同济大学线性代数__第一章PPT课件
合集下载
工程数学线性代数第一章同济第五版
Байду номын сангаас 例4
解线性方程组 x1 2x2 x3 2, 2x1 x2 3x3 1, x x x 0. 1 2 3
由于方程组的系数行列式 1 2 1 2 3 1 1 1 1 D 2 1 3 1 1 1
b1 D1 b2 b3
b1 b2 b 1
若记
a12 a13 a22 a23 , a32 a33
a11
a12
a13
或
D a21 a22 a23 a31 a32 a33
x x x a 11 1 a 12 2 a 13 3 b 1, a x x x 21 1 a 22 2 a 23 3 b 2, a x x x 31 1 a 32 2 a 33 3 b 3;
a11
a12
a13
D a21 a22 a23 a31 a32 a33
x x x a 11 1 a 12 2 a 13 3 b 1, a x x x 21 1 a 22 2 a 23 3 b 2, a x x x 31 1 a 32 2 a 33 3 b 3;
注意 红线上三元素的乘积冠以正号,蓝线上三 元素的乘积冠以负号.
说明1 对角线法则只适用于二阶与三阶行列式.
2. 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负. 利用三阶行列式求解三元线性方程组 x x x a 11 1 a 12 2 a 13 3 b 1, 如果三元线性方程组 a x x x 21 1 a 22 2 a 23 3 b 2, a x x x 31 1 a 32 2 a 33 3 b 3;
同济版线性代数课件-第一节向量组及其线性组合
实际应用举例
电路分析
在电路分析中,经常需要求解由 基尔霍夫定律列出的线性方程组,
以确定各支路的电流或电压。
经济学
在经济学中,线性方程组常用于 描述市场均衡条件,如供求平衡、
投入产出分析等。
工程技术
在工程技术领域,如结构力学、 流体力学等,经常需要求解由物
理定律导出的线性方程组。
04 矩阵运算与性质回顾
分配律
矩阵乘法满足分配律, 即A(B+C)=AB+AC, (B+C)A=BA+CA。
数乘分配律
数乘运算满足分配律, 即k(A+B)=kA+kB, (k+l)A=kA+lA。
矩阵秩概念引入
矩阵秩的定义
矩阵A中不等于0的子式的最大阶 数称为矩阵A的秩,记作r(A)。
矩阵秩的性质
矩阵的秩满足一些基本性质,如
同济版线性代数课件-第一节向量 组及其线性组合
目录
• 向量组基本概念与性质 • 向量空间与子空间 • 线性方程组求解与讨论 • 矩阵运算与性质回顾 • 特征值与特征向量初步探讨 • 总结回顾与拓展延伸
01 向量组基本概念与性质
向量定义及表示方法
01
02
03
向量的定义
向量是既有大小又有方向 的量,常用带箭头的线段 表示。
矩阵基本运算规则回顾
加法运算
两个矩阵相加,要求它们的行数和列数分别相等, 相加时对应元素直接相加。
数乘运算
一个数与矩阵相乘,用该数乘以矩阵的每一个元 素。
乘法运算
两个矩阵相乘,要求第一个矩阵的列数等于第二 个矩阵的行数,相乘时对应元素相乘再相加。
矩阵性质总结
结合律
线性代数 同济大学第七版 ppt课件
7 6 2 1 4 2
D 0 3 5 0 3 5
1 4 2
7 6 2
特别地,当行列式中有两行(列)对应元素都相同时,行列式的值
··
为零。
因假设D中的第i 行和第j 行对应元素相同,交换第i 行和第j 行元 素(仍为D),即得DD,移项得 2D 0 ,于是 D 0 。
23
第二节 行列式的性质
在本书研究多元线性方程组的解,以及研究矩阵性质时也要用到行列 式,为此首先引入行列式的概念。
6
第一章 行列式
第一节 行列式的概念
主
第二节 行列式的性质
要 内
第三节 行列式按行(列)展开
容
第四节 行列式的计算举例
第五节 克莱姆法则
7
第一节 行列式的概念
一、行列式的概念 为了更好掌握行列式的定义,我们采用数学归纳法的方法讲解行列
a11 a12 a13 D a 21 a 22 a 23 表示,且规定: D a 1 1 A 1 1 a 1 2A 1 2 a 1 3 A 1 3
a31 a32 a33
其中:
A11111M11111a a3 22 2
a23 a33
A12112M12112
a21 a31
a23 a33
7 6 2
7 6 2
这相当于行列式中某一行(列)所有元素的公因子可以提到行列式 符号的外面。这一性质可以由行列式的定义和性质2得到。
25
第二节 行列式的性质
性质4 行列式中两行(列)对应元素都成比例,行列式值为零。
设第 j 行为第i 行的k 倍,由性质3,将 j 行提出公因子k ,即得第i 行 与第 j 行相同,于是行列式的值为零。
A13113M13113
线性代数同济六版共五章全课件-PPT
b11 b12 b1n
D1
b21
b22
b2 n
,
bn1 bn2 bnn
其中,当 k≠ i , j 时, bkp = akp ;当 k = i , j 时,bip = ajp,, bjp = aip ,
于是
D (1) 1
t(
pppp )
1
i
j
n
b1
p1
bipi
bjpj
bnpn
(1)
t(
经对换1与4 得排列 53412
求这两个排列的逆序数. 解 t(5314 2) = 0+1+2+1+3=7
t(53412) = 0+1+1+3+3=8
练习
1. 选择 i 与 k 使 (1)2 5 i 1 k 成偶排列; (2)2 5 i 1 k 成奇排列.
2. a14a21a33a44和a12a43a31a24是否为四阶行列式中项 的,
易知,向量组与它的最4大无关组是等价的.
m×s s×n m×n
例 7 向量组
例5 n 阶行列式 我们也可以证明,如果把矩阵 A 的第 j 行的 k 倍加到第 i 行
为矩阵 A 的秩,矩阵 A 的秩记成 R(A).
假设 r > s, 看齐次线性方程组
一般来说,向量组的最大无关组不是唯一的.
若 x1 = c1 , x2 = c2 , ……, xn = cn 是 ⑴ 的解,记1
一元一次方程 ax = b
一元二次方程 二元 、三元线性方程组
行列式 矩阵及其运算 矩阵的初等变换与线性方程组 向量组的线性相关性 矩阵的特征值和特征向量
第一章 行列式
线性代数课件(完整版)同济大学
0 D2 0
0 a23 a32 0
0 0
(1)t (4321) a14a23a33a41 a14a23a33a41
a41 0 0 0
其中 t(4321) 0 1 2 3 3 4 6. 2
a11 a12 a13 a14
0 D3 0
a22 0
a23 a33
a24 a34
4 6 32 4 8 24 14.
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3x2 4x 18 9x 2x2 12 x2 5x 6,
由 x2 5x 6 0 得
x 2 或 x 3.
D1
b1 b2
a12 a22
D2
a11 a21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2 a11a22
b1a21 a12a21
D2 D
例1
求解二元线性方程组
3 x1 2 2 x1
0 D3 0
a22 a23 a24 0 a33 a34
0 0 0 a44
a11 0 0 0
D4
a21 a32
a22 a32
0 a33
0 0
a41 a42 a43 a44
解:
a11 0 0 0
0 D1 0
0
a22 0 0 a33
0 0 a11a22a33a44
0 0 a44
同济大学出版社 线性代数课件完整版)
两式相减消去 x2,得
(a11a22 a12a21)x1 b1a22 a12b2 ;
在中学,我们接触过二元、三元等简 单的线性方程组.但是,从许多实践或理 论问题里导出的线性方程组常常含有大量 的未知数,并且未知数的个数与方程的个 数也不一定相等.
我们先讨论未知数的个数与方 程的个数相等的特殊情形.在讨论 这一类线性方程组时,我们引入 行列式这个计算工具.
n 个不同的自然数,规定从小到大为标准次序. 定义 当某两个元素的先后次序与标准次序不同时, 就称这两个元素组成一个逆序. 例如 在排列32514中, 逆序 逆序
3 2 5 1 4 逆序 思考题:还能找到其它逆序吗?
答:2和1,3和1也构成逆序.
21
定义 排列中所有逆序的总数称为此排列的逆序数.
排列 i1i2 的逆序数通常记为 in
二元线性方程组
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
其求解公式为
我们引进新的符号来表示“四个 数分成两对相乘再相减”. 数表 a
a11
21
a12 a22
a11 a12 记号 a a22 21
b1a22 a12b2 x1 a a a a 11 22 12 21 x a11b2 b1a21 2 a11a22 a12a21
线性代数
主 讲: 韩 信 专 业:运筹学与控制论
1.用消元法解二元线性方程组 (1) a11 x1 a12 x2 b1 , (2) a21 x1 a22 x2 b2 .
1 a22 : 2 a12 :
a11a22 x1 a12a22 x2 b1a22 , a12a21 x1 a12a22 x2 b2a12 ,
同济大学《线性代数》 PPT课件
称为三阶行列式.
二阶行列式的对角线法则 并不适用!
三阶行列式的计算 ——对角线法则
a11 a12 a13 D a21 a22 a23
a31 a32 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31a12a21a33 a11a23a32
a11
a22 a32
a23 a33
a12
a21 a31
a23 a33
a13
a21 a31
a22 a32
结论 三阶行列式可以用二阶行列式表示.
思考题 任意一个行列式是否都可以用较低阶的行列式表示?
在n 阶行列式中,把元素 aij 所在的第 i 行和第j 列划后,
留下来的n-1阶行列式叫做元素 aij 的余子式,记作 M ij .
验证 1 7 5 6 6 2 196
175 3 5 8 196
358
662
175 175 于是 6 6 2 3 5 8
358 662
推论1 如果行列式有两行(列)完全相同,则此行列式为零.
证明 互换相同的两行,有 D D,所以
. D0
性质3 行列式的某一行(列)中所有的元素都乘以同一个
结论 因为行标和列标可唯一标识行列式的元素,所以行列 式中每一个元素都分别对应着一个余子式和一个代数余子式.
二、行列式按行(列)展开法则
定理1 行列式等于它的任一行(列)的各元素与其对应 的代数余子式乘积之和,即
D
ai1
Ai1
ai 2
Ai
2
L
线性代数ppt课件同济
05
向量空间及其性质
向量空间的定义与性质
向量空间的定义
向量空间是一个由向量构成的集合, 其中每个向量都可以表示为一组基向 量的线性组合。
向量空间的性质
向量空间具有一些重要的性质,例如 封闭性、加法和数量乘法封闭性、加 法和数量乘法的结合律和分配律等。
向量空间的基底与维数
向量空间的基底
一个向量空间可以由一组不相关的基向量构成,这些 基向量是线性无关的,并且可以生成整个空间。
行列式的计算方法
要点一
总结词
行列式的计算方法包括高斯消元法、拉普拉斯展开式和递 推法等。
要点二
详细描述
高斯消元法是一种常用的计算行列式的方法,它通过初等 行变换将矩阵化为阶梯形矩阵,然后求解出阶梯形矩阵的 行列式即可。拉普拉斯展开式是一种基于二阶子式和代数 余子式的展开式,它可以用来计算高阶行列式。递推法是 一种利用低阶行列式的值递推高阶行列式的方法,它适用 于计算n阶行列式。
线性代数的背景
线性代数起源于17世纪,随着科学技术的不断发展和进步,线性代数的应用领域越来越广泛。它不仅 在数学、物理、工程等领域有着广泛的应用,还在计算机科学、经济学、生物医学等领域发挥着重要 的作用。
线性代数的应应用,例如求解线性方程组、 计算矩阵的秩和特征值等。
现代发展
随着科学技术的发展,线性代数的应用领域越来越广泛,同时它也得到了不断的发展和完善。现代线性代数已经 形成了一套完整的理论体系,为解决实际问题提供了更加有效的工具。
02
矩阵及其运算
矩阵的定义与性质
矩阵的定义
矩阵是一个由数值组成的矩形阵列,通 常表示为二维表格。矩阵的行数和列数 可以分别为m和n。每个元素用a(i,j)表示 ,其中i表示行号,j表示列号。
线性代数(同济第五版)第一、二章复习提纲PPT课件
列的逆序数决定.
-
7
第四节 对 换
一、 对换的定义 二、 对换与排列奇偶性的关系
-
8
小结:
1. 一个排列中的任意两个元素对换,排列改 变奇偶性.
2.行列式的三种表示方法
D 1 ta p 1 1 a p 2 2 a p n n
D 1 ta 1 p 1 a 2 p 2 a n np
2.k 1akA ik j Dij 0,当 ij;
n
D,当 ij,
k1aik A jkDij 0,当 ij;
其中ij 10,,当 当iijj, .
-
13
第七节 克拉默法则
一、克拉默法则 二、相关定理
-
14
克拉默法则:
如果线性方程组 ( n 个未知变量、 n 个方程)
a11x1 a12x2 a1nxn b1
a 11 a 12 a 13
a 21 a 22 a 23 a1a 12a 233 a1a 22a 331 a1a 32a 132
a 31 a 32 a 33
a1a 12a 332 a1a 22a 133 a1a 32a 23,1
-
3
第二节 全排列及其逆序数
一、概念的引入 二、全排列及其逆序数
-
4
小结:
a11 a21
a12 a22
a1n a2n
b1 b2
an1 an2 ann bn
对线性方程组的 研究可转化为对 这张表的研究.
-
21
二、矩阵的定义
由 mn个数 a i j i 1 , 2 , ,m ; j 1 , 2 , ,n
排成的 m行 n列的数表
a11 a12 a1n
0 1
-
7
第四节 对 换
一、 对换的定义 二、 对换与排列奇偶性的关系
-
8
小结:
1. 一个排列中的任意两个元素对换,排列改 变奇偶性.
2.行列式的三种表示方法
D 1 ta p 1 1 a p 2 2 a p n n
D 1 ta 1 p 1 a 2 p 2 a n np
2.k 1akA ik j Dij 0,当 ij;
n
D,当 ij,
k1aik A jkDij 0,当 ij;
其中ij 10,,当 当iijj, .
-
13
第七节 克拉默法则
一、克拉默法则 二、相关定理
-
14
克拉默法则:
如果线性方程组 ( n 个未知变量、 n 个方程)
a11x1 a12x2 a1nxn b1
a 11 a 12 a 13
a 21 a 22 a 23 a1a 12a 233 a1a 22a 331 a1a 32a 132
a 31 a 32 a 33
a1a 12a 332 a1a 22a 133 a1a 32a 23,1
-
3
第二节 全排列及其逆序数
一、概念的引入 二、全排列及其逆序数
-
4
小结:
a11 a21
a12 a22
a1n a2n
b1 b2
an1 an2 ann bn
对线性方程组的 研究可转化为对 这张表的研究.
-
21
二、矩阵的定义
由 mn个数 a i j i 1 , 2 , ,m ; j 1 , 2 , ,n
排成的 m行 n列的数表
a11 a12 a1n
0 1
线性代数课件同济大学第五版
第二章 矩阵及其运算
P47 习题二
§2.1 矩阵:
t1, t2 §2.3 逆矩阵: t10, t11(1)(3) §2.4 矩阵的分块: t27, t28 课后练习:t25,t26
§2.2 矩阵的运算:
线性代数课件(同济大学 第五版)作业与课后练习
第三章 矩阵的初等变换与线性方程组
P78 习题三
第一章 行列式
P25 习题一
§1.1 §1.2二阶、三阶行列式, 逆序数:
t2, t4(1)(3) t5,t9 §1.3 行列式的性质: t6(1)(3), t8(1)(2)(5) §1.4 行列式按行(列)展开: t9 §1.5 克莱姆法则: t10
§1.3 n阶行列式:
线性代数课件(同济大学 第五版)作业与课后练习
t1(1), t2 §3.2 矩阵的秩: t4, t2 课后练习:t3 §3.3 线性方程组的解: t13(1), t14(1), t16 课后练习:t17
§3.1 矩阵的初等变换:
线性代数课件(同济大学 第五版)作业与课后练习
第四章 向量组的线性相关性
P106 习题四
t1 §4.2 向量组的线性相关性: t4 课后练习:t5,t6, t8 §4.3 向量组的秩: t11, t13 课后练习:t12(2) §4.4 线性方程组解的结构: t20(1), t26(1) §4.5 向量空间: t38 课后练习:t37
§4.1 向量组及其线性组合:
线性代数课件(同济大学 第五版)作业与课后练习
第五章 相似矩阵与二次型
P134 习题五
§5.1 向量的内积、长度与正交性:
t1
课后练习:t7,
§5.2 方阵的特征值与特征向量:
同济大学线性代数课件1-1
x x x a 11 1 a 12 2 a 13 3 b 1, a x x x 21 1 a 22 2 a 23 3 b 2, a x x x 31 1 a 32 2 a 33 3 b 3;
a11
得
b1
a13 a23 , a33
D2 a21 b2 a31 b3
二阶行列式的计算 ——对角线法则
主对角线
a 11 副对角线 a 2 1
a 12 aa aa 1 12 2 1 22 1 a 22
即:主对角线上两元素之积-副对角线上两元素之积
a11 x1 a12 x2 b1 二元线性方程组 a21 x1 a22 x2 b2
若令
b1 b2
例1
2x2 12 求解二元线性方程组 3x 1 2x1 x2 1
3 2 3 ( 4 ) 7 0 因为 D 2 1
解
12 2 D 12 ( 2 ) 14 1 1 1 3 12 D 3 24 21 2 2 1
D 14 1 所以 x1 2, D 7
D
a 12 a 22
a 11 a 21
a 12 a 22
(方程组的系数行列式)
D1
a 11 D2 a 21
b1 b2
则上述二元线性方程组的解可表示为
ba a b D 1 2 2 1 2 2 1 x 1 a a a a D 1 1 2 2 1 2 2 1
a b ba D 1 1 2 1 2 1 2 x 2 a a a a D 1 1 2 2 1 2 2 1
二阶行列式的对角线法则 并不适用!
称为三阶行列式.
a11
a12
a13
同济大学《线性代数》 PPT课件
第1章 线性方程组与矩阵 1
01
线性方程组与矩阵
《线性代数》 & 人民邮电出版社
目录/Contents
第1章 线性方程组与矩阵 2
1.1
矩阵的概念及运算
1.2 分块矩阵
1.3 线性方程组与矩阵的初等变换
1.4 初等矩阵与矩阵的逆矩阵
目录/Contents
1.1
矩阵的概念及运算
一、矩阵的定义 二、矩阵的线性运算 三、矩阵的乘法 四、矩阵的转置
03
OPTION
a1
n 1 的矩阵
a2
M
an
称为列矩阵,也称为 n 维列向量.
一、矩阵的定义
第1章 线性方程组与矩阵 7
所有元素都是零的 m n 矩阵称为零矩阵,记为 Omn ,或简记为 O .
m n 矩阵
a11 a12 L
a21
a22
如果两个同型矩阵
A (aij )mn 和 B (bij )mn 中所有对应位置的元素都相等, 即 aij bij ,其中
i 1, 2L, ,m ;j 1,L2, n,, 则称矩阵 A 和 B 相等,记为 A B.
二、矩阵的线性运算
第1章 线性方程组与矩阵 10
1. 矩阵的加法 定义3 设 A (aij )mn 和 B (bij )mn 是两个同型矩阵,则矩阵 A 与 B 的和记为 A B ,规定:
ann
称该 n 阶方阵为下三角矩阵,其元素特点是:当 i j 时, aij 0 .
一、矩阵的定义
类似地,有上三角矩阵
a11 a12 L
0
a22 L
M M
01
线性方程组与矩阵
《线性代数》 & 人民邮电出版社
目录/Contents
第1章 线性方程组与矩阵 2
1.1
矩阵的概念及运算
1.2 分块矩阵
1.3 线性方程组与矩阵的初等变换
1.4 初等矩阵与矩阵的逆矩阵
目录/Contents
1.1
矩阵的概念及运算
一、矩阵的定义 二、矩阵的线性运算 三、矩阵的乘法 四、矩阵的转置
03
OPTION
a1
n 1 的矩阵
a2
M
an
称为列矩阵,也称为 n 维列向量.
一、矩阵的定义
第1章 线性方程组与矩阵 7
所有元素都是零的 m n 矩阵称为零矩阵,记为 Omn ,或简记为 O .
m n 矩阵
a11 a12 L
a21
a22
如果两个同型矩阵
A (aij )mn 和 B (bij )mn 中所有对应位置的元素都相等, 即 aij bij ,其中
i 1, 2L, ,m ;j 1,L2, n,, 则称矩阵 A 和 B 相等,记为 A B.
二、矩阵的线性运算
第1章 线性方程组与矩阵 10
1. 矩阵的加法 定义3 设 A (aij )mn 和 B (bij )mn 是两个同型矩阵,则矩阵 A 与 B 的和记为 A B ,规定:
ann
称该 n 阶方阵为下三角矩阵,其元素特点是:当 i j 时, aij 0 .
一、矩阵的定义
类似地,有上三角矩阵
a11 a12 L
0
a22 L
M M
线性代数-工程版(同济大学第六版)ppt课件
2
二、历史与发展
线性代数作为一个独立的分支在20世纪才 形成,而它的历史却非常久远。“鸡兔同笼” 问题就是一个简单的线性方程组求解的问题。 最古老的线性问题是线性方程组的解法,在中 国古代东汉年初成书的数学著作《九章算术·方 程》章中,已经作了比较完整的叙述,其中所 述方法实质上相当于现代的对方程组的增广矩 阵的行施行初等变换,消去未知量的方法。
a11a22a33 a12a23a31 a13a21a32 a13a22a31a12a21a33 a11a23a32
注意:对角线法则只适用于二阶与三阶行列式.
27
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a13a22a31a12a21a33 a11a23a32
a13a22a31 a12a21a33 a11a23a32
称为三阶行列式.
二阶行列式的对角线法则 并不适用!
26
2. 三阶行列式的计算 ——对角线法则/三角形法则
a11 a12 a13 D a21 a22 a23
a31 a32 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
D1 D
x2
a11b2 a11a22
b1a21 a12a21
D2 D
24
例1
求解二元线性方程组
3 x1 2 2 x1
x2 x2
12 1
3 2
解 因为 D
3 (4) 7 0
21
12 2
D
12 (2) 14
11 1
3 12
D
3 24 21
2 21
所以
x1
二、历史与发展
线性代数作为一个独立的分支在20世纪才 形成,而它的历史却非常久远。“鸡兔同笼” 问题就是一个简单的线性方程组求解的问题。 最古老的线性问题是线性方程组的解法,在中 国古代东汉年初成书的数学著作《九章算术·方 程》章中,已经作了比较完整的叙述,其中所 述方法实质上相当于现代的对方程组的增广矩 阵的行施行初等变换,消去未知量的方法。
a11a22a33 a12a23a31 a13a21a32 a13a22a31a12a21a33 a11a23a32
注意:对角线法则只适用于二阶与三阶行列式.
27
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a13a22a31a12a21a33 a11a23a32
a13a22a31 a12a21a33 a11a23a32
称为三阶行列式.
二阶行列式的对角线法则 并不适用!
26
2. 三阶行列式的计算 ——对角线法则/三角形法则
a11 a12 a13 D a21 a22 a23
a31 a32 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
D1 D
x2
a11b2 a11a22
b1a21 a12a21
D2 D
24
例1
求解二元线性方程组
3 x1 2 2 x1
x2 x2
12 1
3 2
解 因为 D
3 (4) 7 0
21
12 2
D
12 (2) 14
11 1
3 12
D
3 24 21
2 21
所以
x1
线性代数-同济大学(更新版)课件
思考题:符合标准次序的排列是奇排列还是偶排列? 答:符合标准次序的排列(例如:123)的逆序数 等于零,因而是偶排列.
计算排列的逆序数的方法
设 p1 p2 pn是 1, 2, …, n 这n 个自然数的任一排列,并
规定由小到大为标准次序.
先看有多少个比 p1大的数排在 p1 前面,记为 t1; 再看有多少个比 p2大的数排在 p2前面,记为 t2;
解:
a11 0 0 0
0 D1 0
a22 0 0 a33
0 0 a11a22a33a44
0 0 0 a44
0 0 0 a14
0 D2 0
0 a23 a32 0
0 0 (1)t(4321) a14a23a33a41 a14a23a33a41
a41 0 0 0
其中 t(4321) 0 1 2 3 3 4 6. 2
线性代数 (Linear Algebra)
为什么要学习线性代数?
1.学分 2.考研
3.线性代数在各学科中的应用: 计算机学科中:电子工程中电路分析、线性信号系统分析、数字滤波
器分析设计、IC集成电路设计、光电及射频工程中光调制器分析研制 需要张量矩阵,手机信号处理、图像处理等时等需要线代;
二、n 阶行列式的定义a1来自 a12a1nD a21 a22
a2n
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
anpn
an1 an2
ann
简记作 det(a,ij )
1. n 阶行列式共有 n! 项.
其中a为ij 行列式D的(i, j)元
2. 每一项都是位于不同行不同列的 n 个元素的乘积.
计算排列的逆序数的方法
设 p1 p2 pn是 1, 2, …, n 这n 个自然数的任一排列,并
规定由小到大为标准次序.
先看有多少个比 p1大的数排在 p1 前面,记为 t1; 再看有多少个比 p2大的数排在 p2前面,记为 t2;
解:
a11 0 0 0
0 D1 0
a22 0 0 a33
0 0 a11a22a33a44
0 0 0 a44
0 0 0 a14
0 D2 0
0 a23 a32 0
0 0 (1)t(4321) a14a23a33a41 a14a23a33a41
a41 0 0 0
其中 t(4321) 0 1 2 3 3 4 6. 2
线性代数 (Linear Algebra)
为什么要学习线性代数?
1.学分 2.考研
3.线性代数在各学科中的应用: 计算机学科中:电子工程中电路分析、线性信号系统分析、数字滤波
器分析设计、IC集成电路设计、光电及射频工程中光调制器分析研制 需要张量矩阵,手机信号处理、图像处理等时等需要线代;
二、n 阶行列式的定义a1来自 a12a1nD a21 a22
a2n
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
anpn
an1 an2
ann
简记作 det(a,ij )
1. n 阶行列式共有 n! 项.
其中a为ij 行列式D的(i, j)元
2. 每一项都是位于不同行不同列的 n 个元素的乘积.
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20
例2: 计算四阶行列式
a0 0 b 0cd 0 D 0e f 0 g0 0 h
D = acfh + bdeg – adeh– bcfg
2021/3/21
21
重要结论:
(1) 上三角形行列式
a11 a12 a1n
0 D
a22
a2n
a a11 22 ann
0 0 ann
2021/3/21
第一章 行列式
2021/3/21
1
§1 二阶与三阶行列式
1. 二阶行列式 二元线性方程组
aa2111
x1 x1Leabharlann a12 x2 a22 x2
b1 b2
(1) (2)
2021/3/21
2
用消元法 (1) a22 (2) a12 得
(a11a2a2 21xa112aa2122)xx12
b1a22 b2
为三阶行列式, 记作
a11 a12 a13 a21 a22 a23 a31 a32 a33
2021/3/21
9
对角线法则:
a11 a12 a13 a21 a22 a23 a31 a32 a33
a11a22a33 a12a23a31 a13a21a32 a11a23a32 a12a21a33 a13a22a31
22
(2) 下三角形行列式
a11 0 0
D
a21
a22
0
a a11 22 ann
an1 an2 ann
2021/3/21
23
(3) 对角行列式
a 11
D
a22
a a11 22 ann
ann
2021/3/21
24
(4) 副对角行列式
a1n
D
a2,n1
n( n1)
(1)
2
a a a 1n 2,n1
n1
a n1
2021/3/21
25
行列式的等价定义
a a a
11
12
1n
a21 a22 a2n
(1)t a1 j1 a2 j2 anjn
a a a
n1
n2
nn
(1)t a a i11 i2 2 ainn
2021/3/21
26
§5 行列式的性质
a11 a12 a1n
a11 a21 an1
a12b2
当 a11a22 a12a21 0 时,方程组有唯一解
x1
b1a22 a11a22
a12b2 a12a21
,
x2
a11b2 a11a22
b1a21 a12a21
2021/3/21
3
记
a11 a 21
a12 a 22
a11a22 a12a21
则有
b1a22
a12b2
b1 b2
D1 D
14 7
2,
x2
D2 D
21 7
3
2021/3/21
7
2. 三阶行列式
类似地,讨论三元线性方程组
a11 x1 a12 x2 a13 x3 b1 a21 x1 a22 x2 a23 x3 b2 a31 x1 a32 x2 a33 x3 b3
2021/3/21
8
称 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a a 23 32
也称为方程组的系数行列式。
2021/3/21
5
对角线法则:
主对角线
副对角线
2021/3/21
a11a22 a12a21
6
例. 解方程组
3 x1 2 2 x1
x2 x2
12 1
解: D 3
2 3 (4) 7 0
21
12 2
3 12
D1 1
14 1
D2 2
21 1
x1
2021/3/21
10
例: 2 0 1 1 4 1
1 8 3
2 (4) 3 0 (1) (1) 11 8 1 (4) (1) 01 3 2 (1) 8
24 8 4 16 4
2021/3/21
11
§2 全排列与逆序数
定义1:把 n 个不同的元素排成的一列, 称为这 n 个元素的一个全排列, 简称排列。
设
D
a21
a22
a2n
则
DT
a12
a12 a22
,
a11b2
b1a21
a11 a21
b1 . b2
于是
x1
1 D
b1 b2
a12 a22
,
x2
1 D
a11 a21
b1 b2
其中 D a11 a12 a21 a22
2021/3/21
4
称
a11a 22
a12
a
为
21
二阶行列式,记作
(1,2) 元素 a11 a12 a21 a22
行标 列标
13
标准次序:标号由小到大的排列。
定义2:在n个 元素的一个排列中,若某两个元素 排列的次序与标准次序不同,就称这两个 数构成一个逆序,一个排列中所有逆序的 总和称为这个排列的逆序数。
2021/3/21
14
一个排列的逆序数的计算方法:
设 p1 p2 … pn 是 1,2,…,n 的一个排列, 用 ti 表示元素 pi 的逆序数,即排在 pi 前面并比 pi 大的元素有 ti 个,则排列的逆序数为
t = t1 + t2 + … + tn
2021/3/21
15
例4:求排列 32514 的逆序数。
解: t1 0, t2 1, t3 0, t4 3, t5 1 排列的逆序数 t 5
2021/3/21
16
逆序数为奇数的排列称为奇排列。 逆序数为偶数的排列称为偶排列。
例如:123 t = 0 为偶排列, 321 t = 3 为奇排列, 312 t = 2 为偶排列。
(1)t a1 p1 a2 p2 anpn
称为 n 阶行列式 (n≥1),记作
a11 a12 a1n a21 a22 a2n
an1 an2 ann
2021/3/21
19
例1:写出四阶行列式中含有因子 a11a23 的项。
a11a a 23 34a42
a11a23a32a44
2021/3/21
2021/3/21
17
§3 n 阶行列式的定义
观察二、三阶行列式,得出下面结论:
1. 每项都是处于不同行不同列的n个元素的乘积。 2. n 阶行列式是 n!项的代数和。 3. 每项的符号都是由该项元素下标排列的奇偶性
所确定。
2021/3/21
18
定义1: n! 项 (1)t a1 p1 a2 p2 anpn 的和
把 n 个不同的元素排成一列, 共有 Pn个排列。 P3 = 3×2×1 = 6
2021/3/21
12
例如:1, 2, 3 的全排列 123,231,312,132,213,321 共有3×2×1 = 6种,即 P3 = 3×2×1 = 6
一般地,Pn= n·(n-1)·…·3·2·1= n!
2021/3/21