高等数学函数的单调性与极值.
高等数学自考3.3函数的单调性与极值
上单调增加; 在 上单调增加 (i)如果在 b)内f ′(x) > 0,则f (x)在[a, b]上单调增加; )如果在(a, 内 , 上单调减少。 (ii)如果在 b)内f ′(x) <0,则f (x)在[a, b]上单调减少。 )如果在(a, 内 , 在 上单调减少
例1 讨论函数 y = e x − x − 1的单调性 . 的单调性 解 Q y′ = e x − 1. 又 Q D : ( −∞ ,+∞ ).
的极值点与极值。 例4 求 f (x) = (x −1) x 的极值点与极值。
3 2
解
定义域( 定义域(−,+)
2 5x − 2 f ′( x) = x + ( x −1) x = 3 , 3 3 x 2 当 x = 时 , f ′( x ) = 0; 5 当 x = 0时 , f ′( x )不存在
4 3
′(x) = 12x3 −12x2 = 12x2 ( x −1), 解 f
令 得驻点: f ′( x) = 0 得驻点 x = 0, 1.
′′( x) = 36x2 − 24x = 12x(3x − 2) f
f ′′(0) = 0, f ′′(1) = 12 > 0.
由极值第二判别法, 由极值第二判别法 ξ=1时, 时 f (ξ)有极小值 f (1)=4. 有极小值: ξ 有极小值 由于 f ′′( 0 ) = 0 所以,需用极值第一判别法判定 所以 需用极值第一判别法判定: 需用极值第一判别法判定
O x
y = x3
定理2 极值存在的一阶充分条件) 定理2(极值存在的一阶充分条件) 在该邻域( 可除外)可导, 在该邻域(x0可除外)可导, 设f (x)在x0的某邻域内连续, 在 的某邻域内连续, 不存在的点。 x0为f (x)的驻点或使 ′(x) 不存在的点。 的驻点或使f 的驻点或使 (i) 若当 < x0 时,f ′(x) > 0;当x > x0 时,f ′(x) < 0, 若当x ; , 则 f (x0) 是f (x)的极大值; 的极大值; 的极大值 (ii) 若当 < x0 时,f ′(x) < 0; 当x > x0 时,f ′(x) >0, 若当x ; , 的极小值; 则 f (x0) 是f (x)的极小值; 的极小值 (iii) 若在 0的两侧,f ′(x)不变号, 若在x 的两侧, 不变号, 不变号 不是极值。 则f (x0)不是极值。 不是极值
大专大一高数知识点
大专大一高数知识点高等数学作为大一学生的必修课程,是一门基础且重要的学科。
掌握了高数的基本知识点,对于后续专业课程的学习以及日常生活中的实际问题解决都有着重要的帮助。
本文将对大专大一高数的知识点进行系统整理和介绍。
一、函数与极限1. 函数与映射关系:函数的定义,自变量、因变量和函数值的概念,函数图像的性质等。
2. 极限与连续:数列的极限概念,函数极限的定义与性质,常见极限运算法则,连续函数的定义与判定等。
3. 一元函数的导数与微分:导数的定义与性质,常见导数运算法则,函数的微分与微分近似计算等。
二、一元函数的应用1. 函数的增减性与极值:函数单调性的判定方法,函数的极大值与极小值的求解等。
2. 函数的单调性与曲线的凹凸性:函数的凹凸性与拐点的判定方法,曲线的拐点与凹凸区间等。
3. 常用函数与数学模型:幂函数、指数函数、对数函数、三角函数等常见函数的性质与应用。
三、二元函数与多元函数1. 二元函数的概念与性质:二元函数的定义与图像,二元函数的极限、连续与偏导数等。
2. 多元函数的极限与连续:多元函数的定义与性质,多元函数的极限定义与计算,多元函数的连续性与判定等。
3. 多元函数的偏导数与全微分:多元函数的偏导数与偏导数的计算方法,全微分的概念与计算等。
四、多元函数的应用1. 多元函数的极值与条件极值:多元函数的极值与条件极值的求解方法,拉格朗日乘数法等。
2. 多元函数的偏导数与梯度:多元函数的偏导数在几何上的意义,梯度的概念与性质等。
3. 二重积分与三重积分:二重积分的定义与计算方法,三重积分的定义与计算方法等。
五、常微分方程1. 常微分方程的基本概念:常微分方程的定义与分类,初值问题的理解与解的存在唯一性定理等。
2. 一阶常微分方程的解法:可分离变量方程、线性方程、齐次方程、一阶齐次线性方程等的求解方法。
3. 高阶线性常微分方程:高阶常微分方程的解法,常系数线性齐次方程的解法,常系数线性非齐次方程的特解与通解等。
大学高等数学上册:4-1单调性与极值
(非严格意义的) 注意
闭区间[a, b]上上述结论不一定成立. o a
bx
y
y
oa
bx o a
bx
1.闭区间上连续函数的最值
闭区间[a, b]上连续函数f (x) 的最大最小值 M,m 的求法. (1) 求出f (x) 在(a, b) 内的所有临界点:x1, x2 , , xn. (2) 求出函数值 f ( x 1), f ( x 2), , f ( x n) 及 f (a),f (b). (3) 比较以上这些函数值的大小即可得:
令 f ( x) 0 得驻点x = -1, 0, 1. f ( x) 6( x2 1)(5 x2 1)
x ( ,1) 1 (1,0) 0 (0, 1) 1
(1, )
f ( x) -
0
-
0
+
0
+
f ( x)
0
+
0
f (x)
非极值
极小值 f (0) = 0
非极值
三、最值
最值是整体概念而极值是局部概念. 结论:若f (x) 在 (a, b) 内有最值点 x0,则 x0 必是极值点.
例如
y x3
y x
x = 0 是驻点但非极值点 x = 0 是极小值点但 y (0) 不存在
结论:极值点必是临界点
极值点的必要条件
问题:如何判别临界点是否为极值点?
3.极值点的充分条件
y x2
y x3
y 3 x2
(1)一阶充分条件:
设 x0 是f ( x )的临界点, f ( x )在某N ( x0 )内连续,在
f ( x )的驻点.
(4) 函数的单调性是一个区间上的性质,不能用一点
函数单调性和求极值点、最值(知识点及相关练习)
函数单调性和求极值点、最值(知识点及相关练习)本文档将介绍函数的单调性以及如何求函数的极值点和最值。
这些概念是在研究高等数学中非常重要的一部分。
函数的单调性函数的单调性描述了函数图像在定义域内的变化趋势。
一个函数可以是递增的(单调递增),也可以是递减的(单调递减),或者在某个区间内既递增又递减。
判断函数的单调性需要观察函数的导数。
如果函数的导数恒大于零(导函数递增),则函数单调递增;如果导数恒小于零(导函数递减),则函数单调递减。
如果导数在某个区间内既大于零又小于零,则函数在该区间内既递增又递减。
下面是一些相关联系。
练题:1. 设函数 $f(x)=x^3-3x^2+2$,求 $f(x)$ 的单调区间。
- 解答:- 首先求导数:$f'(x)=3x^2-6x$- 然后求解 $f'(x)=0$ 的解,即 $3x^2-6x=0$ ,解得 $x=0, 2$- 将 $x=0$ 和 $x=2$ 代入 $f'(x)$ 的导数符号表,得到如下结果:| $x$ | $(-\infty,0)$ | $(0,2)$ | $(2,+\infty)$ |- 由上表可以看出,函数 $f(x)$ 在区间 $(-\infty, 0)$ 上递减,在区间 $(0,2)$ 上递增,而在区间 $(2,+\infty)$ 上递增,所以函数的单调区间分别为 $(-\infty, 0)$ 和 $(2,+\infty)$。
求函数的极值点和最值函数的极值点是函数某一段上的极大值或极小值点。
函数的最大值和最小值是函数在整个定义域上的最大值和最小值。
为了求函数的极值点和最值,我们需要找到函数的临界点和边界点。
- 临界点:函数定义域内导数为零或不存在的点。
- 边界点:函数定义域的端点。
对于一个函数,如果它有极值点,那么极值点一定在函数的临界点和边界点处。
下面是一些相关练。
练题:1. 设函数 $g(x)=x^3-6x^2+9x+2$,求 $g(x)$ 的极值点和最值。
高等数学:函数的单调性及其极值
函数的单调性及其极值单调性是函数的重要性态之一,它既决定着函数递增和递减的状况,又能帮助我们研究函数的极值,还能证明某些不等式和分析函数的图形。
本节将以导数为工具,给出函数单调性的判别法及极值的求法。
一、函数的单调性1、函数单调性的判定为利用导数研究函数的单调性,我们首先来看图133--)(a 、)(b 。
图133--)(a 中函数)(x f y =的图像在),(b a 内沿x 轴的正向上升,除点))(,(ξξf 处的切线平行于x 轴外,)(a )(b 图133--曲线上其余点处的切线与x 轴的夹角均为锐角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为正;而图133--)(b 中函数)(x f y =的图像在),(b a 内沿x 轴的正向下降,除个别点外,曲线上其余点处的切线与x 轴的夹角均为钝角,即曲线)(x f y =在区间),(b a 内除个别点外切线的斜率为负。
由此可见函数的单调性与导数的符号有着密切的联系。
反过来,能否用导数的符号来判定函数的单调性呢?下面我们利用拉格朗日中值定理来讨论。
设函数)(x f 在区间I 内可导,在I 内任取两点1x 和2x (21x x <),在区间],[21x x 上应用拉格朗日中值定理,得)()()()(1212x x f x f x f -'=-ξ (21x x <<ξ) (1)由于在(1)式中012>-x x ,因此,若在I 内导数)(x f '的符号保持为正,即0)(>'x f ,那么也有0)(>'ξf ,于是0)()()()(1212>-'=-x x f x f x f ξ即 )()(21x f x f <表明函数)(x f 在区间I 上单调增加。
同理,若在I 内导数)(x f '的符号保持为负,即0)(<'x f ,那么也有0)(<'ξf ,于是0)()()()(1212<-'=-x x f x f x f ξ即 )()(21x f x f > 表明函数)(x f 在区间I 上单调减少。
高等数学定理
数学基础知识总结第一部分高数第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、函数的单调性、奇偶性、周期性(指最小正周期)3、数列的极限定理(极限的唯一性) 数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a。
●如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n +1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
4、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim (x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x) >0(或f(x) >0),反之也成立。
●函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)= f(x 0+0),若不相等则lim f(x)不存在。
●一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y= f(x)的图形水平渐近线。
如果lim(x →x0)f(x)=∞,则直线x=x0是函数y= f(x)图形的铅直渐近线。
高等数学 第3章
显然 x 0 时,f (x) 不存在;当 x 0 时,f (x) 0;当 x 0 时,f (x) 0 。所以 f (x) 3 x2 在 ( ,0] 上单调减少;在 [0 , )上单调增加(如图3-1所示)。
图3-1
我们将导数为零的点,称为函数的驻点。将连续不可导点 称为函数的尖点。
比较可得 f (x) 在 x 1 和 x 3 处,取得最大值 3 9 ,在 x 0 和 x 2
处,取得最小值0。
如果连续函数 f (x) 在一个开区间(a ,b)内有惟一的一个 极值时,那么这个极大(或极小)值就是函数 f (x)在该区间 内最大(或最小)值(如图3-3,3-4所示)。
图3-3
(3)当 x x0 与 x x0 时,f (x) 的符号保持不变,那么函数f (x) 在 x0 处没有极值。
于是,若函数 f (x) 在所讨论的区间内连续,除个别点外处处 可导,则可以按下列步骤来求 f (x)在该区间内的极值点和相应的 极值:
(1)写出函数的定义域; (2)求导数 f (x) ,并找出定义域内的全部驻点和尖点; (3)考察 f (x) 的符号在每个驻点或尖点的左、右邻域的情形, 以确定该点是否为极值点。为方便起见,可列表进行讨论; (4)求出各极值点的函数值,得函数 f (x) 的全部极值。
f
(
x)
1
2
x x
2
显然 x 0 时,f (0) 0 ;当 x 0 时,f (x) 0;当 x 0 时,f (x) 0 。所以 f (x) ln(1 x2 ) 在 ( ,0] 上单调减少;在 [0 , )上单调增加。
例2 讨论函数 f (x) 3 x2 单调性。 解 f (x) 3 x2 的定义域为 ( , ),
《高等数学(上册)》课件 第三章
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例7
求
ln x
lim
x
xn
(n 0).
解 此题属于“ ”型未定式,应用洛必达法则有
1
xl im ln xnxxl im nxxn1
1 lim
xnxn
0
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
在使用洛必达法则时,应注意如下几点:
0
0
lim f ( x ) g ( x )
lim f ( x ) g (x)
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
推论2 如果对(a,b)内的任意x,均有f ’(x)= g ’(x) ,那么 在(a,b)内f(x)与g(x)之间只差一个常数,即f(x)= g(x) +C〔 C 为 常数〕.
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
高等数学
01 中值定理与洛 必达法那么
02 函数的单调性、 极值与最值
03 函数图形的描绘
例1 函数f(x)=1-x2在区间[-1,2]上是否满足拉格朗日 中值定理条件?假设满足,找出点.
解 函数f(x)=1-x2在区间[-1,2]上连续,在(-1,2)上可
导,因此,满足拉格朗日定理的条件,即至少存在一点
ξ ,使
高等数学-导数-第四节 函数的单调性和极值
函数单调减少; 在(0,)内, y 0, 函数单调增加. 注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
注意:
(1)把定理中的使f(x)连续的闭区间换成其它 各类区间(包括无穷区间),则函数的单调性 结论在相应的区间上也是成立的.
( x) f ( x0 ( x x0 )4
)
f (4) ( x0 ) a 4! 4!
若a 0, 由极限的局部保号性,可知
f
( x) f ( x0 ( x x0 )4
)
0
有 f ( x) f ( x0 ) 0,即f ( x) f ( x0 )
x0是f ( x)的极小值点。
若a 0, 同理可证 x0是f ( x)的极大值点。
三、最大值与最小值问题 1.求闭区间[a,b]上连续函数y=f(x)的最值 (1)求出f(x)的导数f'(x),令f'(x)=0,求 出驻点;以及使得导数f'(x)不存在的点.
(2)求出(1)中点处的函数值以及端点处的 函数值;
(3)比较这些值的大小,其中最大的就是函 数的最大值,最小的就是最小值.
如果存在着点x0的一个邻域,对于这邻域内的 任何点x,除了点x0外, f ( x) f ( x0 )均成立,就称 f ( x0 )是函数f ( x)的一个极小值.
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
2. 函数极值的求法
定理1(必要条件) 设 f ( x)在点 x0处具有导数,且 在 x0处取得极值,那末必定 f '( x0 ) 0.(费马定 理) 定义 使导数为零的点(即方程 f ( x) 0 的实根)叫 做函数 f ( x) 的驻点.
高考数学 导数与函数的单调性、极值与最值 教案 含解析题
第二节 导数在研究函数中的应用第1课时 系统知识牢基础——导数与函数的单调性、极值与最值知识点一 利用导数研究函数的单调性1.函数f (x )在某个区间(a ,b )内的单调性与f ′(x )的关系 (1)若f ′(x )>0,则f (x )在这个区间上单调递增. (2)若f ′(x )<0,则f (x )在这个区间上单调递减. (3)若f ′(x )=0,则f (x )在这个区间上是常数. 2.利用导数判断函数单调性的一般步骤 (1)求f ′(x ).(2)在定义域内解不等式f ′(x )>0或f ′(x )<0. (3)根据结果确定f (x )的单调性及单调区间.[提醒] (1)讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则.(2)有相同单调性的单调区间不止一个时,用“,”隔开或用“和”连接,不能用“∪”连接. (3)若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.[重温经典]1.(多选·教材改编题)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( ) A .在区间(-2,1)上f (x )是增函数 B .在区间(2,3)上f (x )是减函数 C .在区间(4,5)上f (x )是增函数 D .当x =2时,f (x )取到极大值 答案:BCD2.(教材改编题)函数y =x 4-2x 2+5的单调递减区间为( ) A .(-∞,-1)和(0,1) B .[-1,0]和[1,+∞) C .[-1,1] D .(-∞,-1]和[1,+∞)答案:A3.(易错题)若函数y =x 3+x 2+mx +1是R 上的单调函数,则实数m 的取值范围是( ) A.⎝⎛⎭⎫13,+∞ B .⎝⎛⎦⎤-∞,13C.⎣⎡⎭⎫13,+∞ D .⎝⎛⎭⎫-∞,13 解析:选C y ′=3x 2+2x +m ,由条件知y ′≥0在R 上恒成立,∴Δ=4-12m ≤0,∴m ≥13.4.若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.5.若函数y =-43x 3+ax 有三个单调区间,则a 的取值范围是________.解析:∵y ′=-4x 2+a ,且y 有三个单调区间,∴方程y ′=-4x 2+a =0有两个不等的实根,∴Δ=02-4×(-4)×a >0,∴a >0. 答案:(0,+∞)6.设函数f (x )在(a ,b )上的导函数为f ′(x ),f ′(x )在(a ,b )上的导函数为f ″(x ),若在(a ,b )上,f ″(x )<0恒成立,则称函数f (x )在(a ,b )上为“凸函数”.已知f (x )=x 44-t 3x 3+32x 2在(1,4)上为“凸函数”,则实数t 的取值范围是________.解析:由f (x )=x 44-t 3x 3+32x 2可得f ′(x )=x 3-tx 2+3x ,f ″(x )=3x 2-2tx +3,∵f (x )在(1,4)上为“凸函数”,∴x ∈(1,4)时,3x 2-2tx +3<0恒成立,∴t >32⎝⎛⎭⎫x +1x 恒成立. 令g (x )=32⎝⎛⎭⎫x +1x ,∵g (x )在(1,4)上单调递增, ∴t ≥g (4)=518.∴实数t 的取值范围是⎣⎡⎭⎫518,+∞. 答案:⎣⎡⎭⎫518,+∞知识点二 利用导数研究函数的极值 1.函数的极大值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都小于x 0点的函数值,称点x 0为函数y =f (x )的极大值点,其函数值f (x 0)为函数的极大值. 2.函数的极小值在包含x 0的一个区间(a ,b )内,函数y =f (x )在任何一点的函数值都大于x 0点的函数值,称点x 0为函数y =f (x )的极小值点,其函数值f (x 0)为函数的极小值.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.[提醒] (1)极值点不是点,若函数f (x )在x 1处取得极大值,则x 1为极大值点,极大值为f (x 1);在x 2处取得极小值,则x 2为极小值点,极小值为f (x 2).极大值与极小值之间无确定的大小关系.(2)极值一定在区间内部取得,有极值的函数一定不是单调函数.(3)f ′(x 0)=0是x 0为f (x )的极值点的必要而非充分条件.例如,f (x )=x 3,f ′(0)=0,但x =0不是极值点.[重温经典]1.(多选)(2021·福州模拟)下列函数中,存在极值点的是( ) A .y =x -1xB .y =2|x |C .y =-2x 3-xD .y =x ln x解析:选BD 由题意函数y =x -1x ,则y ′=1+1x2>0,所以函数y =x -1x 在(-∞,0),(0,+∞)内单调递增,没有极值点;函数y =2|x |=⎩⎪⎨⎪⎧2x ,x ≥0,2-x ,x <0,根据指数函数的图象与性质可得,当x <0时,函数y =2|x |单调递减,当x >0时,函数y =2|x |单调递增,所以函数y =2|x |在x =0处取得极小值;函数y =-2x 3-x ,则y ′=-6x 2-1<0,所以函数y =-2x 3-x 在R 上单调递减,没有极值点;函数y =x ln x ,则y ′=ln x +1,当x ∈⎝⎛⎭⎫0,1e 时,y ′<0,函数单调递减,当x ∈⎝⎛⎭⎫1e ,+∞时,y ′>0,函数单调递增,当x =1e 时,函数取得极小值,故选B 、D.2.(教材改编题)如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( ) A .1 B .2 C .3D .4解析:选A 由图象及极值点的定义知,f (x )只有一个极小值点.3.(教材改编题)若函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a 的值为( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,由题意知f ′(-3)=0,即3×(-3)2+2a ×(-3)+3=0,解得a =5.4.(多选)材料:函数是描述客观世界变化规律的重要数学模型,在现行的高等数学与数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的,如函数f(x)=x x(x>0),我们可以作变形:f(x)=x x=eln x x=e x ln x=e t(t=x ln x),所以f(x)可看作是由函数f(t)=e t和g(x)=x ln x复合而成的,即f(x)=x x(x>0)为初等函数.根据以上材料,对于初等函数h(x)=x 1x(x>0)的说法正确的是()A.无极小值B.有极小值1C.无极大值D.有极大值e 1 e解析:选AD根据材料知:h(x)=x 1x=e1ln xx=e1ln xx,所以h′(x)=e 1ln xx·⎝⎛⎭⎫1x ln x′=e1ln xx·⎝⎛⎭⎫-1x2ln x+1x2=1x2e1ln xx(1-ln x),令h′(x)=0得x=e,当0<x<e时,h′(x)>0,此时函数h(x)单调递增;当x>e时,h′(x)<0,此时函数h(x)单调递减.所以h(x)有极大值且为h(e)=e 1e,无极小值.5.若x=-2是函数f(x)=(x2+ax-1)e x的极值点,则f′(-2)=________,f(x)的极小值为________.解析:由函数f(x)=(x2+ax-1)e x可得f′(x)=(2x+a)e x+(x2+ax-1)e x,因为x=-2是函数f(x)的极值点,所以f′(-2)=(-4+a)e-2+(4-2a-1)e-2=0,即-4+a+3-2a=0,解得a=-1.所以f′(x)=(x2+x-2)e x.令f′(x)=0可得x=-2或x=1.当x<-2或x>1时,f′(x)>0,此时函数f(x)为增函数,当-2<x<1时,f′(x)<0,此时函数f(x)为减函数,所以当x=1时函数f(x)取得极小值,极小值为f(1)=(12-1-1)×e1=-e.答案:0-e6.设x1,x2是函数f(x)=x3-2ax2+a2x的两个极值点,若x1<2<x2,则实数a的取值范围是________.解析:由题意得f′(x)=3x2-4ax+a2的两个零点x1,x2满足x1<2<x2,所以f′(2)=12-8a+a2<0,解得2<a<6.答案:(2,6)知识点三 函数的最值1.在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.2.若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.[提醒] 求函数最值时,易误认为极值点就是最值点,不通过比较就下结论,这种做法是错误的.[重温经典]1.(教材改编题)函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-eD .0解析:选B 因为f ′(x )=1x -1=1-x x ,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,e]时,f ′(x )<0,所以f (x )的单调递增区间是(0,1),单调递减区间是(1,e],所以当x =1时,f (x )取得最大值f (1)=ln 1-1=-1.2.(教材改编题)函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值 C .无最大值,有最小值D .既无最大值,也无最小值解析:选D f ′(x )=4x 3-4=4(x -1)(x 2+x +1).令f ′(x )=0,得x =1.又x ∈(-1,1)且1∉(-1,1),∴该方程无解,故函数f (x )在(-1,1)上既无极值也无最值.故选D. 3.(教材改编题)函数y =x +2cos x 在区间⎣⎡⎦⎤0,π2上的最大值是________. 答案:3+π64.(易错题)已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________. 答案:(-4,-2)5.函数f (x )=x e -x ,x ∈[0,4]的最小值为________. 解析:f ′(x )=e -x -x e -x =e -x (1-x ). 令f ′(x )=0,得x =1(e -x >0), 又f (1)=1e >0,f (0)=0,f (4)=4e 4>0,所以f (x )的最小值为0. 答案:06.已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________.解析:f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1).∵cos x +1≥0,∴当cos x <12时,f ′(x )<0,f (x )单调递减;当cos x >12时,f ′(x )>0,f (x )单调递增.∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ), ∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.答案:-332。
高数 函数的单调性与极值
(x) (x)
2xarcx tlan 1n (x2)2arctxan
式中 在 0 与 x 之间,由于 arctan与 x 同号,
则无论 x为什么值,总有 fБайду номын сангаас(x)0
则不等式 2xarcxt aln 1 (x2) 成立
9
例5 证明 f (x) (1 1)x 在 (0, ) 内单调增加。
x 证明 此函数为幂指函数,两边取对数
定理2告诉我们,可导函数的极值点必定是驻点, 但驻点未必是极值点。寻求函数的极值点首先要找 y f (x) 的驻点以及不可导的点,再判断其是否为
极值点。
14
定理 3 (极值第一判别法)
设函f数 (x)在x0的某邻域,内 且在连 空心续 邻域 内有导数, 当x由小到大x通 0时,过
(1) (2)
f f
高等数学
第十八讲
主讲教师: 王升瑞
1
第九节
第二章
函数的单调性与极值
一、函数的单调性 二、函数的极值及其求法
2
一、 函数的单调性
定理 1. 设函数 f (x) 在开区间 I 内可导, 若 f(x)0
(f(x)0),则 f (x) 在 I 内单调递增 (递减) .
I 称为单调递增(递减) 区间。
证: 无妨设 f(x) 0 ,x I,任取 x 1 ,x 2 I(x 1 x 2 )
例4 求证 2xarcxt aln 1 (x2) 证法一:设 f(x)2xarcx tlan 1n (x2) f (0)0
f(x)2arcx t1 a 2x x n 21 2x x22arcxtan
当 x0 时 f(x)0 f(x)
f(x)f(0)0
当 x0 时 f(x)0 f(x)
巧用二次求导解决函数单调性和极值问题(精品课件)
谢谢大家
15
可修改 欢迎下载 精品 课件
9、 人的价值,在招收诱惑的一瞬间被决定 。21.4.1 421.4.1 4Wednesday, April 14, 2021
10、低头要有勇气,抬头要有低气。1 8:30:46 18:30:4 618:30 4/14/20 21 6:30:46 PM
11、人总是珍惜为得到。21.4.1418:30: 4618:3 0Apr-21 14-Apr-21
恒有 f ( x1 x2 ) f (x1) f (x2,) 那么称 在 I 上的图形是凹的;
2
如果恒有
f
(
x1
2
x2
)
2
f
( x1 )
2
f
( x2 ),那么称
在
I
上的图形是凸的;
定理1 设 f (x)在 [a, b上] 连续,在 (a, b内) 可导,那么:
(1)若在 (a, b)内 f (x)单调增加,则 f (x在) [a, b上]的图形是
而在有些函数问题中,如含有指数式、对数式的函数问题,求 导之后往往不易或不能直接判断出导函数的符号,从而不能进 一步判断函数的单调性及极值、最值情况,此时解题受阻。若 遇这类问题,则可试用求函数的二阶导数加以解决。
2
可修改 欢迎下载 精品 课件
一.二阶导数与凸性
一.二阶导数与凸性
定义1. 设 f (x)在区间 I 上连续,如果对 I 上任意两点 x1与 x,2
12、人乱于心,不宽余请。18:30:4618 :30:461 8:30W ednesda y, April 14, 2021
13、生气是拿别人做错的事来惩罚自 己。21. 4.1421. 4.1418: 30:4618 :30:46 April 14, 2021
高等数学f教材答案
高等数学f教材答案一、导数与微分导数的定义:对函数y=f(x),若极限lim[(f(x+Δx)-f(x))/Δx]存在,则称该极限为函数f(x)在点x处的导数,记作f'(x),即f'(x)=lim[(f(x+Δx)-f(x))/Δx]。
常见函数求导法则:1. 常数函数求导法则:若f(x)=c,其中c为常数,则f'(x)=0。
2. 幂函数求导法则:若f(x)=x^n,其中n为常数,则f'(x)=nx^(n-1)。
3. 指数函数求导法则:若f(x)=a^x,其中a为常数且a>0且a≠1,则f'(x)=a^x·lna。
4. 对数函数求导法则:若f(x)=log_a(x),其中a为常数且a>0且a≠1,则f'(x)=1/(x·lna)。
5. 三角函数求导法则:若f(x)=sinx,则f'(x)=cosx;若f(x)=cosx,则f'(x)=-sinx。
6. 反三角函数求导法则:若f(x)=arcsinx,则f'(x)=1/√(1-x^2);若f(x)=arccosx,则f'(x)=-1/√(1-x^2)。
二、微分中值定理与导数应用微分中值定理:设函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则存在一点c∈(a,b),使得f'(c)=0。
导数应用:1. 函数的单调性与极值:若函数f(x)在区间(a,b)上可导,且f'(x)≥0,则f(x)在区间(a,b)上单调递增;若f'(x)≤0,则f(x)在区间(a,b)上单调递减。
若函数f(x)在区间(a,b)上可导,且f'(x)>0,则f(x)在区间(a,b)上严格单调递增;若f'(x)<0,则f(x)在区间(a,b)上严格单调递减。
若函数f(x)在区间(a,b)上可导,且f'(x)在x=x0处由正变负,则称f(x0)为函数f(x)在区间(a,b)上的极大值点;若f'(x)在x=x0处由负变正,则称f(x0)为函数f(x)在区间(a,b)上的极小值点。
大一高等数学第三章第四节函数单调性的判定法
y
y
B
o
a
f ( x ) 0
b
x
o a
f ( x ) 0
b x
定理 设函数 y f ( x )在[a, b]上连续,在( a, b )内可 导(1) . 如果在( a, b )内f ( x ) 0,那末函数 y f ( x ) 在[a, b]上单调增加; ( 2) 如果在( a, b )内 f ( x ) 0, 那末函数 y f ( x ) 在[a, b]上单调减少.
注意:区间内个别点导数为零,不影响区间的单调性.
y x 3 , y x 0 0, 但在( ,)上单调增加. 例如,
例4 当x 0时, 试证x ln(1 x )成立.
x . 证 设f ( x ) x ln(1 x ), 则 f ( x ) 1 x
f ( x )在[0,)上连续, 且(0,)可导,f ( x ) 0,
3 2
比较得 最大值 f (4) 142, 最小值 f (1) 7.
例9 敌人乘汽车从河的北岸A处以1千米/分钟 的速度向正北逃窜,同时我军摩托车从河的 南岸B处向正东追击, 速度为2千米/分钟.
问我军摩托车何
时射击最好(相
距最近射击最好)?
点击图片任意处播放\暂停
解 (1)建立敌我相距函数关系 设 t 为我军从B处发起
f ( x ) 0, 在[1,2]上单调减少;
当2 x 时, f ( x ) 0, 在[2,)上单调增加;
单调区间为 ( ,1], [1,2], [ 2, ).
例3
确定函数 f ( x ) 3 x 2 的单调区间.
解 D : ( , ).
高等数学二全部笔记
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:Aynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限:⑴当∞→x 时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim⑵当0x x →时,)(x f 的极限:A x f x x =→)(lim 0左极限:Ax f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件:定理:Ax f x f A x f x x x x x x ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。
高数学公式和知识点笔记
高数学公式和知识点笔记高等数学是一门重要的基础学科,包含了众多的公式和知识点。
以下是我为大家整理的一份较为全面的高数学公式和知识点笔记,希望能对大家的学习有所帮助。
一、函数与极限(一)函数函数的概念:设 x 和 y 是两个变量,D 是给定的数集,如果对于每个 x∈D,按照某种确定的对应关系 f,变量 y 都有唯一确定的值与之对应,则称 y 是 x 的函数,记作 y = f(x),x∈D。
函数的性质:1、单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) < f(x₂)(或 f(x₁) > f(x₂)),则称函数 f(x)在该区间上单调递增(或单调递减)。
2、奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数f(x)为偶函数;若 f(x) = f(x),则称函数 f(x)为奇函数。
(二)极限极限的定义:设函数 f(x)在点 x₀的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当 x 满足 0 <|x x₀| <δ 时,对应的函数值 f(x)都满足|f(x) A|<ε,那么常数 A 就叫做函数 f(x)当x→x₀时的极限,记作lim(x→x₀) f(x) = A。
极限的运算:1、四则运算:若lim(x→x₀) f(x) = A,lim(x→x₀) g(x) = B,则lim(x→x₀) f(x) ± g(x) = A ± B;lim(x→x₀) f(x) × g(x) = A × B;lim(x→x₀) f(x) / g(x) = A / B(B ≠ 0)。
2、两个重要极限:lim(x→0) (sin x / x) = 1;lim(x→∞)(1 +1 / x)ⁿ = e(n 为常数)。
二、导数与微分(一)导数导数的定义:函数 y = f(x)在点 x₀处的导数 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O a x1 x2
x3 x4 b x
【问题探究】问题:函数y=f(x)在极值点的导数值为多少?
问题:f (x)全部零点或不可导点一定是极值点吗?
y
y
o
x0
xo
x0
y
y
x (是极值点情形)
y
o
x0
xo
x0
xO
x0
x
(不是极值点情形)
驻点只是函数的极值可 疑点.
使得函数导数不存在的点也是极值可疑点.
➢观察与思考:
在 (, 2) , (2, )内单调增加; 在 (2, 0) , (0, 2)内单调减少.
列表可使问题明朗化
【复习与思考】
二、导数的简单应用
1. 导数在几何中的简单应用 (1) 求曲线 y f (x) 在某点处的切线方程和法线方程. (2) 求两条相交的曲线在交点处的交角.
2. 导数在物理学中的简单应用 (1) 求物体运动的速度、加速度或变量的变化率. (2) 求变量间的相关变化率.
O
x0
x
练习 讨论 y 2x 8 的单调性. x
解 1.定义域 : (, 0) (0, )
2. y 2 8 x2
2 x2
(x2
4)
3.令 y 0 , 得 x12, 0) 0 (0, 2) 2 (2, )
y
0
0
y
5. 综上所述, 函数 y 2x 8 x
函数极值怎么定义? 有谁来说一说.
极值定义请同学们自己看书.
【函数极值的定义】
设函数y=f(x)在x=x0及其附近有定义, (1)如果在x=x0处的函数值比它附近所有各点的 函数值都大,即f(x)<f(x0),则称 f(x0)是函数 y=f(x)的一个极大值。记作:y极大值=f(x0) (2)如果在x=x0处的函数值比它附近所有各点的 函数值都小,即f(x)>f(x0),则称 f(x0)是函数 y=f(x)的一个极小值。记作:y极小值=f(x0)
解 (1) 函数的定义域为( )
(2) f (x) x2e –x (3 x)
(3)导数为零的点为x10 ,x23, (4)列表分析
极大值与极小值统称为极值,
x0叫做函数的极值点。
y
f ( x3 )
f ( x4 )
f ( x1 )
f (x2)
O a x1 x2
x3 x4 b x
观察上述图象,试指出该函数的极值点与极值, 并说出哪些是极大值点,哪些是极小值点。
【关于极值概念的几点说明】
(1)函数的极值点一定在区间的内部,区间的端点 不能成为极值点;
练习
2
215 确定函数f(x) x 3 x 3 的单调区间和极值
2
解 (1) 函数的定义域为
(2) f (x)
(3)导数为零的点
(4)列表分析
x ? ??
?
f (x)
f (x)
,不可导点为
(5)函数f(x)在区间(
] 单调减少
在区间[ )上单调增加 极小值 f ( )
例214 确定函数f(x) x3e -x的单调区间和极值
(5)求出极值点处的函数值,得到极值.
四、例题讲解 例1 讨论 y 2x 8 的单调性.极值 x
解 1.定义域 : (, 0) (0, )
2. y 2 8 2 (x2 4)
x2
x2
3.令 y 0 , 得 x1 2 , x2 2 ,
4. x ( , 2) 2 (2, 0) 0 (0, 2) 2 (2, )
如何找极值点? 找单调上升,下降分界点
y
y f (x)
✓导数等于零的点和不可导点.
f (x)全部零点(驻点)或不可导点
o x2 x3
x4
x5 x6 b x
极值判可断疑点
请同学总结求极值的步骤
三.求函数y = f (x)极值的一般步骤是:
(1)确定函数的定义域 (2) 求导数 f (x); (3)找出所给函数的驻点和导数不存在的点; (4)顺次将函数的定义域分成若干个开区间,并列 成表格,考察上述点两侧导数的符号,确定极值点;
f (x)
+ 0 -0 +
f (x)
↗
(5)函数f(x)
极 大
↘
值
极
小 值
↗
极大值 f (1) 2,
y2x39x212x3
极小值 f (2) 9.
练习:见习题册2.13
2.13、求函数 f (x) 3 2x x2 2 的极值和单调区间.
解 定义域 ,, f (x) 2 2 - 2x 令f (x) 0 x 1 3 3 2x x2
第三章第三讲 函数的极值与导数
【复习与思考】
一、函数的单调性与导数符号的关系
导数大于零f (x)>0 ,函数f (x)单调增加 导数小于零f (x)<0 ,函数f (x)单调减少。
y
f (x)=0
f (x)>0
f (x)>0 f (x)>0 f (x)>0
f (x)<0 f (x)<0
f (x)<0 f (x)<0
3。求函数的最大最小值问题。 十七世纪初期,伽利略断定,在真空中以 45角发射炮弹 时,射程最大。 研究行星运动也涉及最大最小值问题。
【函数极值】
一、函数极值的定义
y
y f (x)
称为极值点
a x1 o x2
称f (x2)为极y大值
x4
b x5 x6
x
y
极小值f (x1)
o
x 2
x
o
x
6
x
函数的极大值与极小值统称为极值,使函 数取得极值的点称为极值点.
(2)极值点是自变量的值,极值指的是函数值;
(3)函数的极大(小)值可能不止一个,而且函数的 极大值未必大于极小值;
(4) 极值是一个局部概念,反映了函数在某一点 附近的大小情况。
【问题探究】
问题:函数y=f(x)在极值点的导数值为多少?
y
f ( x3 )
f ( x4 )
f ( x1 )
f (x2)
y
0
0
y
极 大
极 小
值
值
5. 极大值 f (2) 8, 极小值 f (2) 8.
例2 确定函数f(x)2x39x212x3的极值
解 (1) 函数的定义域为( )
(2) f (x)6x218x126(x1)(x2) 1
(3)导数为零的点为x11、x22 (4)列表分析
x ( 1) 1 (1 2) 2 (2 )
f (x)不存在点为 x 0、x 2
x ,0 0 (0,1) 1
f (x)
不存在 0
(1,2) 2 2,
不存在
f (x) 极小值 极大值 极小值
极大值f(1)=1, 极小值f (0) 0、f (2) 0
单调增加区间 (0,1) (2,), 单调减少区间 (-,0) (1,2)