(完整版)导数的概念及其几何意义同步练习题(学生版)
高二数学导数的概念和几何意义试题答案及解析
高二数学导数的概念和几何意义试题答案及解析1.若曲线在点处的切线方程是,则.【答案】2【解析】,又在点处的切线方程是,.【考点】三角函数化简求值.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】,因此切线方程为,即.【考点】(1)导数的运算法则;(2)导数的几何意义.3.若曲线f(x,y)=0上两个不同点处的切线重合,则称这条切线为曲线f(x,y)=0的“自公切线”,下列方程:①x2﹣y2=1②x2﹣|x﹣1|﹣y=0③xcosx﹣y=0④|x|﹣+1=0其中所对应的曲线中存在“自公切线”的有()A.①②B.②③C.①④D.③④【答案】B【解析】①x2﹣y2=1是一个等轴双曲线,没有自公切线;②x2﹣|x﹣1|﹣y="0" ,由两圆相交,可知公切线,满足题意,故有自公切线;③xcosx﹣y=0的图象过(2π,2π ),(4π,4π),图象在这两点的切线都是y=x,故此函数有自公切线;④|x|﹣+1=0,其表示的图形为图中实线部分,不满足要求,故不存在.故选:B【考点】利用导数研究曲线上某点切线方程.4.抛物线在点处的切线的倾斜角是( )A.30B.45C.60D.90【答案】B【解析】设抛物线在点处的切线的倾斜角为,因为,由导数几何意义得:,故选B.【考点】导数几何意义.5.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.6.函数是定义在R上的可导函数,则下列说法不正确的是()A.若函数在时取得极值,则B.若,则函数在处取得极值C.若在定义域内恒有,则是常数函数D.函数在处的导数是一个常数【答案】B.【解析】对于B,可以构造函数,则,而并不是的极值点,而A,C,D均正确,∴选B.【考点】导数的性质.7.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
高二数学导数的概念和几何意义试题答案及解析
高二数学导数的概念和几何意义试题答案及解析1.设曲线在点处的切线与直线垂直,则()A.2B.C.D.【答案】B【解析】,故切线的斜率,在由切线与直线垂直得,即.【考点】导数的应用之一:曲线在一点处的切线以及两直线之间的位置关系.2.已知函数().⑴若函数的图象在点处的切线的倾斜角为,求在上的最小值;⑵若存在,使,求的取值范围.【答案】⑴在上的最小值为;⑵的取值范围为.【解析】⑴对函数求导并令导函数为0,看函数的单调性,即可求在上的最小值;⑵先对函数求导得,分、两种情况讨论即可求的取值范围.(1) 1分根据题意, 3分此时,,则.令-+∴当时,最小值为. 8分(2)∵,①若,当时,,∴在上单调递减.又,则当时,.∴当时,不存在,使 11分②若,则当时,;当时,.从而在上单调递增,在上单调递减.∴当时, 14分根据题意,,即,∴. 15分综上,的取值范围是. 16分【考点】导数的应用、分类讨论思想.3.设,则曲线在处的切线的斜率为()A.B.C.D.【答案】B【解析】因为,根据导数的几何意义可知,曲线在处的切线的斜率为,故选B.【考点】导数的几何意义.4.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.设,则在处的导数()A.B.C.0D.【答案】A【解析】,故选A.【考点】某点处的导数.6.与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是________.【答案】【解析】与已知直线垂直的直线的斜率,,解得,代入曲线方程所以切线方程为,整理得:【考点】1.导数的几何意义;2.直线的垂直.7.已知A为函数图像上一点,在A处的切线平行于直线,则A点坐标为 ;【答案】(1,2)【解析】因为,设,则A点坐标为(1,2).【考点】导数的几何意义8.过点且与曲线相切的直线方程为()A.或B.C.或D.【答案】A【解析】设切点为,因为,所以切线的斜率为,所以切线方程为,又因为切线过点,所以即,注意到是在曲线上的,故方程必有一根,代入符合要求,进一步整理可得即,也就是即,所以或,当时,,切线方程为即;当时,,切线方程为即,故选A.【考点】导数的几何意义.9.在曲线处的切线方程为。
高二数学导数的概念和几何意义试题答案及解析
高二数学导数的概念和几何意义试题答案及解析1.若直线是曲线的切线,则的值为 .【答案】或.【解析】设直线是曲线的切点的坐标为,则,即,且,联立这两个方程解得:或,从而或.【考点】利用导数研究曲线上某点切线方程.2.函数在处的切线方程是()A.B.C.D.【答案】A【解析】∵,∴切线的斜率,切点坐标(0,1)∴切线方程为y-1=-(x-0),即x+y-1=0.故选A.【考点】导数的几何意义;函数的求导运算.3.若,则等于()A.-1B.-2C.1D.【答案】A【解析】根据导数的定义知===-1,故选A.【考点】导数的定义4.(1)已知函数,过点P的直线与曲线相切,求的方程;(2)设,当时,在1,4上的最小值为,求在该区间上的最大值.【答案】(1) 或(2) 最大值为【解析】(1) 根据题意可知,直线过点,但是并没有说明该点是不是切点,所以得设出切点坐标,根据导数的几何意义可知,曲线切线的斜率就是在切点横坐标处的导数,然后利用点斜式求得切线方程;代入点可求出切点,从而得切线方程.(2)首先利用导数求得极值点和函数的单调区间,根据的范围可判断出函数在所给区间上的单调性,从而得出在该区间上的最小值(含),令其等于可得,从而求出在该区间的最大值.试题解析:(1)根据题意可知,直线过点,但是并没有说明该点是不是切点,所以设切点为,因为函数的导函数为,所以根据导数的几何意义可知,切线的斜率,则利用点斜式可得:切线的方程.因为过点,所以,解得或故的方程为或,即或.(2)令得,,故在上递减,在上递增,在上递减.当时,有,所以在上的最大值为又,即.所以在上的最小值为,得故在上的最大值为【考点】导数法求切线方程;导数法求单调性和最值.5.曲线在处的切线的倾斜角是()A.B.C.D.【答案】C【解析】由题知,当时,,则倾斜角的正切值为,倾斜角为.【考点】1.导数的几何意义;2.斜率与倾斜角.6.下列关于函数的性质叙述错误的是()A.在区间上单调递减B.在定义域上没有最大值C.在处取最大值3D.的图像在点处的切线方程为【答案】C【解析】因为,于是可得00极小值当时,,当时,所以可知A、B正确,C不正确,在处取得极大值3,并不是最大值而的图像在点处的切线的斜率为,故此时的切线方程为综上可知,只有C是错误的,故选C.【考点】导数在研究函数性质上的应用.7.已知函数.(1)若,求曲线在点处的切线方程;(2)若函数在其定义域内为增函数,求正实数的取值范围;(3)设函数,若在上至少存在一点,使得>成立,求实数的取值范围.【答案】(1);(2)实数的取值范围是;(3)实数的取值范围.【解析】(1)求的导数,找出处的导数即切线的斜率,由点斜式列出直线的方程即可;(2)求出函数的定义域,在定义域内利用导数与函数增减性的关系,转化为恒成立问题进行求解即可;(3)讨论在定义域上的最值,分情况讨论的增减性,进而解决存在成立的问题即可.(1)当时,函数,,曲线在点处的切线的斜率为从而曲线在点处的切线方程为,即 3分(2)令,要使在定义域内是增函数,只需在内恒成立由题意,的图象为开口向上的抛物线,对称轴方程为∴,只需,即时,∴在内为增函数,正实数的取值范围是 7分(3)∵在上是减函数∴时,;时,,即①当时,,其图象为开口向下的抛物线,对称轴在轴的左侧,且,所以在内是减函数当时,,因为,所以,此时,在内是减函数故当时,在上单调递减,不合题意②当时,由,所以又由(Ⅱ)知当时,在上是增函数∴,不合题意 12分③当时,由(Ⅱ)知在上是增函数,又在上是减函数,故只需,而,即,解得所以实数的取值范围是 15分.【考点】1.导数的几何意义;2.函数的单调性与导数;3.二次函数的图像与性质;4.分类讨论的思想.8.函数的图像在点)处的切线与轴的交点的横坐标为()若,则= 。
5.1 导数的概念及意义学生版
5.1 导数的概念及意义常见考法考点一平均速率【例1】.(2020.江苏张家港.高二期中)函数f (x ) = f-SinX 在[0,扪上的平均变化率为()A. 1B. 2C. πD. /■【一隅三反】1. (2020.武汉市钢城第四中学高二期中)如果函数/(x ) = αr + b 在区间[1,2]上的平均变化率为3,则。
=() A. -3B. 2C. 3D. -22. (2020.重庆高二月考)函数),=/+彳在% = ]到冗= ] + ©之间的平均变化率为( )A. Δx+2B. Δx+3C. 2∆x+(∆x )^D. 3∆x + (∆x )^思维导图 平均速率导数的概念及意义导数概念函数.,=/3)从R 到内的平均变化率为9人占工 若Ar=4-XI ,邮=/(")一曲) Xl -Xl则平均变化率可表示琮.设函数尸人力在区间(G 与上有定义,Λ∈(Λ a,当AX 无限趋近于O 时, 比值"=念±9立期无限趋近于一个常数A ,则称打力在X=X 处可导 AJr AX并称常数/为的敷∕tr )在k4处的导致,记作f (⅜). __________________________导数的几何意义函数F =/⑸在点4处的导致的几何意义,就是曲线J =网在点•,曲))处的 切线的斜率%即氏=/* 8).考点一平均速 考点二导数的概念〉考点三导数的iS )3.(2020.皇姑•辽宁实验中学高二月考)函数),=,在X = I到χ = 3之间的平均变化率为()X2 2 1 1A. -B. 一一C. 一一D.-3 3 3 3考点二导数的概念【例2】(1)(2020.利辛县阚噬金石中学高三月考)设/(x)为可导函数,且满足条件叫J也三= 5,则曲线y = ∕(χ)在点(1"⑴)处的切线的斜率为()A. 10B. 3C. 6D. 8(2). (2020•广东南海•高二期末)在高台跳水运动中ZS时运动员相对于水面的高度(单位:m)是∕ι(z) = -4.9r2+6.5r + 10,则高台跳水运动中运动员在z = 2s时的瞬时速度是()A. -3.3B. -13.1C. 13.1D. 3.3【一隅三反】1.(2020•扶风县法门高中高二月考(理))一个物体的位移S关于时间,的运动方程为S=I—l+[2,其中S的单位是:m, I的单位是:s,那么物体在t=3 s时的瞬时速度是A. 5 m / sB. 6 m / sC. 7 m / sD. 8 m / s2.(2020.赣州市赣县第三中学高二月考(文))已知函数段)在X=XO处的导数为12,则Iim /一弋-)=ArTo 3∆X()A. -4B. 4C. -36D. 363.(2020•赣州市赣县第三中学高二月考(理))已知函数/(x) = ∣x-∙∣lnx,则㈣/⑴-(.AX) =()4 5A. 1B. -1C. ----D. ------3 34.(2020.广东佛山.高二期末)若/(1) = —1,则Iim/° + AX匕/⑴二()AXTo Ar考点三导数的计算【例3】(2020.河南)设点P是函数/(x) = "'—r(0)x+∕'(l)图象上的任意一点,点P处切线的倾斜角为。
5.1.2导数的概念及其几何意义 -A基础练(学生版)
5.1.2导数的概念及其几何意义 -A 基础练一、选择题1.(2020·全国高二课时练)若(m 为常数),则等于( )A .B .1C .mD .2.(2020·全国高二课时练)已知函数在上可导,其部分图象如图所示,设,则下列不等式正确的是( )A .B .C .D .3.(2020·全国高二课时练)已知直线经过,两点,且与曲线切于点,则的值为( ) A . B . C . D .4.已知曲线y =x 3在点P 处的切线的斜率k =3,则点P 的坐标是( )A .(1,1)B .(-1,1)C .(1,1)或(-1,-1)D .(2,8)或(-2,-8)5.(多选题)(2020·河北正定高二月考)为了评估某种治疗肺炎药物的疗效,现有关部门对该药物在人体血管中的药物浓度进行测量.设该药物在人体血管中药物浓度与时间的关系为,甲、乙两人服用该药物后,血管中药物浓度随时间变化的关系如下图所示.给出下列四个结论正确的是( )A.在时刻,甲、乙两人血管中的药物浓度相同;B. 在时刻,甲、乙两人血管中药物浓度的瞬时变化率相同;C. 在这个时间段内,甲、乙两人血管中药物浓度的平均变化率相同;D. 在,两个时间段内,甲血管中药物浓度的平均变化率不相同.6.(多选题)(2020·山西师大附中高二月考)下列命题正确的是( )A .若,则函数在处无切线B .函数的切线与函数的图象可以有两个公共点C .曲线在处的切线方程为,则当时,D .若函数的导数,且,则的图象在处的切线方程为二、填空题7.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则b a=________. 8.(2020·江西九江高二月考)如图,函数的图象在点处的切线方程是,则_____.9.已知曲线y =f (x )=x ,y =g (x )=1x,它们的交点坐标为________,过两曲线的交点作两条曲线的切线,则曲线f (x )在交点处的切线方程为________.10.(2020·湖南衡阳高二月考)已知二次函数f (x )=ax 2+bx +c 的导数为f ′(x ),f ′(0)>0,对于任意实数x ,有f (x )≥0,则f (1)f ′(0)的最小值为________. 三、解答题11.(2020·全国高二课时练)在曲线上求一点,使得曲线在点处的切线分别满足下列条件: (1)平行于直线;(2)垂直于直线;(3)倾斜角为.12.(2020·山东菏泽三中高二期中)设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值.。
2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)
2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
(完整版)导数练习题(含答案)
导数概念及其几何意义、导数的运算一、选择题:1 已知,若,则a 的值等于32()32f x ax x =++(1)4f '-=ABCD1931031631332 已知直线与曲线,则b 的值为1y kx =+3y x ax b =++切于点(1,3)A3B-3C5D-53 函数的导数为2y x a a =+2()(x-)ABCD 222()x a -223()x a +223()x a -222()x a +4 曲线在点处的切线与坐标轴围成的三角形的面积为313y x x =+4(1,)3A B C D192913235已知二次函数的导数为,对于任意实数x ,有,则2y ax bx c =++(),(0)0f x f ''>()0f x ≥的最小值为(1)(0)f f 'A3BC 2 D52326 已知函数在处的导数为3,则的解析式可能为()f x 1x =()f x A B2()(1)3(1)f x x x =-+-()2(1)f x x =-CD 2()2(1)f x x =-()1f x x =-7 下列求导数运算正确的是AB211(1x x x'+=+21(log )ln 2x x '=CD 3(3)3log x x e '=⋅2(cos )2sin x x x x'=-8 曲线在处的切线的倾斜角为32153y x x =-+1x =AB C D6π34π4π3π9 曲线在点处的切线方程为3231y x x =-+(1,1)-A BCD 34y x =-32y x =-+43y x =-+45y x =-10设函数的图像上的点处的切线斜率为k ,若,则函数的sin cos y x x x =+(,)x y ()k g x =()k g x =图像大致为11 一质点的运动方程为,则在一段时间内相应的平均速度为253s t =-[1,1]t +∆ABCD 36t ∆+36t -∆+36t ∆-36t -∆-12 曲线上的点到直线的最短距离是()ln(21)f x x =-230x y -+=ABCD 013 过曲线上的点的切线平行于直线,则切点的坐标为32y x x =+-0P 41y x =-0P A B(0,1)(1,0)-或(1,4)(1,0)--或CD (1,4)(0,2)---或(2,8)(1,0)或14 点P 在曲线上移动,设点P 处切线的倾斜角为,则角的取值范围是323y x x =-+ααABC D [0,]2π3[0,)[,)24πππ 3[,)4ππ3(,]24ππ二、填空题15 设是二次函数,方程有两个相等实根,且,则的表达式()y f x =()0f x =()22f x x '=+()y f x =是______________16 函数的导数为_________________________________2sin x y x=17 已知函数的图像在点处的切线方程是,则_________()y f x =(1,(1))M f 122y x =+(1)(1)f f '+=18 已知直线与曲线有公共点,则k 的最大值为___________________________y kx =ln y x =三、解答题19 求下列函数的导数(1)(2) (3)(4) 1sin 1cos xy x-=+y =y =+tan y x x =⋅20 已知曲线与,直线与都相切,求直线的方程21:C y x =22:(2)C y x =--l 12,C C l 21 设函数,曲线在点处的切线方程为()bf x ax x=-()y f x =(2,(2))f74120x y --=(1)求的解析式()f x(2)证明:曲线上任一点处的切线与直线和直线所围成的三角形面积为定值,并()y f x =0x =y x =求此定值。
(完整版)导数的几何意义练习题
导数的几何意义命题人:刘春来 时间:9.18 姓名: 学号:1.曲线x y e 在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e 2.若曲线y =在点(a ,)处的切线与两个坐标轴围成的三角形的面积为18,则a 等于( ) A .64B .32C .16D .8 3.已知点P 在曲线y =4e x +1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A .(0,π4) B .(π4,π2) C .(π2,3π4) D .[3π4,π) 4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A.94e 2 B .2e 2 C .e 2 D.e 225.若函数f (x )=e x +a e -x 的导函数是奇函数,并且曲线y =f (x )的一条切线的斜率是32,则切点的横坐标是 ( )A .-ln 22B .-ln 2 C.ln 22D .ln 2 6.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________.7.若曲线 f (x )=x 4-x 在点P 处的切线平行于直线3x -y =0,则点P 的坐标为________.8.若点P 是曲线f (x )=x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.9.设点P 是曲线y =x 33-x 2-3x -3上的一个动点,则以P 为切点的切线中,斜率取得最小值时的切线方程是__________________.10.已知曲线y =13x 3+43. (1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程;(3)求满足斜率为1的曲线的切线方程.12.已知曲线y =16x 2-1与y =1+x 3在x =x 0处的切线互相垂直,求x 0的值.13.已知函数f (x )=12x 2-a ln x (a ∈R). (1)若函数f (x )的图象在x =2处的切线方程为y =x +b ,求a ,b 的值;(2)若函数f (x )在(1,+∞)上为增函数,求a 的取值范围.。
导数定义及几何意义练习题
一、导数概念1. 已知函数y=x 2+1的图象上一点A (1,2)及其邻近一点B (1+△x,2+△y ),则=AB k ( )A .2B .2xC .2+△xD .2+(△x)22. 一质点做直线运动,由始点经过ts 后的距离为s=14t 4-4t 3+16t 2,则速度为0的时刻是 ( ) A .4s 末 B .8s 末 C .0s 末与8 s 末 D .C .0s 末,4s 末,8 s 末3.已知f(x)=x 3+2x 2,则x x f x x f ∆-∆+)()(= . 4.已知函数f (x )=x x +-2的图象上的一点)2,1(--A 及临近一点)2,1(y x B ∆+-∆+-,则=∆∆xy . 5.若0()2f x '=,则当k 趋近于0时,00()()2f x k f x k --无限趋近于 . 6.一质点M 的运动方程为S=2t +1,则质点M 在2(s)到2+t ∆(s )的平均速度t ∆∆s = 质点M 在t=2(s)时的速度S '=2t |== (m/s)二、导数的几何意义1.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++=2. (全国Ⅰ新卷理3) 曲线2x y x =+在点(-1,-1)处的切线方程为(A )y=2x+1 (B)y=2x-1 (C) y=-2x-3 (D)y=-2x-23. (全国Ⅱ卷理10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )84. (全国Ⅱ卷文7)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则 (A )1,1a b == (B) 1,1a b =-=(C) 1,1a b ==- (D) 1,1a b =-=-5.曲线y=3x -tanx 在点()y 60,π处的切线的倾斜角为6.已知曲线23ln 4x y x =-的一条切线的斜率为12,则切点的横坐标为 . 导数定义及几何意义练习题1.求下列函数导数(1))11(32x x x x y ++= (2))11)(1(-+=xx y (3)2cos 2sin x x x y -= (4)y=x x sin 2 (5)y =xx x x x 9532-+-(6)y =-2sin 2x (1-2cos 24x )2.曲线12ex y =在点2(4e ),处的切线与坐标轴所围三角形的面积为( ) A.29e 2 B.24eC.22e D.2e 3.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A.294e B.22eC.2e D.22e 4.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .325.若π02x <<,则下列命题中正确的是( ) A .3sin πx x < B .3sin πx x > C .224sin πx x < D .224sin πx x > 6.若π02x <<,则下列命题正确的是( ) A .2sin πx x < B .2sin πx x > C .3sin πx x < D .3sin πx x >7.曲线313y x x =+在点413⎛⎫ ⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A .19 B .29 C .13 D .238.已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( ) A .1 B .2 C .3 D .49. 利用导数的定义求函数10.已知抛物线y=ax 2+bx +c(a ≠0)经过点(1,1),且在点(2,-1)处的切线与直线y=x -3重合,求a,b,c 的值.11.求曲线y=e x 的过原点的切线方程.。
高二数学导数的概念和几何意义试题
高二数学导数的概念和几何意义试题1.若,则等于()A.-1B.-2C.1D.【答案】A【解析】根据导数的定义知===-1,故选A.【考点】导数的定义2.已知函数,若曲线存在与直线平行的切线,则实数的取值范围是()A.B.C.D.【答案】A【解析】对函数求导可得,存在与直线平行的切线,即有实数解,则,,则,得.故选A.【考点】导数的几何意义.3.抛物线在点处的切线的倾斜角是 ( )A.30B.45C.60D.90【答案】B.【解析】已知抛物线,对其进行求导,即,当时,,即切线的斜率为,从而问题解决.【考点】导数的几何意义;利用导数研究曲线上某点切线方程.4.已知函数.(1)求曲线在点处的切线方程;(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.【答案】(1)切线方程为;(2)直线的方程为,切点坐标为..【解析】(1)根据导数的几何意义求出在点处的切线的斜率,再用直线的点斜式写出直线方程即可;(2)先设出切点坐标,用(1)的方法求出直线的方程,把原点带入,可求直线方程及切点坐标.(1)切线方程为:,即(2)设切点为则…….①,直线方程为,直线过原点,则…….②联立①、②解得,所以直线方程为:,切点坐标为.【考点】导数的几何意义、直线方程的求法.5.已知点在曲线上,为曲线在点处的切线的倾斜角,则的取值范围是()A.B.C.D.【答案】A【解析】又,所以,故,则.【考点】利用导数求函数的切线,倾斜角与斜率,基本不等式.6.曲线在点处的切线倾斜角为()A.B.C.D.【答案】A【解析】因为,根据导数的几何意义可得曲线在点处的切线的斜率为,设直线的倾斜角为(),则有,从而,选A.【考点】导数的几何意义.7.设函数f(x)=ax3+bx2+cx(c<0),其图象在点A(1,0)处的切线的斜率为0,则f(x)的单调递增区间是________.【答案】或或或【解析】,由题意可得且,解得。
则,因为,时,。
北师大版高中数学选修1-1导数的概念及其几何意义导数的几何意义同步练习.docx
导数的概念及其几何意义 导数的几何意义 同步练习一,选择题:1、在曲线2x y =上切线倾斜角为4π的点是( ) A (0,0) B (2,4) C )161,41( D )41,21( 2、曲线122+=x y 在点P (-1,3)处的切线方程是( )A 14--=x yB 74--=x yC 14-=x yD 74+=x y3、曲线23-+=x x y 在P 点处的切线平行于直线14-=x y ,则此切线方程是( )A x y 4=B 44-=x yC 84+=x yD 444-==x y x y 或4、过曲线2212-=x y 上一点P )23,1(-的切线斜率为( ) A 21 B 1 C 23 D 22 5、曲线531)(23+-=x x x f 在1=x 处的切线倾斜角是( ) A 6π B 3π C 4π D 43π 6、与直线0103=-+y x 平行的曲线1323+-=x x y 的切线方程为( )A 43-=x yB 23+-=x yC 34+-=x yD 54-=x y二、填空题7、函数223+-=x x y 在2=x 处的切线斜率是_________________.8、曲线xy 12=在点(3,4)处的切线方程是_________________________________. 9、若曲线p x x y +-=422与直线1=y 相切,则p =____________________.10、 函数)(x f y =中,导数0)(0'=x f )(0R x ∈的几何意义是 。
三、解答题11、求曲线xx y 1-=在点)0,1(处的切线方程。
12.已知抛物线 42-=x y 与直线y = x + 2.求:(1)两曲线的交点; (2)抛物线在交点处的切线方程。
13.在抛物线22x y -=上,哪一点的切线处于下述位置?(1)与x 轴平行(2)平行于第一象限角的平分线.(3)与x 轴相交成45°角参考答案1. D2.A3.D4.B5.D6.B7、10; 8、 02434=-+y x ; 9、 3;10. 函数 )(x f y = 在 0x x = 处的切线的斜率为011、解:根据导数的几何意义知,要求曲线的切线方程,需先求函数在切点的导数(切线斜率)由x x y 1-=,得2''11)1(xx x y +=-=,所以2111|1'=+==x y 故切线方程为)1(2-=x y ,即012=--y x12.解:(1)Θ ⎩⎨⎧+=-=242x y x y ⎩⎨⎧=-=⎩⎨⎧==∴0253y x y x 或 )),和(,交点的坐标为(0,253-∴(2)Θ=---∆+=∆)4(4)(22x x x y 22x x x ∆+∆ )2(22x x xx x x x y ∆+=∆∆+∆=∆∆ ∴x x x x y y x x 2)2(lim lim 00=∆+=∆∆='→∆→∆当交点为(3,5)时,y '=6,故切线方程为:0136x -y =+ 当交点为(-2,0)时,y '=-4,故切线方程为:084=++x y13.解:Θ=--∆+-=∆)2()(222x x x y 22x x x ∆-∆- )2(22x x xx x x x y ∆--=∆∆+∆=∆∆ ∴x x x x y y x x 2)2(lim lim 00-=∆--=∆∆='→∆→∆ (1) 当切线与x 轴平行时,导数0='y ,即02=-x ,所以在点(0,2)的切线与x 轴平行时.(2) 当切线平行于第一象限角的平分线,导数1='y ,即12=-x ,所以在点(21-,47)的切线平行于第一象限角的平分线. (3) 与x 轴相交成45°角,导数为1或-1, 若导数1='y ,即12=-x ,求得点为(21-,47). 若导数1='y ,即12-=-x ,求得点为(21,47) 所以在点(21-,47)、(21,47)与x 轴相交成45°角.。
高中数学 2.2.2导数的概念及其几何意义同步练习 北师
2.2.2 导数的几何意义
1、设曲线)(x f y =在某点处的导数值为0,则过曲线上该点的切线( )
A 、垂直于x 轴
B 、垂直于y 轴
C 、既不垂直于x 轴也不垂直于y 轴
D 、方向不能确定
2、分别求抛物线241x y =
过点(-2,1),(2,1)的切线方程。
3、已知曲线12-=x y 和其上一点,且这点的横坐标为-1,求曲线在这点的切线方程。
4、设点),(00y x 是抛物线432++=x x y 上一点,求过点),(00y x 的切线方程。
5、求抛物线241x y =
过点(4,47)的切线方程
6、曲线12)(2++=x x x f 在点M 处的切线的斜率为2,求点M 的坐标。
7、曲线22
3x y =
上哪一点的切线与直线13-=x y 平行?
参考答案:
1、B
2、答案提示:01=++y x ;01=--y x
3、答案提示:022=++y x
4、答案提示:))(32(000x x x y y -+=-
5、答案提示:0142=--y x 或049414=--y x
6、答案提示:(0,1)
7、答案提示:)2
3,1(。
高中数学选择性必修二 5 1 2导数的概念及其几何意义(知识梳理+例题+变式+练习)(含答案)
5.1.2导数的概念及其几何意义要点一 导数的概念1.平均变化率:对于函数y =f (x ),设自变量x 从x 0变化到x 0+Δx ,则把Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数y =f (x )从x 0到x 0+Δx 的平均变化率.2.导数:如果Δx →0时,平均变化率Δy Δx 无限趋近于一个确定的值,即ΔyΔx 有极限,则称y =f (x )在x =x 0处可导,并把这个确定的值叫做y =f (x )在x =x 0处的导数(也称瞬时变化率),记作f ′(x 0)或y ′|0x x = ,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →f (x 0+Δx )-f (x 0)Δx . 【重点小结】(1)当Δx ≠0时,比值Δy Δx 的极限存在,则f(x)在x =x 0处可导;若ΔyΔx的极限不存在,则f(x)在x =x 0处不可导或无导数.(2)在x =x 0处的导数的定义可变形为f ′(x 0)=lim Δx →0 f (x 0-Δx )-f (x 0)-Δx 或f ′(x 0)=lim x →x 0 f (x )-f (x 0)x -x 0.要点二 导数的几何意义对于曲线y =f (x )上的点P 0(x 0,f (x 0))和P (x ,f (x )),当 点P 0趋近于点P 时,割线P 0P 趋近于确定的位置,这个确定位置的直线P 0T 称为点P 0处的切线.割线P 0P 的斜率是k =f (x )-f (x 0)x -x 0.当点P 无限趋近于点P 0时,k 无限趋近于切线P 0T 的斜率.因此,函数f (x )在x =x 0处的导数就是切线P 0T 的斜率k ,即k =li m Δx →0f (x 0+Δx )-f (x 0)Δx 【重点总结】(1)曲线的切线与割线①曲线的切线是由割线绕一点转动,当另一点无限接近这一点时割线趋于的直线. ②曲线的切线就是割线趋近于某一确定位置的直线,体现了无限趋近的思想. (2)曲线的切线与导数①函数f(x)在x =x 0处有导数,则在该点处函数f(x)表示的曲线必有切线,且导数值是该切线的斜率. ②函数f(x)表示的曲线在点(x 0,f(x 0))处有切线,但函数f(x)在该点处不一定可导,如f(x)=3x 在x =0处有切线,但不可导.曲线的切线并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个.与曲线只有一个公共点的直线也不一定是曲线的切线. 要点三 导函数对于 函数y =f (x ),当x =x 0时,f ′(x 0)是一个确定的数,当x 变化时,f ′(x )便是一个关于x 的函数,我们称它为函数y=f(x)的导函数(简称为导数),即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx【重点总结】函数在某点处的导数与导函数的区别(1)函数在某点处的导数是一个定值,导函数是一个函数.(2)函数f(x)在x0处的导数就是导函数f ′(x)在x=x0处的函数值.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)函数f(x)在x=x0处有意义,则f′(x0)存在.()(2)直线与曲线相切,则直线与已知曲线只有一个公共点.()(3)导函数f′(x)的定义域与函数f(x)的定义域相等.()(4)曲线f(x)=x2在原点(0,0)处的切线方程为y=0.()【答案】(1)×(2)×(3)×(4)√2.若函数f(x)=-3x-1,则f′(x)=()A.0 B.-3xC.3 D.-3【答案】D【解析】k=li mΔx→0-3(x+Δx)-1-(-3x-1)Δx=-3.3.设曲线y=x2+x-2在点M处的切线斜率为3,则点M的坐标为() A.(0,-2) B.(1,0)C.(0,0) D.(1,1)【答案】B【解析】设点M(x0,y0),∴k=limΔx→0(x0+Δx)2+(x0+Δx)-2-(x20+x0-2)Δx=2x0+1,令2x0+1=3,∴x0=1,则y0=0.故选B.4.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.【答案】2【解析】点(5,f(5))在切线y=-x+8上,∴f(5)=-5+8=3.且f′(5)=-1,∴f(5)+f′(5)=2.题型一 求函数在某点处的导数【例1】(1)已知函数f (x )=2x 2+4x ,则f ′(3)=________. 【答案】(1)16【解析】(1)Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3) =12Δx +2(Δx )2+4Δx =2(Δx )2+16Δx , ∴Δy Δx =2(Δx )2+16Δx Δx=2Δx +16. ∴f ′(3)=li m Δx →0(2Δx +16)=16.(2)已知函数f (x )=2x 2+4x ,若f ′(x 0)=12,则x 0=________. 【答案】(2)2【解析】(2)根据导数的定义f ′(x 0)=li m Δx →0ΔyΔx =li m Δx →f (x 0+Δx )-f (x 0)Δx=li m Δx →2(x 0+Δx )2+4(x 0+Δx )-(2x 20+4x 0)Δx=li m Δx →04x 0·Δx +2(Δx )2+4ΔxΔx =li m Δx →(4x 0+2Δx +4)=4x 0+4,∴f ′(x 0)=4x 0+4=12,解得x 0=2.【方法归纳】用导数定义求函数在某一点处的导数的三个步骤 (1)作差Δy =f (x 0+Δx )-f (x 0). (2)作比Δy Δx =f (x 0+Δx )-f (x 0)Δx .(3)取极限f ′(x 0)=li m Δx →0ΔyΔx. 简记为一差、二比、三极限.【跟踪训练1】已知函数f (x )=x +1x,则f ′(1)=________.【答案】0【解析】f ′(1)=lim Δx →f (1+Δx )-f (1)Δx=lim Δx →0⎣⎡⎦⎤(1+Δx )+11+Δx -(1+1)Δx=lim Δx →0⎝⎛⎭⎫Δx +11+Δx -1Δx=lim Δx →0⎝⎛⎭⎫1-11+Δx =0题型二 求曲线的切线方程【例2】已知曲线y =13x 3,求曲线在点P (3,9)处的切线方程.【解析】由y =13x 3,得y ′=li m Δx →0 ΔyΔx =li m Δx →013(x +Δx )3-13x 3Δx=13li m Δx →3x 2Δx +3x (Δx )2+(Δx )3Δx=13li m Δx →[3x 2+3xΔx +(Δx )2]=x 2, y ′|x =3=32=9,即曲线在P (3,9)处的切线的斜率等于9. 由直线的点斜式方程可得,所求切线方程为y -9=9(x -3), 即9x -y -18=0.【变式探究】本例条件不变,求曲线过点M (1,0)的切线方程.【解析】设切点坐标为⎝⎛⎭⎫x 0,13x 30,由例2知切线方程为:y -13x 30=x 20(x -x 0) ∵切线过点(1,0), ∴-13x 30=x 20(1-x 0)即23x 30-x 20=0,解得x 0=0或x 0=32. ∴切点坐标为(0,0)或⎝⎛⎭⎫32,98,∴切线方程为:y =0或y -98=94⎝⎛⎭⎫x -32. 即y =0或9x -4y -9=0. 设切点,写出切线方程,已知点代入,求切点. 【方法归纳】1.求曲线上某点切线方程的三个步骤2.过曲线外的点P (x 1,y 1)求曲线的切线方程的步骤 (1)设切点为Q (x 0,y 0).(2)求出函数y =f (x )在点x 0处的导数f ′(x 0).(3)利用Q 在曲线上和f ′(x 0)=k PQ ,解出x 0,y 0及f ′(x 0). (4)根据直线的点斜式方程,得切线方程为y -y 0=f ′(x 0)(x -x 0). 【跟踪训练2】已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由. 【解析】将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx=3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0,解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 题型三 导数几何意义的应用 探究1 求切点坐标【例3】已知曲线y =x 2+6的切线分别符合下列条件,求切点. (1)平行于直线y =4x -3; (2)垂直于直线2x -y +5=0. 【解析】设切点坐标为(x 0,y 0).f ′(x )=li m Δx →f (x +Δx )-f (x )Δx=li m Δx →0 (x +Δx )2+6-(x 2+6)Δx=li m Δx →0(2x +Δx )=2x .∴过(x 0,y 0)的切线的斜率为2x 0.(1)∵切线与直线y =4x -3平行,∴2x 0=4,x 0=2,y 0=x 20+6=10, 即过曲线y =x 2+6上点(2,10)的切线与直线y =4x -3平行. (2)∵切线与直线2x -y +5=0垂直,∴2x 0×2=-1,得x 0=-14,y 0=9716,即过曲线y =x 2+6上点⎝⎛⎭⎫-14,9716的切线与直线2x -y +5=0垂直. 【方法归纳】求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0); (2)求导函数f ′(x ); (3)求切线的斜率f ′(x 0);(4)由斜率间的关系列出关于x 0的方程,解方程求x 0; (5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.探究2 与曲线的切点相关的问题【例4】已知直线l 1为曲线y =x 2+x -2在(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2. (1)求直线l 2的方程;(2)求由直线l 1,l 2和x 轴围成的三角形面积.【解析】(1)y ′=lim Δx →0(x +Δx )2+(x +Δx )-2-x 2-x +2Δx=lim Δx →02xΔx +(Δx )2+ΔxΔx=lim Δx →0(2x +Δx +1)=2x +1.所以y ′|x =1=2×1+1=3,所以直线l 1的方程为y =3(x -1),即y =3x -3.设直线l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2), 则l 2的方程为y =(2b +1)x -b 2-2.因为l 1⊥l 2,则有2b +1=-13,b =-23,B ⎝⎛⎭⎫-23,-209,所以直线l 2的方程为y =-13x -229.(2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1,l 2与x 轴交点的坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×52=12512.(1)先由已知求出l 1的斜率,再由l 1⊥l 2,求出l 2的斜率,进而求出切点坐标,得出l 2的方程. (2)求出l 1与l 2的交点坐标,l 1,l 2与x 轴的交点,求出直线l 1,l 2和x 轴围成的三角形的面积. 【方法归纳】利用导数的几何意义处理综合应用题的两种思路(1)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线的方程、直线间的位置关系等,因此要综合应用所学知识解题.(2)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.【跟踪训练3】(1)已知y =f (x )的图象如图所示,则f ′(x A )与f ′(x B )的大小关系是( ) A .f ′(x A )>f ′(x B ) B .f ′(x A )=f ′(x B ) C .f ′(x A )<f ′(x B )D .f ′(x A )与f ′(x B )大小不能确定 【答案】A【解析】由y =f (x )的图象可知,k A >k B ,根据导数的几何意义有f ′(x A )>f ′(x B ).故选A.(2)曲线f (x )=x 3在点(a ,a 3)(a ≠0)处的切线与x 轴,直线x =a 围成的三角形的面积为16,则a =________.【答案】(2)±1【解析】(2)因为f ′(a )=li m Δx →(a +Δx )3-a 3Δx =3a 2,所以曲线在点(a ,a 3)处的切线方程为y -a 3=3a 2(x -a ).令y =0,得切线与x 轴的交点为⎝⎛⎭⎫23a ,0,由题意知三角形面积为12⎪⎪⎪⎪a -23a ·|a 3|=12×⎪⎪⎪⎪a 3·|a 3|=16a 4=16.∴a 4=1,即a =±1. 【易错辨析】求切线方程时忽略“过”与“在”的差异致错【例5】已知抛物线y =x 2+x +1,则过抛物线原点的切线方程为________. 【答案】3x -y =0或x +y =0【解析】设切点坐标为(x 0,y 0),则f ′(x 0)=lim Δx →(x 0+Δx )2+(x 0+Δx )+1-(x 20+x 0+1)Δx=lim Δx →0(2x 0+1+Δx )=2x 0+1,所以斜率k =2x 0+1,故所求的切线方程为y -y 0=(2x 0+1)(x -x 0),将(0,0)及y 0=x 20+x 0+1代入上式得:-(x 20+x 0+1)=-x 0(2x 0+1), 解得x 0=1或x 0=-1,所以k =3或k =-1,所以切线方程为y =3x 或y =-x , 即3x -y =0或x +y =0. 【易错警示】 1.出错原因把原点当作切点,易求的是在原点处的切线方程. 2.纠错心得(1)看清楚求的是原点处的切线,还是过原点的切线. (2)过原点的切线,原点不一定是切点,需设切点为(x 0,y 0).一、单选题1.设()f x 在0x x =处可导,则()()000lim2h f x h f x h h→+--=( ). A .()02f x ' B .()012f x ' C .()0f x ' D .()04f x '【答案】C 【分析】根据导数的定义即可求解. 【解析】解:∵()f x 在0x 处可导, ∵()()()0000lim2h f x h f x h f x h→+--'=,故选:C.2.函数()y f x =在0x x =处的导数可表示为0x x y =',即( ). A .()()()000f x f x x f x =+∆-' B .()()()0000lim x f x f x x f x ∆→'=+∆-⎡⎤⎣⎦ C .()()()0000lim x f x x f x f x x∆→+∆-'=∆D .()()()000f x x f x f x x+∆-'=∆【答案】C 【分析】结合导数定义直接选择即可. 【解析】x x y ='是()0f x '的另一种记法,根据导数的定义可知C 正确.故选:C3.若函数()f x 在0x x =处可导,则()()000limh f x h f x h→+-的结果( ).A .与0x ,h 均无关B .仅与0x 有关,而与h 无关C .仅与h 有关,而与0x 无关D .与0x ,h 均有关【答案】B 【分析】根据导数的定义即可求解. 【解析】 解:因为()()()0000limh f x h f x f x h→+-'=,所以结果仅与0x 有关,而与h 无关, 故选:B.4.设()f x 为可导函数,且满足0(1)(12)lim12x f f x x→--=-,则'(1)f 为( )A .1B .1-C .2D .2-【答案】B 【分析】利用导数的定义进行求解. 【解析】 因为0(1)(12)lim12x f f x x →--=-,所以20(1)(12)lim =12x f f x x→---,即20(12)(1)lim12x f x f x-→--=--所以'(1)1f =-. 故选:B.5.已知函数f (x )可导,且满足0(3)l (m 2i 3)x f f x x∆→-+∆=∆,则函数y =f (x )在x =3处的导数为( )A .-1B .-2C .1D .2【分析】根据导数的定义即可得到答案. 【解析】 由题意,()()()()()003333lim lim3x x f f x f x f f xx∆→∆→-+∆+∆-=-=-∆'∆,所以()32f '=-.故选:B.6.已知函数()f x 的图像如图所示,()f x '是()f x 的导函数,则下列结论正确的是( )A .()()()()310132f f f f '<-'<< B .()()()()310312f f f f -''<<< C .()()()()310312f f f f '<-'<< D .()()()()310132f f f f ''<<-< 【答案】B 【分析】结合图象,判断出()()()()310,3,,12f f f f ''-的大小关系. 【解析】由题图可知函数()f x 的图像在1x =处的切线的斜率比在3x =处的切线的斜率大,且均为正数,所以()()031f f ''<<. AB 的斜率为()()3131f f --,其比在1x =处的切线的斜率小,但比在3x =处的切线的斜率大,所以()()()()310312f f f f -''<<<. 故选:B7.已知函数()2ln 8f x x x =+,则()()121lim x f x f x∆→+∆-∆的值为( )A .20-B .10-C .10D .20【分析】根据导数的定义可得()()()0121lim 21x f x f f x∆→+∆='-∆,再用求导公式可得()28f x x'=+,代入1x =即可得解. 【解析】因为()2ln 8f x x x =+,所以()28f x x'=+, 所以()()()()()020121121lim2lim 21202x x f x f f x f f xx∆→∆→+∆-+∆-=∆'==∆.故选:D8.下列说法正确的是( )A .曲线的切线和曲线有且只有一个交点B .过曲线上的一点作曲线的切线,这点一定是切点C .若()0f x '不存在,则曲线()y f x =在点()()00,x f x 处无切线D .若曲线()y f x =在点()()00,x f x 处有切线,但()0f x '不一定存在 【答案】D 【分析】根据瞬时变化率和导数的基本概念对各选项逐一判断即可. 【解析】对于A ,曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,故A 错误;对于B ,过曲线上的一点作曲线的切线,由于曲线的切线和曲线除有一个公共切点外,还可能有其他的公共点,所以这个点不一定是切点,故B 错误;对于C ,()0f x '不存在,曲线()y f x =在点()()00,x f x 处切线的斜率不存在,但切线可能存在,故C 错误; 对于D ,曲线()y f x =在点()()00,x f x 处有切线,但切线斜率可能不存在,所以()0f x '不一定存在,故D 正确. 故选:D二、多选题9.已知函数()f x 的图象如图所示,()f x '是()f x 的导函数,则下列数值的排序正确的是( )A .()()32f f ''<B .()()()332f f f '<-C .()()()232f f f '<-D .()()320f f -<【答案】AB 【分析】根据导数的几何意义可得()()23f f ''>,记()()22A f ,,()()33B f ,,作直线AB ,根据两点坐标求出直线AB 的斜率,结合图形即可得出()()()323f f f '->. 【解析】由函数的图象可知函数()f x 是单调递增的,所以函数图象上任意一点处的导函数值都大于零,并且由图象可知,函数图象在2x =处的切线斜率1k 大于在3x =处的切线斜率2k ,所以()()23f f ''>; 记()()22A f ,,()()33B f ,,作直线AB ,则直线AB 的斜率()()()()323232f f k f f -==--,由函数图象,可知120k k k >>>,即()()()()23230f f f f ''>->>. 故选:AB10.(多选题)若函数f (x )在x =x 0处存在导数,则000()()limh f h x f x h→+-的值( )A .与x 0有关B .与h 有关C .与x 0无关D .与h 无关【答案】AD 【分析】由导数的定义进行判定. 【解析】由导数的定义,得:'0000()()lim()h f x f x f x hh →-=+,即函数f (x )在x =x 0处的导数与x 0有关,与h 无关. 故选:AD.11.甲、乙两个学校同时开展节能活动,活动开始后两学校的用电量()W t 甲(单位:kW h ⋅),()W t 乙(单位:kW h ⋅)与时间t (单位:h )的关系如图所示,则一定有( )A .甲校比乙校节能效果好B .甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小C .两学校节能效果一样好D .甲校与乙校在活动期间的用电量总是一样大 【答案】AB 【分析】根据切线斜率的实际意义判断AC 选项的正确性.根据平均变化率的知识确定B 选项的正确性.根据图象判断用电量是否“总是一样大”,由此判断D 选项的正确性. 【解析】由图可知,对任意的()100,t t ∈,曲线()W t 甲在1t t =处的切线斜率的绝对值比曲线()W t 乙在1t t =处的切线斜率的绝对值大,所以甲校比乙校节能效果好,A 正确,C 错误; 由图可知,()() 000W t W t -甲甲()()000W t W t -<乙乙,则甲校的用电量在[]00,t 上的平均变化率比乙校的用电量在[]00,t 上的平均变化率小,B 正确;由于曲线()W t 甲和曲线()W t 乙不重合,故D 错误. 故选:AB.12.(多选)设()f x 在0x 处可导,下列式子中与()0f x '相等的是( ) A .()()0002lim2x f x f x x x∆→--∆∆B .()()000limx f x x f x x x∆→+∆--∆∆C .()()0002limx f x x f x x x∆→+∆-+∆∆D .()()0002limx f x x f x x x∆→+∆--∆∆【答案】AC 【分析】利用导数的定义对各选项逐一分析计算并判断作答. 【解析】 对于A ,()()()()()000000202222lim lim 22x x f x f x x f x x x f x x f x x x ∆→∆→--∆-∆+∆--∆'==∆∆,A 满足; 对于B ,()()()()()000000202lim 2lim 22x x f x x f x x f x x x f x x f x x x ∆→∆→+∆--∆-∆+∆--∆'==∆∆,B 不满足; 对于C ,()()()00002limx f x x f x x f x x∆→+∆-+∆'=∆,C 满足;对于D ,()()()()()000000302232lim 3lim 33x x f x x f x x f x x x f x x f x x x∆→∆→+∆--∆-∆+∆--∆'==∆∆,D 不满足. 故选:AC第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.某生物种群的数量Q 与时间t 的关系近似地符合10()9tt e Q t e =+.给出下列四个结论:①该生物种群的数量不会超过10;②该生物种群数量的增长速度先逐渐变大后逐渐变小; ③该生物种群数量的增长速度与种群数量成正比; ④该生物种群数量的增长速度最大的时间()02,3t ∈. 根据上述关系式,其中所有正确结论的序号是__________. 【答案】①②④ 【分析】对解析式上下同时除以t e ,结合反比例函数模型可判断①正确;对10()9tt e Q t e =+求导,()Q t '即为该生物种群数量的增长速度与时间的关系式,结合导函数特征和对勾函数模型可判断③错,②④正确 【解析】1010()991t t t e Q t e e ==++,因为0te >,故()911,t e+∈+∞,()100,1091t e ∈+,故该生物种群的数量不会超过10,①正确;由()28109090()()89191t tt t t t e e Q t Q t e e e e=⇒'=+++=+,显然该生物种群数量的增长速度与种群数量不成正比,③错;因为81tt e e +为对勾函数模型,故81tt e e+≥,当且仅当9t e =时取到等号,故811890t t e e++整体先增加后减小,当()03ln92,t =∈时,()Q t '最大,故②④正确, 综上所述,①②④正确, 故答案为:①②④ 14.若02)(=f x ',则00Δ0()(Δ)lim2Δx f x f x x x→-+=________.【答案】1- 【分析】利用导数的定义进行求解. 【解析】00Δ0()(Δ)lim2Δx f x f x x x→-+00Δ0(Δ)()1lim 2Δx f x x f x x →+-=- '01()2f x =-1=-.故答案为1-.15.已知函数f (x ),则()1f '=________. 【答案】12 【分析】根据导数的定义即可得到答案. 【解析】()()()001111lim lim 21x x f x f f x x →→+∆-'====∆+∆+.故答案为:12.16.函数()f x 在R 上可导,且()02f '=,x y R ∀∈,,若函数()()()f x y f x f y +=成立,则()0f =________.【答案】1 【分析】令0y =,则有()()()0f x f x f =,再根据条件即可求出答案. 【解析】解:令0y =,则有()()()0f x f x f =,()02f '=, ()f x ∴不恒为0, ()01f ∴=,故答案为:1.四、解答题17.已知2()f x x =,利用2'(1)11,(1)2,Δ0.03f f x ====,求(1.03)f 的近似值. 【答案】1.06 【分析】将'(1)1,(1)2,Δ0.03f f x ===代入'000()()()f x x f x f x x +∆≈+⋅∆中计算即可得到答案.【解析】由'000()()()f x x f x f x x +∆≈+⋅∆,可知'(1.03)(1)(1)0.03120.03 1.06f f f ≈+⨯=+⨯=.18.已知某产品的总成本函数为22C Q Q =+,总成本函数在0Q 处导数()0f Q '称为在0Q 处的边际成本,用()0MC Q 表示.求边际成本(500)MC 并说明它的实际意义.【答案】(500)1002MC =,其实际意义是:此时多生产1件产品,成本要增加1002. 【分析】利用导数的定义计算即可. 【解析】设500Q =时,产量的改变量为Q ∆,22(500)2(500)(5002500)C Q Q Q Q ∆+∆++∆-+⨯=∆∆ 1002Q =∆+,则0(500)lim (1002)1002Q MC Q ∆→=∆+=,即产量为500时的边际成本为1002,其实际意义是:此时多生产1件产品,成本要增加1002.。
高二数学导数的概念和几何意义试题
高二数学导数的概念和几何意义试题1.已知函数(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,若在区间上的最小值为,其中是自然对数的底数,求实数的取值范围;【答案】(Ⅰ)(Ⅱ).【解析】解题思路:(Ⅰ)求导,利用导数的几何意义求解;(Ⅱ)求导,讨论的取值范围求函数的最值.规律总结:(1)导数的几何意义求切线方程:;(2)求函数最值的步骤:①求导函数;②求极值;③比较极值与端点值,得出最值.试题解析:(Ⅰ)当时, ,因为.所以切线方程是(Ⅱ)函数的定义域是当时,令得当时,所以在上的最小值是,满足条件,于是;②当,即时,在上的最小最小值,不合题意;③当,即时,在上单调递减,所以在上的最小值是,不合题意.综上所述有,.【考点】1.导数的几何意义;2.利用导数研究函数的最值.2.函数上过点(1,0)的切线方程()A.B.C.D.【答案】B【解析】因为,在点(1,0)处的斜率为,所以在点(1,0)处的切线方程为y-0=3(x-1),即y=3x-3.【考点】导数的几何意义.3.设曲线在点(3,2)处的切线与直线垂直,则的值是A.2B.C.D.【答案】B【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:B.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.4.设曲线在点(3,2)处的切线与直线垂直,则A.2B.C.D.【答案】C【解析】函数=1+的导数为,∴曲线在点(3,2)处的切线斜率为,由×(-a)="-1" 得,a=-2,故答案为:C.【考点】函数在某点的导数值与曲线在此点的切线的斜率的关系;两直线垂直的性质.5.若,则()A.B.C.D.【答案】D【解析】,故选D.【考点】导数的定义6.已知函数(1)当时,求曲线在点处的切线方程;(2)求函数的极值.【答案】(1) ;(2)详见解析.【解析】(1)根据导数的几何意义,当时,,得出,再代入点斜式直线方程;(2)讨论,当和两种情况下的极值情况.试题解析:解:函数的定义域为,.(1)当时,,,,在点处的切线方程为,即.(2)由可知:①当时,,函数为上的增函数,函数无极值;②当时,由,解得;时,,时,在处取得极小值,且极小值为,无极大值.综上:当时,函数无极值当时,函数在处取得极小值,无极大值.【考点】1.导数的几何意义;2.利用导数求极值.7.若曲线f(x)=ax3+ln x存在垂直于y轴的切线,则实数a的取值范围是________.【答案】(-∞,0)【解析】f′(x)=3ax2+,∵f(x)存在垂直于y轴的切线,∴f′(x)=0有解,即3ax2+=0有解,∴3a=-,而x>0,∴a∈(-∞,0).8.抛物线y=x2在点P处的切线与直线2x-y+4=0平行,求点P的坐标及切线方程.【答案】2x-y-1=0【解析】设点P(x0,y),=d+2x,d→0时,d+2xo →2x.抛物线在点P处的切线的斜率为2x,由于切线平行于2x-y+4=0,∴2x0=2,x=1即P点坐标为(1,1)切线方程为y-1=2(x-1),即为2x-y-1=09.曲线y=2lnx在点(e,2)处的切线与y轴交点的坐标为_________.【答案】(0,0)【解析】有已知可知在处切线方程为,y轴交点的坐标即所求.【考点】在一点处切线方程.10.函数在点处的切线方程是()A.B.C.D.【答案】A【解析】曲线切线的斜率,等于在切点的导函数值。
(完整版)导数的概念及其几何意义同步练习题(学生版)
导数的概念及其几何意义同步练习题一、选择题1. 21y x =+在(1,2)内的平均变化率为( )A .3B .2C .1D .02. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )A .6t +∆B .96t t+∆+∆ C .3t +∆ D .9t +∆ 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( )A.f (x 0+⊿x )B.f (x 0)+⊿xC. f (x 0)•⊿xD. f (x 0+⊿x )- f (x 0)4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x )2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( )A. 3Δt +6B. -3Δt +6C. 3Δt -6D. -3Δt -66.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关7. 函数y =x +1x在x =1处的导数是( ) A.2 B.1 C.0 D.-18.设函数f (x )=,则()()lim x a f x f a x a等于( ) A.1a B.2a C.21a D.21a 9. 下列各式中正确的是( )A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)ΔxB. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)ΔxC. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)ΔxD. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx等于( ) A. f ′(1) B. 不存在 C. 13f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( )A. 2B. -2C. 3D. 不确定12. 已知物体的运动方程为s =t 2+3t(t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 13413.曲线y=2x 2+1在点P (-1,3)处的切线方程是( )A.y =-4x -1B.y =-4x -7C.y =4x -1D.y =4x -714.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( )A.y =2x -1B.y =2x +1C.y =2x +4 D .y =2x -415. 下面四个命题:①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线;②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在;④曲线的切线和曲线有且只有一个公共点.其中,真命题个数是( )A. 0B. 1C. 2D. 316. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )A. A 处下降,B 处上升B. A 处上升,B 处下降C. A 处下降,B 处下降D. A 处上升,B 处上升17. 曲线y =2x 2上有一点A (2,8),则点A 处的切线斜率为( )A.4B. 16C. 8D. 218. 曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A. y =3x -4B. y =-3x +2C. y =-4x +3D. y =4x -5 19.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么lim Δx →0 Δs Δt为( ) A .在t 时刻该物体的瞬时速度 B .当时间为Δt 时物体的瞬时速度C .从时间t 到t +Δt 时物体的平均速度D .以上说法均错误20. (2012·宝鸡检测)已知函数f (x )=x 3-x 在x =2处的导数为f ′(2)=11,则( )A .f ′(2)是函数f (x )=x 3-x 在x =2时对应的函数值B .f ′(2)是曲线f (x )=x 3-x 在点x =2处的割线斜率C .f ′(2)是函数f (x )=x 3-x 在x =2时的平均变化率D .f ′(2)是曲线f (x )=x 3-x 在点x =2处的切线的斜率21.已知函数y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定22.(2012·上饶检测)函数y =3x 2在x =1处的导数为( )A .2B .3C .6D .1223.设f (x )=ax +4,若f ′(1)=2,则a 等于( )A .2B .-2C .3D .-324.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1 B.12 C .-12D .-1 25.已知曲线y =x 24的一条切线斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .426.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( ) A .at 0 B .-at 0 C.12at 0 D .2at 0 二、填空题27. 在曲线y =x 2+1的图像上取一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx为__ __. 28. 若质点M 按规律s =2t 2-2运动,则在一小段时间[2,2+Δt ]内,相应的平均速度_ .29.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=__ __. 30.曲线y =f (x )=2x -x 3在点(1,1)处的切线方程为________.31.函数y =x 2在x =________处的导数值等于其函数值.32. (2012·南昌调研)若一物体的运动方程为s =3t 2+2,求此物体在t =1时的瞬时速度是 .33.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是___ _.34.函数f (x )=3x 2-4x 在x =-1处的导数是 .三、解答题35. 已知函数f (x )=2x 2+3x -5.(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率Δy Δx; (2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率Δy Δx; (3)求当x 1=4,且Δx =0.01时,函数增量Δy 和平均变化率Δy Δx;36. 已知自由落体的运动方程为s =12gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;(3)落体在t 0=2 s 到t 1=2.1 s 这段时间内的平均速度;(4)落体在t =2 s 时的瞬时速度.37. 求等边双曲线y =1x 在点⎝ ⎛⎭⎪⎫12,2处的切线的斜率,并写出切线方程.38. 在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.39.已知抛物线f (x )=ax 2+bx -7过点(1,1),且过此点的切线方程为4x -y -3=0,求a ,b 的值.40. (2012·榆林调研)已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83。
高中数学 文导数的概念几何意义及公式同步练习 人教实验B版.doc
高二数学人教实验B 版<文>导数的概念、几何意义及公式同步练习(答题时间:50分钟)一、选择题(本大题共6小题,每小题5分,共30分)1. 已知函数42)(2-=x x f 的图象上一点(1,2-)及邻近一点)2,1(y x ∆+-∆+,则xy∆∆等于( )A. 4B. x 4C. x ∆+24D. 2)(24x ∆+2. 已知曲线2212-=x y 上一点P (1,23-),过点P 的切线的倾斜角为( ) A. ︒30 B. ︒45 C. ︒135 D. ︒1653. 如果质点按规律3t s =运动,则在3=t 时的瞬时速度为( ) A. 3 B. 9 C. 27- D. 27 4. 曲线x y =在点P (4,2)处的切线方程为( ) A. 044=++y x B. 044=+-y x C. 0124=++y x D. 0124=+-y x5. 抛物线2x y =上何处的切线与直线013=+-y x 的夹角是︒45( )A. )1,1(-B. )161,41(C.(1,1)D. )1,1(-与)161,41(6. 过点P (2,1-)且与曲线2432+-=x x y 在点M (1,1)处的切线平行的直线方程是( )A. 042=++y xB. 042=+-y xC. 042=--y xD. 042=-+y x二、填空题(本题共4小题,每小题5分,共20分) 7. 设)(x f 在点0x 处可导,a 为常数,则xx a x f x a x f x ∆∆--∆+→∆)()(lim 000= 。
8. 函数xy 1=的导数'y =________________。
9. 函数xxx f +-=11log )(2的导数)x ('f =________________。
10. 曲线2x x )x (f 3-+=在P 0处的切线平行于直线1x 4y -=,则P 0点的坐标为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及其几何意义同步练习题
一、选择题
1. 21y x =+在(1,2)内的平均变化率为( )
A .3
B .2
C .1
D .0
2. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( )
A .6t +∆
B .96t t
+∆+∆ C .3t +∆ D .9t +∆ 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( )
A.f (x 0+⊿x )
B.f (x 0)+⊿x
C. f (x 0)•⊿x
D. f (x 0+⊿x )- f (x 0)
4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则
等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x )
2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( )
A. 3Δt +6
B. -3Δt +6
C. 3Δt -6
D. -3Δt -6
6.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h
的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关
7. 函数y =x +1x
在x =1处的导数是( ) A.2 B.1 C.0 D.-1
8.设函数f (x )=,则()()lim x a f x f a x a
等于( ) A.1a B.2a C.21a D.21a 9. 下列各式中正确的是( )
A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)Δx
B. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)Δx
C. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)Δx
D. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx
10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx
等于( ) A. f ′(1) B. 不存在 C. 13
f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( )
A. 2
B. -2
C. 3
D. 不确定
12. 已知物体的运动方程为s =t 2+3t
(t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 134
13.曲线y=2x 2+1在点P (-1,3)处的切线方程是( )
A.y =-4x -1
B.y =-4x -7
C.y =4x -1
D.y =4x -7
14.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( )
A.y =2x -1
B.y =2x +1
C.y =2x +4 D .y =2x -4
15. 下面四个命题:
①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线;
②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;
③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在;
④曲线的切线和曲线有且只有一个公共点.
其中,真命题个数是( )
A. 0
B. 1
C. 2
D. 3
16. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )
A. A 处下降,B 处上升
B. A 处上升,B 处下降
C. A 处下降,B 处下降
D. A 处上升,B 处上升
17. 曲线y =2x 2上有一点A (2,8),则点A 处的切线斜率为( )
A.4
B. 16
C. 8
D. 2
18. 曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )
A. y =3x -4
B. y =-3x +2
C. y =-4x +3
D. y =4x -5 19.一直线运动的物体,从时间t 到t +Δt 时,物体的位移为Δs ,那么lim Δx →0 Δs Δt
为( ) A .在t 时刻该物体的瞬时速度 B .当时间为Δt 时物体的瞬时速度
C .从时间t 到t +Δt 时物体的平均速度
D .以上说法均错误
20. (2012·宝鸡检测)已知函数f (x )=x 3-x 在x =2处的导数为f ′(2)=11,则( )
A .f ′(2)是函数f (x )=x 3-x 在x =2时对应的函数值
B .f ′(2)是曲线f (x )=x 3-x 在点x =2处的割线斜率
C .f ′(2)是函数f (x )=x 3-x 在x =2时的平均变化率
D .f ′(2)是曲线f (x )=x 3-x 在点x =2处的切线的斜率
21.已知函数y =f (x )的图像如图,则f ′(x A )与f ′(x B )的大小关系是( )
A .f ′(x A )>f ′(x
B ) B .f ′(x A )<f ′(x B )
C .f ′(x A )=f ′(x B )
D .不能确定
22.(2012·上饶检测)函数y =3x 2在x =1处的导数为( )
A .2
B .3
C .6
D .12
23.设f (x )=ax +4,若f ′(1)=2,则a 等于( )
A .2
B .-2
C .3
D .-3
24.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )
A .1 B.12 C .-12
D .-1 25.已知曲线y =x 2
4的一条切线斜率为12,则切点的横坐标为 ( ) A .1 B .2 C .3 D .4
26.一物体的运动方程是s =12
at 2(a 为常数),则该物体在t =t 0时的瞬时速度是 ( ) A .at 0 B .-at 0 C.12
at 0 D .2at 0 二、填空题
27. 在曲线y =x 2+1的图像上取一点(1,2)及附近一点(1+Δx,2+Δy ),则Δy Δx
为__ __. 28. 若质点M 按规律s =2t 2-2运动,则在一小段时间[2,2+Δt ]内,相应的平均速度_ .
29.已知函数y =f (x )的图像在点M (1,f (1))处的切线方程是y =12
x +2,则f (1)+f ′(1)=__ __. 30.曲线y =f (x )=2x -x 3在点(1,1)处的切线方程为________.
31.函数y =x 2在x =________处的导数值等于其函数值.
32. (2012·南昌调研)若一物体的运动方程为s =3t 2+2,求此物体在t =1时的瞬时速度是 .
33.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是___ _.
34.函数f (x )=3x 2-4x 在x =-1处的导数是 .
三、解答题
35. 已知函数f (x )=2x 2+3x -5.
(1)求当x 1=4,且Δx =1时,函数增量Δy 和平均变化率Δy Δx
; (2)求当x 1=4,且Δx =0.1时,函数增量Δy 和平均变化率Δy Δx
; (3)求当x 1=4,且Δx =0.01时,函数增量Δy 和平均变化率Δy Δx
;
36. 已知自由落体的运动方程为s =12
gt 2,求: (1)落体在t 0到t 0+Δt 这段时间内的平均速度;(2)落体在t 0时的瞬时速度;
(3)落体在t 0=2 s 到t 1=2.1 s 这段时间内的平均速度;(4)落体在t =2 s 时的瞬时速度.
37. 求等边双曲线y =1x 在点⎝ ⎛⎭
⎪⎫12,2处的切线的斜率,并写出切线方程.
38. 在曲线y =x 2上过哪一点的切线,(1)平行于直线y =4x -5;
(2)垂直于直线2x -6y +5=0;(3)与x 轴成135°的倾斜角.
39.已知抛物线f (x )=ax 2+bx -7过点(1,1),且过此点的切线方程为4x -y -3=0,求a ,b 的值.
40. (2012·榆林调研)已知曲线y =13x 3上一点P ⎝ ⎛⎭
⎪⎫2,83。
(1)求曲线在点P 处的切线的斜率; (2)求曲线在点P 处的切线方程.。