化工原理流化床干燥实验报告
流化床干燥实验报告
一、实验目的1. 熟悉流化床干燥器的基本流程及操作方法。
2. 掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3. 测定物料含水量及床层温度随时间变化的关系曲线。
4. 掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。
二、实验原理流化床干燥是利用气流将固体颗粒悬浮在床层中,使固体颗粒与干燥介质(如空气)进行充分接触,从而实现干燥的过程。
在实验中,通过测量不同气速下的床层压降,可以得到流化床床层压降与气速的关系曲线,即流化曲线。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1。
当气速逐渐增加(进入BC 段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
物料干燥速率曲线反映了物料在不同干燥阶段的干燥速率。
在恒速阶段,物料干燥速率基本保持不变;在降速阶段,物料干燥速率逐渐减小。
临界含水量是指物料由恒速阶段过渡到降速阶段的含水量。
三、实验仪器与材料1. 实验仪器:- 流化床干燥器- 空气源(罗茨鼓风机)- 转子流量计- 空气电加热器- 固态继电器控温仪表系统- 水银玻璃温度计- 电热烘箱- 电子天平(精度0.0001g)2. 实验材料:- 湿小麦- 干燥介质(空气)四、实验步骤1. 准备实验仪器,检查各部分是否正常。
2. 将湿小麦放入流化床干燥器中,调整干燥器温度和气速。
3. 测量不同气速下的床层压降,绘制流化曲线。
4. 在恒速阶段,每隔一定时间测定物料含水量和床层温度,绘制物料干燥速率曲线。
5. 在降速阶段,继续测定物料含水量和床层温度,直至物料干燥完成。
6. 根据实验数据,确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。
化工原理实验报告(流化床干燥)
北京化工大学化工原理实验报告实验名称:流化床干燥班级:化实1101学号:2011011499姓名:张旸同组人:黄凤磊、陈文汉、杨波实验日期:2014.04.24一、 报告摘要摘要:本实验利用流化床干燥器对物料干燥速率曲线进行测定。
本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间。
以此来测定干燥速率。
利用物料的干湿重量变化计算物料的各种含水量。
二、 实验目的及任务1.了解流化床干燥器的基本流程及操作方法。
2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3.测定物料含水量及床层温度随时间变化的关系曲线。
4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量0X 及恒速阶段的传质系数H k 及降速阶段的比例系数X K 。
三、 实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中通过,压降与流速成正比,斜率约为1(在双对数坐标中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大到某一值后(D点),床层压降将减少,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处的流速即被称为带走速度。
在流化状态下降低气速,压降与气速的关系曲线将沿图中的DC线返回C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处的流速被称为起始流化速度。
在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
2.干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得物料含水量与时间的关系曲线及物料温度与时间的关系曲线。
流化床干燥 实验报告
一、实验目的
1、了解掌握连续流化床干燥方法;
2、估算体积传热系数和热效率。
二、实验原理
1、对流传热系数的计算
气体向固体物料传热的后果是引起物料升温Q1和水分蒸发Q2。其传热速率为:
式中:
Q1一湿含量为X2的物料从θ1升温到θ2所需要的传热速率
Q2一蒸发(kg/s)水所需的传热速率。
2 4-吸干燥器内剩料用的吸管(可移动)。
图2 实验台正面板面布置及加料、加热、保温电路
1-干燥器主体设备;2-加料器;3-加料直流电机(直流电机内电路示意图);4-旋风分离器等:
5-测流量用的压差计; 6-测压计;7、8-预热器的电压、电流表; 9一用于加热(预热)器的调压器的旋钮;
10、11-干燥器保温电压、电流表: 12-用于干燥器保温的调压器的旋钮;1 3-直流电流调速旋钮:
三、仪器与试剂
设备流程图见图1,电路示意图见2。
图1 流态化干澡操作实验流程示意图
1-风机(旋涡泵): 2-旁路阀(空气流量调节阀); 3-温度计(测气体进流量计前的温度); 4-压差计(测流量);
5-孔板流量计:6-空气预热器(电加热器): 7-空气进口温度计; 8-放空阀:9-进气阀:10-出料接收瓶;
1 4-直流电机电压(可调);15-风机开关;1 6-电源总开关:R1-预热器(负载);R2-干燥器(负载)。
主要技术参数:
1、流化床干燥器 (玻璃制品,用透明膜加热新技术保温,调电压控温)
流化床层直径D:Φ80×2毫米(内径76毫米)
床层有效流化高度h:80毫米(固料出口),
总高度:530毫米
流化床气流分布器:80目不锈钢丝网(二层)
Cm2一出干燥器物料的湿比热·(KJ/kg绝干料·℃)
流化床干燥实验报告
流化床干燥实验报告一、实验目的1.学习流化床干燥的基本原理和工艺流程;2.掌握流化床干燥的影响因素和优化方法;3.实践使用流化床干燥设备进行干燥实验。
二、实验原理在流化床干燥实验中,我们采用的是颗粒状物料。
物料被分散在床层中,当热风流入床层时,物料会因为气流的推动而呈现流化状态。
物料的湿度会受到热风的冲刷而逐渐减小,最终实现干燥的目的。
三、实验装置和操作步骤1.实验装置:实验主要使用的装置有流化床干燥器、热风设备、称量仪器和记录仪器等。
2.操作步骤:(1)将待干燥物料称量并分散放入流化床干燥器内;(2)调整热风设备的温度和风量,并将热风送入流化床干燥器内;(3)观察物料的流化状态和干燥速度,并记录数据;(4)根据需要,调整热风温度和风量,并重复步骤(3);(5)干燥结束后,关闭热风设备,取出干燥物料并称重。
四、实验结果和分析通过实验观察和数据记录,我们得到了一系列实验结果。
首先,我们观察到,在热风的冲刷下,物料会逐渐呈现流化状态,流化床床层会形成一定的均匀性。
其次,在不同温度和风量的条件下,物料的干燥速度也会出现差异。
一般情况下,热风温度越高,物料的干燥速度越快;热风风量越大,物料的干燥速度也越快。
然而,当热风温度过高或风量过大时,可能会对物料质量产生不利影响。
五、实验总结和改进方向通过本次实验,我们对流化床干燥的工艺流程和影响因素有了一定的了解。
然而,由于实验条件和时间的限制,本次实验还存在一些不足之处。
首先,我们没有在不同温度和风量下对干燥速度进行详细的参数测定和分析,无法得出更准确的结论。
其次,在实验过程中,可能由于物料的细度和湿度不同,导致干燥结果有一定的误差。
为了进一步完善本次实验,可以在实验中增加不同温度和风量的组合,并记录干燥速度的具体数值。
同时,可以通过对不同物料进行干燥实验,探究不同物料在流化床干燥中的特点和优化方法。
总之,本次实验为我们提供了一次独立实践的机会,增加了我们对流化床干燥的认识。
化工原理流化床干燥实验
北京化工大学学生实验报告院(部):化学工程学院姓名:学号:专业:化工班级:同组人员:课程名称:化工原理实验实验名称:干燥实验实验日期: 2014-5-15 批阅日期:成绩:教师签名:流化床干燥实验摘要:本实验通过测定不同空气流量下的床侧压降及干湿物料的质量,从而确定流化床床层压降与气速的关系曲线及流化床的干燥特性曲线。
通过实验,了解流化床的使用方法及其工作原理。
关键词:干燥,干燥速率曲线,流化床床层压降一、目的及任务1.了解流化床干燥器的基本流程及操作方法。
2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3.测定物料含水量及床层温度随时间变化的关系曲线。
4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量及恒速阶段的传质细述及降速阶段的比例系数。
二、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。
干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。
由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。
干燥实验的目的是用来测定干燥曲线和干燥速率曲线。
为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。
1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到的流化床床层压降与气速的关系曲线。
图1:流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,)。
便进入了气流输送阶段。
D点处流速即被称为带出速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
流化床干燥实验报告
北方民族大学学生实验报告院(部):化学与化学工程姓名:汪远鹏学号: ********专业:过程装备与控制工程班级: 153同组人员:田友安世康虎贵全课程名称:化工原理实验实验名称:流化床干燥实验实验日期:批阅日期:成绩:教师签名:北方民族大学教务处制实验名称:流化床干燥实验一、目的及任务①了解流化床干燥器的基本流程及操作方法。
②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
③测定物料含水量及床层温度随时间变化的关系曲线。
④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X及恒速阶段的传质系数k H及降速阶段的比例系数Kx。
二、基本原理1、流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D)。
点处流速即被称为带出速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。
若气速继续)。
降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处流速被称为起始流化速度(umf 在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
2、干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。
物料含水量与时间关系曲线的斜率即为干燥速率(u)。
将干燥速率对物料含水量作图。
干燥过程可分为以下三个阶段。
(1)物料预热阶段(AB段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。
(2)恒速干燥阶段(BC段)由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。
流化干燥试验实验报告
一、实验目的1. 了解流化干燥的基本原理和操作方法。
2. 掌握流化干燥过程中物料干燥速率、物料含水量、床层压降与气速等参数的测定方法。
3. 确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数。
二、实验原理流化干燥是一种利用流化床技术进行干燥的方法。
在流化干燥过程中,物料在床层中呈流化状态,空气在床层中流动,与物料进行热量和质量的交换,从而实现干燥。
实验中,通过测定不同气速下的床层压降,得到流化床床层压降与气速的关系曲线,从而确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数。
三、实验材料与仪器1. 实验材料:湿小麦2. 实验仪器:流化床干燥器、电子天平、温度计、流量计、计时器四、实验步骤1. 准备实验装置,检查仪器是否正常工作。
2. 称取一定量的湿小麦,放入流化床干燥器中。
3. 开启干燥器,调节气速,观察床层状态。
4. 测量床层压降,记录气速、物料含水量、床层温度等数据。
5. 每隔一定时间,称量物料,记录干燥速率。
6. 绘制物料干燥速率曲线、物料含水量曲线、床层压降与气速关系曲线。
7. 分析实验数据,确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数。
五、实验结果与分析1. 物料干燥速率曲线根据实验数据,绘制物料干燥速率曲线,可以看出,物料干燥速率随着时间逐渐减小,符合一般干燥过程的特点。
2. 物料含水量曲线根据实验数据,绘制物料含水量曲线,可以看出,物料含水量随着时间逐渐减小,符合一般干燥过程的特点。
3. 床层压降与气速关系曲线根据实验数据,绘制床层压降与气速关系曲线,可以看出,当气速较小时,床层压降与气速成正比;当气速继续增大时,床层压降基本保持不变,进入流化阶段。
4. 临界含水量、恒速阶段的传值系数及降速阶段的比例系数根据实验数据,可以确定临界含水量、恒速阶段的传值系数及降速阶段的比例系数,分别为X0、kH和KX。
六、实验结论1. 通过流化干燥实验,掌握了流化干燥的基本原理和操作方法。
流化床干燥实验报告
流化床干燥实验报告一、实验目的。
本实验旨在通过对流化床干燥的实验研究,探究流化床干燥过程中的干燥特性及其影响因素,为流化床干燥技术的应用提供实验数据支持。
二、实验原理。
流化床干燥是一种将颗粒物料置于气体流化状态下进行干燥的技术。
在流化床干燥过程中,通过热空气或其他气体对颗粒物料进行干燥,同时颗粒物料在气流中呈现流化状态,从而实现高效的干燥作用。
三、实验装置及方法。
1. 实验装置,本实验采用了具有恒温控制功能的流化床干燥设备,以及相应的气流控制系统和数据采集系统。
2. 实验方法,首先将待干燥的颗粒物料放置于流化床干燥设备中,然后通过控制气流的温度、流速等参数,进行干燥实验并记录实验数据。
四、实验结果及分析。
通过实验得到了不同干燥条件下的干燥速率、干燥效果等数据,并进行了分析。
实验结果表明,在一定范围内,随着气流温度的升高,干燥速率呈现上升趋势,但当温度过高时,会导致颗粒物料的过度干燥,影响干燥效果。
同时,气流流速对干燥效果也有一定影响,适当增大流速可以提高干燥速率,但过大的流速也会导致颗粒物料的剧烈运动,影响干燥效果。
五、实验结论。
通过本次实验,我们得出了以下结论:1. 流化床干燥技术能够实现对颗粒物料的高效干燥,具有较好的干燥效果。
2. 在进行流化床干燥时,需要合理控制气流温度和流速,以确保干燥效果和干燥质量。
3. 实验结果为流化床干燥技术的应用提供了理论和实验基础,为进一步优化流化床干燥工艺提供了参考依据。
六、参考文献。
1. 李明,张三. 流化床干燥技术及应用[M]. 北京,化学工业出版社,2015.2. 王五,赵六. 干燥工程学[M]. 北京,化学工业出版社,2018.七、致谢。
在此,特别感谢实验室的老师和同学们对本次实验的支持与帮助,同时也感谢各位专家学者对流化床干燥技术的研究和推广所做出的贡献。
以上为本次流化床干燥实验的报告内容,希望能对相关研究和工程应用提供一定的参考价值。
流化床干燥实验报告
.北方民族大学学生实验报告院(部):化学与化学工程姓名:汪远鹏学号: ******** 专业:过程装备与控制工程班级: 153 同组人员:田友安世康虎贵全课程名称:化工原理实验实验名称:流化床干燥实验实验日期: 2017.10.30 批阅日期:成绩:教师签名:北方民族大学教务处制实验名称:流化床干燥实验一、目的及任务①了解流化床干燥器的基本流程及操作方法。
②掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
③测定物料含水量及床层温度随时间变化的关系曲线。
④掌握物料干燥速率曲线测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数k H及降速阶段的比例系数Kx。
二、基本原理1、流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处流速即被称为带出速度(u0)。
在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处流速被称为起始流化速度(u mf)。
在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
2、干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。
物料含水量与时间关系曲线的斜率即为干燥速率(u)。
将干燥速率对物料含水量作图。
干燥过程可分为以下三个阶段。
(1)物料预热阶段(AB段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水量随时间变化不大。
(2)恒速干燥阶段(BC段)由于物料表面存在自由水分,物料表面温度等于空气的湿球温度,传入的热量只用来蒸发物料表面表面的水分,物料含水量随时间成比例减少,干燥速率恒定且最大。
化工原理干燥综合实验报告
干燥综合实验一、实验目的1. 了解流化床干燥装置及洞道式干燥装置的基本结构、工艺流程和操作方法2. 学习测定物料在恒定干燥条件下干燥特性的实验方法3. 掌握根据实验干燥曲线求取干燥速率曲线以及恒速阶段干燥速率、临界含水量、平 衡含水量的实验分析方法4. 实验研究干燥条件对于干燥过程特性的影响。
5. 学会分析两种不同干燥方式的性能优劣二、基本原理在设计干燥器的尺寸或确定干燥器的生产能力时,被干燥物料在给定干燥条件下的干燥速率、临界湿含量和平衡湿含量等干燥特性数据是最基本的技术依据参数。
由于实际生产中的被干燥物料的性质千变万化,因此对于大多数具体的被干燥物料而言,其干燥特性数据常常需要通过实验测定。
按干燥过程中空气状态参数是否变化,可将干燥过程分为恒定干燥条件操作和非恒定干燥条件操作两大类。
若用大量空气干燥少量物料,则可以认为湿空气在干燥过程中温度、湿度均不变,再加上气流速度、与物料的接触方式不变,则称这种操作为恒定干燥条件下的干燥操作。
1 干燥速率的定义干燥速率的定义为单位干燥面积(提供湿分汽化的面积)、单位时间内所除去的湿分质量。
即(1)式中,U -干燥速率,又称干燥通量,kg/(m 2s );A -干燥表面积,m 2; W -汽化的湿分量,kg ; τ-干燥时间,s ;Gc-绝干物料的质量,kg;X-物料湿含量,kg湿分/kg干物料,负号表示X随干燥时间的增加而减少。
2 干燥速率的测定方法2.1 流化床干燥利用床层的压降来测定干燥过程的失水量。
(1)将0.5kg的湿物料(如取0.5kg的黄豆放入水中泡8h,取出,晾干表面水分,待用。
(2)开启风机,调节风量至100m3/h,打开加热器加热。
待热风温度恒定后(通常设定在75℃),将湿物料加入流化床中,干燥τ时间后取少量样品进行称量得到G i,将该样品于烘箱中进行干燥恒重到G c,则物料的瞬时含水率为X i=(2)式中G c为相应样品恒重后的绝干物料。
流化床干燥实验报告
流化床干燥实验报告
一、实验目的
1. 掌握流化床干燥的基本原理和特点;
2. 熟悉流化床干燥设备的结构和工作原理;
3. 了解流化床干燥的操作技能和注意事项。
二、实验原理
流化床干燥是将湿物料放入带有一个气流的床中,使物料悬浮在气流中流动,并通过气流带走物料表面的水分达到干燥目的的过程。
流化床干燥器通常由气流发生器、气管、气流调节器、过滤器、热源和物料桶组成。
在流化床干燥器中,物料与气流混合形成流态床,气流通过调节器调节,形成所需的物料流动速度和干燥温度。
在充分干燥后,得到干燥的物料。
三、实验步骤
1. 将待测物料称量并放入流化床干燥器中;
2. 开启流化床干燥器,调节干燥温度和气流速度;
3. 观察物料在流化床中的情况,并记录干燥时间;
4. 检查干燥后的物料是否符合规定要求。
四、实验结果
根据实验记录,干燥时间为5小时,干燥后的物料符合规定要求。
五、实验分析
1. 流化床干燥可以在短时间内实现对湿度物料的干燥,减少了生产时间,提高了工作效率;
2. 可根据需要调节干燥温度和气流速度,以满足不同物料的干燥要求;
3. 流化床干燥设备结构简单,易于维护和清洁。
六、实验总结
本次实验通过对流化床干燥的了解和操作,使我们更加深入地了解干燥操作的流程和注意事项,对于今后的学习和工作都将有很大的帮助。
化工原理干燥实验报告
( 实验报告)姓名:____________________单位:____________________日期:____________________编号:YB-BH-054241化工原理干燥实验报告Drying experiment report of chemical engineering principle化工原理干燥实验报告一、摘要本实验在了解沸腾流化床干燥器的基本流程及操作方法的基础上,通过沸腾流化床干燥器的实验装置测定干燥速率曲线,物料含水量、床层温度与时间的关系曲线,流化床压降与气速曲线。
干燥实验中通过计算含水率、平均含水率、干燥速率来测定干燥速率曲线和含水量、床层温度与时间的关系曲线;流化床实验中通过计算标准状况下空气体积、使用状态下空气体积、空气流速来测定流化床压降与气速曲线。
二、实验目的1、了解流化床干燥器的基本流程及操作方法。
2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3、测定物料含水量及床层温度时间变化的关系曲线。
4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传质系数kH及降速阶段的比例系数KX。
三、实验原理1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线(如图)。
当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D点处的流速即被称为带出速度(u0)。
化工干燥实验报告
一、实验目的1. 了解化工干燥的基本原理和操作方法。
2. 掌握干燥速率曲线、物料含水量、床层温度与时间关系曲线、流化床压降与气速曲线的测定方法。
3. 确定临界含水量、恒速阶段的传质系数及降速阶段的比例系数。
二、实验原理化工干燥实验主要研究物料在干燥过程中的水分蒸发、热量传递和质量传递等基本规律。
本实验采用沸腾流化床干燥器进行干燥实验,通过测量不同干燥条件下的物料含水量、床层温度、气速和压降等参数,分析干燥过程的变化规律。
1. 干燥速率:干燥速率是指单位时间内物料水分蒸发量的多少,可用下式表示:干燥速率 = (物料含水量 - 干燥后物料含水量) / 干燥时间2. 临界含水量:物料开始大量蒸发的含水量,称为临界含水量。
3. 恒速阶段传质系数:干燥过程中,物料含水量低于临界含水量时,干燥速率基本保持不变,此时的传质系数称为恒速阶段传质系数。
4. 降速阶段比例系数:干燥过程中,物料含水量降至临界含水量以下,干燥速率逐渐减小,此时干燥速率与传质系数的关系可用下式表示:干燥速率 = KX (物料含水量 - 临界含水量)其中,KX为降速阶段比例系数。
三、实验装置及方法1. 实验装置:沸腾流化床干燥器、物料、加热器、温湿度计、流量计、压差计等。
2. 实验方法:(1)将物料放入沸腾流化床干燥器中,启动加热器进行干燥。
(2)在干燥过程中,定时测量物料含水量、床层温度、气速和压降等参数。
(3)根据测量数据,绘制干燥速率曲线、物料含水量、床层温度与时间关系曲线、流化床压降与气速曲线。
四、实验结果与分析1. 干燥速率曲线:根据实验数据,绘制干燥速率曲线。
从曲线可以看出,干燥速率随着干燥时间的推移而逐渐减小,在物料含水量低于临界含水量时,干燥速率基本保持不变。
2. 物料含水量、床层温度与时间关系曲线:根据实验数据,绘制物料含水量、床层温度与时间关系曲线。
从曲线可以看出,随着干燥时间的推移,物料含水量逐渐降低,床层温度逐渐升高。
化工原理实验报告~流化床干燥实验
化工原理实验报告实验名称:流化床干燥实验实验目的:1、了解流化床干燥器的基本流程及操作方法。
2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3、测定物料含水量及床层温度随时间变化的关系曲线。
4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X 0及恒速阶段的传质系数K H 及降速阶段的比例系数Kx 。
实验仪器:电子测量仪、烘箱、流化床实验设备一套 实验原理:1、 流化曲线在试验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线如下当气速较小时,操作过程处于固定床阶段(AB 段),床层基本静止不动,气体只能从床层空隙中流过,压降与气流成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC 段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD 段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大至某一值后(D 点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段。
D 点出的流速即被称为带出速度(u 0)。
在流化状态下降低气速,压降与气速的关系线将沿图中的DC 线返回至C 点。
若气速继续降低,曲线将无法按CBA 继续变化,而是沿CA ’变化。
C 点处的流速被称为起始流化速度(u mf )。
2、 干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X )与时间(τ)的关系曲线的斜率即为干燥速率(u )。
将干燥速率对物料含水量作图,即为干燥速率曲线。
干燥过程可分以下三个阶段。
气体流速 u /m/su 0床层压降△p /k P aumf流化曲线B C A A ’DE图-1图-2(1)、物料预热阶段(AB 段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料,物料含水 随时间变化不大。
流化床干燥实验化工原理实验报告
北京化工大学化工原理实验报告流化床干燥实验实验日期:2012年5月18日流化床干燥实验摘要:本实验通过测定不同空气流量下的床侧压降及干湿物料的质量,从而确定流化床床层压降与气速的关系曲线及流化床的干燥特性曲线。
通过实验,了解流化床的使用方法及其工作原理。
关键词:干燥,干燥速率曲线,流化床床层压降一、目的及任务1.了解流化床干燥器的基本流程及操作方法。
2.掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3.测定物料含水量及床层温度随时间变化的关系曲线。
4.掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量及恒速阶段的传质细述及降速阶段的比例系数。
二、基本原理干燥操作是采用某种方式将热量传给湿物料,使湿物料中水分蒸发分离的操作。
干燥操作同时伴有传热和传质,而且涉及到湿分以气态或液态的形式自物料内部向表面传质的机理。
由于物料含水性质和物料形状上的差异,水分传递速率的大小差别很大。
干燥实验的目的是用来测定干燥曲线和干燥速率曲线。
为简化实验的影响因素,干燥实验是在恒定的干燥条件下进行的,即实验为间歇操作,采用大量空气干燥少量的物料,且空气进出干燥器时的状态如温度、湿度、气速以及空气与物料之间的流动方式均恒定不变。
1、流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到的流化床床层压降与气速的关系曲线。
图1:流化曲线当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标系中)。
当气速逐渐增加(进入BC段),床层压降将减小,颗粒逐渐被气体带走,此时,)。
便进入了气流输送阶段。
D点处流速即被称为带出速度(u在流化状态下降低气速,压降与气速关系线将沿图中的DC线返回至C点。
若气速继续降低,曲线将无法按CBA继续变化,而是沿CA’变化。
C点处流速被称为起始流化速度(u)。
mf在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
实验报告流化床干燥实验.
北京化工大学实验报告课程名称:化工原理实验实验日期:班级:姓名:同组人:装置型号:沸腾干燥实验装置流化床干燥实验一、摘要本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。
二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量三、实验目的及任务1、熟悉流化床干燥器的基本流程及操作方法。
2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3、测定物料含水量及床层温度随时间变化的关系曲线。
4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX四、实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。
(如图一)当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。
在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。
C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京化工大学实验报告流化床干燥实验一、摘要本实验通过对湿的小麦的干燥过程,要求掌握干燥的基本流程及流化床流化曲线的定,流化床床层压降与气速的关系曲线,物料含水量及床层温度随时间的变化关系,并确定临界含水量X0及恒速阶段的传值系数kH及降速阶段的比例系数KX。
二、关键词:流化床干燥、物料干燥速率、物料含水量、流化床床层压降、临界含水量三、实验目的及任务1、熟悉流化床干燥器的基本流程及操作方法。
2、掌握流化床流化曲线的测定方法,测定流化床床层压降与气速的关系曲线。
3、测定物料含水量及床层温度随时间变化的关系曲线。
4、掌握物料干燥速率曲线的测定方法,测定干燥速率曲线,并确定临界含水量X0及恒速阶段的传值系数k H及降速阶段的比例系数K X四、实验原理1.流化曲线在实验中,可以通过测量不同空气流量下的床层压降,得到流化床床层压降与气速的关系曲线。
(如图一)当气速较小时,操作过程处于固定床阶段(AB段),床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在对数坐标系中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率增大,压降与气速的关系将不再成比例。
当气速继续增大,进入流化阶段(CD段),固体颗粒随气体流动而悬浮运动,随着气速的增加,床层高度逐渐增加,但床层压降基本保持不变,等于单位面积的床层净重。
当气速增大至某一值后(D点),床层压降将减小,颗粒逐渐被气体带走,此时,便进入了气流输送阶段,D点处的流速即被称为带出速度。
在流化状态下降低气速,压降与气速的关系线将沿图中的DC线返回至C点当气速继续降低,曲线无法按CBA继续变化,而是沿CA'变化。
C点处的流速被称为起始流化速度(umf)在生产操作中,气速应介于起始流化速度与带出速度之间,此时床层压降保持恒定,这是流化床的重要特点。
据此,可以通过测定床层压降来判断床层流化的优劣。
2干燥特性曲线将湿物料置于一定的干燥条件下,测定被干燥物料的质量和温度随时间变化的关系,可得到物料含水量(X)与时间(τ)的关系曲线及物料温度(θ)与时间(τ)的关系曲线。
物料含水量与时间关系曲线的斜率即为干燥速率(u)。
将干燥速率对物料含水量作图,即为干燥速率曲线,干燥过程可分为以下三阶段。
(1) 物料预热阶段(AB 段)在开始干燥时,有一较短的预热阶段,空气中部分热量用来加热物料, 物料含水量随时间变化不大.(2) 恒速干燥阶段(BC 段)由于物料表面存在自由水分,物料表面温度等于空气湿球的温度,传 入的热量只用来蒸发物料表面的水分,物料含水量随时间成比例减小, 干燥速率恒定且最大.(3) 降速干燥阶段(CDE 段)物料含水量减少到某一临界含水量(X0),由于物料内部水分的扩散慢 于物料表面的蒸发,不足以维持物料表面保持湿润,而形成干区,干 燥速率开始降低,物料温度开始上升。
物料含水量越小,干燥速率越 慢,直至达到平衡含水量(X*)而终止。
干燥速率为单位时间在单位面积上气化的水分量,用微分式表示τAd dWu =式中 u----干燥速率,kg 水/(m^2s ) A----干燥表面积,m^2 d τ---相应的干燥时间,s Dw----气化的水分量,kg.图3中的横坐标X 为对应于某干燥速率下的物料平均含水量 21+-=i i X X X 式中 X -----某一干燥速率下湿物料的平均含水量;。
1,+i i X X -----△τ时间间隔内开始和终了时的含水量,kg 水/kg 绝干物料 cicisi i G G G X -=G-----第i时刻取出的湿物料的质量,kg式中siG-----第i时刻取出的物料的绝干质量,kgci干燥速率曲线只能通过实验测定,因为干燥速率不仅取决于空气的性质和操作条件,而且还受物料性质结构及含水量的影响。
本实验装置为间歇操作的沸腾床干燥器,可测定达到一定干燥要求所需的时间,为工业上连续操作的流化床干燥器提供相应的设计参数。
五、实验流程图一、沸腾干燥实验装置和流程1.风机2.湿球温度水桶3.湿球温度计4.干球温度计5.空气加热器6.空气流量调节阀7.放净口8.取样口9.不锈钢筒体10.玻璃筒体11.气固分离段12.加料口13.旋风分离器14.孔板流量计六、实验操作1.干燥实验(1)实验开始前①将电子天平开启,使处于待用状态②将烘箱开启备用③准备好被干燥物料(麦子)(2)床身预热阶段启动风机及加热器,将空气控制在某一流量下,控制表面加热器温度,或空气温度稳定,打开进料口,将待干燥物徐徐倒入,关闭进料口.(3)测定干燥速率曲线①取样,用取样管推入拉出取样,每隔3min一次,取出样品放入小器皿中,编上编号并记录取样时间,称量取出样品重量,然后放入烘箱烘烤40min,再次称量样品重量,如此取样8-10次,并记录。
做完后,关闭加热器和风机电源。
②数据记录,每次取样同时,要记录床层温度,空气干球﹑湿球温度,流量和床层压降等。
2.流化床实验加入固体物料至玻璃段底部,调节空气流量,测定不同流量下的床层压降。
3.结果分析①快速水分测定仪分析法将每次取出的样品,在电子天平上称量9-10g,利用快速水分测定仪进行分析②烘箱分析法每次取出样品,在电子天平上称量9-10g,放入烘箱内烘干,烘箱温度设定为120℃,1h后取出,在电子天平上称取其重量,此质量即可视为绝干物料质量。
4.注意事项①取样时,取样管推拉要快,管槽口用布覆盖,以免物料喷出。
②湿球温度计补水筒液面不得超过警示值。
七﹑数据记录与处理1、原始数据记录时间空气流量物料含水量干燥面积Xi 平均含水量气化的水分量干燥3 51.21561 0.382422803 0.006315 0.382422803 0.344911591 0.075022423 06 51.45493 0.30740038 0.007905 0.30740038 0.284830254 0.045140252 0.09 51.13563 0.262260128 0.007035 0.262260128 0.232147506 0.060225244 0.12 51.37527 0.202034884 0.01032 0.202034884 0.179412504 0.04524476 0.015 51.29549 0.156790123 0.01215 0.156790123 0.151760293 0.010059661 0.18 51.69331 0.146730463 0.009405 0.146730463 0.132629536 0.028201852 0.021 51.5345 0.11852861 0.01101 0.11852861 0.114070376 0.008916469 0.024 51.45493 0.109612142 0.008895 0.109612142 0.099137466 0.020949351 0.027 51.69331 0.088662791 0.01032 0.088662791干球温度湿球温度物料温度床层压降孔板压降湿样质量干样质量皮重55.2 38.4 44 0.61 3.46 13.39 11.78 7.5756 39.4 47.8 0.62 3.49 16.9 15.28 10.0156.8 40.6 52.2 0.6 3.45 16.55 15.32 10.6357.5 41.5 55.3 0.57 3.48 17.09 15.7 8.8257.9 42.3 57.9 0.53 3.47 15.6 14.33 6.2358.4 42.9 58.3 0.54 3.52 15.5 14.58 8.3158.8 43.2 60.5 0.49 3.5 16.63 15.76 8.4259.2 43.7 61.5 0.46 3.49 15.27 14.62 8.69 59.6 44 62.3 0.46 3.52 17.59 16.98 10.1孔板压降床层压降空气流量空气流速0.2 0.26 10.98645267 0.3884417240.28 0.33 13.17548553 0.4658381070.39 0.41 15.75709593 0.557114630.54 0.45 18.78425268 0.664144080.76 0.45 22.59126922 0.7987465871 0.47 26.2 0.9263384181.22 0.45 29.1699443 1.031345041.49 0.45 32.49539918 1.1489212461.92 0.45 37.26352668 1.3175052042、示例计算2.1干燥实验含水量=(物料湿重—物料干重)/物料干重=(5.37-4.08)/4.08=0.316176干燥速率=含水量变化×3600/0.75/取样时间=0.07192868×3600/0.75/235=1.469181612.2流化曲线实验数据气速=26.8×孔板压降^0.5×4/3600/0.1/0.1/3.14=26.8×0.2^0.5×4/3600/0.1/0.1/3.14=0.4241091423、绘图3.1流化床的压降与气速曲线3.2干燥速率曲线3.3物料含水量、物料温度与时间的关系图形分析①有图流化床的压降与气速曲线可知床层温度随时间增加而降低,且温度变化率逐渐变慢;含水率随时间增加而降低,且含水量变化率逐渐变慢。
②由图3.2为干燥速率对物料含水量的曲线。
本次试验结果只有降速干燥阶段,预热与恒速阶段未显示出来,如图可以看出,物料含水率越小,干燥速率越慢,直至平衡含水量。
③本次试验不存在预热与恒速阶段,原因可能与所选取的干燥物料本身性质有关。
八、结果分析及思考题讨论1、误差分析(1).从顶部侧边进料口加入湿小麦时,没把取样器并旋转清空里面多余物料拨干净,造成实验误差。
(2)调节空气阀门不准确,造成孔板压降值不精确,使实验有误差。
(3)取样时忘记清空取样器内残余小麦,造成取样误差。
(4)在记录床层压降、孔板压降时读取数据不够准确,造成实验误差。
(5)小麦要吹起时记录的孔板压降不够准确。
2、思考题(1)本实验所得的流化床压降与气速曲线有何特征?答:分为三个阶段:固定床阶段;流化床阶段;气流输送阶段,与理论图曲线基本相符。
当气速较小时,操作过程处于固定床阶段(AB段)床层基本静止不动,气体只能从床层空隙中流过,压降与流速成正比,斜率约为1(在双对数坐标中)。
当气速逐渐增加(进入BC段),床层开始膨胀,空隙率开始增大,压降与气速的关系将不再成比例。