倍压整流电路说明

合集下载

简单倍压 整流电路 原理 介绍

简单倍压 整流电路 原理 介绍

倍压整流电路原理时间:2009-02-20 14:10:59 来源:资料室作者:(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm 再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

图1 直流半波整流电压电路(a)负半周(b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。

ab126计算公式大全正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理.正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

.负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

.由于C1与C2串联,故输出直流电压,V0=Vm。

如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。

如果自电路抽取负载电流的话,电容器C1及C2上的电压是与由全波整流电路馈送的一个电容器上的电压同样的。

倍压整流原理详解

倍压整流原理详解

倍压整流电路原理详解(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

图1 直流半波整流电压电路(a)负半周(b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号路称为半波电压电路。

ab126计算公式大全RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

RJy838电子-技术资料-电子元件-电路图-技术应用网站-基本知识-原理-维修-作用-参数-电子元器件符号2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

反激次级倍压整流电路原理

反激次级倍压整流电路原理

反激次级倍压整流电路原理1.引言1.1 概述概述部分的内容可以介绍反激次级倍压整流电路的背景和重要性。

以下是一个简单的示例:概述:反激次级倍压整流电路是一种常见的电力电子器件,用于将交流电转换为直流电。

该电路在各种电子设备和系统中得到广泛应用,如电源适配器、电动车充电器和太阳能发电系统等。

通过使用这种电路,可以有效地实现电能的转换和稳定输出。

反激次级倍压整流电路是由变压器、MOSFET开关管和整流二极管组成的。

当输入交流电通过变压器传递时,MOSFET开关管周期性地开关,使得电流通过变压器的次级绕组。

在电流经过次级绕组的过程中,电荷能量会被储存在电感中,并在MOSFET开关关闭时释放出来。

通过这种方式,反激次级倍压整流电路可以实现高效率的电能转换。

反激次级倍压整流电路的工作原理基于电感和电容的特性。

电感在电流变化时可以储存和释放能量,而电容则可以平滑输出电压。

通过合理设计电感和电容的参数,可以实现高效率和稳定的电能转换。

本文将详细介绍反激次级倍压整流电路的原理和工作原理。

我们将探讨其基本工作原理、电路结构和关键组件的功能。

通过深入理解这些原理,我们可以更好地理解反激次级倍压整流电路的工作机制,并为其在不同应用领域中的应用前景提供展望。

在接下来的章节中,我们将逐步介绍反激次级倍压整流电路的原理和工作原理。

通过细致的分析和实例的演示,我们将帮助读者全面了解这种电路的特点和优势,以及其在现代电力电子领域中的应用前景。

1.2 文章结构本文将分为引言、正文和结论三个部分来讨论反激次级倍压整流电路的原理及其在实际应用中的前景。

引言部分首先概述了反激次级倍压整流电路的背景和重要性。

随后介绍了本篇文章的结构和章节内容安排,以便读者能够清楚地了解文章的组织框架和主要内容。

正文部分将重点探讨反激次级倍压整流电路的原理和工作原理。

其中,2.1节将详细介绍反激次级倍压整流电路的原理,包括其基本工作原理和实现方式。

2.2节将进一步阐述反激次级倍压整流电路的工作原理,包括功率传输过程和电路特性等方面的内容。

倍压整流电路

倍压整流电路

倍压整流电路倍压整流电路:在一些需用高电压、小电流的地方,常常使用倍压整流电路。

倍压整流,可以把较低的交流电压,用耐压较低的整流二极管和电容器,“整”出一个较高的直流电压。

倍压整流电路一般按输出电压是输入电压的多少倍,分为二倍压、三倍压与多倍压整流电路。

图5一14是二倍压整流电路。

电路由变压器B、两个整流二极管D1、D2及两个电容器C1、C2组成。

其工作原理如下:e2 正半周(上正下负)时,二极管D1导通,D2 截止,电流经过D1 对C1充电,将电容Cl上的电压充到接近e2 的峰值,并基本保持不变。

e2 为负半周(上负下正)时,二极管D2导通,Dl截止。

此时,Cl上的电压Uc1=与电源电压e2 串联相加,电流经D2 对电容C2 充电,充电电压Uc2=e2 峰值+1.2E2≈。

如此反复充电,C2 上的电压就基本上是了。

它的值是变压器电级电压的二倍,所以叫做二倍压整流电路。

在实际电路中,负载上的电压Usc=2X1.2E2 。

整流二极管D1 和D2 所承受的最高反向电压均为。

电容器上的直流电压Uc1=,Uc2=。

可以据此设计电路和选择元件。

在二倍压整流电路的基础上,再加一个整流二极管D3和-个滤波电容器C3,就可以组成三倍压整流电路,如图5-15所示。

三倍压整流电路的工作原理是:在e2 的第一个半周和第二个半周与二倍压整流电路相同,即C1上的电压被充电到接,C2上的电压被充电到接近。

当第三个半周时, D1、D3导通,D2截止,电流除经D1给C1充电外,又经D3给C3 充电, C3上的充电电压Uc3= e2 峰值+Uc2一Uc1≈ 这样,在RFZ,,上就可以输出直流电压Usc=Uc1i+Uc3 ≈ +=3√2 E。

,实现三倍压整流。

在实际电路中,负载上的电压Ufz≈3x1.2E2整流二极管D3所承妥的最高反向电压也是电容器上的直流电压为。

照这样办法,增加多个二极管和相同数量的电容器,既可以组成多倍压整流电路,见图5一16。

倍压整流电路简介

倍压整流电路简介

倍压整流电路
倍压整流电路的实质是电荷泵。

最初由于核技术发展需要更高的电压来模拟人工核反应,于是在1932年由COCCROFT和WALTON提出了高压倍压电路,通常称为C-W倍压整流电路。

倍压整流电路有多种结构,各有优缺点。

常见电路如下:
这三个电路都是6倍压整流电路,各有特点。

我们通常称每2倍为一阶,用N 表示,上述电路都是3阶,即N=3。

如果希望输出电压极性不同,只要将所有的
二极管反向就可以了。

电路1的优点是每个电容上的电压不会超过变压器次级峰值电压U的两倍,即2U,所以可以选用耐压较低的电容。

缺点是电容是串联放电,纹波大。

电路2的优点是纹波小,缺点是对电容的耐压要求高,随着N的增大,电容的电压应力随之增加。

图中最后一个电容的电压达到了6U。

电路3是电路1的改进,优点是纹波比电路1小很多,电容电压应力不超过2U。

缺点是电路复杂。

下面以电路1为例简单说明工作原理:
当变压器次级输出为上正下负时,电流流向如图所示。

变压器向上臂三个电容充电储能。

当变压器次级输出为上负下正时,电流流向如图所示。

上臂电容通过变压器次级向下臂充电。

如果不带负载,稳态时,除了最左边的那个电容,其他每个电容上的电压为2U,所以总的输出电压为6U。

事实上,由于高阶倍压整流电路带载能力很差,输出很小的功率就会导致输出电压的大幅度跌落。

假设输出电流为I,每个电容的容量相同,为C,交流电源频率为f,则电压跌落为:
ΔU=I
6fC
(4N3+3N2+2N)
输出电压纹波为:(N+1)N I
4fC。

倍压电路原理详解

倍压电路原理详解

倍压电路原理详解Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998倍压电路原理详解说明:要理解倍压电路,首先要将充电后的电容看作一个电源.可以和供电电源串联,就像普通的电池串联的原理一样.一、直流半波整流电压电路1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,此时供电电源和C1串联后电压为2Vm,于是向C2充电,使C2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.图1 直流半波整流电压电路(a)负半周(b)正半周需要注意的是:(1)其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

(2))如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

(3)如果有一个负载并联在倍压器的输出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。

(4)正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

图3 输出电压波形二、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理1.正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

2.负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

二极管_简单倍压_整流电路_原理[宝典]

二极管_简单倍压_整流电路_原理[宝典]

二极管_简单倍压_整流电路_原理[宝典] 倍压整流电路原理(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

ab126计算公式大全838电子图1 直流半波整流电压电路(a)负半周 (b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。

ab126计算公式大全正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

2、全波倍压电路图4 全波整流电压电路(a)正半周 (b)负半周图5 全波电压的工作原理1. 正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

2. 负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

838电子3. 由于C1与C2串联,故输出直流电压,V0=Vm。

如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。

倍压整流电路原理?

倍压整流电路原理?

倍压整流电路是一种用于将交流电源转换为具有较高直流电压的电路。

它通常由交流输入、变压器、整流桥和滤波电路组成。

整流桥是倍压整流电路的核心部件,它由四个二极管组成,形成一个桥式结构。

根据电压极性的不同,二极管将正半周或负半周的交流信号转换为单向的直流信号。

倍压整流电路的工作原理如下:
1. 交流输入:将交流电源连接到倍压整流电路的输入端。

2. 变压器:交流电压经过变压器降压或升压,以提供适合整流桥工作的电压。

3. 整流桥:交流电压经过变压器后,输入到整流桥。

整流桥由四个二极管组成,将交流信号转换为单向的直流信号。

- 当输入信号的电压极性为正时,D1 和D2 二极管导通,允许电流通过,而D3 和D4 二极管则被反向极化,阻止电流通过。

- 当输入信号的电压极性为负时,D3 和D4 二极管导通,允许电流通过,而D1 和D2 二极管则被反向极化,阻止电流通过。

4. 滤波电路:经过整流桥的输出是脉动的直流信号。

为了平滑输出电压,需要添加一个滤波电路来去除脉动部分。

滤波电路一般由电容器组成,它可以储存电荷并平滑输出电压波形。

5. 输出电压:滤波电路将脉动的直流信号转换为平滑的输出电压,输出端即可获取到较高的直流电压。

需要注意的是,倍压整流电路只能将交流电源电压转换成具有较高的直流电压,但输出电流通常较小。

此外,倍压整流电路还可以根据需要添加稳压电路来控制输出电压的稳定性。

倍压整流电路应用广泛,例如在通信设备、电子器件、电源适配器等领域中常见。

它具有简单、高效、稳定的特点,可以为各种设备提供所需的高直流电压。

倍压整流电路 正负电源-概述说明以及解释

倍压整流电路 正负电源-概述说明以及解释

倍压整流电路正负电源-概述说明以及解释1.引言1.1 概述概述:倍压整流电路是一种常用于电子设备中的电路,它能够将输入的电压倍增并实现整流作用。

正负电源是电子设备中必不可少的组成部分,它们分别为电路提供正向和负向的电压,以满足各个电路模块的工作需求。

本文将首先介绍倍压整流电路的原理,阐释其工作原理和优势。

接着,将详细讨论正负电源的设计要点,分析其重要性和需要注意的事项。

最后,通过总结倍压整流电路的优势,给出对正负电源设计的启示,并提出未来发展方向的建议。

通过本文的阅读,读者将会了解倍压整流电路以及正负电源的基本知识和设计要点,从而为电子设备的设计和实施提供参考和指导。

在电子领域中,倍压整流电路和正负电源的设计是非常重要的,它们直接影响到电子设备的性能和可靠性。

因此,深入了解和研究这些内容对于电子工程师和研究人员来说至关重要。

本文的目的就是为读者提供一个全面而详细的介绍,以便他们能够更好地理解和应用倍压整流电路和正负电源的知识。

1.2 文章结构文章结构的设计是为了系统地展示和分析倍压整流电路正负电源的相关知识和设计要点。

文章将分为以下几个部分:引言、正文和结论。

引言部分将概述本文的主题和目标。

通过对倍压整流电路正负电源的介绍,引言将引导读者对该主题有一个整体的认识,并明确本文的研究目标和意义。

正文部分将详细解析倍压整流电路的原理以及正负电源的设计要点。

其中,2.1节将重点阐述倍压整流电路的原理,如何通过变压器实现电压的倍增和整流的功能。

2.2节将讨论正电源的设计要点,包括设计正电源的电压稳定性、电流输出能力等方面的问题。

2.3节将讨论负电源的设计要点,包括负电源的电压稳定性、电流输出能力等方面的问题。

结论部分将对倍压整流电路的优势进行总结,并提供对正负电源设计的启示。

通过对倍压整流电路的研究和分析,可以获得对正负电源设计的一些启发和指导。

同时,还将展望倍压整流电路的未来发展方向,探讨可能的研究方向和应用领域。

倍压整流电路原理讲解

倍压整流电路原理讲解

倍压整流电路原理讲解
倍压整流电路是一种简单有效的电路,它在电源输出端输出一个比输入电压更高的电压,其原理是通过利用开关电路的原理,将低压的输入电压转换为更高的电压。

倍压整流电路的组成由恒定阻抗、正反变换以及调节器组成,其工作原理如下:首先,恒定阻抗电路负责通过放大增加电流,由此产生了放大倍数,然后由正反变换电路将低压输入电压反转为更高的输出电压,其中包括电流变换器、压降变换器和旋转变换器的基础电路结构;最后,调节器将反转的高压输出电压经过调节,以保持输出电压恒定不变。

整流电路通常用于调节电压的大小,调节电压的大小可以达到稳定输出和节省能源的效果。

它也可以用作电源调节、照明调节、电机调节等,对于需要电路设计的应用方面有着重要的作用。

在实际应用中,倍压整流电路有许多优点。

首先,它具有耐用性强、结构简单等特点,使用起来非常方便;其次,它可以实现自动调节和无限调节,使用者可以根据实际需要调整输出电压;最后,倍压整流电路的精度高,可以实现稳定的输出,且节省能源。

倍压整流电路有着重要的应用价值,尤其在电源调节、照明调节、电机调节等方面的应用。

此外,倍压整流电路可以根据实际需要调节电压大小,可以实现输出稳定。

但是,倍压整流电路也有一些局限性,如调节范围有限、损耗大等,这些局限性在实际应用中需要特别注意。

无论是电源调节、照明调节、电机调节还是其他领域的应用,倍
压整流电路都具有重要的意义,有助于提高输出精度和节约能源。

可以看出,倍压整流电路是一种简单有效的电路,具有重要的应用价值,且能够满足不同类型的应用需求。

倍压整流电路

倍压整流电路

桥式二倍压整流线路
实际上,在正半周C1被充电到幅值 E2后,D1随即截止,C1将经过RL对C2 放电,U C1将有所降低。在负半周,当C2被充电到幅值 E2后,D2截止, C2的放电回路是由C1至RL,U C2也应有所降低。这样,U C1和U C2的平均 值都应略低于 E2,也即负载电压是不到次级绕组电压幅值的两倍的。 只有在负载RL很大时,UL≈ E2。
BUCK-BOOST线路工作原理
当Q1关时, 它的漏极和源极间有很高的阻抗, 所以, 流过电感L的电 流不能瞬时的变化,从Q1转移到CR1。 随着电感电流的减小, 电感两 段的电压改变极性直到整流器CR1变为前向偏置,打开的时候, 这时 电感L两段的电压变为(VO – Vd – IL × RL), 式中的Vd是CR1的前向电压 降。 电感电流IL, 这时从输出电容和负载电阻的组合, 经过CR1到地。 注意CR1的方向和电感中电流的流向意味着输出电容和负载电阻中电 流导致VO为负电压。 在关态(OFF) 时, 电感两端的电压为定数, 且为(VO – Vd – IL × RL), 为了保证同样极性的转换, 这个加载电压必 须是负的(或者在开态(ON) 时为极性相反的加载电压) , 因为输 出电压为负的。 因此, 电感电流在OFF态时是减小的, 而且由于加载 电压必须是常数, 所以电感电流线性减小。
单转双电压法
• 3.4
图4:是在图3的基础上进行改进,增加的两个偏置二极管, 使两个三极管偏离了死区,加强了反馈作用,使得双电源 的对称性和稳定性比较好,D1、D2也可以用几十至几百欧 的电阻代替。
单转双电压法
• 3.5
图5:是在图4的基础上进行改进,比图4有更好的对称性和稳 定性,它用一个稳压管和一个三极管代替了图4中的R2,使反 馈作用进一步加强。

对称式倍压整流电路的工作原理-概述说明以及解释

对称式倍压整流电路的工作原理-概述说明以及解释

对称式倍压整流电路的工作原理-概述说明以及解释1.引言1.1 概述概述:对称式倍压整流电路是一种常见的电路结构,广泛应用于电力变换和电路控制中。

它的主要作用是将输入电压进行整流和倍压,从而获得高稳定性的输出电压。

该电路结构由变压器、整流器和滤波电容等组成,通过合理的电路设计和运算放大器的工作原理,可以实现高效、稳定的电压转换。

在对称式倍压整流电路中,变压器的作用是将输入电压变换为所需的高压输出电压。

通过变压器的磁耦合作用,可以实现输入电压的升压或降压。

整流器作为关键部件,将交流输入信号转换为直流输出信号。

常见的整流器包括单相桥式整流器和三相桥式整流器,它们的工作原理相似,通过适当的电路连接,可以实现电流的单向导通。

滤波电容则用于平整输出电压,避免输出波形的脉动。

对称式倍压整流电路具有许多优点。

首先,它能够提供相对稳定的输出电压,适用于对电压要求较高的应用场合。

其次,该电路结构简单,实现成本低,易于设计和维护。

此外,由于整流器和滤波电容的存在,对称式倍压整流电路具有较好的电流稳定性,能够满足一些对电流波动敏感的设备要求。

然而,对称式倍压整流电路也存在一些缺点。

首先,由于变压器的存在,该电路结构的体积较大,不利于一些对体积要求严格的场合。

其次,整流过程中会有一定的能量损耗,对能源利用率有一定影响。

此外,该电路结构对输入电压的稳定性要求较高,对于变化较大的输入电压,可能会影响输出电压的稳定性。

综上所述,对称式倍压整流电路是一种可靠、高效的电压转换电路。

它通过合理的电路设计和工作原理,能够实现稳定、高质量的输出电压。

然而,对于不同的应用场合,需要根据实际需求权衡其优缺点,选择适合的电路结构。

1.2 文章结构文章结构部分的内容可以包括以下内容:本文主要通过介绍对称式倍压整流电路的工作原理,来说明该电路的基本原理、详细解释以及优缺点分析。

文章结构分为以下几个部分:第一部分是引言,分为三个小节。

第一小节是概述,介绍对称式倍压整流电路的背景和重要性。

倍整流电路的工作原理

倍整流电路的工作原理

倍整流电路的工作原理
倍整流电路是一种用于将交流电转换为直流电的电路。

其工作原理基于二极管的单向导通特性。

倍整流电路的基本原理如下:
1. 输入交流电信号通过输入电感和输入电容进行滤波,去除高频噪音和波动。

2. 输入信号通过变压器降低或升高电压,以适应需要的电压水平。

3. 输入信号经过变压器后进入整流桥,整流桥由四个二极管组成。

当输入信号的正半周时,D1和D3导通,负半周时,D2和D4导通。

这样,输出信号将始终为正半周或负半周。

4. 经过整流桥后,输出信号通过输出电容进行二次滤波,进一步减小输出的波动。

5. 最后,在输出端连接负载,将直流电信号供给负载使用。

总结起来,倍整流电路通过整流桥将输入交流电转换为单向的直流电输出。

通过滤波电路,进一步减小输出的波动,提供稳定的直流电。

这种电路在许多电子设备中广泛应用,如电源适配器、充电器等。

倍压整流原理

倍压整流原理

倍压整流电路倍压整流电路的实质是电荷泵。

最初由于核技术发展需要更高的电压来模拟人工核反应,于是在1932年由COCCROFT和WALTON提出了高压倍压电路,通常称为C-W倍压整流电路。

1、直流半波整流电压电路(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

图1 直流半波整流电压电路(a)负半周(b)正半周图3 输出电压波形所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。

ab126计算公式大全正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

838电子由于C1与C2串联,故输出直流电压,V0=Vm。

倍压整流电路原理

倍压整流电路原理

倍压整流是利用二极管的整流和导引作用,将电压分别贮存到各自的电容上,然后把它们按极性相加的原理串接起来,输出高于输入电压的高压来。

(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如图(a)(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使c2充电至最高值2Vm,其电流路径及电容器C2的极性如图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如图所示直流半波整流电压电路图(a)负半周图(b)正半周输出电压波形全波整流电路正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如由于C1与C2串联,故输出直流电压,V0=Vm。

如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。

如果自电路抽取负载电流的话,电容器C1及C2上的电压是与由全波整流电路馈送的一个电容器上的电压同样的。

不同之处是,实效电容为C1及C2的串联电容,这比C1及C2单独的都要小。

这种较低的电容值将会使它的滤波作用不及单电容滤波电路的好。

正半周时,二极管D2所受的最大逆向电压为2Vm,负半周时,二极管D1所承受的最大逆向电压为2Vm,所以电路中应选择PVI >2Vm的二极管。

倍压电路原理详解

倍压电路原理详解

倍压电路原理详解Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#倍压电路原理详解说明:要理解倍压电路,首先要将充电后的电容看作一个电源.可以和供电电源串联,就像普通的电池串联的原理一样.一、直流半波整流电压电路1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,此时供电电源和C1串联后电压为2Vm,于是向C2充电,使C2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.图1 直流半波整流电压电路(a)负半周(b)正半周需要注意的是:(1)其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

(2))如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

(3)如果有一个负载并联在倍压器的输出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

所以电容器c2上的电压波形是由电容滤波器过滤后的半波讯号,故此倍压电路称为半波电压电路。

(4)正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

图3 输出电压波形二、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理1.正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

2.负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

倍压整流电路的工作原理及电路(史上最全).

倍压整流电路的工作原理及电路(史上最全).

倍压整流电路的工作原理及电路设计在某些电子设备中,需要高压(几千伏甚至几万伏)、小电流的电源电路。

一般都不采用前面讨论过的几种整流方式,因为那种整流电路的整流变压器的次级电压必须升的很高,圈数势必很多,绕制困难。

这里介绍的倍压整流电路,在较小电流的条件下,能提供高于变压器次级输入的交流电压幅值数倍的直流电压,可以避免使用变压比很高的升压变压器,整流元件的耐压相对也可较低,所以这类整流电路特别适用于需要高电压、小电流的场合。

倍压整流是利用电容的充放电效应工作的整流方式,它的基本电路是二倍压整流电路。

多倍压整流电路是二倍压电路的推广。

1、二倍压整流电路(1)桥式二倍压整流电路图1所示电路是桥式倍压整流电路,图1的(1)和(2)为同一电路的两种不同画法。

在这里,用两个电容器取代了全波桥式整流电路中的两只二极管。

整流管D1、D2在交流电的两个半周分别进行半波整流。

各自对电容C1和C2充电。

由负载R L与C1、C2回路看,两个电容是接成串联的。

负载R L上的直流电能是由C1、C2共同供给的。

当e2正半周时,D1导通,如果负载电阻R L很大,即流过R L的电流很小的话,整流电流i D1使C1充电到2E2的电压,并基本保持不变,极向如图中所示。

同样,当e2负半周时,经D2对C2也充上2E2的电压,极向如图中所示。

跨接在两个串联电容两端的负载R L上的电压U L=U C1+U C2,接近于e2幅值的两倍。

所以称这种电路为二倍压整流电路。

实际上,在正半周C1被充电到幅值2E2后,D1随即截止,C1将经过R L对C2放电,U C1将有所降低。

在负半周,当C2被充电到幅值2E2后,D2截止,C2的放电回路是由C1至R L,U C2也应有所降低。

这样,U C1和U C2的平均值都应略低于2E2,也即负载电压是不到次级绕组电压幅值的两倍的。

只有在负载R L很大时,U L≈2E2。

U C1、U C2及U L的变化规律如图2所示。

倍压整流电路工作原理(高电压低电流)

倍压整流电路工作原理(高电压低电流)

倍压整流电路工作原理(高电压低电流)1、半波电压电路图1 半波整流电压电路(a)负半周(b)正半周图2 半波电压的工作原理(1)负半周时,即A为负、B为正时,D1导通、D2截止,电源经D1向电容器C1充电,在理想情况下,此半周内,D1可看成短路,同时电容器C1充电到Vm,其电流路径及电容器C1的极性如上图(a)所示。

注:Vm是峰值,有效值为2-2Vm(1.414 Vm)。

(2)正半周时,即A为正、B为负时,D1截止、D2导通,电源经C1、D1向C2充电,由于C1的Vm再加上双压器二次侧的Vm使C2充电至最高值2Vm,其电流路径及电容器C2的极性如上图(b)所示.其实C2的电压并无法在一个半周内即充至2Vm,它必须在几周后才可渐渐趋近于2Vm,为了方便说明,底下电路说明亦做如此假设。

如果半波倍压器被用于没有变压器的电源供应器时,我们必须将C1串联一电流限制电阻,以保护二极管不受电源刚开始充电涌流的损害。

如果有一个负载并联在倍压器的输出的话,如一般所预期地,在(输入处)负的半周内电容器C2上的电压会降低,然后在正的半周内再被充电到2Vm如下图所示。

图3 输出电压波形所以电容器C2上的电压波形是由电容滤波器过滤后的半波信号,故此倍压电路称为半波电压电路。

正半周时,二极管D1所承受之最大的逆向电压为2Vm,负半波时,二极管D2所承受最大逆向电压值亦为2Vm,所以电路中应选择PIV >2Vm的二极管。

2、全波倍压电路图4 全波整流电压电路(a)正半周(b)负半周图5 全波电压的工作原理正半周时,D1导通,D2截止,电容器C1充电到Vm,其电流路径及电容C1的极性如上图(a)所示。

负半周时,D1截止,D2导通,电容器C2充电到Vm,其电流路径及电容C2的极性如上图(b)所示。

由于C1与C2串联,故输出直流电压,Vo=Vm。

如果没有自电路抽取负载电流的话,电容器C1及C2上的电压是2Vm。

如果自电路抽取负载电流的话,电容器C1及C2上的电压是与由全波整流电路馈送的一个电容器上的电压同样的。

倍压整流电路的工作原理及电路分析

倍压整流电路的工作原理及电路分析

倍压整流电路的工作原理及电路分析
1.工作原理:
(1)变压器:倍压整流电路首先使用变压器将输入电压变压,通过改
变变压器的变比,可以将输入电压调整为所需的倍数。

(2)整流桥:经过变压器变压后的电压接入整流桥电路,整流桥电路
由四个二极管组成,根据输入电压的正负半周期,将电压的正负半波分别
导通,即可实现对输入电压的整流操作。

(3)滤波电容:整流桥输出的脉动电压通过滤波电容进行滤波,以减
小输出电压的脉动幅度,使得输出电压更加稳定。

2.电路分析:
为了更好地理解倍压整流电路的工作原理,我们可以进行电路分析,
将倍压整流电路简化为以下几个关键元件:变压器、整流桥和滤波电容。

(1)变压器:
(2)整流桥:
整流桥电路由四个二极管组成,四个二极管分别为D1、D2、D3和D4、根据输入电压的正负半周期,分别对应导通的二极管分别为:正半周期时
导通的是D1和D4,负半周期时导通的是D2和D3、当二极管导通时,输
出电压为输入电压,当二极管截止时,输出电压为0。

(3)滤波电容:
滤波电容主要用于对整流后的输出电压进行滤波操作,以使输出电压更加平滑。

通过滤波电容进行滤波后,输出电压会有一定的脉动,但是脉动幅度会显著减小。

在进行倍压整流电路的分析时,还需要考虑到电路元件的参数,如变压器的变比、二极管的导通压降以及滤波电容的容值等。

综上所述,倍压整流电路通过变压变换、整流桥和滤波电容等部件的协同作用,实现对输入电压的倍压操作,并对输出电压进行滤波,使得输出电压具有较好的稳定性。

掌握倍压整流电路的工作原理及电路分析对于电力电子工程师来说具有重要意义,能够帮助他们设计和优化相关电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整流、滤波和稳压电路
倍压整流电路
在一些需用高电压、小电流的地方,常常使用倍压整流电路。

倍压整流,可以把较低的交流电压,用耐压较低的整流二极管和电容器,“整”出一个较高的直流电压。

倍压整流电路一般按输出电压是输入电压的多少倍,分为二倍压、三
倍压与多倍压整流电路。

图5一14是二倍压整流电路。

电路由变压器B、
两个整流二极管D1、D2及两个电容器C1、C2组
成。

其工作原理如下:
e2正半周(上正下负)时,二极管D1导通,
D2截止,电流经过D1对C1充电,将电容Cl上
的电压充到接近e2的峰值
,并基本保持不变。

e2为负半周(上负下正)时,二极管D2导通,Dl截止。

此时,Cl上的电压Uc1=
与电源电压e2串联相加,电流经D2对电容C2 充电,充电电压Uc2=e2峰值+1.
2E2≈。

如此反复充电,C2 上的电压
就基本上是了。

它的值是变压器电级电压的二倍,所以叫做二倍压整流电路。

在实际电路中,负载上的电压Usc=2X1.2E2 。

整流二极管D1和D2所承受的最高反向电压均为。

电容器上的直流
电压Uc1=,
Uc2=。

可以据此设计电路和选择元件。

在二倍压整流电路的基础上,再加一个整流二极管D3和-个滤波电容器
C3,就可以组成三倍压整流电路,
如图5-15所示。

三倍压整流电路的工作原理是:在e2的第一个半周和第二个半周与二倍压整流电路相同,即C1上的电压被充电到接
,C2
上的电压被充电到接近。


第三个半周时,D1、D3导通,D2截止,电流除经D1给C1充电外,又经D3给C3 充电,C3上的充电电压Uc3= e2峰值+Uc2一
Uc1≈这样,在RFZ,,上就可以输出直流电压Usc=Uc1i+Uc3 ≈+
=3√2 E。

,实现三倍压整流。

在实际电路中,负载上的电压Ufz≈3x1.2E2整流二极管D3所承妥的最高反向电压也是电容器上的直流电压为。

照这样办法,增加多个二极管和相同数量的电容器,既可以组成多倍压整流电路,见图5一16。

当n 为奇数时,输出电压从上端取出:当n 为偶数时,输出电压从下端取出。

必须说明,倍压整流电路只能在负载较轻(即Rfz较大。

输出电流较小)的情况下工作,否则输出电压会降低。

倍压越高的整疏电路,这种因负载电流增大影响输出电压下降的情况越明显。

用于倍压整流电路的二极管,其最高反向电压应大于。

可用高压硅整流堆,其系列型号为
2DL。

如2DL2/0.2,表示最高反向电压为2千伏,整流电流平均值为200毫安。

倍压整流电路使用的电容器容量比较小,不用电解电容器。

电容器的耐压值要大
于1.5x,在使用上才安全可靠。

相关文档
最新文档