镇海中学2017-2018学年第一学期期末考试高一数学试卷

合集下载

2017-2018学年广东省珠海市高一数学上期末考试试题

2017-2018学年广东省珠海市高一数学上期末考试试题

珠海市2017〜2018学年度第一学期期末普通高中学生学业质量监测高一数学试题注意事项:试卷满分为150分,考试用时120分钟。

考试内容:必修一、必修二。

参考公式:1锥体的体积公式 V =-Sh ,其中S 是锥体的底面积,h 是锥体的高.3 一、选择题:(本大题共12个小题,每小题5分,共60分.给出的四个选项中,只有一项是符 合题目要求的.请将正确的选项填涂在答题卡上 )1. 已知集合 A ={x Z 一2 :::x _3}, B ={x R0_x :::4},则 A 一 B =()C . {-1,0,123 }D . {0,1,2,3 }2. 函数y 二一—-2x ^的定义域为( ) x —1A . {xx *-1 且x 才 1}B . {x x 1 且x +2} D . {x x 孟 一1 且 x 才 1}log 2 x -1,x 0 …3. 已知函数,则f (x )科|2x —6|,x m ,则f (f (—卩-戶()A . 2 l o^g -3 2B . log 2 7 -1C . 2D . log 2 64. 在长方体ABCD - ABGD 1中,AB^ 2,B 1C 1 =1,CG =1,则异面直线DB 1与CQ 所成角 的大小是()A . 30B . 45 C. 60 D . 905. 定义在[0, 6]上的连续函数y = f x 有下列的对应值表:A .函数y = f x 在[0, 6]上有4个零点B .函数y = f x 在[0, 6]上只有3个零点 B . {x Z -2 : : x ::: 4} C. {x -1 ::x :: 1}C.函数y = f x在[0, 6]上最多有4个零点D .函数y = f x在[0, 6]上至少有4个零点。

镇海中学2018届高三上学期期末考试数学试题含答案

镇海中学2018届高三上学期期末考试数学试题含答案

镇海中学2017学年第一学期期末考试高三年级数学试卷考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写学校、班级、姓名、试场号、座位号及准考证号并填涂相应数字。

3.所有答案必须写在答题卷上,写在试卷上无效;4.考试结束后,只需上交答题卷。

参考公式:柱体的体积公式:V=Sh,其中S表示柱体的底面积,h表示柱体的高.锥体的体积公式:V=Sh,其中S表示锥体的底面积,h表示锥体的高.球的表面积公式:S=4πR2 ,其中R表示球的半径.球的体积公式:V=πR3 ,其中R表示球的半径.第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若抛物线的准线方程为, 则抛物线的标准方程为()A. B. C. D.【答案】D由题得抛物线的标准方程为.故选D.2. 若双曲线的左、右焦点分别为,点在双曲线上,且,则等于()A. 11B. 9C. 5D. 3【答案】B考点:双曲线.3. 直线a与平面所成角的为30o,直线b在平面内,且与b异面,若直线a与直线b所成的角为,则( )A. 0º<≤30ºB. 0º<≤90ºC. 30º≤≤90ºD. 30º≤≤180º【答案】C设直线a在平面α的射影为直线c,在平面α内作直线d⊥c,由三垂线定理可得直线d⊥a.因为直线a与平面α所成的角为30°,所以直线a与直线c所成的角为30°,等于平面α内的直线与直线a所成角的最小值.直线b在平面α内,当b与直线d平行或重合时,可得a⊥b,直线a与b所成的角为90°,达到最大值;当b与直线c平行或重合时,可得a、b所成的角为30°,达到最小值.因此,直线a与b所成的角为φ的取值范围为30°≤θ≤90°.故选C4. 设为向量,则“”是“”( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C先讨论充分性:由得所以“”是“”的充分条件.再讨论必要性:因为,所以,所以“”是“”的必要条件.故选C.5. 设是两条不同的直线,是两个不同的平面,下列选项正确的是()A. 若,且,则B. 若,且,则C. 若,且,则D. 若,且,,则【答案】A对于选项A,可以证明,所以选项A正确;对于选项B,画图可知,直线m和n可能平行,也可能相交,也可能异面,所以选项B错误;对于选项C,可以举反例,不垂直,满足已知条件,但是不垂直;对于选项D,可能不平行,是相交的关系.故选A.6. 椭圆M:长轴上的两个顶点为、,点P为椭圆M上除、外的一个动点,若且,则动点Q在下列哪种曲线上运动( )A. 圆B. 椭圆C. 双曲线D. 抛物线【答案】B设P(m,n),Q(x,y)∵椭圆M的方程为,∴作出椭圆如图所示,可得长轴的端点为A(﹣a,0),B(a,0)∴=(x+a,y),=(m+a,n)∵=0,∴(x+a)(m+a)+ny=0,可得m+a=﹣①同理根据=0,可得m﹣a=﹣②②,可得m2﹣a2=.③∵点P(m,n)是椭圆上的动点,∴,整理得n2=(a2﹣m2),代入③可得:m2﹣a2=(a2﹣m2),化简得此方程对应的图形是焦点在y轴上的椭圆,可得动点Q的轨迹是一个椭圆,B项是正确答案故选B.7. 如图,小于的二面角中,,,且为钝角,是在内的射影,则下列结论错误..的是()A. 为钝角B.C. D.【答案】D如图,过点B作垂足为C,过点A作垂足为D.在直角△BCO中,,在直角三角形中,因为是锐角二面角,所以同理,因为故选D.:本题的关键是证明利用什么方法来判断选项,由于选项判断的是角的大小关系,所以一般要构造直角三角形,再利用三角函数.8. 已知点P在以为左右焦点的椭圆上,椭圆内一点Q在的延长线上,满足,若,则该椭圆离心率取值范围是()A. B. C. D.【答案】A∵满足QF1⊥QP,∴点Q与点F2重合时,∵sin∠F1PQ=,不妨设|PF1|=13,则|PF2|=12.∴可得:e=.因此e.当点Q在最下端时,∠F1QF2最大,此时F1Q⊥F2Q.可得点Q在椭圆的内部,当b=c,e=,因此.综上可得:.故选C.:本题的关键在于找到点Q的临界位置,从而找到它们对应的椭圆的离心率. 所以本题利用了数形结合的思想,它是一种重要的数学思想,在解题过程中注意灵活运用.第Ⅱ卷(非选择题共110分)二、填空题: 本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 双曲线的焦距为__________,渐近线方程为________.【答案】 (1). 6 (2).由题得所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.10. 命题“若实数满足,则”的逆否命题是________命题(填“真”或者“假”);否命题是________命题(填“真”或者“假”).【答案】 (1). 假 (2). 真,所以原命题是假命题,由于原命题和逆否命题的真假性是一致的,所以其逆否命题是假命题. 其否命题是“若实数满足,则”,所以其否命题是真命题. 故填(1). 假 (2). 真.11. 已知是边长为1的正三角形,平面,且,则与平面所成角的正弦值为________.若点关于直线的对称点为,则直线与所成角的余弦值是________.【答案】 (1). (2).如图,取AC中点O,连接BO,PO,∵△ABC是边长为1的正三角形,PA⊥平面ABC,∴BO⊥AC,∴BO⊥平面APC∴则PB与平面PAC所成角是∠BPO,可得BO=,PB=∴sin∠BPO==.如图,建立空间直角坐标系,易得AD与PC的交点H为PC中点,A(0,0,0),B(,,0),C(0,1,0),H(0,,)=(0,,),=(﹣,,0)cos,故答案为: (1). (2).:本题的难点在第二问,直接研究比较困难,利用空间向量来研究问题就简单了很多,所以要注意一点,如果利用几何法比较困难,可以尝试用空间向量来研究.12. 已知,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是,则点M的轨迹C的方程是___________.若点为轨迹C的焦点,是直线上的一点,是直线与轨迹的一个交点,且,则_____.【答案】 (1). (2).设M(x,y),∵A(1,),B(﹣1,),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是,∴k AM﹣k BM=,整理,得点M的轨迹C的方程是x2=4y(x≠±1).∵点F为轨迹C的焦点,∴F(0,1),P是直线l:y=﹣1上的一点,Q是直线PF与轨迹C的一个交点,且=3,作QM⊥y轴于M点,作PN⊥y轴于N点,则,∴MF=,∴Q(,),∴|QF|=.故答案为:(1). (2).13. 过正四面体ABCD的中心且与一组对棱AB和CD所在直线都成60角的直线有________条.【答案】4由于正四面体的所有边长都相等,所有三角形的内角都是60°,除了一组对棱AB和CD,剩下的四条棱与AB和CD所成的角都是60°,所以只要把这四条棱平移到正四面体的中心,所以有四条. 故填4.14. 已知双曲线上一点P到两渐近线的距离分别为,若,则双曲线的离心率为_________.【答案】或双曲线的两条渐近线的方程为bx﹣ay=0或bx+ay=0,点P(x0,y0)到两条渐近线的距离之积为,即,又点P(x0,y0)满足双曲线的方程,∴b2x02﹣a2y02=a2b2,∴,即2a2+2b2=5ab,∴b=2a或b=a,则e=故填或.15. 四棱锥中,平面ABCD,,,BC//AD,已知Q是四边形ABCD内部一点,且二面角的平面角大小为,若动点Q的轨迹将ABCD 分成面积为的两部分,则=_______.【答案】以A为坐标原点建立空间直角坐标系,如图:设Q的轨迹与y轴的交点坐标为Q(0,b,0)(b>0).由题意可知A(0,0,0),D(2,0,0),P(0,0,1),∴=(﹣2,0,1),=(﹣2,b,0). =(2,0,0).设平面APD的法向量为=(x1,y1,z1),平面PDQ的法向量为=(x2,y2,z2)则即,令y1=0得=(0,1,0),令z2=2得=(1,,2).∴.∵二面角Q﹣PD﹣A的平面角大小为,∴cos<>=即解得b=.∴S△ADQ=.S梯形ABCD﹣S△ADQ=.∵S1<S2,∴S1=,S2=.∴S1:S2=(3﹣4):4.故答案为(3﹣4):4.:本题的关键是找到点Q的轨迹在四边形ABCD内的部分,它就是一条线段DQ,确定点Q在y 轴上的位置,由于本题的背景比较适宜用坐标系和空间向量来解答.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. 已知从椭圆上一点P向x轴作垂线,垂足恰为左焦点.又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且,.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C中,求以点为中点的弦MN所在的直线方程.【答案】(Ⅰ);(Ⅱ).试题: (1)第一问,直接由得到,化简得到一个方程,再结合对应的方程,得到a,b,c的值,即得到椭圆C的方程. (2)先利用韦达定理得到斜率k的方程,再根据点斜式写出直线的方程.试题:(Ⅰ)由题意知:,故,即,解得,又,解得,故椭圆C的方程为;(Ⅱ)因为点在椭圆内,且显然直线MN的斜率存在,故设直线MN的方程为,代入椭圆方程得故,解得,故直线MN的方程为17. (本小题满分15分)如图,三棱柱中,侧棱平面,为等腰直角三角形,,且,分别是的中点.(Ⅰ)求证:①平面;②平面;(Ⅱ)求直线与平面所成角.【答案】(Ⅰ)见;(Ⅱ).试题:(1)第一问,先证明,即可证明平面;证明和,即可证明平面. (2)第二问,先证明即为直线与平面所成角.再解,即可得到直线与平面所成角.试题:(Ⅰ)①连接,,故点G即为与的交点,且G为的中点,又F为的中点,故,又GF平面,平面故平面②因为是等腰直角三角形斜边的中点,所以.因为三棱柱为直三棱柱,所以面面,所以面,.设,则.所以,所以.又,所以平面.(2)由(1)知在平面上的投影为,故在平面上的投影落在AF上.所以即为直线与平面所成角.由题知:不妨设,所以,在中,,所以,即直线与平面所成角为.18. 如图,平行四边形平面,,,(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值的大小.【答案】(Ⅰ)见;(Ⅱ).试题:(1)第一问,证明,即可证明平面.(2)第二问,先作出二面角的平面角,再解三角形,即可得到二面角的余弦值的大小.试题:(Ⅰ)过点A作,因为平行四边形平面,平行四边形平面=CD,平面ABCD,故平面CDE,又平面CDE,故,又,,平面ABCD,故平面(Ⅱ)过作⊥交于,过作⊥交于,连接.由(Ⅰ)得⊥平面,又∵平面,∴平面⊥平面. ∴平面ADE,⊥,又∵垂直,且.∴⊥平面,得角就是所求二面角的一个平面角.又∵,,∴所求二面角的余弦值为.19. 抛物线,,为抛物线的焦点,是抛物线上两点,线段的中垂线交轴于,,。

【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)

【优质文档】2017-2018年度高一年级期末综合检测(含参考答案)

⊥底面 ABC,垂足为 H,则点 H在 ( ).
A.直线 AC上 B .直线 AB上
C.直线 BC上 D .△ ABC内部
12. 已知 ab
0
,

P(a,b)
是圆
2
x
2
y
2
r 内一点 , 直线 m是以
点 P 为中点的弦所在的直线 , 直线 L 的方程是 ax by r 2 , 则下列结论正确的是 ( ).
1 D .m
2
3. 如图,矩形 O′ A′B′ C′是水平放置的一个平面图形的直观图,其中
O′ A′= 6 cm, C′D′= 2 cm,则原图形是 ( ).
A.正方形 B .矩形 C .菱形 D .梯形
4. 已知 A 2, 3 , B 3, 2 ,直线 l 过定点 P 1,1 ,且与线段 AB 相交,
C. 3x 6y 5 0
D
. x 3或3x 4 y 15 0
8. 三视图如图所示的几何体的表面积是 (
).
A.2+ 2 B .1+ 2 C .2+ 3 D .1+ 3
9. 设 x0 是方程 ln x+ x= 4 的解,则 x0 属于区间 ( ).A. (0 ,1)B . (1 ,2)C
. (2 , 3)
C.若 l ∥ β ,则 α∥ β D .若 α ∥ β,则 l ∥ m
6. 一个长方体去掉一个小长方体,所得几何体的
主视图与左视图分别如右图所示,则该几何
体的俯视图为 ( ).
7. 一条直线经过点
M ( 3,
3)
,
被圆
2
x
2
y
25 截得的弦长等于 8, 这条直线的方
2
程为 ( ).

2017,2018镇海中学高一数学上期末试卷

2017,2018镇海中学高一数学上期末试卷

目录§1镇海中学2017学年第一学期期末考试1§2镇海中学2018学年第一学期期末考试5§3参考答案92目录§1镇海中学2017学年第一学期期末考试1§1镇海中学2017学年第一学期期末考试第I 卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a =(λ,1),b =(λ−1,2),若a +b 与a −b 共线,则λ=()(A)−2(B)−1(C)1(D)22.已知3sin α+4cos αcos α+2sin α=2,则1−sin αcos α−cos 2α的值是()(A)−25(B)25(C)−2(D)23.在△ABC ,AB =AC =1,BC =√3,则# »AB ·# »AC =()(A)√32(B)12(C)−√32(D)−124.在△ABC 中,若# »AB 2=# »AB ·# »AC +# »BA ·# »BC +# »CA ·# »CB ,则△ABC 是()(A)锐角三角形(B)钝角三角形(C)直角三角形(D)不确定5.在△ABC 中,内角A,B,C 所对的边长分别为a,b,c ,且c =72,a +b =112,√3tan A ·tan B −tan A −tan B =√3,则△ABC 的面积为()(A)32(B)3√32(C)3(D)3√36.如果满足a =x,b =2,B =π3的△ABC 有两个,那么x 的取值范围为()(A)0<x ⩽2(B)x >2(C)2<x <4√33(D)2<x ⩽4√337.△ABC 的内角A,B,C 的对边分别为a,b,c ,已知2a cos C =3c cos A,tan A =12,则∠B =()(A)60◦(B)45◦(C)135◦(D)120◦8.设D,E 分别是△ABC 的边AB,BC 上的点,且AD =mAB,BE =23EC ,若# »DE =λ# »AB +µ# »AC ,且λ+µ=12,则实数m 的值为()(A)13(B)12(C)23(D)569.已知平面向量a ,b 满足|a |,|b |,|a −b |∈[2,3],则a ·b 的取值范围是()(A) −12,72(B) −14,7 (C) −12,7 (D) −14,7210.在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c ,若b 2−a 2=ac ,则1tan A −1tan B的取值范围是()(A)(1,2√33)(B)(1,2)(C)(1,+∞)(D)(1,√2)2§1镇海中学2017学年第一学期期末考试第II 卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.已知钝角△ABC 的面积为12,AB =1,BC =√2,则角B =,AC =.12.若sin (α+32π)−cos (α−π2)=12,则sin 2α=,2+2tan αcos (α+32π)sin (α+π4)=.13.已知向量a =(cos θ,sin θ),向量b =(√3,−1),则|2a −b |的最大值是,最小值是.14.在△ABC 中,角A,B,C 的对边分别为a,b,c ,若b 2+c 2=a 2−bc ,且# »AC ·# »AB =−4,则角A =,△ABC 的面积等于.15.已知半径为4的圆O 上的两点A,B 满足|# »AB |=√6,则# »AB ·# »AO =.16.在△ABC 中,∠BAC =120◦,已知∠BAC 的平分线交BC 于点D ,且AD =2,求AB +AC 的最小值.17.在Rt △ABC 中,AB =3,AC =4,BC =5,P 是△ABC 内部一点,且满足S △P AB # »P A ·# »P B =S △P BC# »P B ·# »P C=S △P CA # »P C ·# »P A ,则|# »P A |+|# »P B |+|# »P C |=.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.18.(本小题满分14分)已知平面上两个向量a ,b ,其中a =(1,2),|b |=2.(1)若(a +2b )⊥(2a −b ),求a 与b 夹角的余弦值;(2)若a 在b 的方向上的投影为−1,求b 的坐标.§1镇海中学2017学年第一学期期末考试319.(本小题满分15分)已知函数f(x)=2√3sin(x+π4)cos(x−π4)+sin(2x−π2).(1)求函数f(x)的单调递增区间;(2)若函数φ(x)=f(x)−m在[0,5π12]上仅有一个零点,求实数m的取值范围.20.(本小题满分15分)在△ABC中,内角A,B,C的对边分别为a,b,c,且满足b cos C=(3a−c)cos B.(1)求cos B的值;(2)若# »BC·# »BA=4,b=4√2,求边a,c的值.4§1镇海中学2017学年第一学期期末考试21.(本小题满分15分)在△ABC 中,内角A,B,C 的对边分别为a,b,c ,且√5sin (A −B )=a sin A −b sin B,a =b .(1)求边c ;(2)若△ABC 的面积为2,且tan C =2,求a +b 的值.22.(本题满分15分)如图,已知点O 为直线l 外一点,直线l 上依次排列着A,B,C,D 四点,满足:①∠AOC 为锐角,∠BOC =∠COD ;②tan ∠AOB ·tan ∠AOD =tan 2∠AOC ;③1tan ∠AOC +1tan ∠BOC =2tan ∠AOB .(1)求∠AOC 的值;(2)若AB =BC =1,求CD 的值.(新状元培优整理)A B C DOl§2镇海中学2018学年第一学期期末考试5§2镇海中学2018学年第一学期期末考试第I 卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点P (sin α,cos α)在第二象限,则角α的终边所在的象限为()(A)第一象限(B)第二象限(C)第三象限(D)第四象限2.对于向量a ,b ,c 和实数λ,下列命题中正确的是()(A)若a ·b =0,则a =0或b =0(B)若λa =0,则λ=0或a =0(C)若a 2=b 2,则a =b 或a =−b(D)若a ·b =a ·c ,则b =c3.已知向量a =(λ+1,2),b =(−2,2),若|a +b |=|a −b |,则实数λ为()(A)−2(B)−1(C)1(D)24.函数f (x )=sin x +a cos x 的图象关于直线x =π6对称,则实数a 的值是()(A)12(B)2(C)√32(D)√35.将y =f (x )的图象上各点横坐标伸长到原来的2倍,纵坐标不变,然后将图象向右平移π4个单位,所得图象恰与y =sin (x +π3)重合,则f (x )=()(A)sin (2x +7π12)(B)sin (x 2+7π12)(C)sin (2x +π12)(D)sin (x 2+π12)6.已知函数f (x )=(1−cos 2x )cos 2x,x ∈R ,则f (x )是()(A)最小正周期为π2的奇函数(B)最小正周期为π2的偶函数(C)最小正周期为π的奇函数(D)最小正周期为π的偶函数7.若向量a =(sin 2α,sin α−1),b =(1,1+sin α),且tan (π4+α)=−3,则a ·b 的值是()(A)1(B)35(C)53(D)−18.已知tan α,tan β是方程lg (3x 2−x −2)=0的两个实数根,则tan (α+β)=()(A)2(B)15(C)16(D)129.已知单位向量a ,b 的夹角为60◦,若向量c 满足|a −2b +3c |⩽3,则|c |的最大值为()(A)1+√33(B)√33(C)1+√3(D)√310.有下列叙述,①函数y =tan x 的对称中心是(kπ,0);②若函数f (x )=2sin (ωx +φ)(ω>0,0<φ<π)对于任意x ∈R 都有f (π6+x )=f (π6−x )成立,则f (π6)=2;③函数f (x )=x −sin x 在R 上有且只有一个零点;④已知定义在R 上的函数f (x )= sin x −cos x 2+sin x +cos x 2,当且仅当2kπ−π2<x <2kπ+π(k ∈Z )时,f (x )>0成立.则其中正确的是()(A)1个(B)2个(C)3个(D)4个6§2镇海中学2018学年第一学期期末考试第II卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.sin 7π6的值为;sin10◦sin70◦+cos10◦sin20◦的值为.12.已知扇形的周长为2时,当它的半径为时,扇形面积最大,这个最大值为.13.已知a=(3,λ+2),b=(λ,1),若a//b,则实数λ的值是,若a与b的夹角为锐角,则实数λ的取值范围是.14.设e1,e2是单位向量,且e1,e2的夹角为2π3,若a=e1+e2,b=2e1−e2,则e1·e2=,a在b方向上的投影为.15.已知P(−√3,a)为角θ的终边上的一点,且sinθ=12,则实数a的值为.16.若函数f(x)=−3cos2x−4sin x+2a+1在[0,π)内有两个不同的零点,则实数a的取值范围是.17.已知O为△ABC的外心,∠C=π3,若# »OC=λ# »OA+µ# »OB(λ,µ∈R),则λ+µ的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.18.已知|a|=2,|b|=3,(2a−b)·(a+3b)=−34.(1)求a与b的夹角θ;(2)当x为何值时,x a−b与a+3b垂直?§2镇海中学2018学年第一学期期末考试719.已知函数f(x)=√3sin2x+sin x·cos x.(1)求函数f(x)的最小正周期;(2)求函数f(x)在[0,π]的单调递增区间.20.设α,β∈(0,π),且sin(α+β)=513,tan(α2+π4)=3.(1)求cosα的值;(2)求cosβ的值.8§2镇海中学2018学年第一学期期末考试21.已知a 和b 的夹角为θ,且满足0<a ·b ⩽6,|a |·|b |sin θ=2√3.(1)求所有满足条件的θ所组成的集合A ;(2)设函数f (x )=√3sin 2x −cos 2x,g (x )=sin x +cos x −sin x ·cos x ,对于集合A 中的任意一个x 1,在集合A 中总存在一个x 2,使得f (x 1)>g (x 2)+a 成立,求实数a 的取值范围.22.已知实数0⩽θ⩽π,a =(cos θ,sin θ),e =(0,1),若向量b 满足(a +b )·e =0,且a ·b =0.(1)若|a −b |=2,求b ;(2)若f (x )=|b +x (a −b )|在[12,+∞)上为增函数.(i)求实数θ的取值范围;(ii)若f (x )⩽√5对满足题意的θ恒成立,求x 的取值范围.§3参考答案9§3参考答案镇海中学2017学年第一学期期末考试参考答案第I 卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.12345678910B B D C B C C B C A第II 卷(非选择题共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.3π4,√5;12.−34,−163√2;13.4,0;14.23π,2√3;15.3;16.8;17. 25+12√3.三、解答题:本大题共5小题,共74分.解答应写出文字说明,证明过程或演算步骤.18.(1)−√515;(2)(−2,0)或(65,−85).19.(1)[−π6+kπ,π3+kπ](k ∈Z );(2)√3−1⩽m <2√3或m =2+√3.20.(1)13;(2)a =2,c =6或a =6,c =2.21.(1)c =√5;(2)a +b =√5+2.22.(1)π4;(2)CD =2.。

镇海中学2017学年第一学期期末考试

镇海中学2017学年第一学期期末考试
2 4
13. 已知向量 a=(cosθ,sinθ),向量 b=( 3,−1),则|2a−b|最大值是______________________,最小值是___________________
14. 在△ABC 中,角 A,B,C 所对的边分别是 a,b,c,若 b2+c2=a2−bc,且AC∙AB=−4,则角 A=_______________,△ 15. 已知半径为 4 的圆 O 上的两点 A,B 满足|AB|= 6,则AB∙AO=________________________ ABC 的面积等于___________________
π π π 19. 已知函数 f(x)=2 3sin(x+ )∙cos(x− )+sin(2x− ) 4 4 2
(1) 求函数 f(x)的单调递增区间 (2) 若函数φ(x)=f(x)−m 在[0,
学 数 9 考 661 高 31 江 010 浙 3

5π ]上仅有一个零点,求实数 m 的取值范围 12
16. 在△ABC 中,∠BAC=120°,已知∠BAC 的平分线交 BC 于点 D,且 AD=2,求 AB+AC 的最小值_______________ S S S 17. 在 Rt△ABC 中,AB=3,AC=4,BC=5,P 是△ABC 内部一点,且满足 △PAB= △PBC= △PCA,则 PA∙PB PB∙PC PC∙PA |PA|+|PB|+|PC|=___________________________ 三、解答题(本大题共 5 小题,共 74 分) 18. 已知平面上两个向量 a,b,其中 a=(1,2),|b|=2 (1) 若(a+2b)⊥(2a−b),求 a 与 b 的夹角的余弦值 (2) 若 a 在 b 的方向上的投影为−1,求 b 的坐标

浙江省宁波市2017-2018学年高一上学期期末考试数学试题 Word版含解析

浙江省宁波市2017-2018学年高一上学期期末考试数学试题 Word版含解析

宁波市2017学年第一学期期末考试高一数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,,,则()A. B. C. D.【答案】C【解析】由交集的定义可得:,进行补集运算可得:.本题选择C选项.2. 下列函数中,在定义域内单调递增的是()A. B. C. D.【答案】C【解析】注意考查所给函数的性质:A.在定义域内单调递减;B.在定义域内没有单调性;C.在定义域内单调递增;D.在定义域内没有单调性;本题选择C选项.3. 若幂函数的图像过点,则的值为()A. 1B.C.D. 3【答案】D【解析】由题意可得:,则幂函数的解析式为:.本题选择D选项.4. 若角的终边经过点,则()A. B.C. D.【答案】A【解析】由点P的坐标计算可得:,则:,,.本题选择A选项.点睛:利用三角函数的定义求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x、纵坐标y、该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).5. 在中,点为边的中点,则向量()A. B.C. D.【答案】A【解析】由题意结合平面向量的运算法则可得:.本题选择A选项.6. 下列函数中,最小正周期为,且图像关于直线对称的是()A. B.C. D.【答案】B【解析】函数的最小正周期为,则,据此可得选项AC错误;考查选项BD:当时,,满足题意;当时,,不满足题意;本题选择B选项.7. 函数的图像大致是()A. B.C. D.【答案】D【解析】令,则,函数为偶函数,排除AB选项;当时,,而,则,排除选项C.本题选择D选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.8. 已知函数为奇函数,为偶函数,且,则()A. B. C. D.【答案】A【解析】由题意可得:,①,②.....................本题选择A选项.9. 对于非零向量,定义运算“”:,其中为的夹角.设为非零向量,则下列说法错误..的是()A. B.C. 若,则D.【答案】B【解析】利用排除法.由题中新定义的运算结合向量的运算法则有:,A选项正确;若,则,结合可得:或,均有,C项正确;,D选项正确;本题选择B选项.10. 已知,,且,则()A. B. 0 C. D.【答案】C【解析】,,,构造函数,很明显函数在区间上单调递增,则:,据此可得:.本题选择C选项.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11. 已知,则__________(用表示),__________.【答案】 (1). (2). 3【解析】由题意可得:,.12. 已知,,,且,则__________,__________.【答案】 (1). (2). 2【解析】由题意可得:,则..13. 已知函数一部分图像如图所示,则__________,函数的图像可以由的图像向左平移至少__________ 个单位得到.【答案】 (1). 2 (2).【解析】由函数图象可得,函数的最小正周期为,结合最小正周期公式有:;令有:,令可得:,函数的解析式为:绘制函数的图象如图所示,观察可得函数的图像可以由的图像向左平移至少个单位得到.14. 是定义在上的偶函数,当时,,且关于的方程在上有三个不同的实数根,则__________,__________.【答案】 (1). 2 (2). 3【解析】由偶函数的性质可得:,关于的方程在上有三个不同的实数根,方程的根为奇数个,结合为偶函数可知为方程的一个实数根,而,则:.15. 弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.【答案】1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.16. 已知向量的夹角为,,,则__________.【答案】2【解析】由题意可得:,则:,则:.17. 函数.若存在,使得,则的最大值为__________.【答案】【解析】绘制函数的图象如图所示,观察可得:,且:,原问题等价于考查二次函数:在区间上的最大值,函数的对称轴,则函数的最大值为:.综上可得:的最大值为.点睛:本题的实质是二次函数在给定区间上求最值.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 已知集合,,,.(Ⅰ)若,求;(Ⅱ)若,且,求的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,,.则.(Ⅱ)由题意可知,其中,而时,.求解不等式结合题意可得.试题解析:(Ⅰ)由题可得时,,.∴.(Ⅱ)∵,∴,.时,.∴,.∴.点睛:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.19. 已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)若,求函数的最大值以及取得最大值时的值.【答案】(Ⅰ);(Ⅱ).此时.【解析】试题分析:(Ⅰ)由题意整理三角函数的解析式可得,结合最小正周期公式可得函数的最小正周期.(Ⅱ)由,可得,由正弦函数的性质结合(Ⅰ)中函数的解析式可得当即时函数取得最大值2.试题解析:(Ⅰ).∴函数的最小正周期.(Ⅱ)∵,,∴∴.此时,∴.20. 如图所示,四边形是边长为2的菱形,.(Ⅰ)求的值;(Ⅱ)若点在线段及上运动,求的最大值.【答案】(Ⅰ)6;(Ⅱ)18.【解析】试题分析:(Ⅰ)以为坐标原点,所在的直线为轴,建立平面直角坐标系,由平面向量数量积的坐标运算法则可得.(Ⅱ)由题意结合(Ⅰ)中建立的平面直角坐标系可知,则,由线性规划的结论可知的最大值为18.试题解析:(Ⅰ)以为坐标原点,所在的直线为轴,建立平面直角坐标系,∴,,,.∴.(Ⅱ),设,∴.所以当点在点处时,的值最大,最大值为18.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.21. 已知,,.(Ⅰ)求的值;(Ⅱ)是否存在,使得下列两个式子:①;②同时成立?若存在,求出的值;若不存在,请说明理由.【答案】(1);(2)存在,满足①②两式成立的条件.【解析】试题分析:(Ⅰ)由题意结合同角三角函数基本关系可得,,然后利用两角和的余弦公式可得(Ⅱ)结合(Ⅰ)的结论可知,则,满足题意时,则,是方程的两个根,结合二次方程的特点计算可得存在,满足①②两式成立的条件.试题解析:(Ⅰ)∵,,,∴,.∴(Ⅱ)∵,∴,∴.∴,∵,∴.∴,是方程的两个根.∵,∴,∴,.∴,.即存在,满足①②两式成立的条件.22. 已知函数,.(Ⅰ)若为奇函数,求的值并判断的单调性(单调性不需证明);(Ⅱ)对任意,总存在唯一的,使得成立,求正实数...的取值范围.【答案】(Ⅰ).在上单调递增.(Ⅱ).【解析】试题分析:(Ⅰ)函数为奇函数,则恒成立.据此可得.此时,在上单调递增.(Ⅱ)由题意可知,而.据此分类讨论:①当时有;②当时有;③当时不成立.则正实数的取值范围是.试题解析:(Ⅰ)∵为奇函数,∴恒成立.∴.此时,在上单调递增.(Ⅱ),,∴.①当时,在上单调递增,∴,,∴②当时,在上单调递减,在上单调递增.∴,,∴③当时,在上单调递增,在上单调递减,在上单调递增. ∴,,不成立.综上可知,.。

浙江省宁波市镇海中学2018-2019学年高一上学期期末考试数学试题 Word版含解析

浙江省宁波市镇海中学2018-2019学年高一上学期期末考试数学试题 Word版含解析

已知点在第二象限,则角【详解】由题意,点在第二象限,对于向量,和实数,则或若,则,则或,则【答案】B;由向量的平方即,即可得到答案.,则或或,则或是正确的;,则,不能得到,所以不正确;,则,不一定得到,可能是已知向量,,若,则实数B. C. D.,即可得出,进行数量积的运算即可得出,在由向量的,所以,整理得,,解得【点睛】本题主要考查了向量的模的运算,以及向量的数量积的坐标运算,其中解答中根据向量的运算,求得推理与运算能力,属于基础题函数的图象关于直线对称,则实数B. C. D.【答案】【详解】由题意,函数又由函数的图象关于对称,所以,解得,故选D.【点睛】本题主要考查了三角函数的辅助角公式的应用,以及三角函数的图象与性质的应用,的图象上各点横坐标伸长到原来的倍,然后将图象向右平移重合,则(B. C. D.【答案】A【详解】由题意,可采用逆向思维,首先对函数向左平移的图象,进一步把图象上所有的点的横坐标缩短为原来的【点睛】本题主要考查了三角函数的图象变换的应用,其中解答中熟记三角函数的图象变换已知函数,,则是(最小正周期为最小正周期为最小正周期为最小正周期为利用三角函数的恒等变换化简函数为【详解】由函数所以函数为偶函数,且最小正周期为,故选B.【点睛】本题主要考查了三角函数的恒等变换以及三角函数的图象与性质,其中解答中熟练若向量,,且B. C. D.由题意,,求得式,化简为齐次式,即可求解【详解】由题意,,所以,解得又由向量,,【点睛】本题主要考查了平面向量的数量积的运算性质,以及利用三角函数的基本关系式化已知,是方程的两个实数根,则B. C. D.,是方程,是方程的两个实数根,,【点睛】本题主要考查了一元二次方程的根和系数的应用,以及三角函数关系式的恒等变换的应用,其中解答中熟记两角和的正切函数的公式,合理、准确运算是解答的关键,着重考已知单位向量的夹角为,若向量满足,则B. C. D.【答案】A,由,化简得,表示圆心为的最大值【详解】由题意,设单位向量,且,,所以,化简得,表示圆心为由图形可知,的最大值为,故选A.【点睛】本题主要考查了平面向量的模的计算,以及向量的坐标运算表示的图形,结合图象求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于基础题①函数的对称中心是②若函数(,对于任意都有;③函数在上的函数()时,成立.则其中正确的叙述有(个 B. C. 个 D.的导数判断单调性,结【详解】由题意,①中,函数的对称中心是,所以不正确;若函数对于任意都有可得函数关于对称,则③中,函数的导数为,可得函数在在有且只有一个零点,所以是正确的;④中,已知定义在上的函数时,即时,;时,即时,和,时,即当时,成立,所以是正确的,故选【点睛】本题主要考查了三角函数的图象与性质,以及函数与方程的应用,其中解答中熟记的值为(2)..【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角函数的诱导公式和已知扇形的周长为,当它的半径为(2).设扇形的半径与中心角分别为,可得,在利用扇形的面积为,利用基本不等【详解】设扇形的半径与中心角分别为,则,可得,可得扇形的面积为当且仅当是取等号.【点睛】本题主要考查了扇形的弧长和面积公式,以及基本不等式的性质的应用,其中解答已知,,若,则实数的值是;若与的夹角为锐角,则实数或 (2).,得到方程即可解答得值,和,不同向,列出不等式,即可求解,所以,解得或,和的夹角为锐角,所以,且,所以且的取值范围为且【点睛】本题主要考查了向量的共线的应用,以及向量的数量积的应用问题,其中解答中熟,是单位向量,且,的夹角为,若,;在(2).与的模【详解】由平面向量的数量积的定义,可得,,即,所以在方向上的投影为.【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推已知的终边上的一点,且,则实数的值为【答案】由三角函数的定义,即可求解,解得,所以.若函数则实数【答案】或由题意,,,把原函数转化为两个不同的零点,进而转化为方程在上有唯一的实根或在上有两相等的实根,利用二次函数的性质,即可求解.令,,则原函数转化为有两个不同的零点,在在(0,1)转化为函数,与函数有唯一交点或所以或【点睛】本题主要考查了函数与方程的综合应用,其中解答中根据题意令有两个不同的零点,进而转化为方程在根或在(0,1)上有两相等的实根,利用二次函数的性质求解是解答的关键,着重考查了转化思已知的外心,,若(的取值范围是【答案】,建立平面直角坐标系,利用向量的坐标运算,得到法二,由奔弛定理和向量的运算,得,进而得,利用三角函【详解】法一:设圆的半径为,如图所示建立平面直角坐标系,则,法二,由奔弛定理由已知转化为:,所以变形为,.【点睛】与性质的应用,其中解答中熟记向量的坐标运算,把已知,(Ⅰ)求的夹角(Ⅱ)当为何值时,与())由向量的数量积的运算,列出方程,求得,即可求解结果)由,利用向量的数量积的运算,即可求解【详解】(1)由题意,根据向量的运算,得解得:(2),..时,与垂直【点睛】本题主要考查了向量的数量积的化简、运算,其中解答中熟记平面向量的数量积的已知函数.(Ⅰ)求函数的最小正周期;在)函数的最小正周期是)利用三角函数恒等变换的公式,化简)由,根据三角函数的性质,得到)由题意,函数,即函数的最小正周期是.(2),,所以函数在的单调递增区间是【点睛】本题主要考查了三角恒等变换,以及三角函数的图象与性质的应用,其中解答中利的解析式,,且,(Ⅰ)求的值;(Ⅱ)求())法一:根据两角和的正切函数的公式,化简得法二:令,求得)由三角函数的基本关系式,求得的值,进而可求解.)法一:,法二:令,则,(2),,,,,.【点睛】本题主要考查了三角恒等变换,及三角函数基本关系式和诱导公式的化简求值,其已知的夹角为,且满足.(Ⅰ)求所有满足条件的所组成的集合;,,对于集合中的任意一个,在集合中总存在着一个,使得成立,求实数的取值范围())由向量的数量积的公式,求得,进而根据题设条件,得到)根据三角恒等变换的公式,化简,令,利用二次函数的性质,即可求解.【详解】(1)由题意,,;,得,故所求集合)由题意,根据三角恒等变换的公式,得;令,,由题意,得,.【点睛】本题主要考查了向量的数量积的运算,以及三角函数的图象与性质的应用,其中解已知实数,,,若向量满足. (Ⅰ)若;(Ⅱ)若)求实数的取值范围;)若恒成立,求的取值范围或(2)(Ⅰ)设,即可得到向量的坐标;(Ⅱ)(1,又由函数也是增函数,得到,即可求解得取值范围;)由对恒成立,进而转化为,由,,所以,即,,又,所以,故或(Ⅱ)(1)根据向量的模的公式,化简得在上为增函数,即,;,对对恒成立,解得.。

【真题】2017-2018年浙江省宁波市镇海中学高三(上)期末数学试卷与答案

【真题】2017-2018年浙江省宁波市镇海中学高三(上)期末数学试卷与答案

2017-2018学年浙江省宁波市镇海中学高三(上)期末数学试卷一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若抛物线的准线方程为x=﹣7,则抛物线的标准方程为()A.x2=﹣28y B.x2=28y C.y2=﹣28x D.y2=28x2.(5分)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E 上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.33.(5分)直线a与平面α所成角的为30o,直线b在平面α内,且与b异面,若直线a与直线b所成的角为φ,则()A.0°<φ≤30°B.0°<φ≤90°C.30°≤φ≤90°D.30°≤φ≤180°4.(5分)设,为向量,则|•|=||||是“∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A.m⊥α,n⊥β,且α⊥β,则m⊥nB.m∥α,n∥β,且α∥β,则m∥nC.m⊥α,n⊂β,m⊥n,则α⊥βD.m⊂α,n⊂α,m∥β,n∥β,则α∥β6.(5分)椭圆M:长轴上的两个顶点A、B,点P为椭圆M上除A、B外的一个动点,若•=0且•=0,则动点Q在下列哪种曲线上()A.圆B.椭圆C.双曲线D.抛物线7.(5分)如图,小于90°的二面角α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝角,∠A′OB′是∠AOB在β内的射影,则下列结论一定错误的是()A.∠A′OB′为钝角B.∠A′OB′>∠AOBC.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π8.(5分)在椭圆+=1(a>b>0)上有一点P,椭圆内一点Q在PF2的延长线上,满足QF1⊥QP,若sin∠F1PQ=,则该椭圆离心率取值范围是()A.(,1)B.(,1)C.()D.()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线﹣=1的焦距为,渐近线方程为.10.(6分)命题“若实数a满足a≤2,则a2<4”的逆否命题是命题(填“真”或者“假”);否命题是命题(填“真”或者“假”).11.(6分)已知△ABC是边长为1的正三角形,PA⊥平面ABC,且PA=1,则PB 与平面PAC所成角的正弦值为.若点A关于直线PC的对称点为D,则直线AD与BC所成角的余弦值是.12.(6分)已知A(1,),B(﹣1,),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是,则点M的轨迹C的方程是.若点F为轨迹C的焦点,P是直线l:y=﹣1上的一点,Q是直线PF与轨迹C的一个交点,且=3F,则|QF|=.13.(4分)过正四面体ABCD的中心且与一组对棱AB和CD所在直线都成60°角的直线有条.14.(4分)已知双曲线上一点P到两渐近线的距离分别为d1,d2,若,则双曲线的离心率为.15.(4分)四棱锥P﹣ABCD中,PA⊥平面ABCD,∠BAD=90°,PA=AB=BC=AD=1,BC∥AD,已知Q为四边形ABCD内部一点,且二面角Q﹣PD﹣A的平面角大小为,若动点Q的轨迹将四边形ABCD分成面积为S1,S2(S1<S2)的两部分,则S1:S2=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(15分)已知从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1.又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C中,求以点D(﹣2,1)为中点的弦MN所在的直线方程.17.(15分)如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E,F,G分别是CC1,BC,AB1的中点.(Ⅰ)求证:①FG∥平面ACC1A1;②B1F⊥平面AEF;(Ⅱ)求直线GF与平面AEF所成角.18.(15分)如图,平行四边形ABCD⊥平面CDE,AD=DC=DE=4,∠ADC=60°,AD⊥DE(Ⅰ)求证:DE⊥平面ABCD;(Ⅱ)求二面角C﹣AE﹣D的余弦值的大小.19.(15分)抛物线y2=2px,p>0,F为抛物线的焦点,A,B是抛物线上两点,线段AB的中垂线交x轴于D(a,0),a>0,m=||+||.(Ⅰ)证明:a是p,m的等差中项;(Ⅱ)若m=3p,l为平行于y轴的直线,其被以AD为直径的圆所截得的弦长为定值,求直线l的方程.20.(14分)已知椭圆E:的左、右顶点分别为A,B,M,N是椭圆E 上异于A,B的两点,直线AM,BN交于点P(4,t).(Ⅰ)若直线MN与x轴垂直,求实数t的值;(Ⅱ)记△PMN,△PAB的面积分别是S1(t),S2(t),求的最小值.2017-2018学年浙江省宁波市镇海中学高三(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若抛物线的准线方程为x=﹣7,则抛物线的标准方程为()A.x2=﹣28y B.x2=28y C.y2=﹣28x D.y2=28x【解答】解:∵准线方程为x=﹣7∴﹣=﹣7p=14∴抛物线方程为y2=28x故选:D.2.(5分)若双曲线E:=1的左、右焦点分别为F1,F2,点P在双曲线E 上,且|PF1|=3,则|PF2|等于()A.11B.9C.5D.3【解答】解:由题意,双曲线E:=1中a=3.∵|PF1|=3,∴P在双曲线的左支上,∴由双曲线的定义可得|PF2|﹣|PF1|=6,∴|PF2|=9.故选:B.3.(5分)直线a与平面α所成角的为30o,直线b在平面α内,且与b异面,若直线a与直线b所成的角为φ,则()A.0°<φ≤30°B.0°<φ≤90°C.30°≤φ≤90°D.30°≤φ≤180°【解答】解:如图,设a∩α=A,a在平面α内的射影为b′,在平面α内过A与b′垂直的直线为b″,b是平面α内与a异面的直线,当b∥b′时,a与b的角最小为30°,当b∥b″时,a与b的角最大为90°.∴30°≤φ≤90°.故选:C.4.(5分)设,为向量,则|•|=||||是“∥”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:∵•=,若a,b为零向量,显然成立;若⇒cosθ=±1则与的夹角为零角或平角,即,故充分性成立.而,则与的夹角为为零角或平角,有.因此是的充分必要条件.故选:C.5.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是()A.m⊥α,n⊥β,且α⊥β,则m⊥nB.m∥α,n∥β,且α∥β,则m∥nC.m⊥α,n⊂β,m⊥n,则α⊥βD.m⊂α,n⊂α,m∥β,n∥β,则α∥β【解答】解:对于A,m⊥α,n⊥β,且α⊥β,利用面面垂直的性质定理得到作垂直于交线的直线n'与β垂直,又n⊥β,得到n∥n',又m⊥α,得到m⊥n',所以m⊥n;故A正确;对于B,m∥α,n∥β,且α∥β,则m与n位置关系不确定,可能相交、平行或者异面;故B错误;对于C,m⊥α,n⊂β,m⊥n,则α与β可能平行;故C错误;对于D,m⊂α,n⊂α,m∥β,n∥β,则α与β可能相交;故D错误;故选:A.6.(5分)椭圆M:长轴上的两个顶点A、B,点P为椭圆M上除A、B外的一个动点,若•=0且•=0,则动点Q在下列哪种曲线上()A.圆B.椭圆C.双曲线D.抛物线【解答】解:设P(m,n),Q(x,y)∵椭圆M的方程为,∴作出椭圆如图所示,可得长轴的端点为A(﹣a,0),B(a,0)∴=(x+a,y),=(m+a,n)∵•=0,∴(x+a)(m+a)+ny=0,可得m+a=﹣…①同理根据•=0,可得m﹣a=﹣…②①×②,可得m2﹣a2=.…③∵点P(m,n)是椭圆上的动点,∴,整理得n2=(a2﹣m2),代入③可得:m2﹣a2=(a2﹣m2)•,化简得此方程对应的图形是焦点在y轴上的椭圆,可得动点Q的轨迹是一个椭圆,B项是正确答案故选:B.7.(5分)如图,小于90°的二面角α﹣l﹣β中O∈l,A,B∈α,且∠AOB为钝角,∠A′OB′是∠AOB在β内的射影,则下列结论一定错误的是()A.∠A′OB′为钝角B.∠A′OB′>∠AOBC.∠AOB+∠AOA′<πD.∠B′OB+∠BOA+∠AOA′>π【解答】解:如图,在α内射线OA上取点A,过A作交线l的平行线AB交射线OB于点B,过A作AA′⊥β,垂足为A′,过B作BB′垂直于β,垂足为B′,连接A′B′,则有AB ∥A′B′,且AB=A′B′,设OA=a,OB=b,AB=c,则OA′<a,OB′<b,∵∠AOB为钝角,∴a2+b2<c2,则(OA′)2+(OB′)2<a2+b2<c2=(A′B′)2,在△A′OB′中,由余弦定理可得∠A′OB′>∠AOB为钝角.∴∠AOB+∠AOA′>π.∴错误的选项是C,故选:C.8.(5分)在椭圆+=1(a>b>0)上有一点P,椭圆内一点Q在PF2的延长线上,满足QF1⊥QP,若sin∠F1PQ=,则该椭圆离心率取值范围是()A.(,1)B.(,1)C.()D.()【解答】解:∵满足QF1⊥QP,∴点Q与点F2重合时,∵sin∠F1PQ=,不妨设|PF1|=13,则|PF2|=12.∴可得:e==.因此e.当点Q在最下端时,∠F1QF2最大,此时F1Q⊥F2Q.可得点Q在椭圆的内部,当b=c,e=,因此.综上可得:.故选:C.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线﹣=1的焦距为6,渐近线方程为y=±x.【解答】解:根据题意,双曲线的方程为﹣=1,其焦点在x轴上,且a=,b==2,则c==3,则双曲线的焦距2c=6,渐近线方程为y=±x;故答案为:6,y=±x.10.(6分)命题“若实数a满足a≤2,则a2<4”的逆否命题是假命题(填“真”或者“假”);否命题是真命题(填“真”或者“假”).【解答】解:命题“若实数a满足a≤2,则a2<4”的逆否命题是“若a2≥4,则a >2“,是假命题.命题“若实数a满足a≤2,则a2<4”的否命题是“若实数a满足a>2,则a2≥4,是真命题.故答案为假;真.11.(6分)已知△ABC是边长为1的正三角形,PA⊥平面ABC,且PA=1,则PB与平面PAC所成角的正弦值为.若点A关于直线PC的对称点为D,则直线AD与BC所成角的余弦值是.【解答】解:如图,取AC中点O,连接BO,PO,∵△ABC是边长为1的正三角形,PA⊥平面ABC∴BO⊥AC,∴BO⊥平面APC∴则PB与平面PAC所成角是∠BPO,可得BO=,PB=∴sin∠BPO==.如图,建立空间直角坐标系,易得AD与PC的交点H为PC中点,A(0,0,0),B(,,0),C(0,1,0),H(0,,)=(0,,),=(﹣,,0)cos=,故答案为:,.12.(6分)已知A(1,),B(﹣1,),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是,则点M的轨迹C的方程是x2=4y(x ≠±1).若点F为轨迹C的焦点,P是直线l:y=﹣1上的一点,Q是直线PF与轨迹C的一个交点,且=3F,则|QF|=.【解答】解:设M(x,y),∵A(1,),B(﹣1,),直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是,∴k AM﹣k BM=﹣=,整理,得点M的轨迹C的方程是x2=4y(x≠±1).∵点F为轨迹C的焦点,∴F(0,1),P是直线l:y=﹣1上的一点,Q是直线PF与轨迹C的一个交点,且=3F,作QM⊥y轴于M点,作PN⊥y轴于N点,则=,∴MF=,∴Q(,),∴|QF|==.故答案为:x2=4y(x≠±1),.13.(4分)过正四面体ABCD的中心且与一组对棱AB和CD所在直线都成60°角的直线有4条.【解答】解:如图所示,设过正四面体ABCD的中心为P.则过点P且与平面ABC平行的平面EFG分别与平面ABD,平面ACD相交于直线EF,EG.则直线EG是分别与一组对棱AB和CD所在直线都成60°角的直线.因此过点P与直线EG平行的直线满足条件.同理直线FG是分别与一组对棱AB和CD所在直线都成60°角的直线.因此过点P与直线FG平行的直线满足条件.同理:通过作与ACD平面平行的平面,可得两条满足条件的直线.即符合题意的平面有4条.故答案为:4.14.(4分)已知双曲线上一点P到两渐近线的距离分别为d1,d2,若,则双曲线的离心率为或.【解答】解:双曲线的两条渐近线的方程为bx﹣ay=0或bx+ay=0,点P(x0,y0)到两条渐近线的距离之积为•=ab,即=ab,又点P(x0,y0)满足双曲线的方程,∴b2x02﹣a2y02=a2b2,∴=ab,即2a2+2b2=5ab,∴b=2a或b=a,则e===或,故答案为:或.15.(4分)四棱锥P﹣ABCD中,PA⊥平面ABCD,∠BAD=90°,PA=AB=BC=AD=1,BC∥AD,已知Q为四边形ABCD内部一点,且二面角Q﹣PD﹣A的平面角大小为,若动点Q的轨迹将四边形ABCD分成面积为S1,S2(S1<S2)的两部分,则S1:S2=(3﹣4):4.【解答】解:以A为坐标原点建立空间直角坐标系,如图:设Q的轨迹与y轴的交点坐标为Q(0,b,0)(b>0).由题意可知A(0,0,0),D(2,0,0),P(0,0,1),∴=(﹣2,0,1),=(﹣2,b,0).=(2,0,0).设平面APD的法向量为=(x1,y1,z1),平面PDQ的法向量为=(x2,y2,z2)则,.即,,令y1=0得=(0,1,0),令z2=2得=(1,,2).∴=,,.∵二面角Q﹣PD﹣A的平面角大小为,∴cos<>==.即,解得b=.==.∴S△ADQS梯形ABCD﹣S△ADQ=﹣=.∵S1<S2,∴S1=﹣,S2=.∴S1:S2=(3﹣4):4.故答案为(3﹣4):4.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(15分)已知从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1.又点A是椭圆与x轴正半轴的交点,点B是椭圆与y轴正半轴的交点,且AB∥OP,.(Ⅰ)求椭圆C的方程;(Ⅱ)在椭圆C中,求以点D(﹣2,1)为中点的弦MN所在的直线方程.【解答】解:(Ⅰ)由题意知:,故,即,解得b=c,又,解得,故椭圆C的方程为;(Ⅱ)因为点D(﹣2,1)在椭圆内,且显然直线MN的斜率存在,故设直线MN的方程为y=k(x+2)+1,M(x1,y1),N(x2,y2),代入椭圆方程得(2k2+1)x2+(8k2+4k)x+8k2+8k﹣8=0,故,解得k=1,故直线MN的方程为y=x+3.17.(15分)如图,三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E,F,G分别是CC1,BC,AB1的中点.(Ⅰ)求证:①FG∥平面ACC1A1;②B1F⊥平面AEF;(Ⅱ)求直线GF与平面AEF所成角.【解答】解:(Ⅰ)证明:①如图1,连接A1B,则A1B∩AB1=G.连接A1C,∵F,G分别是BC,AB1的中点,∴GF∥A1C.且GF⊄平面ACC1A1,A1C⊂平面ACC1A1.∴FG∥平面ACC1A1;②等腰直角三角形△ABC中F为斜边的中点,∴AF⊥BC又∵直三棱柱ABC﹣A1B1C1,∴面ABC⊥面BB1C1C,∴AF⊥面C1B,∴AF⊥B1F设AB=AA1=1,∴,EF=,,∴B1F2+EF2=B1E2,∴B1F⊥EF又AF∩EF=F,∴B1F⊥面AEF.解:(Ⅱ)如图以A为原点,建立空间直角坐标系,设AB=AA1=1,则A(0,0,0),E(0,1,),F(),G().设面AEF得法向量为,则由,可得=(1,﹣1,2).cos==.直线GF与平面AEF所成角的正弦值为,∴直线GF与平面AEF所成角.18.(15分)如图,平行四边形ABCD⊥平面CDE,AD=DC=DE=4,∠ADC=60°,AD⊥DE(Ⅰ)求证:DE⊥平面ABCD;(Ⅱ)求二面角C﹣AE﹣D的余弦值的大小.【解答】(本题满分15分)证明:(Ⅰ)过A作AH⊥DC交DC于H.∵平行四边形ABCD⊥平面CDE∴AH⊥平面CDE又∵DE⊂平面CDE∴AH⊥DE…①由已知AD⊥DE…②,AH∩AD=A…③由①②③得,DE⊥平面ABCD;…(7分)解:(Ⅱ)过C作CM⊥AD交AD于M,过C作CN⊥AE交AE于N,连接MN.由(Ⅰ)得DE⊥平面ABCD,又∵DE⊂平面ADE,∴平面ADE⊥平面ABCD.∴CM⊥AE,又∵CN垂直AE,且CM∩CN=C.∴AE⊥平面CMN,得角CNM就是所求二面角的一个平面角.又∵,,∴所求二面角的余弦值为.…(8分)19.(15分)抛物线y2=2px,p>0,F为抛物线的焦点,A,B是抛物线上两点,线段AB的中垂线交x轴于D(a,0),a>0,m=||+||.(Ⅰ)证明:a是p,m的等差中项;(Ⅱ)若m=3p,l为平行于y轴的直线,其被以AD为直径的圆所截得的弦长为定值,求直线l的方程.【解答】解:(Ⅰ)设A(x1,y1),B(x2,y2),则m=||+||=x1+x2+p.又线段AB的中垂线交x轴于D(a,0),∴|DA|=|DB|,即,∵x1≠x2,∴x1+x2﹣2a=﹣2p,即x1+x2=2a﹣2p,∴,即,∴a是p,m的等差中项.(Ⅱ)∵m=3p,∴a=2p.设A(2pt2,2pt),D(2p,0),则圆心为O′(p+pt2,pt),设直线l的方程为x=n,设R为圆的半径,d为圆心O′到l的距离,则R2﹣d2为定值,又R2﹣d2=[(2pt2﹣2p)2+(2pt)2]﹣(p+pt2﹣n)2=p2[(t2﹣1)2+t2]﹣(p+pt2﹣n)2=﹣3p2t2+2np+2npt2﹣n2=(2np﹣3p2)t2+(2np﹣n2)∴2np﹣3p2=0,即n=,∴直线l的方程为x=.20.(14分)已知椭圆E:的左、右顶点分别为A,B,M,N是椭圆E 上异于A,B的两点,直线AM,BN交于点P(4,t).(Ⅰ)若直线MN与x轴垂直,求实数t的值;(Ⅱ)记△PMN,△PAB的面积分别是S1(t),S2(t),求的最小值.【解答】解:(Ⅰ)设M(x 0,y0),N(x0,﹣y0),直线AM的方程为,直线BN的方程为,联立得:,由,解得:,代入直线AM可得t=±3;(Ⅱ)将直线AM的方程为,代入椭圆的方程并整理得:(t2+27)x2+4t2x+(4t2﹣108)=0,解得,直线NB的方程为,代入椭圆的方程并整理得:(t2+3)x2﹣4t2x+(4t2﹣12)=0,解得,所以==,当,即t=±3时,.赠送—高中数学知识点二次函数(1)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔xy1x 2x 0>a O∙ab x 2-=0)(>k f k x y1x 2x O∙ab x 2-=k<a 0)(<k f②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O∙<a 1k ∙2k 0)(1<k f 0)(2<k f ab x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合xy1x 2x 0>a O ∙∙1k2k 0)(1>k f 0)(2<k fxy1x 2x O∙<a 1k∙2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x>O-=f (p) f (q)()2b f a-0x x>O -=f(p) f(q)()2b f a-0x x<O-=f (p) f (q) ()2bf a-x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2bf a-x x<O-=f (p)f (q)()2b f a-x<O-=f (p)f (q)()2b f a-x。

2018年07月浙江省镇海中学2017学年第一学期期末考试高一数学期末试题及参考答案

2018年07月浙江省镇海中学2017学年第一学期期末考试高一数学期末试题及参考答案

。 , 的 单 调 递 增 区 间 是
(2) 20. 解: (1)由正弦定 理理和 ,得 , 化简,得 即 故 所以 (2)因为 所以 又又因为 . , 所以 ,即 . (1) . ,
2 3 ) 3
1 7 D. [− , 2] 4
)
1 1 − 的取值范围 tanA tanB
二、填空题(本大题共 7 小题,多空题每题 6 分,单空题每题 4 分,共 36 分)
B. (1,2)
C. (1,+∞)
D. (1, 2)
1 11. 已知钝角△ABC 的面积为 ,AB=1,BC= 2,则角 B=__________________________,AC=______________________ 2 3π π 1 2+2tanα 12. 若 sin(α+ )−cos(α− )= ,则 sin2α=____________________________, =____________________ 2 2 2 cos(α+3π)sin(α+π)
镇海海中学 2017 学年年第一一学期期末考试
BBDCB 11. ; CCBCA 。12. .13. 4;0 。14. ; 。15.3
16. 8。17. 18 解: (1)设 的夹⻆角为 ,由 , ,知 ,即:
所以:


(2)设
,由条件有
,故
,解得:
,或

所以: 19. 3.
或 (1) 化 简 得
2 4
13. 已知向量 a=(cosθ,sinθ),向量 b=( 3,−1),则|2a−b|最大值是______________________,最小值是___________________

2017-2018学年高一上学期期末考试数学试题(20201014181259)

2017-2018学年高一上学期期末考试数学试题(20201014181259)

现在沿 AE 、 AF 及 EF 把这个正方形折成一个四面体,使 B 、 C 、 D 三点重合,重合后
的点记为 H ,如图②所示,那么,在四面体 A EFH 中必有 ( )
图①
图②
A . AH ⊥△ EFH 所在平面
B. AG ⊥△ EFH 所在平面
C. HF ⊥△ AEF 所在平面
D. HG ⊥△ AEF 所在平面
22 ( 2 3) 2 1 ,即 | m | 1 解得 m
2
2
0或 1 2
2
20.解: ∵ PA⊥平面 ABCD ,CD? 平面 ABCD ∴ PA⊥ CD
∵ CD ⊥AD , AD ∩PA= A∴CD ⊥平面 PAD .[来源:Z#xx#] ∵ PD ? 平面 PAC,∴ CD⊥ PD [来源:Z*xx*]

A. a 1或 a 2
B. a 2或 a 1
C. a 1
D. a 2
5.设 l 是直线, , 是两个不同的平面,(

A .若 l ∥ , l ∥ ,则 ∥
B.若 l ∥ , l ⊥ ,则 ⊥
C.若 ⊥ , l ⊥ ,则 l ⊥
D.若 ⊥ , l ∥ ,则 l ⊥
6.直线 2 x 3 y 6 0 关于点 (1, 1) 对称的直线方程是 ( )
三、解答题
3x 4y 5 0
17. 解:由
,得 M ( 1, 2)
2x 3y 8 0
22
( 1) x 1 ( 2)设直线方程为 x 2 y C 0 ,则, C 5 ,即 x 2y 5 0
18.解:圆 x2 y2 4 的圆心坐 标为 (0,0) , 半径 r 4
∵ 弦 AB 的长为 2 3 ,
故圆心到直线的距离 d 19.解:

浙江省宁波市2017-2018学年高一上学期期末考试数学试题

浙江省宁波市2017-2018学年高一上学期期末考试数学试题

宁波市2017学年第一学期期末考试高一数学试卷第Ⅰ卷(选择题共60分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若集合,,,则()A. B. C. D.【答案】C【】由交集的定义可得:,进行补集运算可得:.本题选择C选项.2. 下列函数中,在定义域内单调递增的是()A. B. C. D.【答案】C【】注意考查所给函数的性质:A.在定义域内单调递减;B.在定义域内没有单调性;C.在定义域内单调递增;D.在定义域内没有单调性;本题选择C选项.3. 若幂函数的图像过点,则的值为()A. 1B.C.D. 3【答案】D【】由题意可得:,则幂函数的式为:.本题选择D选项.4. 若角的终边经过点,则()A. B.C. D.【答案】A【】由点P的坐标计算可得:,则:,,.本题选择A选项.点睛:利用三角函数的定义求一个角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x、纵坐标y、该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).5. 在中,点为边的中点,则向量()A. B.C. D.【答案】A【】由题意结合平面向量的运算法则可得:.本题选择A选项.6. 下列函数中,最小正周期为,且图像关于直线对称的是()A. B.C. D.【答案】B【】函数的最小正周期为,则,据此可得选项AC错误;考查选项BD:当时,,满足题意;当时,,不满足题意;本题选择B选项.7. 函数的图像大致是()A. B.C. D.【答案】D【】令,则,函数为偶函数,排除AB选项;当时,,而,则,排除选项C.本题选择D选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.8. 已知函数为奇函数,为偶函数,且,则()A. B. C. D.【答案】A【】由题意可得:,①,②.....................本题选择A选项.9. 对于非零向量,定义运算“”:,其中为的夹角.设为非零向量,则下列说法错误..的是()A. B.C. 若,则D.【答案】B【】利用排除法.由题中新定义的运算结合向量的运算法则有:,A选项正确;若,则,结合可得:或,均有,C项正确;,D选项正确;本题选择B选项.10. 已知,,且,则()A. B. 0 C. D.【答案】C【】,,,构造函数,很明显函数在区间上单调递增,则:,据此可得:.本题选择C选项.第Ⅱ卷(非选择题共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.11. 已知,则__________(用表示),__________.【答案】 (1). (2). 3【】由题意可得:,.12. 已知,,,且,则__________,__________.【答案】 (1). (2). 2【】由题意可得:,则..13. 已知函数一部分图像如图所示,则__________,函数的图像可以由的图像向左平移至少__________ 个单位得到.【答案】 (1). 2 (2).【】由函数图象可得,函数的最小正周期为,结合最小正周期公式有:;令有:,令可得:,函数的式为:绘制函数的图象如图所示,观察可得函数的图像可以由的图像向左平移至少个单位得到.14. 是定义在上的偶函数,当时,,且关于的方程在上有三个不同的实数根,则__________,__________.【答案】 (1). 2 (2). 3【】由偶函数的性质可得:,关于的方程在上有三个不同的实数根,方程的根为奇数个,结合为偶函数可知为方程的一个实数根,而,则:.15. 弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.【答案】1【】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是. 16. 已知向量的夹角为,,,则__________.【答案】2【】由题意可得:,则:,则:.17. 函数.若存在,使得,则的最大值为__________.【答案】【】绘制函数的图象如图所示,观察可得:,且:,原问题等价于考查二次函数:在区间上的最大值,函数的对称轴,则函数的最大值为:.综上可得:的最大值为.点睛:本题的实质是二次函数在给定区间上求最值.二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18. 已知集合,,,.(Ⅰ)若,求;(Ⅱ)若,且,求的取值范围.【答案】(Ⅰ);(Ⅱ).【】试题分析:(Ⅰ)当时,,.则.(Ⅱ)由题意可知,其中,而时,.求解不等式结合题意可得.试题:(Ⅰ)由题可得时,,.∴.(Ⅱ)∵,∴,.时,.∴,.∴.点睛:(1)已知两个集合之间的关系求参数时,要明确集合中的元素,对子集是否为空集进行分类讨论,做到不漏解.(2)在解决两个数集关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解,另外,在解含有参数的不等式(或方程)时,要对参数进行讨论.19. 已知函数.(Ⅰ)求函数的最小正周期;(Ⅱ)若,求函数的最大值以及取得最大值时的值.【答案】(Ⅰ);(Ⅱ).此时.【】试题分析:(Ⅰ)由题意整理三角函数的式可得,结合最小正周期公式可得函数的最小正周期.(Ⅱ)由,可得,由正弦函数的性质结合(Ⅰ)中函数的式可得当即时函数取得最大值2.试题:(Ⅰ).∴函数的最小正周期.(Ⅱ)∵,,∴∴.此时,∴.20. 如图所示,四边形是边长为2的菱形,.(Ⅰ)求的值;(Ⅱ)若点在线段及上运动,求的最大值.【答案】(Ⅰ)6;(Ⅱ)18.【】试题分析:(Ⅰ)以为坐标原点,所在的直线为轴,建立平面直角坐标系,由平面向量数量积的坐标运算法则可得.(Ⅱ)由题意结合(Ⅰ)中建立的平面直角坐标系可知,则,由线性规划的结论可知的最大值为18.试题:(Ⅰ)以为坐标原点,所在的直线为轴,建立平面直角坐标系,∴,,,.∴.(Ⅱ),设,∴.所以当点在点处时,的值最大,最大值为18.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.21. 已知,,.(Ⅰ)求的值;(Ⅱ)是否存在,使得下列两个式子:①;②同时成立?若存在,求出的值;若不存在,请说明理由.【答案】(1);(2)存在,满足①②两式成立的条件.【】试题分析:(Ⅰ)由题意结合同角三角函数基本关系可得,,然后利用两角和的余弦公式可得(Ⅱ)结合(Ⅰ)的结论可知,则,满足题意时,则,是方程的两个根,结合二次方程的特点计算可得存在,满足①②两式成立的条件.试题:(Ⅰ)∵,,,∴,.∴(Ⅱ)∵,∴,∴.∴,∵,∴.∴,是方程的两个根.∵,∴,∴,.∴,.即存在,满足①②两式成立的条件.22. 已知函数,.(Ⅰ)若为奇函数,求的值并判断的单调性(单调性不需证明);(Ⅱ)对任意,总存在唯一的,使得成立,求正实数...的取值范围.【答案】(Ⅰ).在上单调递增.(Ⅱ).【】试题分析:(Ⅰ)函数为奇函数,则恒成立.据此可得.此时,在上单调递增.(Ⅱ)由题意可知,而.据此分类讨论:①当时有;②当时有;③当时不成立.则正实数的取值范围是.试题:(Ⅰ)∵为奇函数,∴恒成立.∴.此时,在上单调递增.(Ⅱ),,∴.①当时,在上单调递增,∴,,∴②当时,在上单调递减,在上单调递增.∴,,∴③当时,在上单调递增,在上单调递减,在上单调递增. ∴,,不成立.综上可知,.。

2017~2018学年第一学期期末联考高一数学试题

2017~2018学年第一学期期末联考高一数学试题

2017~2018学年第一学期期末联考高一数学试题本试卷共4页,22小题,满分150分,考试用时120分钟。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一项是符合题目要求的.1.若,,且,则A. B. C. D.2.下列四组函数中,表示相同函数的一组是A. B.C. D.3.下列函数中,值域为的偶函数是A. B. C. D.4.下列函数在其定义域内既是奇函数,又是增函数的是A. B. C. D.5.设,则的大小关系是A. B. C. D.6.函数的零点所在的一个区间是A. B. C. D.7.设函数A. B. C. D.8.函数的图象的大致形状是A B C D9.直线与圆交点的个数为A. 2个B. 1个C. 0个D. 不确定10.圆与圆的位置关系是A. 相离B. 外切C. 相交D. 内切11. 设是两个不同的平面,是一条直线,以下命题正确的是A. 若,则B. 若,则C.若,则D. 若,则12.某几何体的三视图如图所示,它的体积为A.B.C.D.第Ⅱ卷 (非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.计算 .14.经过,两点的直线的倾斜角是 .15.若函数在区间上的最大值比最小值大,则 . 16.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为 .三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知的三个顶点(1)求边上高所在直线的方程;(2)求的面积.18.(本小题满分12分)如图,在直三棱柱中,已知,,设的中点为,.EDBA CC1 A1第12题图求证:(1);(2).19. (本小题满分12分)已知函数.(1)根据定义证明:函数在上是增函数;(2)根据定义证明:函数是奇函数.20.(本小题满分12分)如图,在三棱锥中,.(1)画出二面角的平面角,并求它的度数;(2)求三棱锥的体积.第20题图21. (本小题满分12分)在平面直角坐标系中,圆经过三点.(1)求圆的方程;(2)若圆与直线交于两点,且,求的值.22. (本小题满分12分)已知函数.(1)若,判断函数的零点个数;(2)若对任意实数,函数恒有两个相异的零点,求实数的取值范围;(3)已知R 且,,求证:方程在区间上有实数根.2017~2018学年第一学期期末联考高一数学试题参考答案与评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题题号 1 2 3 4 5 6 7 8 9 11112答案 A C D B A B C D A D B C二、填空题.16.;15.;14.;113.三、解答题(本大题共6个小题,共70分.解答应写出文字说明、演算步聚或推理过程.)17.(本小题满分10分)已知的三个顶点⑴求边上高所在直线的方程;⑵求的面积.解(1)设边上高所在直线为,由于直线的斜率…………………….…2分所以直线的斜率.…………………….…3分又直线经过点,所以直线的方程为,…………….…4分即…………………………………………..…4分⑵边所在直线方程为:,即…………………….…5分点到直线的距离,…………………………………7分又………………………9分…………….…10分18.(本小题满分12分)如图,在直三棱柱中,已知,,设的中点为,.求证:⑴; ⑵.证明:⑴在直三棱柱中,平面,且矩形是正方形,………....................……….….................…1分 为的中点,……………….….................................................…2分 又为的中点,,………………….………………3分 又平面,平面,……………..……4分平面.……………………………………………….…5分⑵在直三棱柱中,平面,平面,.………………6分又,平面,平面,,….....7分平面,………………………………………....................................…8分 平面,.…………………....…..................................…9分 矩形是正方形,,……………………...............................…10分 平面,,平面.…….............…11分又平面,.…………………….….................................…12分19.(本小题满分12分)已知函数.⑴根据定义证明:函数在上是增函数;⑵根据定义证明:函数是奇函数.EDBACC 1B 1A 1证明:⑴设任意的,且,…………1分则…………………………2分………………………3分……………………………………………4分,,即,……….…5分又,………………………………….…6分,即,………………7分在上是增函数.……………………………8分⑵,……………………9分,……………………………………………10分…………………………………………11分,即所以函数是奇函数. ……………………………………12分20.(本小题满分12分)如图,在三棱锥中,.⑴画出二面角的平面角,并求它的度数;⑵求三棱锥的体积.解:⑴取中点,连接、,……....................................……....1分,,,…...….........2分且平面,平面,….............................................…...3分是二面角的平面角. ….....................................……....4分在直角三角形中,…...5分在直角三角形中,…...6分是等边三角形,………………….7分…...………………………...8分⑵解法1:,......................9分又平面, 平面平面,且平面平面.............10分 在平面内作于,则平面,..................11分即是三棱锥的高.在等边中,,三棱锥的体积.....................................12分解法2:平面.........9分在等边中,的面积,.......................10分三棱锥的体积...................12分21.(本小题满分12分)在平面直角坐标系中,圆经过三点. ⑴求圆的方程; ⑵若圆与直线交于两点,且求的值.解:⑴因为圆的圆心在线段的直平分线上,所以可设圆的圆心为,………………………….….……1分则有解得…………………2分则圆C 的半径为……………………………3分ODSCBA所以圆C的方程为……………………4分⑵设,其坐标满足方程组:............5分消去,得到方程….....................................…....6分由根与系数的关系可得,…………......8分由于可得,…………………….....................................….....10分又所以………........11分由①,②得,满足故……......................................……………12分22.(本小题满分12分)已知函数.⑴若,判断函数零点个数;⑵若对任意实数,函数恒有两个相异的零点,求实数的取值范围;⑶已知且,,求证:方程在区间上有实数根.解:⑴……………………………………………………1分,………………………………………………2分当时,,函数有一个零点;……………………………3分当时,,函数有两个零点.………………………….…4分⑵已知,则对于恒成立,…………………….…...…6分即恒成立;…………………………………………...…6分所以,……………………………………………………7分从而解得.……………………………………………………...……8分⑶设,则……….…9分……….…10分,……………………………11分在区间上有实数根,……………………………….…12分即方程在区间上有实数根. ……..…12分。

2018-2019学年浙江省宁波市镇海中学高一期末数学试卷

2018-2019学年浙江省宁波市镇海中学高一期末数学试卷

2021-2021学年浙江省宁波市镇海中学高一〔下〕期末数学试卷一、选择题:本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.A. 30B. 45C. 60D. 904. 〔4分〕在直角梯形ABCD中,AB//CD , AB形ABCD绕着BC旋转而成的几何体的体积为〔〕1. 〔4分〕如图是一个正四棱锥,它的俯视图是2. 〔4分〕点〔1, a〕〔a 0〕到直线l:x y 20的距离为1,那么a的值为〔〕3. 〔4分〕如图,正方体ABCD AB1C1D1中,直线AB与BC1所成角为〔BC , AB 5 , BC 4 , CD 2 ,那么梯116B .—— C.100 (28 4 10)35. 〔4分〕直线倾斜角的范围是[--〕〔-,—],那么此直线的斜率的取值范围是B.(,向U[«,)6. 〔4分〕正三角形ABC 的边长为2cm,如图,△ A B C 为其水平放置的直观图, 那么4ABC7. 〔4分〕一个几何体的三视图如下图,那么该几何体的外接球的体积为10. 〔4分〕圆1与2交于两点,其中一交点的坐标为〔3,4〕,两圆的半径之积为 9, xC.[3 _3] 3,3]D.(的周长为〔C. (2 V6) cmD. (2 2.3)cmD.娓个命题:n 表示两条不同的直线,表示三个不同的平面,给出以下四其中正确命题的序号为 A.①②B.②③C.③④D.②④9. 〔4分〕假设实数y 满足不等式组y, y... ,那么 z 2|x| 1y 的最小值是〔 〕B. 0C. 1D. 2)8. 〔4分〕 m , 6轴与直线y mx〔m 0〕都与两圆相切,那么实数m 〔D. 35二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11. 〔6分〕圆柱的上、下底面的中央分别为.1,.2,过直线.1.2的平面截该圆柱所得的截面是面积为4的正方形,那么该圆柱的外表积为12. 〔6分〕假设直线y kx 1 2k与曲线y / x2有交点,那么实数k的最大值为小值为2 13. 〔6分〕假设过点〔1,1〕的直线l被圆2 .................... . .y 4截得的弦长最短,那么直线l的方程是此时的弦长为2 214. 〔6分〕点〔2,1〕和圆C:x y ax2y 2 0 ,假设点P在圆C上,那么实数a假设点P在圆C外,那么实数a的取值范围为15. 〔4分〕异面直线a, b所成角为y,过空间一点O的直线l与直线a,b所成角均为, 假设这样的直线l有且只有两条,那么的取值范围为16. 〔4分〕在棱长均为2的三棱锥A BCD中,E、F分另ij AB、BC上的中点,P为棱BD上的动点,那么PEF周长的最小值为17. 〔4分〕在三^麴t P ABC 中,AB BC , PA PB 2 , PC AB BC 272,作BD PC交PC于D ,那么BD与平面PAB所成角的正弦值是三、解做题:本大题共5小题,共74分.解容许写出文字说明、证实过程或演算步骤.18. 〔14分〕正四棱锥P ABCD的侧棱长与底面边长都相等, E为PC中点.〔1〕求证:PA//平面BDE;(1)过原点O 的直线l 被圆C 所截得的弦长为2,求直线l 的方程;(2)过圆C 外的一点P 向圆C 引切线PA, A 为切点,O 为坐标原点,假设|PA| |OP|,求 使| PA |最短时的点P 坐标.P ABCD 中,PA 底面 ABCD , AD AB, AB//DC , AD DC AP 2, AB 1,点E 为棱PC 的中点. (I )证实:BE DC ;21 .( 15分)如图,在正方体 ABCD A 1B 1C 1D 1中,M 是AB 的中点,E 在CC i 上,且CE (1)求证:AC 1 平面ABD ;22 . (15分)点A(1,0), B(4,0),曲线C 上任意一点P 满足|PB| 2| PA| . (1)求曲线C 的方程;(2)设点D(3,0),问是否存在过定点 Q 的直线l 与曲线C 相交于不同两点 E , F ,无论直 线l 如何运动,x 轴都平分 EDF ,假设存在,求出Q 点坐标,假设不存在,请说明理由.20. (15分)如图,在四棱锥2C i E .(2)在线段DD 1上存在一点P, DPDF,假设PB"/平面DME ,求实数 的值.(n)求直线BE 与平面PBD 所成角的正弦值.2021-2021学年浙江省宁波市镇海中学高一〔下〕期末数学试卷参考答案与试题解析、选择题:本大题共10小题,每题4分,共40分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1. 〔4分〕如图是一个正四棱锥,它的俯视图是〔〕【解答】解:该几何体直观图为一个正四棱锥,所以其俯视图轮廓为正方形,并且能够看到其四个侧棱,构成正方形的对角线,应选:D .2. 〔4分〕点〔1, a〕〔a 0〕到直线l:x y 2 0的距离为1,那么a的值为〔〕B. 2 72 C, V2 1 D.豉1【解答】解:点〔1 , a〕〔a 0〕到直线l:x y 2 0的距离为1,|1 a 2| 23. 〔4分〕如图,正方体ABCD AB1C1D1中,直线AB与BC1所成角为〔C. 60D. 90【解答】解:QAB 1//DC 1,DC i B 是直线A0与BC i 所成角, Q BDC i 是等边三角形, 直线AB 与BC i 所成角604. 〔4分〕在直角梯形 ABCD 中,AB//CD , AB 形ABCD 绕着BC 旋转而成的几何体的体积为 〔 〕【解答】解:梯形ABCD 绕着BC 旋转而成的几何体是圆台, 圆台的高h BC 4,上底面圆半径 r CD 2 ,下底面圆半径 R AB 5,梯形ABCD 绕着BC 旋转而成的几何体的体积: 1 22V - h(R Rr r )3 14 (25 10 4)3 52 . 应选:A.5.〔4分〕直线倾斜角的范围是[--〕〔一,2-],那么此直线的斜率的取值范围是 〔 3 22 3BC , AB 5 , BC 4 , CD 2 ,那么梯A. 52116 B. 一C.100D.(28 4 10)3应选:C .B. ( , V3]U[布,)C.[3 .31, ]3 3解:根据题意,直线倾斜角的范围是3 3D. ( , ^-]UHr,)3 324w) (万其斜率k即k的取值范围为〔△ ABC为其水平放置的直观图, 那么4 ABC 的周长为〔6. 〔4分〕正三角形ABC的边长为2cm,如图,C. (2 V6)cmD. (2 2.3) cm 【解答】解:ABC的边长为2cm , 那么它的直观图△ABC 中,__ 1 3OC -g?gsin60 — 2 2BC 2OB2OC22O B gD Cgcos45 7 2. 62BCp 2 又AC2OC 2O AgO Cgcos1357 2、6 6 12--------- ( ----------- ),4 2AC△ ABC的周长为2(2 J6)(cm).7. 〔4分〕一个几何体的三视图如下图,那么该几何体的外接球的体积为【解答】 解:由的三视图可得:该几何体是一个以俯视图为底面的三棱锥, 其四个顶点是以俯视图为底面,以 1为高的三棱锥的四个顶点,如图是长方体的一局部,R 1 12—22—12 -6, 2 2 故球的体积V 4 (—)3旄,3 2C. 876D. 66故其外接球,相当于一个长1的长方体的外接球,故外接球的半径8. 〔4分〕 n 表本两条不同的直线,表示三个不同的平面,给出以下四个命题:其中正确命题的序号为A.①②B.②③C.③④D.②④r故错误;②令 ,,为底面为直角三角形的三棱柱的三个侧面, 且 那么m//n,即m n 不一定成立,故错误;③ ,,I m ,那么m,故正确;④假设m , m n ,那么n// ,或n ,又由n ,那么y 09. 〔4分〕假设实数x, y 满足不等式组 x y, 3 ,那么z 2|x| y 的最小值是〔〕x y (1)A .1 B. 0 C. 1 D. 2y 0【解答】 解:画出实数x, y 满足不等式组 x y, 3的可行域如下图, x y …1 可得 B(1 , 2)A( 1,0), C(3,0) , D(0,1)当目标函数z 2 |x | y 经过点D 〔0,1〕时,z 的值为1 , 应选:A.10. 〔4分〕圆1与2交于两点,其中一交点的坐标为 〔3,4〕,两圆的半径之积为 9,轴与直线y mx 〔m 0〕都与两圆相切,那么实数【解答】 解:Q 两切线均过原点,【解答】解:①I m , n , n m ,那么n 不一定成立,进而 不一定成立,15B.D.5连心线所在直线经过原点,该直线设为 y tx,设两圆与x 轴的切点分别为xi, X2,222那么两圆方程分别为:(X X 1)2(y *I ⑼2 , (X X 2)(y tX 2) (tX 2)Q 圆1与2交点的坐标为P(3,4), P(3,4)在两圆上. 一 2 2 2 - (3 X i ) (4 tX i ) (tX i )①, (3 X 2)2 (4 tX 2)2 (tX 2)2 ②, 又两圆半径之积为9,2|tX i |g|tX 2 | |X 1X 2 |t 9③,联立①②③,可得X i , X 2是方程(3 X)2 (4 tX)2 (tX)2的两根, 化简得 X 2 (6 8t)X 25 0 ,即 X 1X 2 25 . 代入③,得t 2 ~9■,即t 3 . 25 5由于所求直线的倾斜角是连心线所在直线倾斜角的两倍,即15 m —.8应选:A.、填空题:本大题共 7小题,多空题每题 6分,单空题每题 4分,共36分. 11. (6分)圆柱的上、下底面的中央分别为O i, O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为4的正方形,那么该圆柱的外表积为 _6 体积为.【解答】 解:设圆柱的底面直径为 2R,那么高为2R, 圆柱的上、下底面的中央分别为 Q, 02,过直线O 1O 2的平面截该圆柱所得的截面是面积为4的正方形,4R 2 4,解得 R 1,2该圆柱的外表积 S 1 2 2 126,体积V12 2 2 .故答案为:612. (6分)假设直线y kx 1 2k 与曲线y /T 有交点,那么实数k 的最大值为 1 ,最小值为.【解答】 解:直线y kx 1 2k ,即y k(x 2) 1经过定点P(2,1).2t 21 t曲线y J1 x1 2表示圆x2 y2 1的上半局部,A(1,0), B(0,1).Q直线y kx 1 2k与曲线y 小―x^有交点,那么实数k的最大值为k PA 1 0 1 ,最小值为k pB 0 .故答案为:1, 0.2 213. (6分)假设过点(1,1)的直线l被圆x y 4截得的弦长最短,那么直线l的方程是x y 2 此时的弦长为.【解答】解:直线I的方程为y 1 k(x 1),与圆联立可得出两点M , N ,即2 22 八 ,/、2 2k 2k k 2k 3x (kx k 1) 4 ,韦达TE理求解得x1 x2 -2 --------------------------------------------------------------------------- , --------- 2------- ,k 1 k 1 MN J k2 1 而~x2)2 4x1x2 j3、22k 3 2^(k2 1) 2 ,当k 1 时,MN 最短,直线I为x y 2 ,弦长为272 ,故填:x y 2 ; 272 .14. (6分)点(2,1)和圆C:x2 y2 ax 2y 2 0 ,假设点P在圆C上,那么实数a _假设点P在圆C外,那么实数a的取值范围为 .故答案为:〔―,_〕6 3上的动点,那么PEF周长的最小值为_243【解答】解:棱长均为2的三棱锥A BCD中, E、F分别AB、BC上的中点,首先把三棱锥转换为平面图形,即②P在圆C外,将P点代入圆的方程,即22 21 ag2 2 2- 0 ,解得a…5 ,圆的方程为2(X |)2 (y 1)2 04 0,解得a故填5;215. (4 分)异面直线a , b所成角为过空间一点O的直线l与直线a , b所成角均为,假设这样的直线l有且只有两条,那么的取值范围为【解答】解: 由最小角定理可得:b所成角为—,过空间一点O的直线l与直线a , b所成角均为,假设这样的直线l有且只有两条,那么的取值范围为:一616. 〔4分〕在棱长均为的三棱锥A BCD中, E、F分另ij AB、BC上的中点,P为棱BD在平面展开图,棱长均为2的三棱锥A BCD中,EF分别为AB, BC 理〕得EF 1 ,由于所求周长最小为PE PF EF的值,所以要求PE PF的值最小故EF2 BE3 4BF22BE gBF gsos120 ,由于由于E、F分别为AB , BC的中点〔中位线定理〕得EF 1 ,所以PEF周长的最小值EG FG EF 1 褥.故答案为:1 .3【解答】解:如图,取AB中点E , AC中点F ,连接EF , PE , AF , Q AP PB 2, AB 2拒, PE 衣.Q AB BC , AB BC 272 , AC 4 ,__ 2 _ 2 _2 _c PC AP AC 3PAC - •2APgAC 4T AP~AF^~2APgAFcos PAC 行,在PEF 中,PE PF EF 72 .且AB 面PEF ,过F作FO EP ,易得FO 面ABP,且FO —,2 点C到面ABP的距离为J6 ,Q S V PBC1 2 88~i 6.2_6 —故BD与平面PAB所成角的正弦值是一jL 上2114 143 - 、:吊4 .2一PC BD 力, BD ——,PD ——,4 2 2 的中点〔中位线定BE BF 1 ,17. 〔4分〕在三棱锥P ABC中,AB BC , PA PB 2 , PC AB BC 2y/2,作BD PC交PC于D ,那么BD与平面PAB所成角的正弦值是21 -74-在APC中,余弦定理可得cos在APF中,余弦定理可得PFPD : PC 1:4 , 点D到面ABP的距离为—4三、解做题:本大题共5小题,共74分.解容许写出文字说明、18. 〔14分〕正四棱锥P ABCD的侧棱长与底面边长都相等,〔1〕求证:PA//平面BDE;〔2〕求异面直线PA与DE所成角的余弦值.【解答】解:〔1〕连接AC ,设AC , BD的交点为O ,连接OE ,由于OE //PA,PA 面EBD ,又OE 面EBD ,故AP//面BDE,〔2〕由〔1〕可得:DEO为异面直线PA与DE所成的角,设AB 2 ,那么EO 1 , OD 夜,DE 用,由勾股定理可得:证实过程或演算步骤.E为PC中点.ODE为直角三角形,那么cos必°! £冬2 一_ _ 2 _19. (15 分)圆C :(x 2) (y 3) 2 .(1)过原点O的直线l被圆C所截得的弦长为2,求直线l的方程;(2)过圆C外的一点P向圆C引切线PA, A为切点,O为坐标原点,假设|PA| |OP|,求使|PA|最短时的点P坐标.2)2 (y 3)2 2外,可得直线l的斜率存在,设直线方程为y kx ,即kx y由雪且1,解得k位6 2.33 x '(2)由圆的切线长公式可得|PA|2|PC|2 R2 (x 2)2 (y 3)2 2,由|PA||PO|得,(x 2)2 2(y 3)2 2 x2 y2,即4x 6y 11 0 ,即11 x —4此时| PA | | PO | x2113 、2 2(4 2y) y332「3(y26) 212113 '出33当y —,即2611P(一,13昼)时,|PA|最短. 26【解答】(1)原点O在圆C : (x由直线l被圆C所截得的弦长为2,得圆心(2,3)到直线的距离为1.直线l的方程为y20. 〔15分〕如图,在四棱锥 P ABCD 中,PA 底面ABCD , AD AB, AD DC AP 2 , AB 1 ,点E 为棱PC 的中点. 〔I 〕证实:BE DC ;【解答】〔I 〕证实:如图,取 PD 中点M ,连接EM , AM . 由于E , M 分别为PC , PD 的中点,故 EM / /DC , L 1 且 EM -DC , 2又由,可得 EM //AB ,且EM AB ,故四边形ABEM 为平行四边形,所以 BE //AM . 由于PA 底面 ABCD ,故PA CD , 而CD DA,从而CD 平面PAD , 由于AM 平面PAD ,于是CD AM , 又 BE / /AM ,所以 BE CD .〔 6 分〕〔n 〕解:连接 BM ,由〔I 〕有 CD 平面PAD ,得CD PD , 而 EM / /CD ,故 PD EM .又由于 AD AP, M 为PD 的中点,故 PD AM ,AB//DC ,〔n 〕求直线BE 与平面PBD 所成角的正弦值.故平面BEM 平面PBD .(1)求证:AC 1 平面ABD ;【解答】证实:(1)以D 为原点,分别以 DA, DC, DD 所在直线为x, y, z 轴,建立 空间直角坐标系, 设 AB 6,那么 A(6, 0, 0), CM .,6, 6), A(6, 0, 6), B(6 , 6, 0), D(0 , 0, 0), uuiu uuur(6, 6, 6) , DA 1 (6 ,0, 6) , DB (6 ,6, 0),所以直线BE 在平面PBD 内的射影为直线 BM , 而BE EM ,可得 EBM 为锐角, 故 EBM 为直线 BE 与平面 PBD 所成的角. 依题意,有PD 2j2,而M 为PD 中点, 可得AM 进而BE /. 故在直角三角形BEM 中,tan EBM -EM BE 9 9分)AB 1 2BE 衣 T , 走.(12分)2所以直线BE 与平面PBD 所成的角的正切值为 P 21.( 15分)如图,在正方体 ABCDA 1B 1C 1D 1中,M 是AB 的中点,E 在CC 〔上,且CE 2&E .(2)在线段DD 1上存在一点P, DP DF,假设PB"/平面DME ,求实数 的值.uuu u ACuuuu uurn uuuu uur AC i gDA i 0, AC i gDB 0, AC 1 DA 1 , AC 1 DB , QDA 1I DB D ,AC 1 平面 A 1BD .解:(2)在线段DD i 上存在一点P, DP D i P,B i (6, 6, 6), M(6, 3, 0), E(0 ,6, 4),设平面DME 的法向量I (x, y, z), r uuurntt ngDM 6x 3y 0r 那么「Vur ,取 x 1 ,得 n (1 , 2,3),ngDE 6y 4z 0 Q PB 1// 平面 DME ,uuur rPB 1gn 6 12 18 3t 0 ,解得 t 4 ,22. (15分)点 A(1,0), B(4,0),曲线C 上任意一点 P 满足|PB| 2| PA| . (1)求曲线C 的方程;(2)设点D(3,0),问是否存在过定点 Q 的直线l 与曲线C 相交于不同两点 E , F ,无论直 线l 如何运动,x 轴都平分 EDF ,假设存在,求出Q 点坐标,假设不存在,请说明理由. 【解答】 解:(1)设 P(x,y), Q|PB| 2|PA|.7(x 4)2~y 2 2&x 1)2~y 2,化为: x 2 y 4 .(2)设存在定点Q 满足条件,设直线l 的方程为y kx b . 设 E(Xi , yj , FM, V2) .设 DP t(0釉 6),那么 P(0 ,0, t),uu ur PBuuur (6,6, 6 t) , DM uuur(6, 3, 0), DE (0,6, 4),2 .y kx b联立2 2 ,,x y 42 2化为:x (kx b) 4 ,2 2 _ 2(1 k )x 2kbx b 4 0 ,△ 0.2 kb b2 4x i x2 -------- 2, x i x2 -------------------- 尸,1k 1k无论直线l如何运动,x轴都平分EDF ,那么k DE k DF 0 ,上上0.x i 3 x2 3(kx i b)(x2 3) (kx2 b)(x i 3) 0,2kx1x2 (b 3k)(x1 x2) 6b 0, 2b 4 2kb2kg ----- 工(b 3k) ----------- 2 6b 0 ,1 k 1 k化为:4k 3b 0 .k 3b. 4,,3y b( -x 1), 4可得直线经过定点(4 , 0). 3 (4)存在过定点Q(- , 0)的直线l与曲线C相交于不同两点 E , F ,无论直线l如何运动,x 3轴都平分EDF .【解答】解:①P在圆C上,将P点代入圆的方程,即22 12 ag2 2 2 0 ,解得a -, 代入圆检验成立,。

2017-2018学年浙江省宁波市九校联考高一(上)期末数学试卷(含精品解析)

2017-2018学年浙江省宁波市九校联考高一(上)期末数学试卷(含精品解析)

(Ⅰ)求 A 的值;
1
(Ⅱ)将函数 f(x)的图象上各点的横坐标缩短为原来的2倍,纵坐标不变,得到函数 g(x)的图
象. (i)写出 g(x)的解析式和它的对称中心;
������
3
(ii)若 α 为锐角,求使得不等式 g(α-8)< 2 )成立的 α 的取值范围.
������
20. 已知函数 f(x)=2sin(ωx+φ)(ω>0,|φ|<2),角 φ 的终边经过点 P(1,- 3).若
A.
(1,1)
2
B.
(

∞,1)
3

(1,
+
∞)
C.
(1,1)
32

(1,1)
2
D.
(

∞,0)

(0,1)
3

(1,
+
∞)


⃗ ������ ⃗ ������ ⃗
⃗⃗
8. 已知|������������|=1,|������������|=2,∠AOB=60°,������������= ������������+ ������������,λ+2μ=2,则������������在������������上的投影( )
∴当 x=y= 时, • 的最大值为- . 故选:C.
=(
)•(
【解析】
解:

∴f(x)在(0,+∞)单调递增,在(-∞,0)上单调递减;
∴由 f(x)>f(2x-1)得,
,或

解得

∴x 的取值范围是

故选:A.
可得出
,从而可判断出 f(x)在(0,+∞)上单调递增,在(-∞,0)上

2017-2018学年浙江省宁波市高一第一学期期末数学试卷〖详解版〗

2017-2018学年浙江省宁波市高一第一学期期末数学试卷〖详解版〗
。.
2017-2018 学年浙江省宁波市高一(上)期末数学试卷
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.(4 分)若集合 U={1,2,3,4,5,6,7},A={1,3,4,7},B={1,2,4,6,7},
则∁U(A∩B)=( ) A.{3,6}
扇形圆心角的弧度数是

16.(6 分)已知向量 , 的夹角为 , =(0,1),| |=2,则|2 ﹣ |=

17.(6 分)函数 f(x)=
,若存在 x1<x2,使得 f(x1)=f(x2),则 x1•f
(x1)的最大值为

三、解答题:本大题共 5 小题,共 74 分.解答应写出文字说明、证明过程或演算步骤.
A.
B.

。. 11,,
第 1 页(共 12 页)
C.
D.
8.(4 分)已知函数 f(x)为奇函数,g(x)为偶函数,且 ex=f(x)+g(x),则 f(x)=
()
A.
B.
C.
D.
9.(4 分)对于非零向量 , ,定义运算“×”: × =| || |sinθ,其中 θ 为 , 的夹角.设
, , 为非零向量,则下列说法错误的是( )
B.{5}
C.{2,3,5,6}
D.{1,2,3,4,5,6,7}
2.(4 分)下列函数中,在定义域内单调递增的是( )
A.y=log0.5x
B.y=sinx
C.y=2x
D.y=tanx
3.(4 分)若幂函数 f(x)=xα 的图象过点(4,2),则 f(9)的值为( )
A.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镇海中学2017-2018学年第一学期期末考试
高一年级数学试卷
第I 卷(选择题共40分)
一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的
1.已知向量a =(2,1), b =(λ−1,2),若a +b 与a −b 共线,则λ=( )
A. −2
B.−1
C.1
D.2
2.已知
α
αααsin 2cos cos 4sin 3++=2,则1− sin αcos α−cos 2α的值是( ) A. −52 B. 52 C. −2 D.2 3.在△ABC 中,AB=AC=1,BC=3,则AB ·AC =( ) A. 23 B. 21 C. −2
3 D. − 21 4.在△ABC 中,若AB 2=AB ·+·+·,则△ABC 是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.不确定
5.已知△ABC 中,内角A,B,C 所对边的边长分别为a,b,c,且c=27,a+b=2
11 3tanA ·tanB −tanA −tanB=3,则△ABC 的面积为( )
A. 23
B.2
33 C.3 D.33 6.如果满足a=x,b=2,B=60°的△ABC 有两个,那么x 的取值范围为( )
A. 0<x ≤2
B. x>2
C. 2 <x <334
D. 2<x ≤3
34 7.△ABC 的内角A,B,C 的对边分别为a,b,c,已知2acosC=3ccos A,tanA=
21,则∠B=( ) A.60° B.45° C.135° D.120°
8.设D,E 分别是△ABC 的边AB,BC 上的点,且AD=mAB,BE=
32EC,若=λAB +μ,且λ+μ=2
1,则实数m 的值为 A. 31 B. 21 C. 32 D.6
5 9.已知平面向量a ,b 满足|a |,|b |,|a -b |∈[2,3],则a b 的取值范围是( )
A. [ −21,27]
B. [−41,7]
C.[ −21,7 ]
D. [−41,2
7]
10.在锐角三角形△ABC 中,内角A,B,C 所对边的边长分别为a,b,c,若b 2-a 2=ac,则B
A tan 1tan 1-的取值范围是( ) A. (1,3
32) B.(1,2) C.(1,+∞) D.(1,2) 第Ⅱ卷(非选择题 共110分)
二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分
11.已知钝角△ABC 的面积为=,AB=1,BC=2,则角B=_______,AC=________.
12.若2
1)2cos()23sin(=--+παπα则=α2sin _______. =+++)4
sin()23cos(tan 22παπαα_______. 13.已知向量=(cos θ,sin θ),向量=(3,-1),则|2-|最大值是_______,最小值是_______.
14.在△ABC 中,角A,B,C 所对的边分别是a,b,c,若b 2+c 2=a 2-bc,且·AB = −4,则角A=____, △ABC 的面积等于_______.
15.已知半径为4的圆O 上的两点A,B 满足|AB|=6,则AB ·=______
16.在△ABC 中,∠BAC=120°,已知∠BAC 的平分线交BC 于点D,且AD=2,则AB+AC 的最小值为____________.
17,在Rt △ABC 中,AB=3,AC=4,BC=5,P 是△ABC 内部一点,PB PA PAB
⋅∆PC PB PBC ⋅∆,则||+||+||=__________.
三、解答题:本大题共5小题,共74分,解答应写出文字说明、证明过程或愤算步骤
18.已知平面上两个个向量,,其中=(1,2),||=2.
(1)若(a +2b )⊥(2a -b ),求a 与b 夹角的余弦值;
(2)若a 在b 的方向上的投影为-1,求b 的坐标.
19.已知函数f (x)=)22sin()4cos()4sin(32πππ-+-+
x x x (1)求函数f (x)的单调增区间;
(2)若函数ϕ(x)=f (x)-m 在[0,π12
5]上仅有一个零点,求实数m 的取值范围
20.在△ABC 中,内角A,B,C 所对边的边长分别为a,b,c,且满足 bcosC=(3a-c)cosB
(1)求cosB
(2)若BA BC ⋅=4,b=42,求边a,c 的值
21.在△ABC 中,内角A,B,C 所对的边分别为a,bc,且5sin(A-B)= asinA- bsinB,a ≠b, (I)求边c;
(Ⅱ)若△ABC 的面积为2,且tanC=2,求a+b 的值,
22.如图,已知点O 为直线l 外一点,直线l 上依次排列着A,B,C,D 四点,满足:
(1)∠AOC 为锐角,∠BOC=∠COD;
(2)tan ∠AOB ·tan ∠AOD=tan 2∠AOC (3)AOB
BOC AOC ∠=∠+∠tan 2tan 1tan 1 (I)求∠AOC 的值;
(Ⅱ)若AB=BC=1,求CD 的值。

相关文档
最新文档