行学生满意度调查,确保了样本的代表性和广泛性,调查结果能够全面反映学生的需 求和意见,为学校改进教学质量和管理提供了重要依据。
某城市的居民消费水平调查系统抽样应用
总结词:科学合理
详细描述:某城市进行居民消费水平调查时,采用系统抽样方法,按照居民分布和人口比例进行抽样 ,确保了样本的科学性和合理性,为城市经济发展规划和政策制定提供了有力支持。

系统抽样

系统抽样

一、知识概述1、系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.2、系统抽样的步骤:①采用随机的方式将总体中的个体编号.为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等.②为将整个的编号分段(即分成几个部分),要确定分段的间隔k.当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.③在第一段用简单随机抽样确定起始的个体编号.④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本).说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.3、系统抽样与简单随机抽样的区别与联系系统抽样与简单随机抽样相比,有如下区别:(1)系统抽样比简单随机抽样更容易实施,可节约成本.(2)系统抽样所得到的样本的代表性和个体的编号有关;而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.如,如果学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取样本就可能会是全部为男生或全部为女生.(3)系统抽样比简单随机抽样的应用范围更广.联系是:(1)系统抽样适用于总体中的个体较多的情况,因为这时应用简单随机抽样就显得很不方便;(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;(3)与简单随机抽样一样,系统抽样也属于等概率抽样.二、例题讲解例1、在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位是68的号码为中奖号码,这是运用哪种抽样方式来确定号码的()A.抽签法B.系统抽样C.随机数表法D.其他抽样方法解:由题意可知抽出的号码分别为0068,0168,0268,……,9968,显然这是将10000个中奖号码平均分成100组,从第一组抽取了0068号,其余号码在此基础上加上100的倍数得到的,可见这是采用系统抽样法.答案:B例2、一个总体中有100个个体,随机编号0,1,2,……,99.依编号顺序平均分成10个小组,组号依次为1,2,3,……,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为t,则在第k组中抽取的号码个位数字与t +k的个位数字相同,若t=7,则在第8组中抽取的号码应是________.答案:75例3、为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.解:假设抽取50名学生.适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例4、为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.解:(1)随机地将这1003个个体编号为1,2,3,…,1003.利用简单随机抽样,先从总体中剔除3个个体.(2)再按系统抽样的方法抽取.例5、某制罐厂每小时生产易拉罐10000个,每天生产时间为12小时,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1200个进行检测,请你设计一个抽样方案.若工厂规定每天共抽取980个进行检测呢?解:每天共生产易拉罐120000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出1个,再每隔100个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=36秒拿出1个易拉罐送检.若共要抽取980个进行检测,则要分980组,但980不能整除120000,则先计算出120000除以980的整数部分是122,所以先要剔除120000-980×122=440个,剩下119560个平均分为980组,每组122个,然后采用简单随机抽样法从001~122中随机选出1个编号,例如选出的是108号,可以从第108个易拉罐开始,每隔122个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=43.92秒拿出一个易拉罐送检.例6、下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:;确定随机数字,取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:,其他步骤相应改为确定随机数字;取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。

系统抽样

系统抽样

(三)根据各单元原有的自然 位置进行排序


例如:学生按学号抽样,入户调查根据 街道门牌号按一定间隔抽取等。 这种自然状态的排列有时与调查标志有 一定的联系,但又不完完一致,这主要 是为了抽样方便。
四、系统抽样的特点


优点: 1.简便易行,容易确定样本单元


等距抽样简单明了,快速经济,操作灵活方便,使用面广, 是单阶段抽样中变化最多的一种抽样技术。 在某些场合下甚至可以不用抽样框。例如若要对公路旁的树 木进行病虫害调查,确定每 20 棵数检查一棵,只要在初始被 检树确定后,每隔 20 棵检查一棵即行,根本不需要在事先对 公路旁的所有树木进行编号,或者不需要知道抽样框即所有 树木的棵数。 在我国,等距抽样已成了最主要、最基本的抽样方式,一些 大规模的抽样调查,如农产量抽样调查、城乡住户调查、人 口抽样调查、产品质量抽样检查中都普遍采用了等距抽样。
三、排序标志

等距抽样需要有作为排序依据的辅助标志。 排序标志各式各样,可自由选择,但归纳起 来,可分为两类,即无关标志和有关标志, 它们对等距抽样的作用和相应的估计精度各 有不同的影响。
(一)按无关标志排队 (无序系统抽样)


即各单元的排列顺序与所研究的内容无关. 如研究人口的收入状况时,按身份证号码、按 门牌号码排序非常方便,一般说来,这些号码 与调查项目没有关系,因此可以认为总体单元 的次序排列是随机的 无关标志排序的等距抽样也称无序等距抽样。
k 1 2 2 V ( ysy ) E ( ysy Y ) ( yr Y ) k r 1
性质2 用样本(群)内方差 S 2 表示系统抽 wsy 样估计量的方差: ( N 1) 2 k (n 1) 2 V ( ysy ) S S wsy N N

系统抽样法

系统抽样法

系统抽样法系统抽样法,在统计学中是一种常用的抽样方法。

它是指根据一定的规则,从总体中随机选择具有代表性的样本,以便对总体进行统计推断。

系统抽样法不仅能保证样本的随机性,还能提高调查的效率和准确性。

下面将介绍系统抽样法的基本原理、应用场景以及优缺点。

系统抽样法的原理是通过预先设定的规则来选择样本。

首先,需要确定样本容量,即要从总体中选取多少个样本点。

然后,确定一个起始点,这个起始点是通过随机抽取总体中的一个个体来确定的。

接下来,按照一定的间隔(这个间隔可以是固定的数字,也可以是总体的大小除以样本容量得到的比例),在总体中选取样本。

直到选取到规定的样本容量为止。

这样,样本就具有代表性,能够对总体进行推断。

系统抽样法常见的应用场景是社会调查、市场研究、医学实验等。

在社会调查中,比如对某个城市的居民进行调查,我们可以先确定样本容量,然后选取一个起始点,按照一定的间隔,从不同区域或人口群体中选取样本。

这样,我们可以通过这些样本来了解整个城市的人口特征、生活习惯等信息。

在市场研究中,通过对一部分消费者进行调查,可以推断出整个市场的需求、偏好等情况。

在医学实验中,可以通过对一部分病人进行治疗或观察,来推断出某种治疗方法的有效性或某种药物的副作用。

系统抽样法具有一定的优点和缺点。

其优点之一是样本选择随机性好,能够较好地代表总体。

其次,系统抽样法也较为简单,实施起来相对容易。

此外,它还能提高调查的效率,通过合理的样本容量和间隔选择,能够最大程度地获取有用的信息。

然而,系统抽样法也存在一些缺点。

首先,它对总体的要求较高,需要清楚地了解总体的特点和组成,才能选择合适的起始点和间隔。

其次,如果选择的起始点过于倾斜,可能会导致样本选择的偏差,影响结果的准确性。

此外,系统抽样法也对调查过程的随机性和外界干扰较为敏感,需要注意控制环境和调查过程中的误差。

总之,系统抽样法是一种常用的抽样方法,通过预先设定的规则,从总体中随机选择具有代表性的样本。

2.1.2系统抽样

2.1.2系统抽样

第二章 统计
某批产品共有1564件,产品按出厂顺序编号,号码为 从1到1564.检测员要从中抽取15件产品作检测,请你给出 一个系统抽样方案.
第二章 统计
[解析] (1)先从 1564 件产品中,随机抽取 4 件产品, 将其剔除.
(2)将余下的 1560 件产品编号:1,2,3,…,1560. (3)取 k=151650=104,将总体均匀分为 15 组,每组 含 104 个个体. (4)从第一段把 1 号到 104 号中随机抽取一个号 s. (5)按编号把 s,104+s,208+s,…,1456+s 共 15 个 号选出.这 15 个号所对应的产品组成样本.
第二章 统计
2.1.2 系 统 抽 样
第二章 统计
一、系统抽样的概念 将总体分成 均衡的 几部分,然后按照预先定出的 规则,从每一部分抽取 一个 个体,得到所需样本的 抽样方法叫做系统抽样. 由于抽样的距离相等,因此系统抽样也被称作等距抽 样.
第二章 统计
二、系统抽样的步骤 一般地,假设要从容量为N的总体中抽取容量为n的样 本,可以按下列步骤进行系统抽样: (1)先将总体的N个个体编号.有时可直接利用个体自 身所带的号码,如学号,准考证号,门牌号等; (2)确定分段间隔 k,对编号进行分段.当Nn(n 是样 本容量)是整数时,取 k=Nn;
第二章 统计
3.系统抽样又称等距抽样,号码序列一确定,样本就 确定了,但要求总体中不能含有一定的周期性,否则其样 本的代表性是不可靠的.
第二章 统计
[例1] 某商场想通过检查发票及销售记录的2%来快速 估计每月的销售金额.采用如下方法:从某本发票的存根
中随机抽一张,如15号,然后按序往后将65号,115号, 165号,…发票上的销售金额组成一个调查样本.这种抽取 样本的方法是

2.1.2 系统抽样

2.1.2 系统抽样

思考6:用系统抽样抽取样本时,每段各取一个 号码,其中第1段的个体编号怎样抽取?以后各 段的个体编号怎样抽取? 用简单随机抽样抽取第1段的个体编号.在抽取 第1段的号码之前,自定义规则确定以后各段的个 体编号,通常是将第1段抽取的号码依次累加间隔k.
思考7:一般地,用系统抽样从含有N个个体的总体中抽 取一个容量为n的样本,其操作步骤如何?
解 (1)将每个人编一个号,由0001至1003.
(2)利用随机数表法找到3个号将这3名工人剔除.
(3)将剩余的1 000名工人重新编号0001至1000.
1 000 (4)分段,取间隔k= =100,将总体均分为10组,每组 10 100个工人.
(5)从第一段即0001号到0100号中随机抽取一个号l.
例1
下列抽样中不是系统抽样的是
(
)
A.从标有1~15号的15个小球中任选3个作为样本,按从小 号到大号排序,随机确定起点i,以后为i+5,i+10(超 过15则从1再数起)号入样 B.工厂生产的产品,用传送带将产品送入包装车间前,检 验人员从传送带上每隔五分钟抽一件产品检验 C.搞某一市场调查,规定在商场新门口随机抽一个人进行 询问,直到调查到事先规定的调查人数为止 D.电影院调查观众的某一指标,通知每排(每排人数相等) 座位号为14的观众留下来座谈 解: C 不是系统抽样,因为事先不知道总体,抽样方法不
2.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采 用系统抽样的方法抽取一个容量为50的样本,那么总体中 应随机剔除的个体数目是 A.2 B.3 C.4 D.5 ( A )
解析 由1 252=50×25+2知,应随机剔除2个个体.
3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进 行调查,用系统抽样方法确定所抽的编号为 A.5,10,15,20 C.2,4,6,8 B.2,6,10,14 D.5,8,11,14 ( A )

系统抽样课件

系统抽样课件
系统抽样
1.系统抽样的概念 一般地,要从容量为N的总体中抽取容量为n的样本,可 将总体分成均衡的若干部分,然后按照预先制定的规则, 从每一部分抽取一个个体,得到所需要的样本,这种抽 样的方法就是系统抽样.
【思考】 系统抽样有什么特征?与简单随机抽样有什么区别?
提示:(1)系统抽样的主要特征有三个:①总体已知且数 量较大;②抽样必须等距;③每个个体入样的机会均等. 不满足任何一条就不是系统抽样. (2)系统抽样有别于简单随机抽样的一个显著特点是总 体中的个体的数量,一般来说,简单随机抽样,总体中个 体较少;系统抽样,总体中个体较多.
第三步,在第一段001,002,003,…,010中用简单随机 抽样方法抽出一个号码(如006)作为起始号码; 第四步,起始号+间隔的整数倍,确定各个个体,将编号为 006,016,026,…,486,496的个体抽出组成样本.
【内化·悟】 系统抽样中剔除部分个体时需要注意什么问题?
提示:(1)当总体容量不能被样本容量整除时,可以先从 总体中随机地剔除几个个体,使得总体中剩余的个体数 能被样本容量整除. (2)被剔除的部分个体可采用简单随机抽样法抽取. (3)剔除部分个体后应重新分段. (4)每个个体被抽到的机会均等,被剔除的机会也均等.
2.系统抽样应用的解题依据 (1)等可能性:由于整个抽样过程中每个个体被抽到的 机会相等,故可依此确定某范围上的要抽取的样本容量.
(2)编号的等间隔性: ①常见的系统抽样的样本号码特征较为明显:将号码从 小到大排列,任意相邻两项之间的差是一个定值(间隔 数); ②按照题设规定的规则抽取样本.
【思考】 系统抽样如何提高样本的代表性? 提示:系统抽样所得样本的代表性和具体的分段有关, 因此在系统抽样中就要提高分段的质量.例如,不要让 分段呈现周期性.

系统抽样法

系统抽样法

系统抽样法系统抽样法是一种常用的抽样方法,可以帮助研究者从一个大的总体中抽取一部分样本,以便进行研究和分析。

在很多实际问题中,我们不可能对整个总体进行研究,而是通过对样本的研究,得出对总体的结论。

系统抽样法能够保证样本具有代表性,且能够有效减少抽样误差。

系统抽样法的基本原理是按照一定的顺序从总体中选取样本。

首先,需要确定总体中的个体数目N,然后确定所需样本的大小n。

接下来,计算抽样间隔k,即总体中每隔k个个体选择一个样本单位。

然后,随机确定一个起始个体,从起始个体开始,每隔k个个体选择一个样本单位,直到累计选择n个样本单位为止。

使用系统抽样法进行抽样有以下几个优点:1. 方便快捷:系统抽样法不需要列出总体的名单或分层,仅需要确定总体的大小和样本的大小,便可进行抽样。

这大大减少了工作量和时间。

2. 代表性:由于采用了间隔抽样原则,系统抽样法可以有效地保证样本具有代表性,从而可以得出对总体的准确推断。

3. 统计效果好:与简单随机抽样相比,系统抽样法具有更好的统计效果。

通过合理地选择起始个体,可以避免产生类似于序列效应和群体集中效应等系统偏差。

4. 可估抽样误差:在使用系统抽样法时,我们可以通过计算抽样误差来进行精确的估计。

这样在数据分析和结论得出时,会更加可靠和准确。

然而,系统抽样法也存在一些限制和注意事项:1. 依赖性问题:由于抽样间隔k是事先设定的,因此如果总体中存在某种周期性或重复性,可能会导致样本选择的不够随机,造成样本的偏倚。

2. 初始选择问题:抽样过程需要从一个起始个体开始,如果起始个体不具有代表性,可能会影响最终的样本结果。

因此,在选择起始个体时需要特别注意。

3. 总体规模影响:对于总体规模较小的情况,系统抽样法可能造成样本选择的不充分,影响样本的代表性。

此时,建议使用其他抽样方法。

4. 返回抽样问题:系统抽样法在一轮抽样中,可能会重复选择到之前已经被选入样本的个体。

这会导致样本的重复性,影响结果的可靠性。

系统抽样法

系统抽样法

系统抽样法系统抽样法是一种常用的统计抽样方法,可以有效的代表总体,用于对总体进行推断和估计。

系统抽样法是在总体中按照一定规则选择一部分样本作为代表,从而得到可靠的总体估计。

系统抽样法的步骤如下:1. 确定总体:首先需要明确研究对象或感兴趣的总体,例如某产品的用户群体。

2. 确定样本量:根据所设定的误差容限和置信水平,计算得到所需的样本量。

3. 确定抽样间隔:抽样间隔是指从总体中选择样本的规则,比如每隔5个元素选择一个样本。

4. 确定起始点:从总体中任意选择一个起始点作为第一个样本。

5. 依次选择样本:按照设定的抽样间隔,从起始点开始,依次选择样本,直到达到所需的样本量为止。

6. 数据收集和分析:对所选择的样本进行数据收集和分析,可以获得关于总体的一些统计特征。

7. 总体估计:基于对样本数据的分析,对总体的特征进行估计,如总体均值、总体比例等。

系统抽样法的优点包括:1. 相对于随机抽样,系统抽样具有较高的效率,能够达到相同的估计效果,样本量较少时,所需的抽样量较少。

2. 系统抽样相对于方便抽样和判断抽样,具有较高的代表性,能够更好地反映总体的特征。

3. 系统抽样法适用范围广,可以应用于各种类型的总体,如人群、产品、地域等。

然而,系统抽样法也存在一些局限性:1. 当总体的分布不规律时,系统抽样可能导致样本选择出现一定的偏差,因此在使用系统抽样方法之前,需要确保总体具有较好的规律性。

总之,系统抽样法是一种常用的统计抽样方法,可以帮助研究者从总体中选择出具有代表性的样本,从而对总体进行推断和估计。

在实际应用中,研究者需要根据具体情况选择合适的抽样方法,并确保抽样过程的准确性和可靠性。

系统抽样 (33)

系统抽样 (33)

2.(1)系统抽样. (2)本例是对某村各户进行抽样,而不是对某村人口抽 样.抽样间隔: 30=010,其他步骤相应改为确定随机数
30
字:任取一张人民币,编号末位数为2(假设).确定第一 样本户:编号02的住户为第一样本户;确定第二样本 户:2+10=12,12号为第二样本户,…. (3)确定随机数字:取一张人民币,其末位数为2.
【解析】选C.依题意,要抽十名幸运小观众,所以要分 成十个组,分段间隔为10000÷10=1000.
【补偿训练】系统抽样又称为等距抽样,从N个个体中 抽取n个个体为样本,抽样距为k= [ N ] (取整数部分),
n
从第一段1,2,…,k个号码中随机抽取一个号码i0,则 i0+k,…,i0+(n-1)k号码均被抽取构成样本,所以每个 个体被抽到的可能性是 ( )
【解析】选C.系统抽样的适用范围应是总体中的个体 数目较多且无差异.
2.为了解1000名学生的学习情况,采用系统抽样的方法,
从中抽取容量为40的样本,则分段的间隔为 ( )
A.50
B.40
C.25
D.20
【解析】选C.因为从1000名学生中抽取40个个体,所以 样本数据间隔为 1 000 =25.
(2)第一步,将703件产品以随机方式编号,号码为 001,002,…,703; 第二步,在随机数表中随机地确定一个数作为开始,如, 从第8行第29列的数“7”开始,任选一个方向作为读 数方向,如,向右读;
第三步,从数“7”开始向右读,每次读三位,凡不在 001~703中的数跳过去不读,遇到已经读过的数也跳 过去,便可依次得到286,443,387,211,234,297,560; 这7个号码就是所要抽取的7个样本个体的号码.

2.1.2系统抽样

2.1.2系统抽样

二、系统抽样的步骤 从元素个数为N的总体中抽取容量为n 的样本,如果总体容量能被样本容量整除, 设 一个数s作为起始数,然后顺次抽取第s+k, s+2k,s+3k,……,s+(n-1)k 个数,这 样就得到容量为n的样本.
N k ,可先由数字 1到k中随机地抽取n
如果总体容量不能被样本容量整除, 可随机地从总体中剔除余数个个体,然 后再按系统抽样方法进行抽样. 由于抽样的间隔相等,因此系统抽样 也被称作等距抽样. 上述过程中,总体的每个个体被剔除的 机会相等,也就是每个个体不被剔除的机 会相等,并且编号的过程是随机的,可知 在整个抽样过程中每个个体被抽取的机会 仍然相等.
例2.某年级共有1800名学生参加期末考 试,为了了解学生的成绩,按照1:50的比 例抽取一个样本,用系统抽样的方法进 行抽样,写出过程。 解:将1800名学生按1至1800编上号码, 按编号顺序分成36组,每组50名,先在第 一组中用抽签法抽出k号(1≤k≤50),其余的 k+50n(n=1,2,3,……,35)也被抽出, 即可得所需的样本.
例1.某市场想通过检查发票及销售记录 的2%来快速估计每月的销量总额。采取 如下方法:从某本发票的存根中随机抽一 张,如15号,然后按顺序往后将65号, 115号,165号,……抽出,发票上的销售 额组成一个调查样本。这种抽取样本的方 法是( C ) (A)抽签法 (B)随机数表法 (C)系统抽样法 (D)其他方式的抽样
中应随机剔除的个体数目是( A ) ( A) 2 (B)4 ( C) 5 ( D) 6
3.从含有100个个体的总体中抽取10个入 样。 请用系统抽样法给出抽样过程。
4.从某厂生产的802辆轿车中随机抽取 80辆测试某项性能。请合理选择抽样方 法进行抽样,并写出抽样过程。

2.1.2_系统抽样

2.1.2_系统抽样

63
解析:依编号顺序平均分成的10个小组分 别为0~9, 10~19, 20~29, 30~39, 40~49,50~59,60~69,70~79,80~89,90~99.因第 7组抽取的号码个位数字应是3,所以抽取的号码 是63.这个样本的号码依次是 6,18,29,30,41,52,63,74,85,96这10个号.
3、什么叫抽签法(抓阄法)? 抽签法就是把总体中的N个个体编号,把号码写 在号签上,将号签放在一个容器中,搅拌均匀后,每次 从中抽取一个号签,连续抽取n次,就得到一个容量为n 的样本. 4、抽签法的一般步骤是怎样的? (1)将总体的所有N个个体从0到(N-1)编号; (2)准备N个号签分别标上这些编号,将号签放在容器 中搅拌均匀; (3)每次抽取一个号签,不放回地连续取n次; (3)将取出的n个号签上的号码所对应的n个个体作为 样本.
例5:采用系统抽样从个体数为83的总体中 抽取一个样本容量为10的样本,那么每个个体
10 人样的可能性为 _________. 83
例6:从2004名学生中选取50名组成参观 团,若采用下面的方法选取:先用简单随机抽 样从2004人中剔除4人,剩下的2000个再按系 统抽样的方法进行,则每人入选的机会(C )
【探究】:除了用简单随机抽样获取样本外,你 能否设计其他抽取样本的方法?
我们按照下面的步骤进行抽样: 第一步:将这500名学生从1开始进行编号; 第二步:确定分段间隔k,对编号进行分段.由于 k=500/50=10,这个间隔可以定为10;
第三步:从号码为1~10的第一个间隔中用简单随机抽样 的方法确定第一个个体编号,假如为6号;
2.1.2 系统抽样
复习回顾
1、简单随机抽样的定义:
一般地,设一个总体含有N个个体,从中逐个不 放回地抽取n个个体作为样本,如果每次抽取时总体 内的各个个体被抽到的机会都相等,就把这种抽样 方法叫做简单随机抽样. 2、简单随机抽样的特点: (1)总体个数有限; (2)逐个抽取; (3)是不放回的抽样。 (5)每个个体被抽取的可能性均为n/N.(等率抽样)

系统抽样的定义和特点

系统抽样的定义和特点

系统抽样的定义和特点一、系统抽样的定义和特点1、定义当总体中的个体数较多时,可以将总体分成均衡的几部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样。

2、特点(1)适用于总体容量较大的情况。

(2)抽样间隔相等,又称等距抽样。

(3)在系统抽样中,每个个体被抽取的可能性相等,均为$\frac{n}{N}$($N$为总体容量,$n$为个体容量)。

(4)系统抽样是不放回抽样。

注:①系统抽样时,总体不能具有一定的周期性,否则其样本的代表性是不可靠的,甚至会导致明显的偏差。

②当总体中的个体不能被样本容量整除时,可先剔除几个个体,从而使剩下的个体能被样本容量整除,再进行系统抽样。

3、系统抽样的步骤一般地,假设要从容量为$N$的总体中抽取容量为$n$的样本,我们可以按下列步骤进行系统抽样(1)先将总体的$N$个个体编号。

有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔$k$,对编号进行分段。

当$\frac{N}{n}$($n$是样本容量)是整数时,取$k=\frac{N}{n}$;(3)在第1段用简单随机抽样确定第1个个体编号$a$($a\leqslant k$);(4)按照一定的规则抽取样本。

通常是将$a$加上间隔$k$得到第2个个体编号($a$+$k$),再加$k$得到第3个个体编号($a$+2$k$),依次进行下去,直到获取整个样本。

注:第(2)步中,如果遇到$\frac{N}{n}$不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除。

二、系统抽样的相关例题用0,1,2,$\cdots$,299给300名高三学生编号,并用系统抽样的方法从中抽取15名学生的数学成绩进行分析,若第一组抽取的学生的编号为8,则第三组抽取的学生编号为___A.20 B.28 C.40 D.48答案:D解析:抽取学生的编号构成以$\frac{300}{15}$=20为公差的等差数列,则第三组抽取的学生编号为8+20X2=48,故选D。

系统抽样和分层抽样的区别

系统抽样和分层抽样的区别

系统抽样和分层抽样的区别系统抽样和分层抽样是常用的两种概率抽样方法。

在统计学中,抽样是一种从总体中选择个体的方法,以便进行数据分析和推断。

系统抽样和分层抽样都有其独特的特点和应用场景。

本文将阐述系统抽样和分层抽样的区别,并探讨其在实际应用中的优缺点。

一、系统抽样系统抽样是指按照一定的规则从总体中选择个体的抽样方法。

具体而言,系统抽样是通过在总体中选择一个起点,然后根据事先确定的间隔规则依次选取个体,直到达到所需的样本量。

系统抽样的步骤包括:确定总体大小、计算间隔、选择起始个体、按照间隔选取个体。

系统抽样的优点在于简单易行,抽样过程便于操作和管理。

此外,系统抽样可以较好地保留总体的特征,适用于总体中个体分布规律较为均衡的情况。

系统抽样使得样本具有一定的随机性,从而提高了推断的精度和可靠性。

然而,系统抽样也存在一些缺点。

首先,如果总体中某些个体的特征呈现周期性或有规律的变化,可能会引入系统偏差。

其次,如果总体中存在某些特殊或异常个体,系统抽样可能无法很好地反映总体的全貌。

因此,在进行系统抽样时,需要事先对总体进行充分的了解和分析,避免因特殊因素导致的偏差。

二、分层抽样分层抽样是将总体划分为若干个层次,并从每个层次中选取样本,形成一个复合样本的抽样方法。

分层抽样的步骤包括:确定总体大小、划分层次、确定每层样本量、选择样本。

分层抽样的优点在于能够更好地反映总体的特征,保证了样本的代表性。

通过在不同的层次中选取样本,可以考虑到总体的异质性,缩小样本与总体之间的差异。

此外,分层抽样可以提高估计的精度,并且可以针对不同层次进行分析,获取更多层次的信息。

然而,分层抽样也存在一些限制和缺点。

首先,分层抽样需要对总体进行合理的划分,这需要对总体的特征有较为准确的了解。

如果划分不当或划分粒度过细,可能会导致样本的不均衡。

其次,分层抽样需要在每个层次中选择样本,增加了抽样的工作量和时间成本。

三、系统抽样和分层抽样的区别1. 定义和步骤:系统抽样是通过事先确定的间隔规则从总体中选择个体,抽取样本。

第二章 2.1 2.1.2 系统抽样

第二章 2.1 2.1.2 系统抽样
(2)总体均匀分段,通常在第一段(也可以选在其他段)中采用简 单随机抽样的方法抽取一个编号,再通过将此编号加段距的整数倍 的方法得到其他的编号.注意要保证每一段中都能取到一个个体.
(3)若总体不能均匀分段,要将多余的个体剔除(通常用随机数 表的方法),不影响总体中每个个体被抽到的可能性.
[活学活用] 某校高中二年级有 253 名学生,为了了解他们的视力情况,准备 按 1∶5 的比例抽取一个样本,试用系统抽样方法进行抽取,并 写出过程. 解:第一步,先把这 253 名学生编号 000,001,…,252. 第二步,用随机数表法任取出 3 个号,从总体中剔除与这三个号对 应的学生. 第三步,把余下的 250 名学生重新编号 1,2,3,…,250. 第四步,分段.取分段间隔 k=5,将总体均分成 50 段.每段含 5 名学生. 第五步,以第一段即 1~5 号中随机抽取一个号作为起始号,如 l. 第六步,从后面各段中依次取出 l+5,l+10,l+15,…,l+245 这 49 个号. 这样就按 1∶5 的比例抽取了一个样本容量为 50 的样本.
(1)确定获得过国家级表彰的人员人选: 第一步,用随机方式给 29 人编号,号码为 1,2,…,29; 第二步,将这 29 个号码分别写在一个小纸条上,揉成小球, 制成号签;
第三步,将得到的号签放入一个不透明的袋子中,搅拌均匀; 第四步,从袋子中逐个抽取 5 个号签,并记录上面的号码; 第五步,从总体中将与抽到的号签的号码相一致的个体取出,人 选就确定了. (2)确定其他人员人选: 第一步,将 990 名其他人员重新编号(分别为 1,2,…,990),并 分成 30 段,每段 33 人; 第二步,在第一段 1,2,…,33 这 33 个编号中用简单随机抽样 法抽出一个(如 3)作为起始号码; 第三步,将编号为 3,36,69,…,960 的个体抽出,人选就确定了. (1)(2)确定的人选合在一起就是最终确定的人选.

2.1.2系统抽样

2.1.2系统抽样

分析:
解:
解:
C
C
35 47
B
分段间隔k 10.
63
小结:
1.系统抽样也是等可能抽样,即每个个体被抽到 的概率是相等的,从而保证了抽样的公平性。 2.系统抽样适合于总体的个体数较多的情形,操 作上分四个步骤进行,除了剔除余数个体和确 定起始号需要随机抽样外,其余样本号码由事 先定下的规则自动生成,从而使得系统抽样操 作简单、方便。
作业 : 9月22日 1.课本P59 : 练习第2题; 2.课本P64 : 习题A组第6题; 3.练习 : 世纪金榜P30 36 ; 4.预习课本P60 62并完成课后练习.
3.系统抽样的四个步骤可简记为:
“编号—分段—确定起始号—抽取样本”四步.
在系统抽样中,如果总体容量 N 能被样本 容量n整除,则用它们的比值 作为分段间隔.
如果
不是整数,可以先从总体中随机地剔除
几个个体,使得总体中剩下的个体数能被样本
容量整除.然后再编号、分段、确定第一段的起
始号,继而确定整个样本.
〖说明〗分段间隔的确定: 当 当 是整数时,取k = ;
不是整数时,可以先从总体中随机地
剔除几个个体,使得总体中剩余的个体数能被
N 样本容量整除.通常取k = n
思考9:系统抽样适合在哪种情况下使用? 总体中个体数比较多.
例1.某中学有高一学生322名,为了了解学生的身体 状况,要抽取一个容量为40的样本,用系统抽样法 如何抽样?
知识探究:
思考1:如果从600件产品中抽取60件进 行质量检查,那么每件产品被抽到的概 率是多少? 60 1 600 10
思考2:你能用简单随机抽样对上述问题进行 抽样吗?具体如何操作?

系统抽样

系统抽样

系统抽样(Systematic sampling)一、概述1、什么系统抽样设计总体中的N 个单元按某种顺序(通常是依照有关标志排队,即按某个在比估计和回归速记中提到的辅助变量的顺序排列,但也可以是依照无关标志排列,即按不完全满足辅助变量定义的某个已知变量排列,这种排列近似于随机排列),编号为1,2,…,N 。

抽取程序是首先抽取一个或一组起始单元的编号,然后按某种确定的规则(例如等距抽样:按照固定的间隔选取)选取其他单元的编号,直到满n 个为止,则这种抽样称为系统随机抽样,简称系统抽样。

2、直线等距抽样假设总体单元数为N ,样本容量为n ,N=nk,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。

抽取程序是先从头k 个单元编号中随机抽出一个单元编号,然后每隔k 个单元编号抽取一个单元编号,直到抽出n 个单元编号为止,则这种等距抽样称为直线等距抽样。

3、圆形等距抽样假设总体单元数为N ,样本容量为n ,N ≠nk ,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。

如将这些编号看成首尾相接的一个环,并从1到N 中按简单随机抽取方式抽取一个单元编号作为随机起点r ,然后每隔k 抽取一个单元编号,直到抽满n 个单元为止,则这种等距抽样称为圆形等距抽样。

4、直线等距抽样的实施方法 (1)首先计算抽样间接k=N/n ;(2)将N 个单元按某种顺序依次编号为1,2,…,N ;(3)从1~k 个单元编号中随机抽取一个单元编号,假设为r ; (4)每隔k 个单元编号抽出一个单元编号,直到抽出n 个单元。

例如:随机起点,k i i ≤≤1,,入选单元,,....2,,k i k i i ++i k 2k 3k (n-1)k nk 5、圆形等距抽样的实施方法编号不是直线排列而是环状(圆形)排列,是随机起点的选择范围由1到k 扩展到1到N 。

入样编号可以表示为:),,2,1(0)1(0)1(},)1(,)1(min{,)1(n j N k j r N k j r N k j r k j r i k j r i =⎩⎨⎧>--+≤--+--+-+=-+=当当二、不等概率系统抽样对总体N 个初级单元的某种确定排列顺序,设第i 个初级单元所包含的次级或基本单元数为i M ,令∑==Ni i M M 10表示总体所包含的全部级或基本单元数。

系统抽样

系统抽样

(二)新课讲授
1、系统抽样的概念: 、系统抽样的概念 概念: 当总体中的个体数比较多时,将总体分成均衡 当总体中的个体数比较多时,将总体分成均衡 的若干部分,然后按照预先制定的规则, 的若干部分,然后按照预先制定的规则,从每一部 分抽取一个个体,得到所需的样本,这种抽样的方 分抽取一个个体,得到所需的样本, 法叫做系统抽样 由于系统抽样的间隔相等, 系统抽样, 法叫做系统抽样,由于系统抽样的间隔相等,因此 间隔相等 系统抽样也称为等距抽样。 系统抽样也称为等距抽样 等距抽样。
2、系统抽样的步骤 、
一般地, 假设从容量为N的总体中抽取容量为 的样本, 的总体中抽取容量为n的样本 一般地 , 假设从容量为 的总体中抽取容量为 的样本 , 可以按下列步骤进行系统抽样: 可以按下列步骤进行系统抽样: 个个体编号; (1)编号:先将总体的 个个体编号; )编号:先将总体的N个个体编号 (2)分段:确定分段间隔 ,对编号进行分段,当N/n(n )分段:确定分段间隔k,对编号进行分段, ( 是样本容量)是整数时,取k=N/n;当 N/n不为整数时,先 是样本容量)是整数时, ; 不为整数时, 不为整数时 用随机数表法把多出的剔除; 用随机数表法把多出的剔除; (3)确定起始个体编号:在第 段用简单随机抽样确定第一 )确定起始个体编号:在第1段用简单随机抽样确定第一 个个体编号l( ) 个个体编号 (l≤k); 加上间隔k (4)按照事先确定的规则抽取样本:通常是将 加上间隔 )按照事先确定的规则抽取样本:通常是将l加上间隔 得到第2个个体编号( ),再加k得到第 ),再加 得到第3个个体编号 得到第 个个体编号(l+k),再加 得到第 个个体编号 个个体编号 ),依次进行下去 (l+2k),依次进行下去,直到获得整个样本。 ),依次进行下去,直到获得整个样本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时系统抽样
【学习导航】
学习要求
1.体会系统抽样的的概念及如何用系统抽样获取样本;
2.感受系统抽样也是等可能性抽样,是否需要用系统抽样,主要是看总体个数的多少.
【课堂互动】
自学评价
案例1 某校高一年级有20个班,每班有50名学生.为了了解高一学生的视力状况,从这1000人中抽取一个容量为100的样本进行检查,应该怎样抽样?
【分析】
这个案例的总体中个体数较多,生活中还有容量大的多的总体,面对这样的总体,采用抽签或随机数表等简单随机抽样方法是不科学的.抽取样本最关键的就是要保证抽样过程的公平性,要保证总体中每个个体被抽到的机会均等.在这样的前提下,我们可以寻求更好的抽样方法.
系统抽样以简单随机抽样为基础,通过将较大容量的总体分组,只需在某一个组内用简单随机抽样方式来获取一个个体,然后在一定规则下就能抽取出全部样本.
1.系统抽样
系统抽样的概念: 将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样(systematic sampling) 系统抽样的步骤为:
(1)采用随机的方式将总体中的个体编号;
(2)将整个的编号按一定的间隔(设为k)分段,当N/n(N为总体中的个体数,n为样本容量)是整数时,k=N/n;当N/n不是整数时,从总体中剔除一些个体,使剩下的总体中个体的个数N’能被n整除,这时,k=N’/n 并将剩下的总体重新编号;
(3)在第一段中用简单随机抽样确定起始的个体编号L;
(4)将编号为L,L+k,L+2k,…,L+(n-1)k 的个体抽出.
【小结】系统抽样是以简单随机抽样为基础的一种抽样方法,对于容量较大、个体差异不明显的总体通常采用这种抽样方法,在保证公平客观的前提下简化抽样过程.在用系统抽样方法抽取样本时,如果总体个数不能被样本容量整除,可以从总体中剔除一些个体,使剩下的总体中的个体的个数能被样本容量整除.
【经典范例】
例1在 1 000个有机会中奖的号码(编号为000~999)中,在公证部门监督下随机抽取的方法确定后两位数为88的号码为中奖号码,这是运用哪种抽样方法来确定中奖号码的?依次写出这10个中奖号码?
【解】
本题中是运用了系统抽样的方法来确定中奖号码的,中奖号码依次为:088,188,288,388,488,588,688,788,888,988
例2某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查.试采用系统抽样方法抽取所需的样本. 【分析】因为624的10%约为62,624不能被62整除,为了保证“等距”分段,应剔除4人.【解】第一步将624名职工用随机方式进行编号;
第二步从总体中剔除4人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别为000,001,002,……,619),并分成62段;
第三步在第一段000,……,009这十个编号中用简单随机抽样确定起始号码i0;
第四步将编号为i0,i0+10,……,i0+610的个体抽出,组成样本.
例3某制罐厂每小时生产易拉罐10 000个,每天生产时间为12h,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1 200个进行检测,请你设计一个抽样方案。

【解】
每天共生产易拉罐120 000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出一个编号,例如选出的是013号,则从第13个易拉罐开始,每隔100个,拿出一个送检,或者根据每小时生产10 000个,每隔
36
3600
10000
100
=
⨯s拿出一个易拉罐送检。

例4 现要从999名报名者中随机选取100名参加某活动,请你用系统抽样法设计一种方案,叙
述其步骤。

你能找到另外的抽样方案吗?比较两种方案的合理性和易操作性
【解】按系统抽样法,因为100不能整除999,所以首先将999人编号,采用随机数表法剔除99名,再将剩下的900名报名者重新编号001~900,从001号顺次下去每9人一组,等分成100组,利用抽签法或随机数表法,从1~9个数中随机选出一个数,新编号为该数字加上9的倍数的报名者入选。

例如选出的随机数为3,则新编号为003,012,021,…,894共100人入选。

还可以采取以下抽样方法:首先将999名报名者编号为001~999,因为111可以整除999,将这999个编号从001开始顺次每9个一组,然后选用简单随机抽样法从1~9的9个数字中随机地抽出一个数字,编号为该数字加上9的倍数的共111名报名者先挑选出来,例如:随机抽到的是7,则编号为007,016,025,…,988,997共111名,最后,再利用随机数表从111名中随机抽取11名剔除。

点评:此方法较之系统抽样法更易操作,因为虽然999不能被100整除,但余数99非常大,接近于除数100,而且采用随机数表法从999个数字中随机抽出 99个数剔除的工作量也较大。

后一种方法先通过系统抽样,随机抽取111名,再利用随机数表法,从111个数字中随机抽出11个来剔除,操作起来要相对方便得多。

追踪训练
1.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除个体的数目是( A )(A)2 (B)3
(C)4 (D)5
2.全班有50位同学,需要从中选取7人,若采用系统抽样的方法来选取,则每位同学
能被选取的可能性是
50
7
3.一个总体中有100个个体,随机编号为0,1,2, ...,99,依编号顺序平均分成10个小组,组号依次为1,2,3, ...,10.现用系统抽样的方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m k
+的个位数字相同.若6
m=,则在第7组中抽取的号码是______63_______.
4. 要从1003名学生中选取一个容量为20的样本,试叙述系统抽样的步骤。

【解】
第一步将1003名学生有随机方式进行编号;
第二步从总体中剔除3人(剔除方法可用随机数表法),将剩下的1000名学生重新编号并分成20段;
第三步在第一段000、001、002、003、…、049这十个编号中用简单随机抽样确定起始号码,比如013
第四步将013逐次加上部分的“长度”(第一部分中个体的个数)的0倍、1倍、2倍、…、19倍得到样本:013、063、113、163、…963.。

相关文档
最新文档