函数单调性方法和各种题型

合集下载

高一函数单调性题型大全

高一函数单调性题型大全

高一函数单调性题型大全【知识点梳理】1.函数单调性的定义:如果函数f(x)对区间D 内的任意x ₁,x ₂,当x ₁<x ₂时都有f(x ₁)<f(x ₂),则f(x)在D 内是增函数:当x ₁<x ₂时都有f(x ₁)>f(x ₂),则f(x)在D 内时减函数。

f (x 1)−f (x 2)x 1−x 2<0f (x )在[a,b]是减函数:(x 1−x 2)[f (x 1)−f (x 2)]<0f (x )在[a,b]是减函数。

(x 1−x 2)[f (x 1)−f (x 2)]>0f (x )在[a,b]是增函数。

3.复合函数单调性的判断。

(同增异减)4.函数单调性的应用.利用定义都是充要性命题.即若f(x) 在区间D 上递增(递减)且, f (x 1)<f (x 2)x 1<x 2(x 1,x 2∈D );若f(x)在区间D 上递递减且. f (x 1)<f (x 2)x 1>x 2.(x 1,x 2∈D )5.在公共定义域内,增函数f(x)+增函数g(x)是增函数:减函数f(x)+减函数g(x) 是减函数:增函数 f(x)-减函数g(x)是增函数; 减函数f(x)-增函数g(x)是减函数。

6.函数 y =ax +b x (a⟩0,b >0)在 (−∞,−√] [√,)上单调递增:在 [−√,0)THN (0,√]上是单调递减。

1.若u=g(x), y=f(u)在所讨论的区间上都是增函数或都是减函数,则y=f[g(x)]为增函数;2. 若u=g(x), y=f(u)在所讨论的区间上一个是增函数,另一个是减函数,则y=f[g(x)]为减函数. 列表如下:. 因此判断复合函数的单调性可按下列步骤操作:1.将复合函数分解成基本初等函数: y=f(u), u=g(x);2.分别确定各个函数的定义域;2.单调性的定义的等价形式: 设x ₁,x ₂∈[a,b]. 那么 f (x 1)−f (x 2)x 1−x 2>0f (x )在[a,b]是增函数:7.复合函数单调性的判断 讨论复合函数y=f[g(x)]的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性. 一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:3.分别确定分解成的两个基本初等函数的单调区间.注若两个基本初等函数在对应的区间上的单调性是同增或同减,则y=f[g(x)]为增函数;若为一增一减或一减一增,则y=f[g(x)]为减函数.题型目录:题型一:用定义法证明函数单调性题型二:抽象函数单调性的判断证明题型三:函数单调性定义的理解题型四:基本初等函数的单调性题型五:函绝对值函数的单调性判断题型六:已知函数的单调性求参数范围题型七:分段函数的单调性求参数范围题型八:复合函数单调性(同增异减)题型九:抽象函数单调性解不等式【典型例题】题型一:用定义法证明函数单调性证明函数单调性的步骤:(1)取值:设x₁,x₂是f(x)定义域内一个区间上的任意两个量,且;x₁<x₂:(2)变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号:判断差的正负或商与1的大小关系:(4)得出结论.【例1】证明函数f(x)=x+1x在(0, 1)上是减函数。

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题07 函数的性质-单调性、奇偶性、周期性 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题07函数的性质——单调性、奇偶性、周期性函数的单调性(1)单调函数的定义一般地,设函数()f x 的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值1x ,2x 当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是增函数.如果对于D 内的任意两个自变量的值1x ,2x ,当12x x <时,都有12()()f x f x <,那么就说()f x 在区间D 上是减函数.①属于定义域A 内某个区间上;②任意两个自变量1x ,2x 且12x x <;③都有12()()f x f x <或12()()f x f x >;④图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.(2)单调性与单调区间①单调区间的定义:如果函数()f x 在区间D 上是增函数或减函数,那么就说函数()f x 在区间D 上具有单调性,D 称为函数()f x 的单调区间.②函数的单调性是函数在某个区间上的性质.(3)复合函数的单调性复合函数的单调性遵从“同增异减”,即在对应的取值区间上,外层函数是增(减)函数,内层函数是增(减)函数,复合函数是增函数;外层函数是增(减)函数,内层函数是减(增)函数,复合函数是减函数.2.函数的奇偶性函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 就叫做偶函数关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有) ()(f x f x --=,那么函数()f x 就叫做奇函数关于原点对称判断()f x -与()f x 的关系时,也可以使用如下结论:如果0(())f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数;如果0(())f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数.注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).3.函数的对称性(1)若函数()y f x a =+为偶函数,则函数()y f x =关于x a =对称.(2)若函数()y f x a =+为奇函数,则函数()y f x =关于点(0)a ,对称.(3)若()()2f x f a x =-,则函数()f x 关于x a =对称.(4)若2(2)()f x f a x b -=+,则函数()f x 关于点()a b ,对称.4.函数的周期性(1)周期函数:对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有(()f x T f x +=),那么就称函数()y f x =为周期函数,称T 为这个函数的周期.(2)最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么称这个最小整数叫做()f x 的最小正周期.【方法技巧与总结】1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x <;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 为增函数,1()f x 为减函数;④若()0f x >且()f x 为减函数,1()f x 为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x 是偶函数⇔函数()f x 的图象关于y 轴对称;函数()f x 是奇函数⇔函数()f x 的图象关于原点中心对称.(3)若奇函数()y f x =在0x =处有意义,则有(0)0f =;偶函数()y f x =必满足()(||)f x f x =.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x 的定义域关于原点对称,则函数()f x 能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x =+-,1()[()()]2h x f x f x =--,则()()()f x g x h x =+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f x g x f x g x f x g x f x g x +-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x =的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()(01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =+或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1x m f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.【题型归纳目录】题型一:函数的单调性及其应用题型二:复合函数单调性的判断题型三:利用函数单调性求函数最值题型四:利用函数单调性求参数的范围题型五:基本初等函数的单调性题型六:函数的奇偶性的判断与证明题型七:已知函数的奇偶性求参数题型八:已知函数的奇偶性求表达式、求值题型九:已知()f x =奇函数+M 题型十:函数的对称性与周期性题型十一:类周期函数题型十二:抽象函数的单调性、奇偶性、周期性题型十三:函数性质的综合【典例例题】题型一:函数的单调性及其应用例1.(2022·全国·高三专题练习)若定义在R 上的函数f (x )对任意两个不相等的实数a ,b ,总有()-()-f a f b a b>0成立,则必有()A .f (x )在R 上是增函数B .f (x )在R 上是减函数C .函数f (x )先增后减D .函数f (x )先减后增例2.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且对任意两个不相等的实数a ,b 都有()()()0a b f a f b -->⎡⎤⎣⎦,则不等式()()315f x f x ->+的解集为().A .(),3-∞B .()3,+∞C .(),2-∞D .()2,+∞例3.(2022·全国·高三专题练习)()252f x x x =-的单调增区间为()A .1,5⎛⎫+∞ ⎪⎝⎭B .1,5⎛⎫-∞ ⎪⎝⎭C .1,5⎛⎫-+∞ ⎪⎝⎭D .1,5⎛⎫-∞- ⎪⎝⎭例4.(2022·全国·高三专题练习)已知函数1()22xxf x =-.(1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论;(2)解关于x 的不等式2(log )(1)f x f <.例5.(2022·全国·高三专题练习)讨论函数()1axf x x =-(0a ≠)在(11)-,上的单调性.【方法技巧与总结】函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.题型二:复合函数单调性的判断例6.(2022·全国·高三专题练习(文))函数y =)A .1,2⎛⎫-∞ ⎪⎝⎭B .(,1]-∞-C .112⎡⎤-⎢⎥⎣⎦,D .[]12-,例7.(2022·全国·高三专题练习)函数()213log 412y x x =-++单调递减区间是()A .(),2-∞B .()2,+∞C .()2,2-D .()2,6-例8.(2022·全国·高三专题练习)函数2231()(2x x f x --=的单调递减区间是()A .(,)-∞+∞B .(,1)-∞C .(3,)+∞D .(1,)+∞【方法技巧与总结】讨论复合函数[()]y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性.一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:1.若()u g x =,()y f u =在所讨论的区间上都是增函数或都是减函数,则[()]y f g x =为增函数;2.若()u g x =,()y f u =在所讨论的区间上一个是增函数,另一个是减函数,则[()]y f g x =为减函数.列表如下:()u g x =()y f u =[()]y f g x =增增增增减减减增减减减增复合函数单调性可简记为“同增异减”,即内外函数的单性相同时递增;单性相异时递减.题型三:利用函数单调性求函数最值例9.(2022·河南·新乡县高中模拟预测(理))在人工智能领域的神经网络中,常用到在定义域I 内单调递增且有界的函数()f x ,即0M ∃>,x I ∀∈,()f x M ≤.则下列函数中,所有符合上述条件的序号是______.①()f x =()21x f x x =+;③()e e e ex xx x f x ---=+;④()11e x f x -=+.例10.(2022·全国·高三专题练习)定义在()0,∞+上的函数()f x 对于任意的*,x y R ∈,总有()()()f x f y f xy +=,且当1x >时,()0f x <且()1f e =-.(1)求()1f 的值;(2)判断函数在()0,∞+上的单调性,并证明;(3)求函数()f x 在21,e e ⎡⎤⎢⎥⎣⎦上的最大值与最小值.例11.(2022·全国·高三专题练习)已知函数()(0)2axf x a x =≠-.(1)判断函数()f x 在区间()2,2-上的单调性,并用单调性的定义加以证明;(2)若()33f =,求[]1,1x ∈-时函数()f x 的值域.例12.(2022·山西运城·模拟预测(理))已知a b <,函数()f x 的定义域为I ,若存在[,]a b I ⊆,使得()f x 在[,]a b 上的值域为[,]a b ,我们就说()f x 是“类方函数”.下列四个函数中是“类方函数”的是()①()21f x x =-+;②2()f x x =;③()2f x =+;④1()2xf x ⎛⎫= ⎪⎝⎭.A .①②B .②④C .②③D .③④【方法技巧与总结】利用函数单调性求函数最值时应先判断函数的单调性,再求最值.常用到下面的结论:1.如果函数()y f x =在区间(]a b ,上是增函数,在区间[)b c ,上是减函数,则函数()()y f x x a c =∈,在x b =处有最大值()f b .2.如果函数()y f x =在区间(]a b ,上是减函数,在区间[)b c ,上是增函数,则函数()()y f x x a c =∈,在x b =处有最小值()f b .3.若函数()y f x =在[]a b ,上是严格单调函数,则函数()y f x =在[]a b ,上一定有最大、最小值.4.若函数()y f x =在区间[]a b ,上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a .5.若函数()y f x =在区间[]a b ,上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b .题型四:利用函数单调性求参数的范围例13.(2022·河南濮阳·一模(理))“1b ≤”是“函数()()22,0log 2,20bx x f x x b x +>⎧=⎨++-<≤⎩是在()2,-+∞上的单调函数”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件例14.(2022·全国·江西科技学院附属中学高三阶段练习(理))已知函数()()e 4,0,2log 1,10,x m m x f x x x ⎧+>⎪=⎨-+-<≤⎪⎩若1x ∀,2x ∈R ,()()12120f x f x x x ->-,且()()2g x f x x =--仅有1个零点,则实数m 的取值范围为()A .11,4e ⎡⎫⎪⎢⎣⎭B .11,4e ⎡⎤⎢⎥⎣⎦C .1,1e ⎡⎫⎪⎢⎣⎭D .1,1e ⎛⎫ ⎪⎝⎭例15.(2022·浙江·高三学业考试)已知函数2()2f x x ax b =-+在区间(-∞,1]是减函数,则实数a 的取值范围是()A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-1]例16.(2022·全国·高三专题练习)若函数21,1()2,,1ax x f x x ax x -<⎧=⎨-≥⎩是R 上的单调函数,则a 的取值范围()A .20,3⎛⎫⎪⎝⎭B .20,3⎛⎤ ⎥⎝⎦C .(]0,1D .()0,1例17.(2022·全国·高三专题练习)已知函数()f x =0a >且1a ≠)在区间[)1,3上单调递增,则实数a 的取值不可能是()A .13B .12C .23D .56例18.(2022·山东·济南市历城第二中学模拟预测)函数()53x f x x a +=-+在()1,+∞上是减函数,则实数a的范围是_______.例19.(2022·全国·高三专题练习)如果5533cos θsin θ7(cos θsin θ),θ[0,2π]->-∈,则θ的取值范围是___________.例20.(2022·全国·高三专题练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当0x >时,()1f x >,且()12f =.(1)求()()0,1f f -的值,并判断()f x 的单调性;(2)当[]1,2x ∈时,不等式()()231f ax x f x -+<恒成立,求实数a 的取值范围.【方法技巧与总结】若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解.1.若()a f x >在[]m n ,上恒成立()a f x ⇔>在[]m n ,上的最大值.2.若()a f x <在[]m n ,上恒成立()a f x ⇔<在[]m n ,上的最小值.题型五:基本初等函数的单调性例21.(2022·全国·高三阶段练习(文))下列函数在()1,3上单调递减的是()A .24y x x =-B .12x y -=C .y =D .cos 1y x =+例22.(2022·全国·高三专题练习)下列函数中,定义域是R 且为增函数的是A .xy e -=B .3y x =C .ln y x=D .y x=例23.(2022·全国·高三专题练习)已知()f x 是奇函数,且()()12120f x f x x x ->-对任意12,x x R ∈且12x x ≠都成立,设32a f ⎛⎫= ⎪⎝⎭,()3log 7b f =,()30.8c f =-,则()A .b a c <<B .c a b <<C .c b a<<D . a c b<<例24.(2022·山东·济南一中模拟预测)设函数()232xf x x ⎛⎫=+ ⎪⎝⎭,若()ln 3a f =,()5log 2b f =-,c f =(e 为自然对数的底数),则().A .a b c>>B .c b a>>C .c a b>>D .a c b>>【方法技巧与总结】1.比较函数值大小,应将自变量转化到同一个单调区间内,然后利用函数单调性解决.2.求复合函数单调区间的一般步骤为:①求函数定义域;②求简单函数单调区间;③求复合函数单调区间(同增异减).3.利用函数单调性求参数时,通常要把参数视为已知数,依据函数图像或单调性定义,确定函数单调区间,与已知单调区间比较,利用区间端点间关系求参数.同时注意函数定义域的限制,遇到分段函数注意分点左右端点函数值的大小关系.题型六:函数的奇偶性的判断与证明例25.(2022·北京通州·模拟预测)已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭,则()f x ()A .是偶函数,且在R 是单调递增B .是奇函数,且在R 是单调递增C .是偶函数,且在R 是单调递减D .是奇函数,且在R 是单调递减例26.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x=--C .3y x x=--D .3=-+y x x例27.(2022·广东·二模)存在函数()f x 使得对于x R ∀∈都有()()f g x x =,则函数()g x 可能为()A .()sin g x x=B .()22g x x x=+C .()3g x x x=-D .()()x xg x e e-=+例28.(2022·全国·高三专题练习)判断下列函数的奇偶性:(1)f (x )(2)f (x )=(x +(3)f (x ).(4)f (x )=2221,0,21,0;x x x x x x ⎧-++>⎨+-<⎩例29.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+∞上的单调性.【方法技巧与总结】函数单调性与奇偶性结合时,注意函数单调性和奇偶性的定义,以及奇偶函数图像的对称性.题型七:已知函数的奇偶性求参数例30.(2022·北京海淀·二模)若(),01,0x a x f x bx x +<⎧=⎨->⎩是奇函数,则()A .1,1a b ==-B .1,1a b =-=C .1,1a b ==D .1,1a b =-=-例31.(2022·河南洛阳·三模(理))若函数()()322x xx a f x -=⋅-是偶函数,则=a ()A .-1B .0C .1D .±1例32.(2022·江苏南通·模拟预测)若函数()22x x af x a +=-为奇函数,则实数a 的值为()A .1B .2C .1-D .±1例33.(2022·江西·南昌十中模拟预测(理))已知函数()(1)1x mf x x e=++为偶函数,则m 的值为_________.例34.(2022·全国·高三阶段练习(理))已知函数()()22330x xa a a f x -+=-⋅≠为奇函数,则=a ______.例35.(2022·全国·高三阶段练习(文))已知函数()2221x xa b f x x -+⋅=+为偶函数,则=a ______.例36.(2022·陕西·西安中学模拟预测(文))已知函数)1()e ln e x xf x x ⎛⎫=- ⎪⎝⎭为R 上的偶函数,则实数=a ___________.【方法技巧与总结】利用函数的奇偶性的定义转化为()()f x f x -=±,建立方程,使问题得到解决,但是在解决选择题、填空题时还显得比较麻烦,为了使解题更快,可采用特殊值法求解.题型八:已知函数的奇偶性求表达式、求值例37.(2022·安徽省芜湖市教育局模拟预测(理))设()f x 为奇函数,且0x >时,()e ln xf x x =+,则()1f -=___________.例38.(2022·重庆一中高三阶段练习)已知偶函数()f x ,当0x >时,()()212f x x f x '=-+,则()f x 的图象在点()()2,2f --处的切线的斜率为()A .3-B .3C .5-D .5例39.(2022·河北衡水·高三阶段练习)已知()f x 是定义在R 上的奇函数,且0x ≤时,()232f x x x m =-+,则()f x 在[]1,2上的最大值为()A .1B .8C .5-D .16-例40.(2022·江西·模拟预测(理))(),()f x g x 分别是定义在R 上的奇函数和偶函数,且()()2022sin 25+=--x f x g x x x ,则下列说法错误的是()A .(0)1g =B .()g x 在[]0,1上单调递减C .(1101)-g x 关于直线1101=x 对称D .()g x 的最小值为1例41.(2022·山西吕梁·一模(文))已知函数()f x 为定义在R 上的奇函数,且当0x ≥时,()21x f x x =+-,则当0x <时,()f x =()A .21x x ---B .21x x -++C .121x ----D .121x --++例42.(2022·北京·高三专题练习)已知定义在R 上的奇函数()f x 满足()()2f x f x =+,且当()0,1x ∈时,()241xxf x =+.(1)求()1f 和()1f -的值;(2)求()f x 在[]1,1-上的解析式.例43.(2022·全国·高三专题练习)若函数()f x 是奇函数,()g x 是偶函数,且其定义域均为{R,1}x x x ∈≠±.若()1()1f xg x x +=-,求()f x ,()g x 的解析式.【方法技巧与总结】抓住奇偶性讨论函数在各个分区间上的解析式,或充分利用奇偶性得出关于()f x 的方程,从而可得()f x 的解析式.题型九:已知()f x =奇函数+M例44.(2022·重庆一中高三阶段练习)已知()34f x ax =++(a ,b 为实数),()3lg log 102022f =,则()lg lg3f =______.例45.(2022·河南·西平县高级中学模拟预测(理))已知函数()2sin 414x xf x x -=++,且()5f a =,则()f a -=()A .2B .3C .-2D .-3例46.(2022·福建省福州第一中学高二期末)若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为()A .4B .8C .12D .16例47.(2022·上海·高一专题练习)若函数()()2221sin 1x xf x x ++=+的最大值和最小值分别为M 、m ,则函数()()()sin 3g x M m x M m x π⎡⎤=+++-⎢⎥⎣⎦图像的对称中心不可能是_______A .4,33ππ⎛⎫⎪⎝⎭B .,123ππ⎛⎫ ⎪⎝⎭C .28,33ππ⎛⎫ ⎪⎝⎭D .416,33ππ⎛⎫ ⎪⎝⎭例48.(2022·河南·温县第一高级中学高三月考(理))若函数()()113e sin 1ex x x f x --⋅--=在区间[]3,5-上的最大值、最小值分别为p 、q ,则p q +的值为().A .2B .1C .6D .3例49.(2022·黑龙江·哈尔滨三中高三月考(理))函数()()211()2x x f x x x e e x --=--+在区间[1,3]-上的最大值与最小值分别为M ,N ,则M N +的值为()A .2-B .0C .2D .4例50.(2022·广东潮阳·高一期末)函数()()22ln41ax a xf x x a++=++,若()f x 最大值为M ,最小值为N ,[]1,3a ∈,则M N +的取值范围是______.例51.(2022·安徽·合肥市第九中学高三月考(理))已知定义域为R 的函数2222020sin ()2x x e e x xf x x λλμ++=++有最大值和最小值,且最大值和最小值的和为6,则λ-μ=___.【方法技巧与总结】已知()f x =奇函数+M ,[,]x a a ∈-,则(1)()()2f x f x M -+=(2)max min ()()2f x f x M +=题型十:函数的对称性与周期性例52.(2022·天津三中二模)设函数()y f x =的定义域为D ,若对任意的12,x x D ∈,且122x x a +=,恒有()()122f x f x b +=,则称函数()f x 具有对称性,其中点(,)a b 为函数()y f x =的对称中心,研究函数1()1tan(1)1f x x x x =+++--的对称中心,求13540432022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()A .2022B .4043C .4044D .8086例53.(2022·全国·模拟预测)已知定义在R 上的函数()f x 满足()()24f x f x +=+,且()1f x +是奇函数,则()A .()f x 是偶函数B .()f x 的图象关于直线12x =对称C .()f x 是奇函数D .()f x 的图象关于点1,02⎛⎫⎪⎝⎭对称例54.(2022·全国·模拟预测)已知函数()f x 的定义域为R ,且()()()2220222f x f x f +=-+对任意x ∈R 恒成立,又函数()2021f x +的图象关于点()2021,0-对称,且()12022f =,则()2021f =()A .2021B .2021-C .2022D .2022-例55.(2022·新疆·三模(文))已知定义在R 上的偶函数()f x 满足()()6f x f x +=,且当[]0,3x ∈时,()e x f x x =,则下面结论正确的是()A .()()()3ln 3e e f f f <<-B .()()()3e ln 3ef f f -<<C .()()()3e e ln 3f f f <-<D .()()()3ln 3e ef f f <-<例56.(2022·山东·肥城市教学研究中心模拟预测)已知函数()f x 满足(3)(1)9(2)f x f x f +=-+对任意x ∈R 恒成立,又函数(9)f x +的图象关于点(9,0)-对称,且(1)2022,f =则(45)f =()A .2021B .2021-C .2022D .2022-例57.(2022·广东茂名·模拟预测)已知函数()f x 是R 上的奇函数,且3()()2f x f x -=-,且当30,4x ⎛⎤∈ ⎥⎝⎦时,()23f x x =-,则(2021)(2022)(2023)f f f -+--的值为()A .4B .4-C .0D .6-例58.(2022·江西鹰潭·二模(文))已知()f x 是定义在R 上的奇函数,若32f x ⎛⎫+ ⎪⎝⎭为偶函数且()12f =,则()()()202020212022f f f ++=()A .2-B .4C .4-D .6例59.(2022·江苏·徐州市第七中学高三阶段练习)函数()()()222f x x x x ax b =+++满足:对x R ∀∈,都有()()11f x f x +=-,则函数()f x 的最小值为()A .-20B .-16C .-15D .0例60.(2022·黑龙江·哈尔滨三中三模(理))定义在R 上的函数()y f x =满足以下三个条件:①对于任意的实数x ∈R ,都有()()220f x f x ++-=成立;②函数()1y f x =+的图象关于y 轴对称;③对任意的1x ,[]20,1x ∈,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+成立.则()2021f ,()2022f ,()2023f 的大小关系为()A .()()()202120232022f f f >>B .()()()202120222023f f f >>C .()()()202320222021f f f >>D .()()()202220212023f f f >>例61.(2022·陕西·榆林市教育科学研究所模拟预测(理))已知函数()f x 满足()()f x f x -=--,且函数()f x 与()cos 2g x x x =≠-⎛⎫ ⎪⎝⎭的图象的交点为()11,x y ,()22,x y ,()33,x y ,()44,x y ,则()41i ii x y =+=∑()A .-4πB .-2πC .2πD .4π【方法技巧与总结】(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.题型十一:类周期函数例62.(2022·天津一中高三月考)定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是()A .[]2,3B .[]1,3C .[]1,4D .[]2,4例63.(2022·浙江·杭州高级中学高三期中)定义域为R 的函数()f x 满足(2)3()f x f x +=,当[0,2]x ∈时,2()2f x x x =-,若[4,2]x ∈--时,13()()18f x t t≥-恒成立,则实数t 的取值范围是()A .(](],10,3-∞- B.((,-∞ C .[)[)1,03,-+∞ D.))⎡+∞⎣ 例64.(2022山西省榆林市高三二模理科数学试卷)定义域为R 的函数()f x 满足()()22f x f x +=,当[)0,2x ∈时,()[)[)2213,0,1{ln ,1,2x x x f x x x x -+∈=∈,若当[)4,2x ∈--时,函数()22f x t t ≥+恒成立,则实数t 的取值范围为()A .30t -≤≤B .31t -≤≤C .20t -≤≤D .01t ≤≤例65.(2022·湖北·高三月考)已知函数()11,022(2),2x x f x f x x ⎧--≤≤=⎨->⎩,其中R a ∈,给出以下关于函数()f x 的结论:①922f ⎛⎫= ⎪⎝⎭②当[]0,8x ∈时,函数()f x 值域为[]0,8③当4,15k ⎛⎤∈ ⎥⎝⎦时方程()f x kx =恰有四个实根④当[]0,8x ∈时,若()22xf x a +≤恒成立,则1a ≥-)A .1B .2C .3D .4【方法技巧与总结】1.类周期函数若()y f x =满足:()()f x m kf x +=或()()f x kf x m =-,则()y f x =横坐标每增加m 个单位,则函数值扩大k 倍.此函数称为周期为m 的类周期函数.xx类周期函数图象倍增函数图象2.倍增函数若函数()y f x =满足()()f mx kf x =或()(xf x kf m=,则()y f x =横坐标每扩大m 倍,则函数值扩大k倍.此函数称为倍增函数.注意当m k =时,构成一系列平行的分段函数,222311()[1)(1)[)()(1)[)(1)[)n n ng x x m g x m x m m f x g x m x m m g x m x m m --∈⎧⎪-+∈⎪⎪=-+∈⎨⎪⎪⎪-+∈⎩,,,,,,,,.题型十二:抽象函数的单调性、奇偶性、周期性例66.(2022·山东聊城·二模)已知()f x 为R 上的奇函数,()22f =,若对1x ∀,()20,x ∈+∞,当12x x >时,都有()()()1212210f x f x x x x x ⎡⎤--<⎢⎥⎣⎦,则不等式()()114x f x ++>的解集为()A .()3,1-B .()()3,11,1---C .()(),11,1-∞-- D .()(),31,-∞-⋃+∞例67.(2022·全国·模拟预测(理))已知定义在R 上的奇函数()f x 的图象关于直线1x =对称,且()y f x =在[]0,1上单调递增,若()3a f =-,12b f ⎛⎫=- ⎪⎝⎭,()2c f =,则a ,b ,c 的大小关系为()A .c b a <<B .b a c <<C .b c a <<D .c a b<<例68.(2022·黑龙江大庆·三模(理))已知定义域为R 的偶函数满足()()2f x f x -=,当01x ≤≤时,()1e 1x f x -=-,则方程()11f x x =-在区间[]3,5-上所有解的和为()A .8B .7C .6D .5例69.(2022·全国·高三专题练习)已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)求()()22f xg x -的值;(2)判断并证明函数()f x 的奇偶性.例70.(2022·上海·高三专题练习)定义在(-1,1)上的函数f (x )满足①对任意x 、y ∈(-1,1),都有f (x )+f (y )=f (1x y xy ++);②当x ∈(-1,0)时,有f (x )>0.求证:21111()()()()511312f f f f n n +++>++ .【方法技巧与总结】抽象函数的模特函数通常如下:(1)若()()()f x y f x f y +=+,则()(1)f x xf =(正比例函数)(2)若()()()f x y f x f y +=,则()[(1)]x f x f =(指数函数)(3)若()()()f xy f x f y =+,则()log b f x x =(对数函数)(4)若()()()f xy f x f y =,则()a f x x =(幂函数)(5)若()()()f x y f x f y m +=++,则()(1)f x xf m =-(一次函数)(6)对于抽象函数判断单调性要结合题目已知条件,在所给区间内比较大小,有时需要适当变形.题型十三:函数性质的综合例71.(2022·重庆南开中学模拟预测)已知函数()()ln ln 2cos 2f x x x x=---,则关于t 的不等式()()20f t f t +<的解集为()A .()2,1-B.(-C .()0,1D.(例72.(2022·安徽·六安市裕安区新安中学高三开学考试(文))已知函数()f x 是定义在R 上的偶函数,且在区间[0,)+∞上单调递增.若实数a 满足212(log )(lo )g )2(1f a f f a +≤,则a 的最小值是()A .32B .1C .12D .2例73.(2022·河南许昌·高三月考(理))已知函数31()224e e x xf x x x =-++-,其中e 是自然对数的底数,若()2(6)8f a f a -+>,则实数a 的取值范围是()A .(2,)+∞B .(3,2)-C .(,3)-∞-D .(,3)(2,)-∞-⋃+∞例74.(2022·河南·新蔡县第一高级中学高三月考(文))已知函数()3112e 33ex x f x x x =-+-+,其中e是自然对数的底数,若()2(23)6f a f a -+≥,则实数a 的取值范围是()A .(,3][1,)-∞-+∞ B .(,3]-∞-C .[1,)+∞D .[]3,1-例75.(2022·江苏·南京市中华中学高三月考)定义在R 上的函数()f x 满足()(2)f x f x -=,且当1x ≥时()23,141log ,4x x f x x x -+≤<⎧=⎨-≥⎩,若对任意的[,1]x t t ∈+,不等式()()21f x f x t -≤++恒成立,则实数t 的最大值为()A .1-B .23-C .13-D .13例76.(2022·内蒙古·赤峰二中高一月考(理))设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,若对任意[]2x a a ∈+,,不等式()()2f x a f x +≥恒成立,则实数a 的取值范围是()A.)+∞B.)+∞C .()1-∞,D.⎡⎣例77.(2022·湖南·岳阳一中一模)已知函数221e e ()312x x xf x --=++,若不等式2(4)(2)1f ax f ax -+≤对任意x ∈R 恒成立,则实数a 的取值范围是()A .[]e,0-B .[]2,0-C .[]4,0-D .2e ,0⎡⎤-⎣⎦例78.(2022·全国·模拟预测)已知函数()2121xx f x -=+,若()()e 0x f f ax +<有解,则实数a 的取值范围为()A .()0,∞+B .(),e -∞-C .[]e,0-D .()(),e 0,-∞-⋃+∞例79.(2022·黑龙江·哈师大附中三模(理))已知函数()()1ln e 12x f x x =+-(e 为自然对数的底数),若()()21f a f a ≥-,则实数a 的取值范围是()A .1,3⎛⎤-∞ ⎥⎝⎦B .[1,+∞)C .1,13⎡⎤⎢⎥⎣⎦D .[)1,1,3⎛⎤-∞⋃+∞ ⎥⎝⎦【方法技巧与总结】(1)奇偶性与单调性综合解题,尤其要重视利用偶函数(或轴对称函数)与单调性综合解不等式和比较大小.(2)奇偶性、单调性、周期性综合解题,尤其要注意对称性与周期性之间的关系,周期是两条对称轴(或对称中心)之间距离的2倍,是对称中心与对称轴之间距离的4倍.【过关测试】一、单选题1.(2022·安徽·蒙城第一中学高三阶段练习(理))下列函数中,在其定义域内既是奇函数又是减函数的是()A .1y x=B .ln y x x =--C .3y x x =--D .3=-+y x x2.(2022·河南·模拟预测(文))已知0x >,0y >,且2e e sin 2sin x y x y ->-,则()A .2x y<B .2x y>C .x y>D .x y<3.(2022·湖北·房县第一中学模拟预测)已知函数()221e e 1x x f x -=+,不等式()()22f x f x >+的解集为()A .()(),12,-∞-+∞B .()1,2-C .()(),21,-∞-+∞ D .()2,1-4.(2022·浙江浙江·高三阶段练习)已知定义在R 上的奇函数()f x 在0x >时满足32()(1)62f x x x =-++,且()()8f x m f x +≤在[]1,3x ∈有解,则实数m 的最大值为()A .23B .2C .53D .45.(2022·河北·石家庄二中高三开学考试)已知函数(()cos ln 4f x x x π=+⋅+在区间[5,5]-的最大值是M ,最小值是m ,则()f M m +的值等于()A .0B .10C .4πD .2π6.(2022·安徽·蒙城第一中学高三阶段练习(理))已知()f x 为奇函数,且当0x >时()211e xf x x-=+,则曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处的切线方程为()A .240x y ++=B .240x y -+=C .220x y -+=D .220x y ++=7.(2022·河南·模拟预测(理))已知函数()f x 的图象关于原点对称,且()()4f x f x =+,当()0,2x ∈时,()f x =32433log 4f ⎛⎫+= ⎪⎝⎭()A .-11B .-8C .3log 4D .38log 4-8.(2022·江西·南昌市实验中学一模(理))对于函数()y f x =,若存在0x ,使()()00f x f x =--,则称点()()00,x f x 与点()()00,x f x --是函数()f x 的一对“隐对称点”.若函数()2ln ,0,0x x f x mx mx x >⎧=⎨--≤⎩的图像恰好有2对“隐对称点”,则实数m 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .()0,1⋃(1,)+∞C .1,e ⎛⎫+∞ ⎪⎝⎭D .(1,)+∞二、多选题9.(2022·海南·模拟预测)下面关于函数23()2x f x x -=-的性质,说法正确的是()A .()f x 的定义域为(,2)(2,)-∞⋃+∞B .()f x 的值域为RC .()f x 在定义域上单调递减D .点(2,2)是()f x 图象的对称中心10.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是()A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点11.(2022·重庆巴蜀中学高三阶段练习)已知函数()f x 对任意x ∈R 都有()()2f x f x +=-,若函数()1y f x =-的图象关于1x =对称,且对任意的()12,0,2x x ∈,且12x x ≠,都有()()12120f x f x x x ->-,若()20f -=,则下列结论正确的是()A .()f x 是偶函数B .()20220f =C .()f x 的图象关于点()1,0对称D .()()21f f ->-12.(2022·河北秦皇岛·二模)已知函数())lg f x x =,()212xg x =+,()()()F x f x g x =+,则()A .()f x 的图象关于()0,1对称B .()g x 的图象没有对称中心C .对任意的[](),0x a a a ∈->,()F x 的最大值与最小值之和为4D .若()3311F x x x -+-<-,则实数x 的取值范围是()(),13,-∞⋃+∞三、填空题13.(2022·山东临沂·二模)已知函数e ()1xmxf x x =+-是偶函数,则m =__________.14.(2022·湖北·房县第一中学模拟预测)已知函数()()ln 0f x x a a a =-+>在21,e ⎡⎤⎣⎦上的最小值为1,则a 的值为________.15.(2022·广东佛山·三模)已知函数()22x x f x a -=+⋅的图象关于原点对称,若3(21)2f x ->,则x 的取值范围为________.16.(2022·陕西宝鸡·二模(文))若函数f (x )同时满足:(1)对于定义域上的任意x ,恒有()()0f x f x +-=;(2)对于定义域上的任意12,x x ,当12x x ≠,恒有()()12120f x f x x x -<-,则称函数f (x )为“理想函数”,下列①()1f x x=,②()=f x ,③()1212xxf x -=+,④22,0(),0x x f x x x ⎧-=⎨<⎩四个函数中,能被称为“理想函数”的有___________.(填出函数序号)四、解答题17.(2022·上海市市西中学高三阶段练习)设a ∈R ,函数2()21x x af x +=+;(1)求a 的值,使得f (x )为奇函数;(2)若3()2a f x +<对任意x ∈R 成立,求a 的取值范围.18.(2022·全国·高三专题练习)已知函数()21ax bf x x +=+是定义在()1,1-上的函数,()()f x f x -=-恒成立,且12.25f ⎛⎫= ⎪⎝⎭(1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数;(3)解不等式()()10f x f x -+<.19.(2022·陕西·武功县普集高级中学高三阶段练习(理))设函数()()20,1,R x xf x ka a a a k -=->≠∈,()f x 是定义域为R 的奇函数(1)确定k 的值(2)若()13f =,判断并证明()f x 的单调性;(3)若3a =,使得()()()221f x f x λ≤+对一切[]2,1x ∈--恒成立,求出λ的范围.20.(2022·全国·高三专题练习)定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥;(3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.21.(2022·全国·高三专题练习)定义在R 上的函数()f x ,对任意12,x x R ∈,满足下列条件:①1212()()()2f x x f x f x +=+-②(2)4f =(1)是否存在一次函数()f x 满足条件①②,若存在,求出()f x 的解析式;若不存在,说明理由.(2)证明:()()2g x f x =-为奇函数;22.(2022·上海·二模)对于函数()f x ,若在定义域内存在实数0x ,满足00()()f x f x -=-,则称()f x 为“M 类函数”.(1)已知函数π()2cos 3f x x ⎛⎫=- ⎪⎝⎭,试判断()f x 是否为“M 类函数”?并说明理由;(2)设1()423x x f x m +=-⋅-是定义域R 上的“M 类函数”,求实数m 的取值范围;(3)若()22log 2,3()2,3x mx x f x x ⎧->⎪=⎨-<⎪⎩为其定义域上的“M 类函数”,求实数m 取值范围.。

函数单调性方法和各种题型

函数单调性方法和各种题型

(一)判断函数单调性的基本方法Ⅰ、定义法:定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。

例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性Ⅲ、图像法:说明:⑴单调区间是定义域的子集⑵定义x1、x2的任意性⑶代数:自变量与函数值同大或同小→单调增函数自变量与函数相对→单调减函数例3:y=|x2+2x-3|练习:(二) 函数单调性的应用Ⅰ、利用函数单调性求连续函数的值域(最值)根据增函数减函数的定义我们可得到如下结论:(1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。

(2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。

例1:求下列函数的值域(1)y=x 2-6x+3, x ∈[-1,2](2)y=-x 2+2x+2, x ∈[-1,4]练习题:1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在[a,b]上的最小值是 ( )2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是( )3、()有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4-44-004 4、](()()的值域为时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、⎢⎣⎡⎪⎭⎫ ⎝⎛⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛ 5、求函数y=-x-6+的值域x -1Ⅱ、利用函数单调性求单调区间1、()________..62是的单调区间函数-+=x x x f2、的递增区间是函数)4-lg(52x x y -= .3、若函数22()82,()2,g x x x f x x =+-=-则(())y g f x =的单调区间是 .Ⅲ、利用函数单调性求未知数范围1. 函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是2、函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,则实数a 的取值范围是________.3、在 上是减函数,则a 的取值范围是( )。

函数的单调性的题型分类及解析

函数的单调性的题型分类及解析

函数的单调性知识点1、增函数定义、减函数的定义:(1)设函数)(x f y =的定义域为A ,区间M ⊆A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=∆x x x 时,都有0)()(12<-=∆x f x f y ,那么就称 函数)(x f y =在区间M 上是减函数,如图(2)注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)<f (x 2)能否推出x 1<x 2(x 1>x 2)2、我们来比较一下增函数与减函数定义中y x ∆∆,的符号规律,你有什么发现没有?3、如果将增函数中的“当012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ”改为当012<-=∆x x x 时,都有0)()(12<-=∆x f x f y 结论是否一样呢?4、定义的另一种表示方法如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若0)()(2121>--x x x f x f 即0>∆∆x y ,则函数y=f(x)是增函数,若0)()(2121<--x x x f x f 即0<∆∆x y,则函数y=f(x)为减函数。

判断题:①已知1()f x x=因为(1)(2)f f -<,所以函数()f x 是增函数. ②若函数()f x 满足(2)(3)f f <则函数()f x 在区间[]2,3上为增函数.③若函数()f x 在区间(1,2]和(2,3)上均为增函数,则函数()f x 在区间(1,3)上为增函数.④因为函数1()f x x =在区间(,0),(0,)-∞+∞上都是减函数,所以1()f x x=在(,0)(0,)-∞⋃+∞上是减函数.通过判断题,强调几点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。

考点04 函数单调性的5种判断方法及3个应用方向(解析版)

考点04  函数单调性的5种判断方法及3个应用方向(解析版)

专题二函数考点4 函数单调性的5种判断方法及3个应用方向【方法点拨】一、函数单调性的判断及解决应用问题的方法1.判断函数单调性的常用方法(1)定义法;(2)图象法;(3)利用函数的性质“增+增=增,减+减=减”判断;(4)复合函数的单调性根据“同增异减”判断;(5)导数法2.求函数的单调区间先定定义域,在定义域内求单调区间.单调区间不连续时,要用“和”或“,“连接,不能用“U”连接.3.单调性的应用的三个方向(1)比较大小:将自变量转化到同一个单调区间内,利用函数的单调性比较大小;(2)解函数型不等式:利用函数单调性,由条件脱去“f”;(3)求参数值或取值范围:利用函数的单调性构建参数满足的方程(组)、不等式(组).【高考模拟】1.函数()||1f x x =-与()()2g x x x =-的单调递增区间分别为( ) A .[1,+∞),[1,+∞) B .(﹣∞,1],[1,+∞) C .(1,+∞),(﹣∞,1] D .(﹣∞,+∞),[1,+∞)【答案】A 【分析】先对()f x ,()g x 进行化简,再求单调区间即可. 【解析】 解:()1,111,1x x f x x x x -≥⎧=-=⎨-+<⎩,()f x ∴在[)1,+∞上单调递增,()()222()211g x x x x x x -=-==--, ()g x ∴在[)1,+∞上单调递增,故选:A.2.函数y =)A .3,2⎛⎤-∞- ⎥⎝⎦B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3-∞-【答案】D 【分析】求出函数y =y =.【解析】由题意,230x x +≥,可得3x ≤-或0x ≥,函数y =(][),30,-∞-⋃+∞,令23t x x =+,则外层函数y =[)0,+∞上单调递增,内层函数23t x x =+在上(],3-∞-单调递减,在[)0,+∞上单调递增,所以,函数y =(],3-∞-.故选:D. 【点睛】方法点睛:求解函数的单调区间一般有以下几种方法:一是图象法,主要适用与基本初等函数及其在基本初等函数的基础上进行简单变化后的函数以及分段函数,可以借助图像来得到函数的单调区间;二是复合函数法,主要适用于函数结构较为复杂的函数,采用换元的思想将函数解析式分解为多层,利用同增异减的原理来求解;三是导数法,对于可导函数,可以解相应的导数不等式来求解函数的单调区间.3.函数()f x 在区间()4,7-上是增函数,则使得()3=-y f x 为增函数的区间为( ) A .()2,3- B .()1,7-C .()1,10-D .()10,4--【答案】C 【分析】先将函数()3=-y f x 看作函数()f x 向右平移3个单位所得到,再判断增区间即可. 【解析】函数()3=-y f x 可以看作函数()f x 向右平移3个单位所得到,故由函数()f x 在区间()4,7-上是增函数,得()3=-y f x 在区间()1,10-上是增函数. 故选:C.4.函数()2f x x x =-的单调减区间是( ) A .[]1,2 B .[]1,0-C .[]0,2D .[2,)+∞【答案】A 【分析】将函数写成分段函数的形式,即()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩再根据解析式得到函数的单调区间;【解析】()(2),2,(2),2,x x x f x x x x -⋅≥⎧=⎨-⋅<⎩∴直接通过解析式,结合二次函数图象得:(,1),(2,)-∞+∞递增,在[]1,2递减,故选:A.5.函数f (x )=x 2+2(a -1)x +2在区间(-∞,4)上递减,则a 的取值范围是( ) A .[3,)-+∞ B .(,3]-∞- C .(,5)-∞ D .[3,)+∞【答案】B 【分析】利用二次函数的性质,比较对称轴和区间端点的大小,列不等式可得a 的取值范围. 【解析】函数f(x)的对称轴是1x a =-,开口向上,则14a -≥,解得3a ≤- 故选:B6.若函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,则实数a 的取值范围为( ). A .(1,)+∞ B .(,1)-∞ C .(0,)+∞ D .(,0)-∞【答案】D 【分析】直接由单调性的定义求解即可 【解析】解:任取12,(0,)x x ∈+∞,且12x x <,因为函数2()()f x ax a -=∈R 在(0,)+∞上单调递增,所以12()()f x f x <,即22120ax ax ---<,所以221211()0a x x -<,21212212()()0x x x x a x x +-⋅<⋅, 因为120x x <<,所以210x x +>,210x x ->,22120x x ⋅>,所以0a <. 故选:D7.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上单调递减,那么实数a 的取值范围是( ) A .3a ≤- B .3a ≥-C .5a ≤D .5a ≥【答案】A【分析】求出二次函数的对称轴,根据单调区间与对称轴之间的关系建立条件,即可求出a 的取值范围. 【解析】 解:二次函数2()2(1)2f x x a x =+-+的对称轴为2(1)(1)12a x a a -=-=--=-,抛物线开口向上,∴函数在(-∞,1]a -上单调递减,要使()f x 在区间(-∞,4]上单调递减, 则对称轴14a -, 解得3a-.故选:A . 【点睛】本题主要考查二次函数的图象和性质,根据二次函数单调性与对称轴之间的关系是解决本题的关键. 8.“1m ”是“函数1()2ln f x x mx x=-+单调递减”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【分析】求出()y f x =的导函数,利用()y f x =单调递减,则()0f x '≤恒成立,求出m 的范围,比较所求范围和条件中给定范围的关系,得出结论. 【解析】 由221()f x m x x '=--,若函数()y f x =单调递减,必有当(0,)x ∈+∞时,2210m x x--≤恒成立,可化为2111m x ⎛⎫≥--+ ⎪⎝⎭,可得m 1≥.故“1m ”是“函数1()2ln f x x mx x =-+单调递减”的充分不必要条件. 故选:A. 9.若函数2()1f x x =-的定义域是(﹣∞,1)∪[2,5),则其值域为( ) A .(﹣∞,0)B .(﹣∞,2]C .10,2⎛⎤ ⎥⎝⎦D .1(,0),22⎛⎤-∞⋃ ⎥⎝⎦【答案】D 【分析】分x<1和x ∈[2,5)两种情况,利用反比例函数的性质得出函数的值域. 【解析】由题意可得:当x<1时,则x ﹣1<0所以y ∈(﹣∞,0) 当x ∈[2,5)时,则x ﹣1∈[1,4),所以y ∈1,22⎛⎤⎥⎝⎦所以函数的值域为1(,0),22⎛⎤-∞⋃ ⎥⎝⎦.故选:D.10.若关于x 的不等式342xx a+-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞【答案】D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【解析】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.11.若01m n <<<且1mn =,则2m n +的取值范围是( )A.)+∞ B .[3,)+∞C.)+∞D .(3,)+∞【答案】D 【分析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果. 【解析】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=, 设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >, 函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞. 故选:D. 【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <; (2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形; (3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论. 12.函数()()2404xf x x x x x =++>+的最小值为( ) A .2 B .103C .174D .265【答案】C 【分析】 令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值. 【解析】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥=,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥, 任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭, 124t t >≥,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.13.若函数1y ax =+在区间[]1,3上的最大值是4,则实数a 的值为( ) A .-1 B .1C .3D .1或3【答案】B 【分析】分0a >和0a <两种情况求解,0a >时,1y ax =+在区间[]1,3上为增函数,从而可求出其最大值,当0a <时,1y ax =+在区间[]1,3上为减函数,从而可求出其最大值,进而可得答案 【解析】解:当0a >时,1y ax =+在区间[]1,3上为增函数,则当3x =时,y 取得最大值,即314a +=,解得1a =;当0a <时,1y ax =+在区间[]1,3上为减函数,则当1x =时,y 取得最大值,即14a +=,解得3a =舍去, 所以1a =, 故选:B14.函数2y ax =+在[1,2]上的最大值与最小值的差为3,则实数a 为( ) A .3 B .-3 C .0 D .3或-3【答案】D 【分析】讨论a 的取值,判断函数的单调性,求出函数的最值,作差即可求解. 【解析】解:①当0a =时,2=2y ax =+,不符合题意;②当0a >时,2y ax =+在[]1,2上递增,则()()2223a a +-+=,解得3a =; ③当0a <时,2y ax =+在[]1,2上递减,则()()2223a a +-+=,解得3a =-.综上,得3a =±, 故选:D .15.已知函数24()2tx t f x x --+=+在区间[1,2]-上的最大值为2,则实数t 的值为( )A .2或3B .1或3C .2D .3【答案】A 【分析】 函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+,根据绝对值的最大值为2进行分类讨论检验即可. 【解析】 由题函数()24422tx t f x t x x --+==-+++,4[1,2],[1,4]2x t t t x ∈--+∈--+ ()24422tx t f x t x x --+==-+++的最大值为4t -或1t -当41t t -≥-时,即52t ≤时,最大值42t -=解得:2t =;当41t t -<-时,即52t >时,最大值12t -=解得:3t = 综上所述:t 的值等于2或3. 故选:A 【点睛】解决本题的关键是利用单调性求出42t x -++的范围,再结合绝对值的性质进行求解. 16.若函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R ,则实数a 的取值范围为( ) A .1[2,1)B .1(0,)7C .1[7,1)2D .1[2,1]【答案】C 【分析】根据分段函数的值域为R ,具有连续性,由12log y x =是减函数,可得(21)3y a x a =-+也是减函数,故得210a -<,(21)231a a -⨯+-,可得答案. 【解析】解:函数12,02()(21)3,2log x x f x a x a x <<⎧⎪=⎨⎪-+⎩的值域为R , 由12log y x =是减函数,(21)3y a x a ∴=-+也是减函数,故得210a -<, 解得:12a <, 函数()f x 的值域为R ,12(21)23log 21a a -⨯+=-,解得:17a. ∴实数a 的取值范围是1[7,1)2.故选:C .17.若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()()f a f a < B .1()f a f a ⎛⎫<⎪⎝⎭C .()(2)f a f a <D .2()(1)f a f a <-【答案】D 【分析】根据函数单调性,以及题中条件,逐项判断,即可得出结果. 【解析】因为函数()f x 是R 上的减函数,0a >,A 选项,()21a a a a -=-,当1a >时,2a a >,所以2()()f a f a <;当01a <<时,2a a <,所以2()()f a f a >,即B 不一定成立; B 选项,当1a >时,1a a >,所以1()f a f a ⎛⎫< ⎪⎝⎭;当01a <<时,1a a <,所以1()f a f a ⎛⎫> ⎪⎝⎭,即B 不一定成立;C 选项,0a >时,2a a >,则()(2)f a f a >,所以C 不成立;D 选项,()2221311024a a a a a ⎛⎫--=-+=-+> ⎪⎝⎭,则21a a >-;所以2()(1)f a f a <-,即D一定成立. 故选:D.18.已知函数2()f x x bx c =++,且(2)()f x f x +=-,则下列不等式中成立的是( ) A .(4)(0)(4)f f f -<< B .(0)(4)(4)f f f <-< C .(0)(4)(4)f f f <<- D .(4)(0)(4)f f f <<-【答案】C 【分析】由(2)()f x f x +=-,即可得到()f x 图象的对称轴为1x =,所以根据图象上的点离对称轴的距离即可比较出(0),(4),(4)f f f -的大小关系. 【解析】由(2)()f x f x +=-得()f x 图象的对称轴为1x =,所以()f x 在(,1]-∞上单调递减,在[1,)+∞上单调递增,且(4)(2)f f =-, 所以(0)(2)(4)(4)f f f f <-=<-, 故选:C. 【点睛】方法点睛:该题考查的是有关函数值的比较大小的问题,解题方法如下:(1)首先根据题中所给的函数解析式,判断函数类型,根据题中所给的条件,判断出函数图象的对称轴;(2)利用对称性,将自变量所对应的函数值进行转换; (3)根据函数的单调性求得结果.19.若定义在R 上的偶函数()f x 在[)0,+∞上是减函数,则下列各式一定成立的是( ) A .()()06f f < B .()()32f f -> C .()()13f f -> D .()()58f f -<-【答案】C 【分析】由偶函数及在[)0,+∞上是减函数,知在(,0]-∞上是增函数,即可判断各项的正误. 【解析】A :在[)0,+∞上是减函数,即()()06f f >,错误;B :(3)(3)f f -=,()f x 在[)0,+∞上是减函数,有()()32f f <,即()()32f f -<,错误; C :(1)(1)f f -=,()f x 在[)0,+∞上是减函数,有()()31f f <,即()()13f f ->,正确; D :由题意,()f x 在(,0]-∞上是增函数,()()58f f ->-,错误; 故选:C20.设函数()f x 是(),-∞+∞上的减函数,又若a R ∈,则( ) A .()()2f a f a >B .()()2f a f a < C .()()2f a a f a +<D .()()211f a f +≤【答案】D 【分析】利用特殊值法可判断ABC 选项的正误,利用函数的单调性可判断D 选项的正误. 【解析】对于A 选项,取0a =,则2a a =,()()2f a f a ∴=,A 选项错误; 对于B 选项,取0a =,则2a a =,所以,()()2f af a =,B 选项错误;对于C 选项,取0a =,则2a a a +=,所以,()()2f a a f a +=,C 选项错误;对于D 选项,对任意的a R ∈,211a +≥,所以,()()211f a f +≤,D 选项正确.故选:D.21.函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞【答案】A 【分析】依题意可得()f x 再定义域上单调递增,又()10f =,即可得到1x <时,()0f x <;1 x >时,()0f x >;再分类讨论分别计算最后取并集即可;【解析】解:由题意可知()f x 在(),-∞+∞单调递增,又()10f =,1x <时,()0f x <;1 x >时,()0f x >; 对于()()2 0x f x ->,当2x >时,不等式成立, 当12x <<时,()20, 0x f x -<>,不等式不成立; 当1x <时,20x -<,且()0f x <, 不等式成立不等式的解集(,1)(2,)-∞⋃+∞ 故选:A .22.已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭)A .()6063,e +∞B .()20210,eC .()2021,e +∞D .()60630,e【答案】D 【分析】由题意构造新函数()()xf x F x e =,得到函数的单调性,对问题进行变形,由单调性转化为求解不等式问题,即可得到结果 【解析】 由题可设()()x f x F x e=,'()()0f x f x ->,则2'()()'()()'()0x x x xf x e f x e f x f x F x e e--==>, 所以函数()F x 在R 上单调递增,2021(2021)(2021)1f F e==,将不等式1ln 3f x ⎛⎫< ⎪⎝⎭1ln 311ln ln 3311ln ln 33x x x f x f x e e e ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭⋅=, 可得1ln 13F x ⎛⎫< ⎪⎝⎭,即1ln (2021)3F x F ⎛⎫< ⎪⎝⎭,有1ln 20213x <,故得60630x e <<,所以不等式1ln 3f x ⎛⎫< ⎪⎝⎭()60630,e ,故选:D. 【点睛】关键点睛:本题的解题关键是构造新函数,然后运用函数单调性求解不等式,通常情况构造新函数的形式如:()()xf x F x e =、()()F x xf x =或者()()f x F x x =等,需要结合条件或者问题出发进行构造.23.已知函数2()121xf x =-+,且()41(3)xf f ->,则实数x 的取值范围是( ). A .(2,)+∞ B .(,2)-∞C .(1,)+∞D .(,1)-∞【答案】D 【分析】用导数判断函数()f x 的单调性,再解不等式即可. 【解析】 因为()()22ln 2021x xf x -=<+',所以函数2()121x f x =-+在R 上单调递减, 由于()41(3)xf f ->所以413x-<,得1x <故选:D 【点睛】关键点点晴:判断函数()f x 的单调性是解题的关键.24.已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( ) A .[)1,+∞ B .(],1-∞C .()1,+∞D .(),1-∞【答案】B 【分析】构造新函数()()21F x f x x =--,利用导数判断()F x 单减,又(1)0F =可解1x ≤. 【解析】令()()21F x f x x =--,则()()2F x f x ''=-, 又因为对x ∀∈R 恒有()2f x '< 所以()()20F x f x ''=-<恒成立, 所以()()21F x f x x =--在R 上单减. 又(1)(1)210F f =--=, 所以()0F x ≥的解集为(],1-∞ 故选:B 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式; (2)复合函数型不等式;(3)抽象函数型不等式; (4)解析式较复杂的不等式;25.已知函数f (x ) f (2a 2-5a +4)<f (a 2+a +4) ,则实数a 的取值范围是( ) A .1,2⎛⎫-∞ ⎪⎝⎭∪(2,+∞)B .[2,6)C .10,2⎛⎤ ⎥⎝⎦∪[2,6)D .(0,6)【答案】C 【分析】由解析式知()f x 在定义域上递增,由已知函数不等式有2222544a a a a ≤-+<++,即可求解a 的取值范围. 【解析】由题意,()f x 在[2,)+∞上单调递增,∵22(254)(4)f a a f a a -+<++,即2222544a a a a ≤-+<++, ∴260a a -<或22520a a -+≥,可得26a ≤<或102a <≤. 故选:C 【点睛】关键点点睛:利用函数的单调性,列不等式求参数的范围.易错点是定义域容易被忽略.26.已知函数()f x 的图象关于y 轴对称,当0x ≥时,()f x 单调递增,则不等式(2)(1)f x f x >-的解集为__________. 【答案】1(,1)(,)3-∞-⋃+∞ 【分析】由题意可得()f x 为偶函数,再由偶函数的性质可将(2)(1)f x f x >-,转化为(2)(1)f x f x >-,再由当0x ≥时,()f x 单调递增,可得21x x >-,从而可求出x 的范围 【解析】解:依题意,()f x 为偶函数,当0x ≥时,()f x 单调递增,要满足(2)(1)f x f x >-,则要求21x x >-,两边平方得22412x x x >-+,即23210x x +->,即(1)(31)0x x +->,解得1(,1)(,)3x ∈-∞-⋃+∞. 故答案为:1(,1)(,)3-∞-⋃+∞.27.设()xf x a x =+,若()36f =,则不等式()()21f x f x ->的解集为____________.【答案】()1,+∞ 【分析】先由()36f =,解出a ,讨论()xf x a x =+的单调性,利用函数单调性解不等式即可.【解析】因为()xf x a x =+,且()36f =,,所以33a =,解得1a =>.()(),ln 1x x f x f a x a x a =+∴=+' ln 0,ln 111,x x a a a a a >∴>∴>+,()x f x a x ∴=+在R 上单增.()()21f x f x ->可化为:21x x ->解得:1x >.不等式()()21f x f x ->的解集为()1,+∞ 故答案为:()1,+∞ 【点睛】利用单调性解不等式通常用于: (1)分段函数型不等式;(2)复合函数型不等式;(3)抽象函数型不等式;(4)解析式较复杂的不等式;28.已知定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,则不等式(1)01f x x +≥-的解集为___________.【答案】[]3,1-- 【分析】先由定义域为R 的奇函数()f x 在区间(0,)+∞上为严格减函数,且()20f =,画出()f x 的草图,结合图像对(1)01f x x +≥-进行等价转化,解不等式即可.【解析】()f x 是定义域为R 的奇函数,且在区间(0,)+∞上为严格减函数,有()20f =,∴()f x 在区间(,0)-∞上为严格减函数且()20f =,可作出()f x 的草图:不等式(1)01f x x +≥-可化为:()1010x f x ->⎧⎨+≥⎩或()1010x f x -<⎧⎨+≤⎩对于()1010x f x ->⎧⎨+≥⎩,当1x >时()12,10x f x +>+<,无解;对于()1010x f x -<⎧⎨+≤⎩,当1x <时()12,10x f x +<+≤,由图像观察,210x -≤+≤解得:31x -≤≤- 所以不等式(1)01f x x +≥-的解集为[]3,1--.故答案为:[]3,1-- 【点睛】常见解不等式的类型:(1)解一元二次不等式用图像法或因式分解法; (2)分式不等式化为标准型后利用商的符号法则; (3)高次不等式用穿针引线法; (4)含参数的不等式需要分类讨论.29.已知函数()()23log 440f x ax x =-+>在x ∈R 上恒成立,则a 的取值范围是_________.【答案】4,3⎛⎫+∞ ⎪⎝⎭【分析】由题意,把函数()()23log 440f x ax x =-+>在x ∈R 上恒成立转化为2430ax x -+>对x ∈R上恒成立,列不等式解得a 的范围. 【解析】()()23log 440f x x x α=-+>恒成立,即()2233log 44log 1430ax x ax x -+>⇔-+>恒成立,所以0a =时显然不成立.当0a ≠时()0Δ16120a a >⎧⎨=-<⎩得43a <,所以4,3a ⎛⎫∈+∞ ⎪⎝⎭.故答案为:4,3⎛⎫+∞ ⎪⎝⎭【点睛】(1)求参数的范围是常见题型之一,处理的方法有两种:①不分离参数,直接求最大值或最小值,解不等式;②分离参数法.(2)解指、对数型的不等式,通常化为同底的结构,利用函数的单调性解不等式.30.设函数3,1()1+1,1x x f x x x x ≤⎧⎪=⎨->⎪⎩,则不等式()26()f x f x ->的解集为_________.【答案】()3,2- 【分析】先判断函数的单调性,再解抽象不等式. 【解析】当1x >时,31+1y x x=-是增函数,此时1y >; 当1x ≤时, y x =是增函数,此时1y ≤, 所以函数()f x 是单调递增函数,()()2266f x f x x x ->⇔->,解得:32x -<<,所以不等式的解集是()3,2-. 故答案为:()3,2-。

(6)函数的单调性的证明以及典型题型

(6)函数的单调性的证明以及典型题型

函数单调性的证明一、定义法证明普通函数的单调性1、求证函数y=x ³+x 在R 上是增函数。

3、求证:函数x x f -=)(在定义域上是减函数.4、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5、证明函数xx x f 1)(+=在)1,0(上是减函数。

6、求证:函数x x x f --=21)(在R 上是单调减函数.7、指出f(x)=2x ²+4x 的单调区间,并对减区间的情况给予证明。

8、求12)(2--=x x x f 的单调区间一、定义法证明带字母的函数的单调性1、 用定义证明:(1)函数f(x)=kx+b(k<0,k 、b 为常数)在R 上是减函数。

(2)函数xk x g =)((k<0,k 为常数)在)0,(-∞上是增函数。

2、 求证函数x a x x f +=)((a>0)在(0,a )上是减函数,在(a ,+∞)上是增函数。

3、 讨论1)(2-=x ax x f (-1<x<1,a ≠0)的单调性 4、 设函数(a >b>0),求b x a x x f ++=)(的单调区间,并证明f(x)在其单调区间上的单调性。

二、定义法证明抽象函数的单调性:1、已知函数f(x)的定义域为R ,满足f(-x)= 0)(1>x f ,且g(x)=f(x)+c(c 为常数),在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性。

2、已知g(x)在[m,n]上的减函数,且a ≤g(x)≤b,f(x)是[a,b]上的增函数,求证f[g(x)]在[m,n]上也是减函数。

三、利用单调性求函数的值域:求下列函数的值域:1、 y=-+2x x -6 2、 y=+x 1-x3、 y=+3-x 2x +四、利用函数单调性比较大小1、 如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。

完整版)函数的单调性知识点与题型归纳

完整版)函数的单调性知识点与题型归纳

完整版)函数的单调性知识点与题型归纳备考知考情:在高考中,理解函数的单调性、最大值、最小值及其几何意义以及运用基本初等函数的图象分析函数的性质是非常重要的。

函数的单调性是热点,常见问题有求单调区间、判断函数的单调性、求参数的取值、利用函数单调性比较数的大小以及解不等式等。

客观题主要考查函数的单调性,最值的确定与简单应用。

题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现。

一、知识梳理在研究函数单调性之前,必须先求函数的定义域。

函数的单调区间是定义域的子集,单调区间不能并。

知识点一:函数的单调性单调函数的定义:若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D 叫做f(x)的单调区间。

注意:1.定义中x1,x2具有任意性,不能是规定的特定值。

2.函数的单调区间必须是定义域的子集。

3.定义有两种变式。

问题探究:1.关于函数单调性的定义应注意哪些问题?1)定义中x1,x2具有任意性,不能是规定的特定值。

2)函数的单调区间必须是定义域的子集。

3)定义有两种变式。

2.单调区间的表示注意哪些问题?单调区间只能用区间表示,不能用集合或不等式表示。

如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结。

知识点二:单调性的证明方法:定义法及导数法高频考点例1:规律方法1) 定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1<x2;②作差f(x1)-f(x2),并适当变形(如“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性。

2) 导数法:x+1x+1a>0)由定义可知。

f(x1f(x2即f(x)在(-1,+∞)上为增函数.法二:导数法f′(x)=a(x+1)-axx+1)2ax+1)2a>0,x∈(-1,+∞))即f(x)在(-1,+∞)上为增函数.例2.(2)《名师一号》P16高频考点例1(2)判断函数f(x)=x2-2x+3在R上的单调性,并证明.法一:导数法f′(x)=2x-22(x-1)当x<1时,f′(x)<0,即f(x)在(-∞,1)上为减函数;当x>1时,f′(x)>0,即f(x)在(1,+∞)上为增函数.综上可知,f(x)在R上单调性不同.法二:二次函数法对于任意实数x,有f(x)=(x-1)2+2因为平方项非负,所以f(x)的最小值为2,即f(x)≥2;又因为当x=1时,f(x)=2,所以f(x)的最小值为2,即f(x)≥2;又因为当x=1时,f(x)=2,所以f(x)在(-∞,1)上为减函数,在(1,+∞)上为增函数.综上可知,f(x)在R上单调性不同.例3.(1)《名师一号》P16高频考点例1(3)设f(x)=exax-b,其中a,b为常数,证明:当a2<4时,f(x)在R上为凸函数;当a2>4时,f(x)在R上为下凸函数;当a2=4时,f(x)在R上为抛物线.证明:f′(x)=exaf′′(x)=ex当a20,即f(x)在R上为凸函数;当a2>4时,f′′(x)<0,即f(x)在R上为下凸函数;当a2=4时,f′′(x)=0,即f(x)为抛物线.因此,当a2<4时,f(x)在R上为凸函数;当a2>4时,f(x)在R上为下凸函数;当a2=4时,f(x)在R上为抛物线.2.1、解析:根据题意,我们可以列出不等式a-2<0,解得a≤2.代入原式得到实数a的取值范围为(-∞。

利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性(共10种题型)

利用导数探究函数的单调性一.求单调区间例1:已知函数2()ln (0,1)x f x a x x a a a =+->≠,求函数)(x f 的单调区间 解:()ln 2ln 2(1)ln x x f x a a x a x a a '=-=-++.则令()()g x f x '=因为当0,1a a >≠ 所以2()2ln 0x g x a a '=+> 所以()f x '在R 上是增函数, 又(0)0f '=,所以不等式()0f x '>的解集为(0,)∞+,故函数()f x 的单调增区间为(0,)∞+ 减区间为:(0)-∞,变式:已知()x f x e ax =-,求()f x 的单调区间解:'()x f x e a =- 当0a ≤时,'()0f x >,()f x 单调递增当0a >时,由'()0x f x e a =->得:ln x a >,()f x 在(ln ,)a +∞单调递增由'()0x f x e a =-<得:ln x a <,()f x 在(ln )a -∞,单调递增 综上所述:当0a ≤时,()f x 的单调递增区间为:-∞+∞(,),无单调递减区间当0a >时,()f x 的单调递增区间为:(ln ,)a +∞,递减区间为:(ln )a -∞,二.函数单调性的判定与逆用例2.已知函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数,求正整数a 的取值集合 解:2()322f x x ax '=+-因为函数32()25f x x ax x =+-+在1132(,)上既不是单调递增函数,也不是单调递减函数 所以2()322=0f x x ax '=+-在1132(,)上有解 所以''11()()032f f <又*a N ∈ 解得:5542a << 所以正整数a 的取值集合{2}三.利用单调性求字母取值范围 例3. 已知函数()ln xf x ax x=-,若函数()y f x =在1+?(,)上是减函数,求实数a 的最小值. 解:因为()ln xf x ax x=-在1+?(,)上是减函数 所以'2ln 1()0(ln )x f x a x -=-?在1+?(,)上恒成立 即2ln 1(ln )x a x -³在1+?(,)上恒成立令ln ,(1)t x x =>,则0t >21()(0)t h t t t -=> 则max ()a h t ³因为222111111()=()()24t h t t t t t -=-+=--+ 所以max 1()=(2)4h t h =所以14a ³变式:若函数3211()(1)132f x x ax a x =-+-+在区间1,4()上为减函数,在区间(6,)+?上为增函数,试求实数a 的取值范围. 解:2'()=1f x x ax a -+-因为函数()y f x =在区间1,4()上为减函数,在区间(6,)+?上为增函数 所以''()0(1,4)()0,(6,)f x x f x x ìï??ïíï???ïî,恒成立即2210(1,4)10,(6,)x ax a x x ax a x ì-+-??ïïíï-+-???ïî, 所以2211,(1,4)111,(6,)1x a x x x x a x x x ì-ïï?+"?ïï-íï-ï?+"??ïï-ïî所以4161a a ì?ïïíï?ïî所以57a #四.比较大小例4. 设a 为实数,当ln 210a x >->且时,比较x e 与221x ax -+的大小关系. 解:令2()21(0)x f x e x ax x =-+-> 则'()=22x f x e x a -+ 令'()()g x f x = 则'()e 2x g x =- 令'()0g x =得:ln 2x =当ln 2x >时,'()0g x >;当ln 2x <时,'()0g x <所以ln2min ()()=(ln2)2ln2222ln22g x g x g e a a ==-+=-+极小值 因为ln 21a >- 所以'()()0g x f x =>所以()f x 在0+?(,)上单调递增所以()(0)0f x f >= 即2210x e x ax -+-> 所以221x e x ax >-+变式:对于R 上的可导函数()y f x =,若满足'(3)()0x f x ->,比较(1)(11)f f +与2(3)f 的大小关系.解:因为'(3)()0x f x ->所以当3x >时,'()0f x >,()f x 单调递增,故(11)(3)f f >当3x <时,'()0f x <,()f x 单调递减,故(1)(3)f f > 所以(1)(11)2(3)f f f +> 五.证明不等式例5.已知函数|ln |)(x x f =,()(1)g x k x =- (R)k ∈.证明:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >. 证明:令()|ln |(1)=ln (1),(1,)G x x k x x k x x =----∈+∞ 则有'11(),(1,)kx G x k x x x-=-=∈+∞ 当01k k ≤≥或时,'()0G x >,故 ()G x 在1+∞(,)上单调递增,()G(1)0G x >=.故任意实数 (1,)x ∈+∞ 均满足题意.当 01k << 时,令'()=0G x ,得11x k=>. 当1(1,)x k ∈时,'()0G x >,故 ()G x 在1(1,)k上单调递增当1()x k∈+∞,时,'()0G x <,故 ()G x 在1()k +∞,上单调递减 取01x k=,对任意0(1,)x x ∈,有'()0G x >,故()G x 在0(1,)x 上单调递增所以()G(1)0G x >= 即()()f x g x >综上所述:当1k <时,存在01x >,使得对任意的0(1,)x x ∈,恒有()()f x g x >.变式:已知关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、.求证:120x x <+ 证明:因为2(1)x x e ax a --=所以2(1)1xx e a x -=+令2(1)()1xx e f x x -=+则222222(23)[(1)2]()11x xx x x e x x e f x x x --+--+'==++()()当0x >时()0f x '<,()f x 单调递减 当0x <时()0f x '>,()f x 单调递增因为关于x 的方程2(1)x x e ax a --=有两个不同的实数根12x x 、所以不妨设12(,0),(0,)x x ∈-∞∈+∞ 要证:120x x <+ 只需证:21x x <-因为210x x -∈+∞(,),且函数()f x 在0+∞(,)上单调递减 所以只需证:21()()f x f x >-,又因为21()=()f x f x 所以只需证:11()()f x f x >-即证:11112211(1)(1)11x x x e x e x x --+>++ 即证:(1)(1)0x x x e x e ---+>对0x ∈-∞(,)恒成立 令g()(1)(1)x x x x e x e -=--+,0x ∈-∞(,)则g ()()x x x x e e -'=-因为0x ∈-∞(,)所以0x x e e -->所以g ()()0x x x x e e -'=-<恒成立所以g()(1)(1)x x x x e x e -=--+在0-∞(,)上单调递减所以g()(0)0x g >= 综上所述:120x x <+ 六.求极值例6.已知函数2()()x f x x ax a e =++,是否存在实数a ,使得函数()f x 的极大值为3?若存在,求出a 的值,若不存在,请说明理由.解:'22()(2)()[(2)2]=()(2)x x x x f x x a e x ax a e x a x a e x a x e =++++=+++++ 令'()=0f x 得:2x a x =-=-或当2a =时,'()0f x ≥恒成立,无极值,舍去当2a <时,2a ->-由表可知:2()=(2)(42)3f x f a a e --=-+=极大值 解得:2432a e =-< 当2a >时,2a -<-由表可知:22()=()()3a f x f a a a a e --=-+=极大值,即3a ae -= 所以:=3a a e 令()3(2)a g a e a a =-> 则'2()31310a g a e e =->->所以()y g a =在2+∞(,)上单调递增又2(2)320g e =->所以函数()y g a =在2+∞(,)上无零点即方程=3a a e 无解综上所述:存在实数a ,使得函数()f x 的极大值为3,此时243a e =- 七.求最值例7. 已知函数2()ln (0,1)x f x a x x a a a =+->≠,若存在]1,1[,21-∈x x ,使得12()()e 1f x f x -≥-(其中e 是自然对数的底数),求实数a 的取值范围. 解:因为存在12,[1,1]x x ∈-,使得12()()e 1f x f x --≥成立, 而当[1,1]x ∈-时,12max min ()()()()f x f x f x f x --≤, 所以只要max min ()()e 1f x f x --≥即可又因为x ,()f x ',()f x 的变化情况如下表所示:所以()f x 在[1,0]-上是减函数,在[0,1]上是增函数,所以当[1,1]x ∈-时,()f x 的最小值()()m i n 01f x f ==,()f x 的最大值()max f x 为()1f -和()1f 中的最大值.因为11(1)(1)(1ln )(1ln )2ln f f a a a a a aa--=--=--+++,令1()2ln (0)g a a a a a =-->,因为22121()1(1)0g a a a a '=-=->+,所以1()2ln g a a a a=--在()0,a ∈+∞上是增函数.而(1)0g =,故当1a >时,()0g a >,即(1)(1)f f >-; 当01a <<时,()0g a <,即(1)(1)f f <-所以,当1a >时,(1)(0)e 1f f --≥,即ln e 1a a --≥,函数ln y a a =-在(1,)a ∈+∞上是增函数,解得e a ≥;当01a <<时,(1)(0)e 1f f ---≥,即1ln e 1a a+-≥,函数1ln y a a=+在(0,1)a ∈上是减函数,解得10ea <≤.综上可知,所求a 的取值范围为1(0,][e,)ea ∈∞+ 我变式:已知函数()ln()(0)x a f x e x a a -=-+>在区间0+∞(,)上的最小值为1,求实数a 的值.解:1()=x a f x e x a-'-+ 令()()g x f x '=则21()=0(x a g x e x a -'+>+)所以()y g x =在区间0+∞(,)单调递增所以存在唯一的00x ∈+∞(,),使得0001()0x a g x e x a-=-=+ 即001=x a e x a-+ 所以当0(0,)x x ∈时,()()0g x f x '=<,()y f x =单调递减当0()x x ∈+∞,时,()()0g x f x '=>,()y f x =单调递增 所以0min 00()()ln()x a f x f x e x a -==-+ 由001=x a e x a-+得:00=ln()x a x a --+ 所以0min 00001()()ln()=x a f x f x e x a x a x a-==-++-+001=()2222x a a x aa a++-+≥=- 当且仅当001=x a x a++即0=1x a +,min 0()()22f x f x a ==- 由22=1a -得12a =,此时01=2x ,满足条件 所以12a =八.解不等式例8. 函数2)0())((=∈f R x x f ,,对任意1)()('>+∈x f x f R x ,,解不等式:1)(+>x x e x f e 解:令()()x x g x e f x e =-则()()()(()()1)x x x x g x e f x e f x e e f x f x '''=+-=+-因为对任意1)()('>+∈x f x f R x , 所以()0g x '>,所以()y g x =为R 上的单调递增函数 又(0)(0)11g f =-=所以当1)(+>x x e x f e 即()1x x e f x e -> 所以()(0)g x g > 所以0x >即不等式:1)(+>x x e x f e 的解集为0+∞(,)变式:已知定义在R 上的可导函数()y f x =满足'()1f x <,若(12)()13f m f m m -->-,求m 的取值范围.解:令()()g x f x x =- 则()()1g x f x ''=- 因为'()1f x <所以()()10g x f x ''=-<所以()()g x f x x =-为R 上递减函数 由(12)()13f m f m m -->- 得:(12)()f m m f m m ---(1-2)> 即(12)()g m g m -> 所以12m m ->即13m <九.函数零点个数(方程根的个数)例9. 已知2()2ln()f x x a x x =+--在0x =处取得极值.若关于x 的方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根,求实数b 的取值范围.解: '2()21f x x x a=--+ 因为2()2ln()f x x a x x =+--在0x =处取得极值 所以'2(0)1=0f a=-, 即2a =,检验知2a =符合题意.令2()()2ln(2)[1,1]g x f x b x x x b x =+=+--+∈-,'52()22()21(11)x x g x x x +=--=--≤≤ 所以()=(0)2ln 2g x g b =+极大值因为方程()0f x b +=在区间[1,1]-上恰有两个不同的实数根所以(1)0(0)0(1)0g g g -≤⎧⎪>⎨⎪≤⎩,即02ln 202ln 320b b b ≤⎧⎪+>⎨⎪-+≤⎩解得:2ln 222ln 3b -<≤-所以实数b 的取值范围是:2ln 222ln3]--(, 变式:已知函数()y f x =是R 上的可导函数,当0x ¹时,有'()()0f x f x x+>,判断函数13()()F x xf x x=+的零点个数解:当0x ¹时,有'()()0f x f x x+> 即'()()0xf x f x x+> 令()()g x xf x =,则'()()()g x xf x f x ¢=+所以当0x >时,'()()()0g x xf x f x ¢=+>,函数()y g x =在0+∞(,)单调递增 且()g(0)=0g x >所以当0x >时,13()()0F x xf x x=+>恒成立,函数()y F x =无零点 当0x <时,'()()()0g x xf x f x ¢=+<,函数()y g x =在0∞(-,)单调递减 且()g(0)=0g x >恒成立 所以13()()F x xf x x=+在0∞(-,)上为单调递减函数 且当0x →时,()0xf x ®,所以13()0F x x? 当x →-∞时,10x®,所以()()0F x xf x ? 所以13()()F x xf x x=+在0∞(-,)上有唯一零点 综上所述:13()()F x xf x x =+在0∞∞(-,)(0,+)上有唯一零点 十.探究函数图像例10.设函数在定义域内可导,()y f x =的图像如图所示,则导函数()y f x '=的图像可能为下列图像的 .解:由()y f x =的图像可判断出:()f x 在(,0)-∞递减,在(0)+∞,上先增后减再增 所以在(,0)-∞上()0f x '<,在(0)+∞,上先有()0f x '>,后有()0f x '<,再有()0f x '>. 所以图(4)符合.变式:已知函数ln(2)()x f x x =,若关于x 的不等式2()()0f x af x +>只有两个整数解,求实数a 的取值范围. 解:21ln(2)()=x f x x -',令()=0f x '得2e x = 所以当02e x <<时,()0,()f x f x '>单调递增 当2e x >时,()0,()f x f x '<单调递减 由当12x <时,()0f x <,当12x >时,()0f x >(1)(2)(3)(4)作出()f x 的大致函数图像如图所示: 因为2()()0f x af x +>(1)若0a =,即2()0f x >,显然不等式有无穷多整数解,不符合题意;(2)若0a >,则()()0f x a f x <->或,由图像可知,()0f x >,有无穷多整数解(舍)(3)若0a <则()0()f x f x a <>-或,由图像可知,()0f x <无整数解, 所以()f x a >-有两个整数解因为(1)(2)ln 2f f ==,且()f x 在(,)2e +∞上单调递减 所以()f x a >-的两个整数解为:1,2x x == 又ln 6(3)3f =所以ln 6ln 23a ≤-< 所以ln 6ln 23a -<≤-。

函数单调性的题型和解题方法

函数单调性的题型和解题方法

函数单调性的题型和解题方法
函数单调性是指函数在定义域内的单调性,也就是说函数随着其自变量增加而增加或减少。

常见的单调性题型包括:
1.判断一个函数是单调增还是单调减
2.确定函数的极值
3.确定函数的单调区间
解题方法:
1.对于一个函数,首先要求出其导函数,然后
判断导函数的正负性,来确定原函数的单调
性。

2.求函数的极值,需要用到导函数的概念,求
出导函数的零点,并确定其是极大值还是极
小值。

3.确定函数的单调区间,需要分析导函数的正
负性和零点。

需要注意的是,这些方法都是针对连续可导函数,对于不连续不可导函数,需要采用其他方法分析。

对于判断一个函数是单调增还是单调减,我们可以通过求导函数来判断,如果导函数为正值,那么原函数就是单调增的,如果导函数为负值,那
么原函数就是单调减的。

而如果导函数为0,那么可能是函数的极值点。

对于求函数的极值,我们需要求出函数的导函数,并找到导函数的零点。

对于导函数为0的点,我们需要分析其二阶导函数的正负性来确定其是极大值点还是极小值点。

对于确定函数的单调区间,我们需要分析导函数的正负性和零点。

导函数为正值时,原函数在该区间内单调递增;导函数为负值时,原函数在该区间内单调递减;导函数为0时,原函数在该点可能是极值点。

需要注意的是,单调性和极值点的分析都是基于连续可导的函数,对于不连续不可导的函数,需要采用其他方法来分析。

函数单调性方法和各种题型

函数单调性方法和各种题型

函数单调性方法和各种题型函数的单调性是数学中一个重要的概念,它描述了函数在定义域上的增减性质。

通过研究函数的单调性,可以帮助我们解决各种数学问题,特别是在数学建模、最优化等领域中起到关键作用。

本文将介绍函数单调性的方法以及一些常见的相关题型。

一、函数单调性的定义与判定方法函数的单调性可以分为单调增和单调减两种情况。

我们先来定义函数的单调性:定义:设函数f(x)在区间[a, b]上有定义,若对于任意的x1,x2∈[a, b],且x1 < x2,有f(x1) ≤ f(x2),则称函数f(x)在区间[a, b]上单调不减;若对于任意的x1,x2∈[a, b],且x1 < x2,有f(x1) ≥ f(x2),则称函数f(x)在区间[a, b]上单调不增。

函数的单调性可以通过导数的正负来进行判定。

具体地,我们有以下定理:定理1:设函数f(x)在区间[a, b]上连续,在(a, b)内可导,则:1. 若在(a, b)内f'(x) > 0,则函数f(x)在区间[a, b]上单调不减;2. 若在(a, b)内f'(x) < 0,则函数f(x)在区间[a, b]上单调不增。

根据定理1,我们可以得到如下方法来判断函数的单调性:1. 求解函数的导数f'(x);2. 分析f'(x)的符号变化,确定函数的单调性。

需要注意的是,当f'(x) = 0时,函数可能存在取值的极值点。

此时,我们需要结合函数的定义域以及f''(x)的符号来综合判断函数的单调性。

二、函数单调性的题型1. 求函数的单调区间:已知函数f(x)在某个区间内连续,并可导,要求确定函数的单调区间。

解题方法:1. 求解函数的导数f'(x);2. 分析f'(x)的符号变化,确定函数的单调区间。

2. 求函数的最值:已知函数f(x)在某个区间内连续,并可导,要求确定函数在该区间上的最大值或最小值。

有关函数单调性问题的思维导图讲解及测试题

有关函数单调性问题的思维导图讲解及测试题

有关函数单调性问题的思维导图讲解及测试题函数的单调性是函数的重要性质, 用定义证明函数的单调性是函数问题中的一类 重要题型,本文阐述一下用定义证明函数的单调性的基本步骤及注意事项。

一、定义法根据增(减)函数的定义判断函数的单调性是常用的基本方法,一般按照“取值--- 作差变形---判断符号---下结论”这四个步骤进行判断,关键是变形,常用的手段有: 通分提取公因式、配方法、有理化、因式分解。

例1:利用单调性的定义证明函数+2()+1x f x x =在(-1,)+¥上是减函数。

上是减函数。

思维导图:第一步:在(-1,)+¥上任取12x x <,®第二步:作差、通分®第三步: 判断差与零的关系判断差与零的关系®第四步:下结论。

第四步:下结论。

解析:在(-1,)+¥上任取12x x <,则则121212+2+2()()+1+1x x f x f x x x -=-2121(+1)(+1)x x x x -=因为211x x >>-,所以21210,+1>0,+10x x x x ->>。

2121>0(+1)(+1)x x x x -\,所以21()()0f x f x ->;即21()>()f x f x ,故故+2()+1x f x x =在区间(-1,+)¥上为减函数。

上为减函数。

例2:证明函数3()2f x x =-在R 上的单调递增。

上的单调递增。

思维导图:第一步:在R 上任取12x x <,®第二步:作差、配方®第三步:第三步: 判断差与零的关系判断差与零的关系®第四步:下结论。

第四步:下结论。

二、图象法:就是画出函数的图象,自左向右观察函数图象的上升和下降趋势,从而判断 函数的单调性。

例2:函数()(1)f x x x =-在区间A 上是增函数,则区间A 是 (( ))(A)[0,)+¥ (B) (,0]-¥ (C) 1[0,]2 (D) 1(,)2+¥思维导图:第一步:作出函数()f x 的图像®第二步:自左向右观察函数图象的变化第二步:自左向右观察函数图象的变化 趋势趋势®第三步:下结论。

函数单调性讨论16种题型(解析版)

 函数单调性讨论16种题型(解析版)

第6讲 函数单调性含参讨论16类【题型一】 讨论思维基础:求导后一元一次型参数在常数位置(单参)【典例分析】已知函数()()ln 1f x a x x a R =+-∈. (1)讨论()f x 的单调性;(2)若函数()e 1x y f ax =-+与()e ln ay x a =+的图像有两个不同的公共点,求a 的取值范围.【答案】(1)答案见解析(2)()1,+∞【分析】(1)、先求出()f x ',对a 分类讨论判断导函数的正负即可得到单调区间;(2)、由题意将问题转化为()e e ln x a x a =+有两个不同的实根,构造()e x g x x =,判断()g x 的单调性;要使()()ln g x g x a =+有两个不同的实根,则需ln x x a =+有两个不同的实根;构造()ln h x x x a =--,对a 分类讨论判断()h x 的单调性,判断()h x 的零点,得出a 的取值范围. 解(1)()()ln 1f x a x x a R =+-∈,()1a x af x x x+'∴=+=,()0x >. ①、当0a ≥,()0f x '>,函数()f x 在()0,+∞上单调递增;①、当0a <,令()0f x '=,得x a =-,∴()0,x a ∈-时,()0f x '<;(),x a ∈-+∞时,()0f x '>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增.综上所述:当0a ≥,()f x 的单调递增为()0,+∞,无单调递减区间; 当0a <,()f x 的单调递增为(),a -+∞,()f x 的单调递减为()0,a -.【变式演练】1.已知函数()ln af x x x=+,()sin x g x e x =+,其中a ∈R . (1)试讨论函数()f x 的单调性;(2)若1a =,证明:()()g x f x x<. 【答案】(1)答案见解析(2)证明见解析 【分析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证()()g x f x x<,只要证sin ln 10x e x x x +-->,由于(0,1)x ∈时,sin ln 1110x e x x x +-->-=,当[1,)x ∈+∞时,令()sin ln 1x g x e x x x =+--,再利用导数求出其最小值大于零即可(1)()ln af x x x=+的定义域为(0,)+∞221()a x a f x x x x-'=-= 当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,解得x a >;令()0f x '<,解得0x a <<; 综上所述:当0a ≤时,()f x 在(0,)+∞上单调递增,无减区间; 当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增; 2.已知函数()(2)e x f x x a =-. (1)求()f x 的单调区间(2)若()f x 的极值点为12-,且()()()f m f n m n =≠,证明:3()0ef m n -<+<.【答案】(1)单调递减区间为2,2a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,2a -⎛⎫+∞⎪⎝⎭(2)证明见解析 【分析】(1)求导()(22)e xf x x a +-'=,由()0f x '<,()0f x '>求解;(2)由(1)结合()f x 的极值点为12-,由2122a -=-,得到1a =,()(21)e x f x x =-,作出函数()f x 的大致图象,不妨设m n <,根据()()()f m f n m n =≠,得到1122m n <-<<,再由 3(1)ef -=-,将证明3()0ef m n -<+<,转化为证明1m n +<-即可. 解:()f x 的定义域为R ,()(22)e xf x x a +-'=,由()0f x '=,得22a x -=.当2,2a x -⎛⎫∈-∞ ⎪⎝⎭时,()0f x '<;当2,2a x -⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>.所以()f x 的单调递减区间为2,2a -⎛⎫-∞ ⎪⎝⎭,单调递增区间为2,2a -⎛⎫+∞⎪⎝⎭. 【题型二】 讨论思维基础:求导后一元一次型参数在系数位置(单参)【典例分析】已知函数()()2ln f x x a x a =++. (1)讨论()f x 的单调性;(2)若()1212,x x x x <是2()()g x f x x ax =++的两个极值点,证明:()21g x x >.【答案】(1)当0a ≥时,()f x 在()0,∞+上为单调递增函数;当0a <时,若()f x 在20,a ⎛⎫- ⎪⎝⎭上为单调递增函数,在2,a ⎛⎫-+∞ ⎪⎝⎭上为单调递减函数;(2)证明见解析. 【分析】(1)()f x 的定义域为()0,∞+,求导()2f x ax x+=',分类讨论0a ≥和0a <两种情况,研究()'f x 的正负,从而求得函数的单调区间;(2)由题得2()2ln ()g x x x a =++,则()221()x ax g x x++'=,由()1212,x x x x <是2()()g x f x x ax=++的两个极值点,可知120x x <<,所以1201x x <<<,要证()21g x x >,需证()2221212ln 1g x x x x x =+>,构造函数1()2ln (1)h x x x x x=+>,即证 ()1h x >,从而证得()21g x x >.【详解】(1)易知()f x 的定义域为()0,∞+,22()ax a x xf x +=+='. 当0a ≥时,()0f x '>,所以()f x 在()0,∞+上为单调递增函数; 当0a <时,若20,x a ⎛⎫∈- ⎪⎝⎭,则()0f x '>,若2,x a ⎛⎫∈-+∞ ⎪⎝⎭,则()0f x '<, 所以()f x 在20,a ⎛⎫- ⎪⎝⎭上为单调递增函数,在2,a ⎛⎫-+∞ ⎪⎝⎭上为单调递减函数.【变式演练】1.已知函数f (x )=alnx +1x +4,其中a ∈R . (1)讨论函数f (x )的单调性;(2)对任意x ∈[1,e ],不等式f (x )≥1x +(x +1)2恒成立,求实数a 的取值范围. 【答案】(1)答案见解析(2)[(e +1)2−4,+∞) 【分析】(1)求出导函数f ′(x),分类讨论确定f ′(x)的正负得单调区间;(2)不等式变形为(x +1)2−alnx −4≤0.引入新函数g (x )=(x +1)2−alnx −4(x ∈[1,e ]),求出导函数g ′(x),分类讨论a ≤0时,不等式不恒成立,a >0时由导数确定函数有极小值点,而最大值是比较g(e )和g(1)的大小得到,从而得出参数范围. 解(1)函数f (x )的定义域为(0,+∞), f ′(x )=ax −1x 2=ax−1x 2,当a ≤0时,f ′(x )<0恒成立,函数f (x )在(0,+∞)上单调递减; 当a >0时,由f ′(x )>0,得x >1a , 由f ′(x )<0,得0<x <1a ,①函数f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增.综上,当a ≤0时,函数f (x )在(0,+∞)上单调递减;当a >0时,函数f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增.2.己知函数()e mxf x x =(其中e 为自然对数的底数)(1)讨论函数()f x 的单调性;(2)当1m =时,若()ln 1f x x ax ≥++恒成立,求实数a 的取值范围. 【答案】(1)答案见解析(2)(],1-∞ 【分析】(1)()()'1mxf x mx e =+,进而分0m =,0m >,0m <三种情况讨论求解即可;(2)由题意知ln 1xx a e x +≤-在()0+∞,上恒成立,故令ln 1()x x g x e x+=-,再根据导数研究函数的最小值,注意到01,1x e ⎛⎫∃∈ ⎪⎝⎭使()'00g x =,进而结合函数隐零点求解即可.(1)解:()()'1mxf x mx e =+①0m =,()f x 在R 上单调增; ①0m >,令()'10f x x m ==-,,()()'1,,0,x f x f x m ⎛⎫∈-∞-< ⎪⎝⎭单调减。

完整版)利用导数求函数单调性题型全归纳

完整版)利用导数求函数单调性题型全归纳

完整版)利用导数求函数单调性题型全归纳利用导数求函数单调性题型全归纳一、求单调区间例1:已知函数$f(x)=ax+x^2-x\ln a(a>0,a\neq 1)$,求函数$f(x)$的单调区间。

解:$f'(x)=ax\ln a+2x-\ln a=2x+(a x-1)\ln a$。

令$g(x)=f'(x)$,因为当$a>0,a\neq 1$时,$g'(x)=2+a\ln a>0$,所以$f'(x)$在$\mathbb{R}$上是增函数,又$f'(0)=-\ln a0$的解集为$(0,+\infty)$,故函数$f(x)$的单调增区间为$(0,+\infty)$,减区间为$(-\infty,0)$。

变式:已知$f(x)=e^{-ax}$,求$f(x)$的单调区间。

解:$f(x)=e^{-ax}$,当$a\leq 0$时,$f(x)>0$,$f(x)$单调递增;当$a>0$时,由$f(x)=e^{-a x}>0$得:$x>\ln a$,$f(x)$在$(\ln a,+\infty)$单调递增;由$f(x)=e^{-a x}0$时,$f(x)$的单调递增区间为$(\ln a,+\infty)$,递减区间为$(-\infty,\ln a)$。

二、函数单调性的判定与逆用例2:已知函数$f(x)=x+ax-2x+5$在$(0,+\infty)$上既不是单调递增函数,也不是单调递减函数,求正整数$a$的取值集合。

解:$f'(x)=3x+2ax-2$。

因为函数$f(x)=x+ax-2x+5$在$(0,+\infty)$上既不是单调递增函数,也不是单调递减函数,所以$f'(x)=3x+2ax-2=0$在$(0,+\infty)$上有解。

所以$f''(x)=6+2a>0$在$(0,+\infty)$上恒成立。

微专题----函数单调性常见题型及解题方法总结-学生版

微专题----函数单调性常见题型及解题方法总结-学生版

微专题----函数单调性常见题型及解题方法总结【特别提醒】1.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反.2.“对勾函数”y =x +ax (a >0)的单调增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ].3、函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。

即:多个单调区间之间用“和”或“,”,不能用“ ”。

【对勾函数】一.对勾函数by ax x=+)0,0(>>b a 的图像与性质:1.定义域:(-∞,0)∪(0,+∞)2.值域:(-∞,-√ab]U[√ab,+∞)3.奇偶性:奇函数,函数图像整体呈两个“对勾”的形状,且函数图像关于原点呈中心对称,即0)()(=-+x f x f4.图像在一、三象限,当0x >时,b y a x x =+≥2√ab (当且仅当x =取等号),即)(x f 在x=ab时,取最小值ab2由奇函数性质知:当x<0时,)(x f 在x=ab -时,取最大值ab 2-5.单调性:增区间为(∞+,ab ),(a b -∞-,),减区间是(0,a b ),(a b-,0)【判断函数单调性方法技巧】(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调区间.(在区间(,)a b 内,若总有()0f x '>,则()f x 为增函数;反之,若()f x 在区间(,)a b 内为增函数,则()0f x '≥,(4)性质法:①对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及f (x )±g (x )增减性质进行判断;(5)在选择填空题中还可用数形结合法、特殊值法等等,(6)复合函数法:复合函数单调性的特点是同增异减,注意定义域【求函数最值(值域)方法技巧】(1)二次函数法:根据二次函数性质求最值或范(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)单调性法:先确定函数的单调性,再由单调性求最值.(4)换元法:如三角换元或者带根号的式子换元(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(6)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(7)三角函数有界性:根据1cos 1-,1sin 1-≤≤≤≤x x 求参数或者变量范围(8)分离常数法(9)判别式法(10)数形结合法一、单选题1.(复合函数单调性:同增异减,注意定义域)函数()2ln 23y x x =-++的减区间是()A .(]1,1-B .[)1,3C .(],1-∞D .[)1,+∞2.(抽象函数的的应用;注意求函数的解析式或找出最值的关系)定义域为R 的函数()f x 满足()()12f x f x +=,且当(]0,1x ∈时,()2f x x x =-,则当(]2,1x ∈--时,()f x 的最小值为()A .116-B .18-C .14-D .03.(函数的奇偶性单调性,构造函数,注意定义域)已知函数()1ln 11xf x x x+=++-,且()()12f a f a ++>,则a 的取值范围是A .1,2⎛⎫-+∞ ⎪⎝⎭B .11,2⎛⎫--⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭D .1,12⎛⎫-⎪⎝⎭4.(函数的奇偶性、单调性、比大小)已知()f x 是定义在R 上的偶函数,且在(,0]-∞上是增函数,设(ln ),a f π=5(log 2),b f =-12(),c f e -=则,,a b c 的大小关系是A .b c a<<B .a b c<<C .c b a<<D .a c b<<5.(函数的奇偶性、单调性、函数图像)设f(x)为奇函数,且在(-∞,0)内是减函数,f (2)=0,则f(x)x<0的解集为()A .(-∞,-2)∪(2,+∞)B .(-∞,2)∪(0,2)C .(-2,0)∪(2,+∞)D .(-2,0)∪(0,2)6.(函数奇偶性、构造函数、单调性、比大小)已知()f x 是定义在R 上的奇函数,对任意两个不相等的正数12,x x ,都有211212()()0x f x x f x x x -<-,记0.20.2(4.1)4.1f a =, 2.12.1(0.4)0.4f b =,0.20.2(log 4.1)log 4.1f c =,则()A .a c b<<B .a b c<<C .c b a<<D .b c a<<7.(构造函数、单调性)已知,(0,)2παβ∈,sin sin 0βααβ->,则下列不等式一定成立的是()A .2παβ+<B .2παβ+=C .αβ<D .αβ>8.(奇偶性、单调性、参变分离解不等式)已知函数31()sin 31x x f x x x -=+++,若[2,1]x ∃∈-,使得2()()0f x x f x k ++-<成立,则实数k 的取值范围是()A .(1,)-+∞B .(3,)+∞C .(0,)+∞D .(,1)-∞-二、填空题9.(双变量求最值)已知函数()223f x x x a =-+,()21g x x =-.若对任意[]10,3x ∈,总存在[]22,3x ∈,使得()()12f x g x ≤成立,则实数a 的值为____.10.(结合导数构造函数解不等式)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x ef x f x -<-的解集为__________.11.(分段函数单调性,注意端点值)已知函数2152(1)()24log (1)a a x x x f x xx -⎧+-<⎪=⎨⎪≥⎩是(),-∞+∞上的增函数,则实数a 的取值范围为_____.12.(构造函数、依据单调性解不等式)已知函数()f x 是奇函数,且120x x ≤<时,有1212()()1f x f x x x -<-,(2)1f -=,则不等式3()x f x x -≤≤的解集为____.13.(偶函数解不等式,注意加绝对值)已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,若()30f -=,实数a 满足()250f a -≤,则a 的最小值为________.14.(反比例类型函数的单调性)若2()2f x x ax =-与21()1ax g x x -+=+在区间[1,2]上都是减函数,则实数a 的取值范围是__________.15.(结合奇偶性单调性解不等式)已知函数()12cos 2xx f x e x e π⎛⎫=--- ⎪⎝⎭,其中e 为自然对数的底数,若()()()22300f a f a f +-+<,则实数a 的取值范围为___________.16.下列命题:①集合{},,a b c 的子集个数有8个;②定义在R 上的奇函数()f x 必满足(0)0f =;③()()2()21221f x x x =+--既不是奇函数又不是偶函数;④偶函数的图像一定与y 轴相交;⑤1()f x x=在()(),00,-∞⋃+∞上是减函数,其中真命题的序号是______________(把你认为正确的命题的序号都填上).17.(构造函数、结合导数求单调性、解不等式)已知()()y f x xR =的导函数为()f x ',若()()32f x f x x --=,且当0x ≥时()23f x x '>,则不等式()2()1331f x f x x x -->-+的解集是__________.三、解答题18.(常见函数的性质、恒成立问题的求解方法和灵活运用分类讨论思想)已知函数212()log (1)f x x =+,2()6g x x ax =-+.(Ⅰ)若()g x 为偶函数,求a 的值并写出()g x 的增区间;(Ⅱ)若关于x 的不等式()0<g x 的解集为{|23}x x <<,当1x >时,求()1g x x -的最小值;(Ⅲ)对任意的1[1,)x ∈+∞,2[2,4]x ∈-,不等式12()()f x g x ≤恒成立,求实数a 的取值范围.参考答案1.B 【解析】【分析】利用一元二次不等式的解法求出函数的定义域,在定义域内求出二次函数的减区间即可.【详解】令2t x 2x 30=-++>,求得1x 3-<<,故函数的定义域为()1,3-,且y lnt =递增,只需求函数t 在定义域内的减区间.由二次函数的性质求得2t (x 1)4=--+在定义域内的减区间为[)1,3,所以函数()2y ln x 2x 3=-++的减区间是[)1,3,故选B.【点睛】本题主要考查对数函数的性质、复合函数的单调性,属于中档题.复合函数的单调性的判断可以综合考查两个函数的单调性,因此也是命题的热点,判断复合函数单调性要注意把握两点:一是要同时考虑两个函数的的定义域;二是同时考虑两个函数的单调性,正确理解“同增异减”的含义(增增→增,减减→增,增减→减,减增→减).2.A 【解析】【分析】(](]21201x x ,,∈--⇒+∈,由1224f x f x f x f x +=⇒+=()()()(),结合题意01x ∈(,]时,2f x x x =-(),即可求得()f x 的最小值.【详解】当(]2,1∈--时,(]201x ,+∈,2222232f x x x x x ∴+=+-+=++()()(),又()12f x f x +=(),()2[11]214f x f x f x f x ()()()∴+=++=+=,()243221f x x x x ∴=++-<≤-(),22113132(,2144216f x x x x x ∴=++=+--<≤-()()(),∴当32x =-时,f(x)取得最小值-116-.故选A.【点睛】本题考查抽象函数及其应用,着重考查转化思想与理解能力,求得21324f x x x =++()()是关键,也是难点,属于中档题.3.C 【解析】【分析】根据题意,由函数的解析式求出函数的定义域,设g (x )=f (x )﹣1,分析可得g (x )为奇函数且在(﹣1,1)上为增函数,据此f (a )+f (a +1)>2⇒()111111a a a a ⎧-⎪-+⎨⎪-+⎩<<<<>,解可得a 的取值范围,即可得答案.【详解】根据题意,函数f (x )=ln 11x x ++-x +1,有11xx+->0,解可得﹣1<x <1,即函数f (x )的定义域为(﹣1,1),设g (x )=f (x )﹣1=ln 11x x ++-x ,则g (﹣x )=ln 11x x -++(﹣x )=﹣[ln 11xx++-x ]=﹣g (x ),则函数g (x )为奇函数;分析易得:g (x )=ln11xx++-x 在(﹣1,1)上为增函数,f (a )+f (a +1)>2⇒f (a )﹣1>﹣[f (a +1)﹣1]⇒g (a )>﹣g (a +1)⇒g (a )>g (﹣a ﹣1)⇒()111111a a a a ⎧-⎪-+⎨⎪-+⎩<<<<>,解可得:12-<a <0,即a 的取值范围为(12-,0);故选:C .【点睛】本题考查函数的奇偶性与单调性的综合应用,关键构造新函数g (x )=f (x )﹣1,属于中档题.4.D 【解析】【分析】首先比较自变量的大小,然后结合函数的奇偶性确定函数在区间()0,+∞上的单调性,最后利用单调性比较函数值的大小即可.【详解】注意到ln 1π>,510log 2log 2<<=,且112=<<,据此可得:125ln log 2eπ->>,函数为偶函数,则:()()125ln ,log 2,a f b f c f e π-⎛⎫=== ⎪⎝⎭,由偶函数的性质可知:函数在区间()0,+∞上单调递减,故()()125ln log 2f f e f π-⎛⎫<<- ⎪⎝⎭,即a c b <<.故选D .【点睛】本题主要考查函数的单调性,函数的奇偶性,实数比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.5.A 【解析】【分析】利用函数的奇偶性与单调性,结合函数图象求解即可.【详解】∵f x 为奇函数,且在−∞,0内是减函数,所以函数在0,+∞上单调递减.∵f 2=0,∴f −2=−f 2=0,故函数f x 的图象如图所示:<0,可得x ⋅f x <0,即x 和f x 异号,由图象可得x <−2,或x >2,f(x)x<0的解集为−∞,−2∪2,+∞,故选A .【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查是,一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.6.A 【解析】设120x x <<,则12211212()()()()0f x f x x f x x f x x x ->⇒>所以函数()()f x g x x=在(0,)+∞上单调递减,因为()f x 是定义在R 上的奇函数,所以()g x 是定义在R 上的偶函数,因此()0.20.24.14.1f a =0.2(4.1)(1)g g =<,()2.12.10.40.4f b =2.12(0.4)(0.4)(0.5)g g g =>>,()0.20.2log 4.1log 4.1f c =0.251(log 4.1)(log 4.1)((1),())2g g g g ==∈,即a c b<<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行7.C 【解析】【分析】构造函数()sin ,0,2x f x x x π⎛⎫=∈ ⎪⎝⎭,原不等式等价于()(),f f αβ>两次求导可证明()sin x f x x =在0,2π⎛⎫⎪⎝⎭上递减,从而可得结论.【详解】由题意,sin sin βααβ>,sin sin αβαβ∴>,设()sin ,0,2x f x x x π⎛⎫=∈ ⎪⎝⎭,()2cos sin '0,2x x x f x x x π-⎛⎫∴=∈ ⎪⎝⎭,设()cos sin ,0,2g x x x x x π⎛⎫=-∈ ⎪⎝⎭,()'cos sin cos sin 0g x x x x x x x ∴=--=-<,()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递减,且()()00g x g <=,()'0f x ∴<,所以()sin x f x x =在0,2π⎛⎫ ⎪⎝⎭递减,()()sin sin ,f f αβαβαβ>⇔> αβ∴<,故选C.【点睛】本题主要考查利用导数研究函数的单调性,属于难题.利用导数判断函数单调性的步骤:(1)求出()'f x ;(2)令()'0f x >求出x 的范围,可得增区间;(3)令()'0f x <求出x 的范围,可得减区间.8.A【解析】由题函数()31sin 31x x f x x x -=+++的定义域为R,且()()()()3131sin sin ,3131x x x x f x x x x x f x --⎛⎫---=+-+-=-++=- ⎪++⎝⎭即函数()f x 为及奇函数,且()()22ln 331cos 031xx f x x ⋅=++'+>在[]2,1x ∈-上恒成立,即函数函数()f x 在[]2,1x ∈-上单调递增,若[]2,1x ∃∈-,使得()()20f x x f x k ++-<成立,即()()()()222f x x f x k f x x f k x x x k x+<--⇒+<-⇒+<-则问题转化为[]2,1x ∃∈-,22k x x >+,即()2min 2,k x x>+在[]2,1x ∈-上22y x x=+得最小值为-1,故实数k 的取值范围是()1,-+∞.故选A.9.13-【解析】【分析】将问题转化为()()max max f x g x ≤,根据二次函数和分式的单调性可求得()f x 在[]0,3上的最小值和最大值及()g x 在[]2,3上的最大值;分别讨论()f x 最大值小于零、最小值小于零且最大值大于零、最小值大于零三种情况,得到()f x 每种情况下的最大值,从而得到不等式,解不等式求得结果.【详解】不等式()()12f x g x ≤恒成立可转化为:()()maxmax f x g x ≤当[]0,3x ∈时,()()min 113f x f a ==-+,()()max 333f x f a==+当[]2,3x ∈时,()()max 22g x g ==①若330a +≤,即1a ≤-时,()max 1313f x a a=-+=-132a ∴-≤,解得:13a ≥-(舍)②若13033a a -+≤<+,即113a -<≤时,()()(){}max max 1,3f x f f =-又()113f a -=-,()333f a=+当1333a a ->+,即113a -<<-时,()max 13f x a =-132a ∴-≤,解得:13a ≥-(舍)当1333a a -≤+,即1133a -≤≤时,()max 33f x a =+332a ∴+≤,解得:13a ≤-13a ∴=-③若130a -+>,即13a >时,()max 3333f x a a =+=+332a ∴+≤,解得:13a ≤-(舍)综上所述:13a =-本题正确结果:13-【点睛】本题考查恒成立和能成立综合应用的问题,关键是能够将不等式转化为两个函数最值之间的大小关系,从而根据函数的单调性求得函数的最值,通过最值的比较构造不等式求得结果.10.(1,)+∞【解析】【分析】根据条件构造函数F (x )()x f x e =,求函数的导数,利用函数的单调性即可得到结论.【详解】设F (x )()x f x e =,则F ′(x )()()'x f x f x e -=,∵()()f x f x '>,∴F ′(x )>0,即函数F (x )在定义域上单调递增.∵()()121x e f x f x -<-∴()()2121x x f x f x e e --<,即F (x )<F (2x 1-)∴x 2x 1-<,即x>1∴不等式()()121x e f x f x -<-的解为()1,+∞故答案为:()1,+∞【点睛】本题主要考查函数单调性的判断和应用,根据条件构造函数是解决本题的关键.11.532a ≤≤【解析】【分析】因为函数2152(1)()24log (1)a a x x x f x xx -⎧+-<⎪=⎨⎪≥⎩是(),-∞+∞上的增函数,所以当1x ≥,时()log a f x x =是增函数,当1x <,()215224a f x x x -=+-也是增函数,且max min ()(1)()(1)f x x f x x <≤≥,从而可得答案。

函数的单调性及题型

函数的单调性及题型

函数的单调性及题型1、 A为函数f(x)定义域内某一区间,2、单调性的判定:作差f(x1)-f(x2)判定;根据函数图象判定;3、复合函数的单调性的判定:f(x),g(x) 同增、同减,f(g(x)) 为增函数,f(x),g(x)一增、一减,f(g(x)) 为减函数.【经典例题】例1、设a>0且a≠1,试求函数y=log a(4+3x-x2)的单调递增区间.[解析]:由题意可得原函数的定义域是(-1,4),设u=4+3x-x2,其对称轴是 x=3/2 ,所以函数u=4+3x-x2,在区间(-1,3/2 ]上单调递增;在区间[3/2 ,4)上单调递减.①a>1时,y=log a u 在其定义域内为增函数,由 x↑→u↑→y↑,得函数u=4+3x-x2的单调递增区间(-1,3/2 ],即为函数y=log a(4+3x-x2) 的单调递增区间.②0<a<1时,y=log a u 在其定义域内为减函数,由 x↑→u↓→y↑,得函数u=4+3x-x2的单调递减区间[3/2 ,4),即为函数y=log a(4+3x-x2)的单调递增区间.例2、已知y=log a(2-ax) 在[0,1]上是x 的减函数,求a的取值范围。

[解析]:由题意可知,a>0.设u=g(x)=2-ax,则g(x)在[0,1]上是减函数,且x=1时,g(x)有最小值u min=2-a .又因为u=g(x)=2-ax>0,所以,只要 u min=2-a>0则可,得a<2.又y=log a(2-ax) 在[0,1]上是x 减函数,u=g(x)在[0,1]上是减函数,即x↑→u↓→y↓,所以y=log a u是增函数,故a>1.综上所述,得1<a<2.例3、已知f(x)的定义域为(0,+∞),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1 ,试解不等式f(x)+f(x-2)<3 .[解析]:[此题的关键是求函数值3所对应的自变量的值]由题意可得,f(4)=f(2)+f(2)=2 ,3=2+1=f(4)+f(2)=f(4×2)=f(8)又f(x)+f(x-2)=f(x2-2x) 所以原不等式可化成f(x2-2x)<f(8)所以原不等式的解集为{x|2<x<4}针对性课堂练习1.函数y =2x -4x +5在闭区间[-1,m ]上有最大值10,则m 的取值范围是( )(A )(-∞,5]; (B )(-1,5]; (C )[2,5]; (D )(-1,+∞).2.函数y =22x x -的单调递减区间是( )(A )[-1,+∞); (B )(-∞,1]; (C )[0,1]; (D )[1,2].3.设0<a <b ,奇函数)(x f 在[-b ,-a ]上是减函数,且有最小值2,则函数)(x F =-|)(x f |() (A )是[a ,b ]上的减函数且有最大值-2;(B )是[a ,b ]上的增函数且有最小值-2;(C )是[a ,b ]上的减函数且有最小值-2;(D )是[a ,b ]上的增函数且有最大值-2.4.已知函数)(x f =c bx ax ++12为奇函数(a 、b ∈Z ),)1(f =2,)2(f <3.(1)求)(x f 的解析式;(2)当x <0时,确定)(x f 的单调递增区间,并给予证明.5.对于x ∈R ,函数)(x f 表示x -1与|2x -4x +3|中大的一个值.(1)求)0(f ,)1(f ,)2(f ,)3(f ;(2)作出y =)(x f 的图象;(3)在[0,2]内,求)(x f 的值域.。

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

高考数学函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

函数的单调性、奇偶性、对称性、周期性10大题型命题趋势函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。

满分技巧一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>−−x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>−x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<−−x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<−−x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x −与()f x ±之一是否相等.2、验证法:在判断()f x −与()f x 的关系时,只需验证()f x −()f x ±=0及()1()f x f x −=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x −与()f x 的关系.首先要特别注意x 与x −的范围,然后将它代入相应段的函数表达式中,()f x 与()f x −对应不同的表达式,而它们的结果按奇偶函数的定义进行比较. 三、常见奇、偶函数的类型1、()x x f x a a −=+(00a a >≠且)为偶函数;2、()x x f x a a −=−(00a a >≠且)为奇函数;3、()2211x x x x x xa a a f x a a a −−−−==++(00a a >≠且)为奇函数; 4、()log ab xf x b x−=+(00,0a a b >≠≠且)为奇函数;5、())log a f x x =±(00a a >≠且)为奇函数;6、()f x ax b ax b ++−为偶函数;7、()f x ax b ax b +−−为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=−f x a f x a ,则2=T a ; (3)若()()+=−f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=−f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=−T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=−f a x f a x ,则函数图象关于=x a 对称;(2)若()()2=−f x f a x ,则函数图象关于=x a 对称; (3)若()()+=−f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22−=−f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=−f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=−f x f x ,函数为偶函数,即偶函数为特殊的线对称函数; (2)若函数()f x 满足()()22−=−f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()−=−f x f x ,函数为奇函数,即奇函数为特殊的点对称函数; 4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2−b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2−b a ; (3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4−b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a . (2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a . (4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(一)判断函数单调性的基本方法
Ⅰ、定义法:
定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。

例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明
Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):
在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数
例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性
Ⅲ、图像法:
说明:⑴单调区间是定义域的子集
⑵定义x
1、x
2
的任意性
⑶代数:自变量与函数值同大或同小→单调增函数
自变量与函数相对→单调减函数
例3:y=|x2+2x-3|
练习:
(二) 函数单调性的应用
Ⅰ、利用函数单调性求连续函数的值域(最值)
根据增函数减函数的定义我们可得到如下结论:
(1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。

(2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。

例1:求下列函数的值域
(1)y=x 2-6x+3, x ∈[-1,2]
(2)y=-x 2+2x+2, x ∈[-1,4]
练习题:
1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在
[a,b]上的最小值是 ( )
2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是
( )
3、(
)有函数13+--=x x y 存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4
-44
-00
4 4、](()(
)的值域为时,函数当1435,02+-=∈x x x f x ()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、⎢⎣⎡⎪⎭
⎫ ⎝⎛⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛ 5、求函数y=-x-6+
的值域
x -1
Ⅱ、利用函数单调性求单调区间
1、()________..62是的单调区间函数-+=x x x f
2、的递增区间是函数)4-lg(52x x y -= .
3、若函数22()82,()2,g x x x f x x =+-=-则(())y g f x =的单调区间是 .
Ⅲ、利用函数单调性求未知数范围
1. 函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是
2、函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,则实数a 的取值范围是________.
3、
在 上是减函数,则a 的取值范围是( )。

A .
B .
C .
D . 4、函数
,当 时,是增函数,当 时是减函数,则f(1)=_____________
5、函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,则b 的取值范围是_________.
Ⅳ、利用函数单调性解不等式
1、(1)若f(x)在R 上是减函数,试比较f(2)与f(a 2-2a+4)的大小。

(2)若f(x)在R 上是减函数,试比较f(a 2)与f(-2a)的大小。

2、已知定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0则a 的取值范围是( )
A.(22,3)
B.(3,10)
C.(22,4)
D.(-2,3) 3、定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若
0)54()1(2>-+--a f a a f ,求实数a 的范围。

4、设 是定义在 上的增函数, ,且 ,求满足不等式
的x 的取值范围.
能力突破: 1.已知(31)4,1()log ,1a
a x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上满足1212()()0f x f x x x -<-,那么a 的取值范围是 .
2.已知()f x x a x a x b x b =++-+++-,若存在正数m 使得()0f m =,则不等式()0f x ≤的解集是 .
3.解方程3381050.(1)1
x x x x +--=++(提示:已知()f x 是单调函数,若1212()().f x f x x x =⇒=)
4.定义在R 上的函数)(x f y =,0)0(≠f ,当x >0时,1)(>x f ,且对任意的a 、b ∈R ,有f (a +b )=f (a )·f (b ).
(1)求证:f (0)=1;
(2)求证:对任意的x ∈R ,恒有f (x )>0;
(3)求证:f (x )是R 上的增函数;
(4)若f (x )·f (2x -x 2)>1,求x 的取值范围.。

相关文档
最新文档