上海历年高考数学压轴题题选
上海高考数学函数压轴题解析详解
,
化简得 .
当 时,上式恒成立.
因此,在 轴上存在定点 ,使 .(12分)
9.(本小题满分14分)
已知数列 各项均不为0,其前 项和为 ,且对任意 都有 ( 为大于1的常数),记 .
(1)求 ;
(2)试比较 与 的大小( );
(3)求证: ,( ).
解:(1)∵ ,①
∴ .②
②-①,得
,
即 .(3分)
∴ .(当且仅当 时取等号).
综上所述, ,( ).(14分)
在①中令 ,可得 .
∴ 是首项为 ,公比为 的等比数列, .(4分)
(2)由(1)可得 .
.
∴ ,(5分)
.
而 ,且 ,
∴ , .
∴ ,( ).(8分)
(3)由(2)知 , ,( ).
∴当 时, .
∴
,(10分)
(当且仅当 时取等号).
另一方面,当 , 时,
.
∵ ,∴ .
∴ ,(当且仅当 时取等号).(13分)
又MN⊥MQ, 所以
直线QN的方程为 ,又直线PT的方程为 ……10分
从而得 所以
代入(1)可得 此即为所求的轨迹方程.………………13分
6.(本小题满分12分)
过抛物线 上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;
(2)已知点F(0,1),是否存在实数 使得 若存在,求出 的值,若不存在,请说明理由.
40若u[0,1],v[–1,0],同理可证满足题设条件.
综合上述得g(x)满足条件.
3. (本小题满分14分)
已知点P( t , y )在函数f ( x ) = (x –1)的图象上,且有t2– c2at + 4c2= 0 ( c 0 ).
完整)上海高中数学三角函数大题压轴题练习
完整)上海高中数学三角函数大题压轴题练习三角函数大题压轴题练1.已知函数$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$。
Ⅰ)求函数$f(x)$的最小正周期和图象的对称轴方程。
解:(1)$f(x)=\cos(2x-\frac{\pi}{3})+2\sin(x-\frac{\pi}{4})\sin(x+\frac{\pi}{4})$frac{1}{3}\cos(2x-\frac{\pi}{3})+\frac{4}{3}\sin x\cos x$frac{1}{3}(\cos^2x-\sin^2x-\frac{1}{2})+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x-1)+\frac{4}{3}\sin x\cos x$frac{1}{6}(3\cos2x+2\sin x\cos x-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin(2x-\frac{\pi}{3})-\frac{2}{3})$frac{1}{6}(3\cos2x+\sin2x\cos\frac{\pi}{3}-\cos2x\sin\frac{\pi}{3}-\frac{2}{3})$frac{1}{6}(2\cos2x+\sqrt{3}\sin2x-\frac{2}{3})$frac{1}{3}(\cos2x+\frac{\sqrt{3}}{2}\sin2x)-\frac{1}{3}$frac{2}{3}\sin(2x+\frac{\pi}{3})-\frac{1}{3}$所以,函数$f(x)$的最小正周期为$\pi$,图象的对称轴方程为$x=k\pi+\frac{\pi}{3}$($k\in Z$)。
2)在区间$[-\frac{5\pi}{6},\frac{\pi}{2}]$上,$f(x)$单调递增,而在区间$[\frac{\pi}{2},\frac{7\pi}{6}]$上单调递减。
上海中学2025届高三压轴卷数学试卷含解析
上海中学2025届高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知抛物线()220y px p =>经过点(M ,焦点为F ,则直线MF 的斜率为( )A .B .4C .2D .-2.已知等差数列{}n a 的前n 项和为n S ,且282,10a a =-=,则9S =( ) A .45B .42C .25D .363.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是 A .22134x y -= B .22143x y -= C .22152x y -=D .22125x y -=4.已知(),A A A x y 是圆心为坐标原点O ,半径为1的圆上的任意一点,将射线OA 绕点O 逆时针旋转23π到OB 交圆于点(),B B B x y ,则2AB yy +的最大值为( )A .3B .2CD5.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = )A .85B .65C .45D .256.已知集合(){}*,|4,M x y x y x y N =+<∈、,则集合M 的非空子集个数是( )A .2B .3C .7D .87.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||PM 的最小值为( )A .3B .2(51)-C .45D .48.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .32B .323C .16D .1639.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为30,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取3 1.732≈),则落在小正方形(阴影)内的米粒数大约为( )A .134B .67C .182D .10810.已知函数()2ln 2xx f x ex a x=-+-(其中e 为自然对数的底数)有两个零点,则实数a 的取值范围是( ) A .21,e e⎛⎤-∞+ ⎥⎝⎦B .21,e e ⎛⎫-∞+⎪⎝⎭ C .21,e e⎡⎫-+∞⎪⎢⎣⎭D .21,e e⎛⎫-+∞ ⎪⎝⎭11.已知正项等比数列{}n a 的前n 项和为n S ,且2474S S =,则公比q 的值为( ) A .1B .1或12C .32D .32±12.设实数满足条件则的最大值为( ) A .1B .2C .3D .413.抛物线2112y x =的焦点坐标为______. 14.如图,在正四棱柱1111ABCD A B C D -中,P 是侧棱1CC 上一点,且12C P PC =.设三棱锥1P D DB -的体积为1V ,正四棱柱1111ABCD A B C D -的体积为V ,则1V V的值为________.15.已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线方程为20x y -=,则该双曲线的离心率为_______.16.已知()f x 是定义在R 上的偶函数,其导函数为()f x '.若0x >时,()2f x x '<,则不等式2(2)(1)321f x f x x x -->+-的解集是___________.三、解答题:共70分。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ; (2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()2f x a≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.设2*012(1),4,n n n x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1na =+*,ab ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x =.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-; (Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列. (Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤. (1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈. 证明:当*N n ∈时, (I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤; (III )1-21122n n n x -≤≤.高考压轴题答案一、2019年上海卷: 解:(1)等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.当120,3a d π==,集合22S ⎧⎪=⎨⎪⎪⎩⎭. (2)12a π=,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=, 综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴= 当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin ,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.∴④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,S =⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件. 当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件. 当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意. 综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-()0,∞+,且:()3'4f x x =-==, 因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <当0a <()f x 2ln 0x -≥,令1t a=,则t ≥设()22ln g t t x =,t ≥则2()2ln g t t x=-,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭则()(22)2ln g x g x =,记1()ln ,7p x x x =≥,则1()p x x '===∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥,令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)077q p p ⎛⎫⎛⎫=<= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=>,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()f x ≤综上所述,所求的a 的取值范围是⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥,, 所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====, 44(1)(2)(3)C 24nn n n n a ---==. 因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n +=+02233445555555C C C C C C =++++a =+因为*,a b ∈N ,所以024*********C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+, 则011111111222n n n n b a ---=+-=-<,*n N ∈, 可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列, 可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =, 可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,, M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(), ①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+, 则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意; ③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意; ④若2d-,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+,11111n n n a b a +++-+, 可得()111120n n n n b b a a d ++-+--=+,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-, 由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+=.= 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x ++=.设()ln g x x =,则1()4)4g x x'=,所以()g x 在[256,)+∞上单调递增, 故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则 ()?0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<, 所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点. 由()f x kx a =+得k =.设()h x =,则22ln 1()12()x a g x a h x x x +--+'==,其中()ln g x x =-. 由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立 故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+≤…,) 化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+---≤…, 因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11nb q n m n->=+-…) 所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立 当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=-,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m nn n n --+---=-==--… 设()(1)f n q n q =--,因为10q ->,所以()f n 单调递增,又因为q ∈所以11()(1)(1)2(1)2111m m m f m q m q m m m m ⎛⎫ ⎪⎛⎫=----=-- ⎪ ⎪-⎝⎭ ⎪-⎝⎭≤ 设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =-- 因为2ln 22ln 2x ≤,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<-在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。
上海市五十二中2025届高考数学押题试卷含解析
上海市五十二中2025届高考数学押题试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .32log 5+2.为得到的图象,只需要将的图象( )A .向左平移个单位B .向左平移个单位C .向右平移个单位D .向右平移个单位 3.已知抛物线C :214y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于A ,B 两点,若2PA AF =,则AB 为( )A .409B .40C .16D .1634.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( ) A .i -B .iC .1-D .15.一个几何体的三视图如图所示,则该几何体的表面积为( )A .24π+B .24π-C .242π-D .243π-6.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .1407.存在点()00,M x y 在椭圆22221(0)x y a b a b +=>>上,且点M 在第一象限,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点0,2b ⎛⎫- ⎪⎝⎭,则椭圆离心率的取值范围是( ) A .20,2⎛⎤⎥⎝⎦B .2,12⎛⎫⎪ ⎪⎝⎭C .30,3⎛⎤⎥⎝⎦D .3,13⎛⎫⎪ ⎪⎝⎭8.若复数z 满足(1)12i z i +=+,则||z =( )A .22B .32C .102D .129.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( ) A .2133a b + B .1233a b +C .3455a b + D .4355a b + 10.某几何体的三视图如图所示,则该几何体的体积为( )A .83π3B .4π1633C 16343π+D .43π311.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭12.已知定义在R 上的奇函数()f x ,其导函数为()f x ',当0x ≥时,恒有())03(xf f x x '+>.则不等式33()(12)(12)0x f x x f x -++<的解集为( ).A .{|31}x x -<<-B .1{|1}3x x -<<- C .{|3x x <-或1}x >-D .{|1x x <-或1}3x >-二、填空题:本题共4小题,每小题5分,共20分。
上海高考压轴卷数学Word版含答案解析
绝密★启封前上海高考压轴卷数学一、选择题(本大题共4小题,共20.0分)已知A,B是椭圆E:的左、右顶点,M是E上不同于A,B的任意一点,若直线AM,BM的斜率之积为,则E的离心率为A. B. C. D.2.已知a∈R,则“a>1”是“<1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件已知三棱锥SABC,△ABC是直角三角形,其斜边AB=8,SC⊥平面ABC,SC=6,则三棱锥的外接球的表面积为()A. B. C. D.4.定义:若整数满足:,称为离实数最近的整数,记作.给出函数的四个命题:①函数的定义域为,值域为;②函数是周期函数,最小正周期为;③函数在上是增函数;④函数的图象关于直线对称.其中所有的正确命题的序号为()A. B. C. D.二、填空题(本大题共12小题,共60.0分)5.若=0,则x=.6.已知双曲线=1的离心率为,则m=.7.()6的展开式中常数项为.8.函数f(x)=4x2x+2(1≤x≤2)的最小值为.9.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.10.若数列{a n}满足a11=,=5(n∈N*),则a1= .11.已知是R上的增函数,则a的取值范围是.已知圆的方程为(x1)2+(y1)2=9,P(2,2)是该圆内一点,过点P的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是.口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为.14.已知各项为正的等比数列{a n}中,a2a3=16,则数列{log2a n}的前四项和等于.15.已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是函数f(x)=lg(x≠0,x∈R),有下列命题:①f(x)的图象关于y轴对称;。
高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案一、2019年高考数学上海卷:(本题满分18分)已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.(1)若120,3a d π==,求集合S ;(2)若12a π=,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的值.二、2019年高考数学浙江卷:(本小题满分15分)已知实数0a ≠,设函数()=ln 0.f x a x x +>(Ⅰ)当34a =-时,求函数()f x 的单调区间;(Ⅱ)对任意21[,)e x ∈+∞均有()f x ≤求a 的取值范围.注: 2.71828e =L 为自然对数的底数.设2*012(1),4,nnn x a a x a x a x n n +=++++∈N .已知23242a a a =.(1)求n 的值;(2)设(1n a =+*,a b ∈N ,求223a b -的值.四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。
(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在2132201200,,,b b b b b b L ﹣﹣﹣中至少有100个为正数,求d 的取值范围.已知函数l (n )f x x -=.(Ⅰ)若()f x 在1x x =,212()x x x ≠处导数相等,证明:12()()88ln2f x f x +>-;(Ⅱ)若34ln2a <-,证明:对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018年高考数学江苏卷:(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项1b ,公比为q 的等比数列.(Ⅰ)设10a =,11b =,2q =若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(Ⅱ)若110a b =>,m ∈*N ,q ∈,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立,并求d 的取值范围(用1b ,m ,q 表示).七、2017年高考数学上海卷:(本小题满分18分)设定义在R 上的函数()f x 满足:对于任意的1x 、2x ∈R ,当12x x <时,都有12()()f x f x ≤.(1)若3()1f x ax =+,求a 的取值范围;(2)若()f x 是周期函数,证明:()f x 是常值函数;(3)设()f x 恒大于零,g()x 是定义在R 上的、恒大于零的周期函数,M 是g()x 的最大值.函数()()()h x f x g x =.证明:“()h x 是周期函数”的充要条件是“()f x 是常值函数”.八、2017年高考数学浙江卷:(本题满分15分)已知数列{}n x 满足:1=1x ,()()*11ln 1N n n n x x x n ++=++∈.证明:当*N n ∈时,(I )10n n x x +<<;(I I )1122n n n n x x x x ++-≤;(III )1-21122n n n x -≤.高考压轴题答案一、2019年上海卷:解:(1) 等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈.∴当120,3a d π==,集合S ⎧⎪=⎨⎪⎪⎩⎭.(2)12a π= ,数列{}n b 满足()sin n n b a =,集合{}*|,n S x x b n N ==∈恰好有两个元素,如图:根据三角函数线,①等差数列{}n a 的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d π=,②1a 终边落在OA 上,要使得集合S 恰好有两个元素,可以使2a ,3a 的终边关于y 轴对称,如图OB ,OC ,此时23d π=,综上,23d π=或者d π=.(3)①当3T =时,3n n b b +=,集合{}123,,S b b b =,符合题意.②当4T =时,4n n b b +=,()sin 4sin n n a d a +=,42n n a d a k π+=+,或者42n n a d k a π+=-,等差数列{}n a 的公差(0,]d π∈,故42n n a d a k π+=+,2k d π=,又1,2k ∴=当1k =时满足条件,此时{,1,1}S =--.③当5T =时,5n n b b +=,()sin 5sin ,52n n n n a d a a d a k π+=+=+,或者52n n a d k a π+=-,因为(0,]d π∈,故1,2k =.当1k =时,sin,1,sin 1010S ππ⎧⎫=-⎨⎬⎩⎭满足题意.④当6T =时,6n n b b +=,()sin 6sin n n a d a +=,所以62n n a d a k π+=+或者62n n a d k a π+=-,(0,]d π∈,故1,2,3k =.当1k =时,22S =⎨⎬⎪⎪⎩⎭,满足题意.⑤当7T =时,()7,sin 7sin sin n n n n n b b a d a a +=+==,所以72n n a d a k π+=+,或者72n n a d k a π+=-,(0,]d π∈,故1,2,3k =当1k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,227d m n ππ==-,7,7m n m -=>,不符合条件.当2k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=,247d m n ππ==-,m n -不是整数,不符合条件.当3k =时,因为17~b b 对应着3个正弦值,故必有一个正弦值对应着3个点,必然有2m n a a π-=或者4π,267d m n ππ==-,或者467d m n ππ==-,此时,m n -均不是整数,不符合题意.综上,3,4,5,6T =.二、2019年浙江卷:解:(1)当34a =-时,()3ln 4f x x =-+,函数的定义域为()0,∞+,且:()3'4f x x -+=-+,因此函数()f x 的单调递增区间是12ω=,单调递减区间是()0,3.(2)由1(1)2f a ≤,得04a <≤,当204a <时,()f x ,等价于2ln 0x ≥,令1t a=,则t ≥,设()22ln g t t x =--,t ≥,则2()2ln g t t x=--,(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g x g x =-- ,记1()ln ,7p x x x =--≥,则1()p x x '==列表讨论:x17117⎛⎫ ⎪⎝⎭,1(1,)+∞()'p x ﹣0+()P x 17P ⎛⎫⎪⎝⎭单调递减极小值()1P 单调递增∴p(x)≥p(1)=0,∴g(t)≥g(2√2)=2p(x)≥0(ii )当211,7x e ⎡⎫∈⎪⎢⎣⎭时,()g t g ≥=令211()(1),,7q x x x x e ⎡⎤=++∈⎢⎥⎣⎦,则()10q x'=+>,故()q x 在211,7e ⎡⎤⎢⎥⎣⎦上单调递增,1()7q x q ⎛⎫∴≤ ⎪⎝⎭,由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,()0,()0q x g t g ∴<∴≥=-,由(i )(ii )知对任意21,,),()0x t g t e ⎡⎫∈+∞∈+∞≥⎪⎢⎣⎭,即对任意21,x e ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a≤,综上所述,所求的a 的取值范围是4⎛ ⎝⎦.三、2019年江苏卷:解:(1)因为0122(1)C C C C 4n n nn n n n x x x x n +=++++≥ ,,所以2323(1)(1)(2)C ,C 26n nn n n n n a a ---====,44(1)(2)(3)C 24nn n n n a ---==.因为23242a a a =,所以2(1)(2)(1)(1)(2)(3)[]26224n n n n n n n n n ------=⨯⨯,解得5n =.(2)由(1)知,5n =.5(1(1n=+02233445555555C C C C C C =++++a =+因为*,ab ∈N ,所以024135555555C 3C 9C 76,C 3C 9C 44a b =++==++=,从而222237634432a b -=-⨯=-.四、2018年上海卷:解:(1)数列{}n b 与{}n a 接近.理由:{}n a 是首项为1,公比为12的等比数列,可得112n n a -=,11112n n nb a +=+=+,则011111111222n n n n b a ---=+-=-<,*n N ∈,可得数列{}n b 与{}n a 接近;(2){}n b 是一个与{}n a 接近的数列,可得11n n n a b a +-≤≤,数列{}n a 的前四项为:11a =,22a =,34a =,48a =,可得1[0,2]b ∈,2[1,3]b ∈,3[3,5]b ∈,4[7,9]b ∈,可能1b 与2b 相等,2b 与3b 相等,但1b 与3b 不相等,4b 与3b 不相等,集合1234{|,}i M x x b i ===,,,,M 中元素的个数3m =或4;(3){}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,可得11n a a n d =+-(),①若0d >,取n n b a =,可得110n n n n b b a a d ++-=-=>,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;②若0d =,取11n b a n=-,则11111n n b a a a n n -=--=<,*n N ∈,可得11101n n b b n n +-=->+,则21b b -,32b b -,⋯,201200b b -中有200个正数,符合题意;③若20d ﹣<<,可令21211n n b a --=-,221n n b a =+,则()2212211120n n n n b b a a d ---=+--=+>,则21b b -,32b b -,⋯,201200b b -中恰有100个正数,符合题意;④若2d - ,若存在数列{}n b 满足:{}n b 与{}n a 接近,即为11n n n a b a -+ ,11111n n n a b a +++-+ ,可得()111120n n n n b b a a d ++-+--=+ ,21b b -,32b b -,⋯,201200b b -中无正数,不符合题意.综上可得,d 的范围是(2,)-+∞.五、2018年浙江卷:解:(Ⅰ)函数()f x的导函数1()f x x'=-,由12()()f x f x ''=1211x x -,因为12x x ≠,所以12+=.=+.因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=-+-=.设()ln g x x =-,则1()4)4g x x'=-,所以()g x 在[256,)+∞上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-.(Ⅱ)令()e a k m -+=,211a n k ⎛+⎫=+ ⎪⎝⎭,则()–0f m km a a k k a -->+-≥,(0)f n kn a a n k n ⎫----<⎪⎭<,所以,存在0(,)x m n ∈)使00()f x kx a =+,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y kx a =+与曲线()y f x =有公共点.由()f x kx a =+得k =.设ln ()x x a h x x --=,则22ln 1()12()x a g x a h x x x --+--+'==,其中()ln 2x g x x =-.由(Ⅰ)可知()(16)g x g ≥,又34ln2a -≤,故–11613420g x a g a ln a -+-+=-++()≤()-≤,所以()0h x '≤,即函数()h x 在(0,+∞)上单调递减,因此方程()0f x kx a --=至多1个实根.综上,当34ln2a -≤时,对于任意0k >,直线y kx a =+与曲线()y f x =有唯一公共点.六、2018江苏卷:解:(Ⅰ)由题意得||1n n a b -≤对任意1,2,3,4n =均成立故当10a =,121q b ==时可得|01|1|2|1|24|1|38|1d d d -⎧⎪-⎪⎨-⎪⎪-⎩≤≤≤≤即1335227532d d d ⎧⎪⎪⎪⎨⎪⎪⎪⎩≤≤≤≤≤≤所以7532d ≤≤(Ⅱ)因为110a b =>,1||n n a b b -≤对2,3,1n m =+…均能成立把n a ,n b 代入可得1111|(1)|(2,3,1n b n d b q b n m -+--=+ ≤…,)化简后可得11111112(22)(222)0(2,3,1)111n n n m b q b b b q n n n m n n n ----=-+=-+=+--- ≤…,因为q ∈,所以122n m -≤,22(2,3,1)n n m -=+≤…,而110(2,3,,11n b q n m n ->=+- …)所以存在d ∈R ,使得1||n n a b b -≤对2,3,1n m =+…,均成立当1m =时,112)b d ≤当2m ≥时,设111n n b q c n -=- ,则111111(1)(2,3,)1(1)n n n n n b q b q q n q c c b q n m n n n n --+---=-==-- …设()(1)f n q n q =--,因为10q ->,所以()f n单调递增,又因为q ∈所以11()(1)(1)(1)2111m m f m q m q m m m m ⎛⎫ ⎪⎫=---=-- ⎪⎪-⎭ ⎪-⎝⎭ ≤设111,0,2x x x m m ⎛⎤==∈ ⎥⎝⎦,且设1()21x g x x =+-,那么'21()2ln 2(1)x g x x =--因为2ln 2ln 2x ,214(1)x -≥所以'21(x)2ln 20(1)x g x =-<- 在10,2x ⎛⎤∈ ⎥⎝⎦上恒成立,即()f x 单调递增。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
历届高考数学压轴题汇总及答案(上海卷)
历届高考数学压轴题汇总及答案(上海卷2017-2018)一.填空题1.(上海2017.12题)如图,用35个单位正方形拼成一个矩形,点1P 、2P 、3P 、4P 以及四个标记为“▲”的点在正方形的顶点处,设集合1234{P ,P ,P ,P }Ω=,点P ∈Ω,过P 作直线P l ,使得不在P l 上的“▲”的点分布在P l 的两侧.用1D (P l )和2D (P l )分别表示P l 一侧和另一侧的“▲”的点到P l 的距离之和.若过P 的直线P l 中有且只有一条满足1D (P l )2D =(P l ),则Ω中所有这样的P 为 .2.(上海2018.12题已知实数x x y y ₁、₂、₁、₂满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为 。
二.选择题3、(上海2017.16题)在平面直角坐标系xOy 中,已知椭圆221:1364x y C +=和222:19y C x +=.P 为1C 上的动点,Q 为2C 上的动点,w 是OP OQ 的最大值.记{(,)}P Q Ω=,P 在1C 上,Q 在2C 上,且OP OQ w =,则Ω中元素个数为( )A .2个B .4个C .8个D .无穷个4.(上海2018.16题)设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图像绕原点逆时针旋转6π后与原图像重合,则在以下各项中,的可能取值只能是( )D.01f ()三.解答题5、(上海2017.20题)在平面直角坐标系xOy 中,已知椭圆22:14x y Γ+=,A 为Γ的上顶点,P 为Γ上异于上、下顶点的动点,M 为x 正半轴上的动点. (1)若P在第一象限,且||OP =P 的坐标;(2)设83,55P ⎛⎫⎪⎝⎭,若以A 、P 、M 为顶点的三角形是直角三角形,求M 的横坐标;(3)若||||MA MP =,直线AQ 与Γ交于另一点C ,且2AQ AC =,4PQ PM =,求直线AQ 的方程.6.(上海2018.20题)(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)设常数2t >,在平面直角坐标系xOy 中,已知点0(2)F ,,直线:l x t =,曲线:(0,y 0)x t ≤≤≥,l 与x 轴交于点A ,与τ交于点B P Q ,、分别是曲线τ与线段AB 上的动点。
2024届高考数学专项练习压轴题型03 函数与导数经典常考压轴小题(解析版)
压轴题型03 函数与导数经典常考压轴小题命题预测有关函数与导数常见经典压轴小题的高考试题,考查重点是零点、不等式、恒成立等问题,通常与函数性质、解析式、图像等均相关,需要考生具有逻辑推理、直观想象和数学运算核心素养. 同时,对于实际问题,需要考生具有数据分析、数学建模核心素养.预计预测2024年高考,多以小题形式出现,也有可能会将其渗透在解答题的表达之中,相对独立.具体估计为:(1)导数的计算和几何意义是高考命题的热点,多以选择题、填空题形式考查,难度较小.(2)应用导数研究函数的单调性、极值、最值多在选择题、填空题靠后的位置考查,难度中等偏上,属综合性问题. 高频考法(1)函数嵌套、零点嵌套问题 (2)零点问题(3)导数的同构思想 (4)双重最值问题 (5)构造函数解不等式01函数嵌套、零点嵌套问题解决嵌套函数零点个数的一般步骤(1)换元解套,转化为()t g x =与()y f t =的零点.(2)依次解方程,令()0f t =,求t ,代入()t g x =求出x 的值或判断图象交点个数.【典例1-1】(上海市浦东新区上海市实验学校2024届高三学期第三次月考数学试题)已知函数()f x 是2024届高考数学专项练习定义在R 的偶函数,当0x ≥时,()()3πcos 1,012211,12xx x f x x ⎧⎡⎤−≤≤⎪⎢⎥⎣⎦⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩,若函数()()()()()25566g x f x a f x a a ⎡⎤=−++∈⎣⎦R 有且仅有6个不同的零点,则实数a 取值范围 .【答案】(]30,12⎧⎫⎨⎬⎩⎭【解析】因为()()()()()()25566560g x f x a f x a f x f x a =−++=−⋅−=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦, 由()0g x =,可得()65f x =或()f x a =, 由函数()f x 是定义在R 上的偶函数,当0x ≥时,()3πsin ,012211,12xx x f x x ⎧≤≤⎪⎪=⎨⎛⎫⎪+> ⎪⎪⎝⎭⎩, 当01x ≤≤时,ππ022x ≤≤,如下图所示:因为1112x⎛⎫+> ⎪⎝⎭,由图可知,直线65y =与函数()f x 的图象有4个交点,所以,直线y a =与函数()f x 的图象有2个交点,由图可得(]30,12a ⎧⎫∈⋃⎨⎬⎩⎭.综上所述,实数a 的取值范围是(]30,12⎧⎫⎨⎬⎩⎭.故答案为:(]30,12⎧⎫⎨⎬⎩⎭.【典例1-2】(安徽省合肥市六校联盟2023-2024学年高三学期期中联考数学试题)已知函数()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩,()22g x x ax =++,若函数()()y g f x =有6个零点,则实数a 的取值范围为 .【答案】(3,2−−【解析】画出()42,13,1x x f x x x ⎧−<⎪=⎨−≥⎪⎩的图象如下:因为()22g x x ax =++最多两个零点,即当280a ∆=−>,2a >22a <−时,()22g x x ax =++有两个不等零点12,t t ,要想()()y g f x =有六个零点,结合函数图象,要()1f x t =和()2f x t =分别有3个零点, 则()12,0,2t t ∈且12t t ≠,即()22g x x ax =++的两个不等零点()12,0,2t t ∈,则要满足()()2Δ800222000a a g g ⎧=−>⎪⎪<−<⎪⎨⎪>⎪>⎪⎩,解得322a −<<− 故实数a 的取值范围为(3,2−− 故答案为:(3,22−−【变式1-1】(海南省琼中黎族苗族自治县琼中中学2024届高三高考全真模拟卷(二)数学试题)已知函数()23,369,3x x f x x x x ⎧−≤=⎨−+−>⎩,若函数()()()22g x f x af x ⎡⎤=−+⎣⎦有6个零点,则a 的值可能为( ) A .1− B .2−C .3−D .4−【答案】C【解析】由题可得,()()330f f =−=,()f x 在()(),0,3,−∞+∞上单调递减,在()0,3上单调递增,则据此可作出函数()f x 大致图象如图所示,令()f x t =,则由题意可得220t at −+=有2个不同的实数解1t ,2t ,且()12,3,0t t ∈−,则()()2121212Δ80601122203331130a t t a a t t t t a ⎧=−>⎪−<+=<⎪⇒−<<−⎨=>⎪⎪++=+>⎩3a =−满足题意. 故选:C .【变式1-2】(河南省部分重点高中2023-2024学年高三阶段性考试(四)数学试题)已知函数()2ln ,0,43,0,x x f x x x x ⎧>=⎨++≤⎩若函数()()()241g x f x f x m =−++⎡⎤⎣⎦恰有8个零点,则m 的最小值是( ) A .1 B .2 C .3 D .4【答案】B【解析】设()f x t =,因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得2410t t m −++=在(]0,3内有4个不同的实根,即214m t t +=−+在(]0,3内有2个不同的实根,可知314m ≤+<,即可求得结果.画出函数()2ln ,043,0x x f x x x x ⎧>=⎨++≤⎩,,的图像如图所示,设()f x t =,由()()()2410g x f x f x m =−++=⎡⎤⎣⎦,得2410t t m −++=.因为()g x 有8个零点,所以方程()f x t =有4个不同的实根,结合()f x 的图像可得在(]03t ∈,内有4个不同的实根.所以方程2410t t m −++=必有两个不等的实数根,即214m t t +=−+在(]03t ∈,内有2个不同的实根,结合图像由图可知,314m ≤+<,故23m ≤<,即m 的最小值是2. 故选:B02 零点问题(1)直接法:直接根据题设条件构造关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成球函数值域的问题加以解决;(3)数形结合法:先将解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【典例2-1】(2024·海南省直辖县级单位·模拟预测)已知函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,则t 的值可以是( )A .4B .5C .6D .7【答案】C【解析】令()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩,()lg m x x =,因为()lg m x x =与()lg y x =−的图象关于y 轴对称,因为函数()()()lg ,011,022,2x x f x x x f x x ⎧−<⎪=−−≤<⎨⎪−≥⎩的图象在区间(),(0)t t t −>内恰好有5对关于y 轴对称的点,所以问题转化为()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象在()0,(0)t t >内有5个不同的交点,在同一平面直角坐标系中画出()lg m x x =与()()11,022,2x x g x g x x ⎧−−≤<⎪=⎨−≥⎪⎩的图象如下所示:因为()10lg101m ==,当10x >时()1m x >,()()()()()()13579111g g g g g g ======, 结合图象及选项可得t 的值可以是6,其他值均不符合要求,. 故选:C【典例2-2】(2024·四川成都·三模)若函数()2e xf x kx =−大于0的零点有且只有一个,则实数k 的值为( ) A .4 B .2e C .e 2D .2e 4【答案】D【解析】函数()f x 有且仅有一个正零点,即方程2ex k x=有且仅有一个正根,令()2e xg x x =,则()()3e 2x x g x x ='−,当0x <时,()0g x '>,当02x <<时,()0g x '<,当2x >时,()0g x '>,即函数()g x 在(),0∞−和()2,∞+上单调递增,在()0,2上单调递减,且()2e24g =,0x →时,()g x ∞→+,x →−∞时,()0g x →,x →+∞时,()g x ∞→+,可作出图象如下,方程2e x k x =有且仅有一个正根,所以2e 4k =.故选:D.【变式2-1】(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ⎧≤⎪=⎨+>⎪⎩,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( ) A .1,1 B .1,2 C .2,1 D .2,2【答案】B【解析】令()0f x =,即0x ≤时,30x =,解得0x =, 0x >时,()lg 10x +=,无解,故1m =,设过点(0,2)与曲线()y f x =相切的直线的切点为()00,x y ,当0x <时,()23f x x '=,则有()320003y x x x x −=−,有()3200023x x x −=−,整理可得301x =−,即01x =−,即当00x <时,有一条切线,当0x >时,()lg e1f x x '=+,则有()()000lg 1e lg 1y x x x x −=−++, 有()()000l 2g elg 11x x x −+=−+,整理可得()()()000221lg 10lg e x x x ++−++=, 令()()()()()2l 0g 2l 1e 1g g x x x x x =++−++>, 则()()2lg 1g x x '=−+, 令()0g x '=,可得99x =,故当()0,99x ∈时,()0g x '>,即()g x 在()0,99上单调递增, 当()99,x ∈+∞时,()0g x '<,即()g x 在()99,∞+上单调递减, 由()()992lg e 99220099lg e 0g =+⨯+−=>,()02020g =−=>,故()g x 在()0,99x ∈上没有零点, 又()()9992lg e 999210003999lg e 10000g =+⨯+−⨯=−<, 故()g x 在()99,999上必有唯一零点, 即当00x >时,亦可有一条切线符合要求, 故2n =.故选:B.【变式2-2】(2024·甘肃武威·模拟预测)已知函数()4ln 12f x ax a x ⎛⎫=−−+ ⎪⎝⎭有3个零点,则实数a 的取值范围是( )A .()1,+∞B .()2,+∞C .(),1−∞−D .(),2−∞−【答案】C【解析】将()y f x =的图象向左平移2个单位长度,可得函数()()22ln 2xg x f x ax x−=+=−+的图象, 所以原题转化为“函数()2ln2xg x ax x−=−+有3个零点”, 即研究直线y ax =与函数()2ln2xh x x−=+图象交点的个数问题. 因为()h x 的定义域为()2,2−,且()()22ln ln ln1022x xh x h x x x+−−+=+==−+, 所以()h x 为奇函数.因为()22222440222(2)4x x x h x x x x x x '+−+−⎛⎫=⋅=⨯=< ⎪−+−+−⎝⎭', 所以()h x 在区间()2,2−上为减函数,且曲线()y h x =在点()0,0处的切线方程为y x =−. 当0x =时,2112xx x−+⨯=−+; 当02x <<时,2ln2xx x−<−+; 当20x −<<的,2ln2xx x−>−+, 作出()h x 的图象.如图:由图知:当1a <−时,直线y ax =与函数()2ln2xh x x−=+的图象有3个交点.故实数a 的取值范围是(),1∞−−. 故选:C.03 导数的同构思想同构式的应用:(1)在方程中的应用:如果方程()0f a =和()0f b =呈现同构特征,则,a b 可视为方程()0f x =的两个根(2)在不等式中的应用:如果不等式的两侧呈现同构特征,则可将相同的结构构造为一个函数,进而和函数的单调性找到联系。
上海高中数学三角函数大题压轴题练习
三角函数大题压轴题练习1.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =- sin(2)6x π=-2T 2ππ==周期∴ 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 取最大值 1又1()()1222f f ππ-=<=,当12x π=-时,()f x 取最小值-所以 函数 ()f x 在区间[,]122ππ-上的值域为[2.已知函数2π()sin sin 2f x x x x ωωω⎛⎫=+ ⎪⎝⎭(0ω>)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 在区间2π03⎡⎤⎢⎥⎣⎦,上的取值范围.解:(Ⅰ)1cos 2()222x f x x ωω-=+112cos 2222x x ωω=-+π1sin 262x ω⎛⎫=-+ ⎪⎝⎭.因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π1()sin 262f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤,所以1πsin 2126x ⎛⎫-- ⎪⎝⎭≤≤, 因此π130sin 2622x ⎛⎫-+ ⎪⎝⎭≤≤,即()f x 的取值范围为302⎡⎤⎢⎥⎣⎦,.3. 已知向量m =(sin A ,cos A ),n =1)-,m ·n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数()cos 24cos sin ()f x x A x x R =+∈的值域.解:(Ⅰ) 由题意得3sin cos 1,m n A A =-= 12sin()1,sin().662A A ππ-=-= 由A 为锐角得 ,663A A πππ-==(Ⅱ) 由(Ⅰ)知1cos ,2A =所以2213()cos 22sin 12sin 2sin 2(sin ).22f x x x x s x =+=-+=--+因为x ∈R ,所以[]sin 1,1x ∈-,因此,当1sin 2x =时,f (x )有最大值32.当sin 1x =-时,()f x 有最小值-3,所以所求函数()f x 的值域是332⎡⎤-⎢⎥⎣⎦,4.已知函数()sin()(00π)f x A x A ϕϕ=+><<,,x ∈R 的最大值是1,其图像经过点π132M ⎛⎫ ⎪⎝⎭,.(1)求()f x 的解析式;(2)已知π02αβ⎛⎫∈ ⎪⎝⎭,,,且3()5f α=,12()13f β=,求()f αβ-的值.【解析】(1)依题意有1A =,则()s i n ()f x x ϕ=+,将点1(,)32M π代入得1sin()32πϕ+=,而0ϕπ<<,536πϕπ∴+=,2πϕ∴=,故()sin()cos 2f x x x π=+=; (2)依题意有312cos ,cos 513αβ==,而,(0,)2παβ∈,45sin ,sin 513αβ∴====,3124556()cos()cos cos sin sin 51351365f αβαβαβαβ-=-=+=⨯+⨯=。
上海高考数学压轴题50道(有答案-精品).
20 11高考压轴题目选(5 0题)1 .(函数)设32(log (f x x x =++,则对任意实数,a b , “Oa b +艺是“((Ofafb +扌的条件。
2.(函数)设22,22(,(yxyxyxf+2定义在平面上的函数,且+=2,{(xyxA}0,0, 12*yxy,令) , (, ({Ay xy x fB €=,则 B 所覆盖的面积为3.(函数)老师在黑板上写岀了若干个幕函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数;(2)在(,-妍8上是增函数;(3)函数图像经过原点。
小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写岀的幕函数共有个。
4.(函数)已知定义在R上的奇函数(xf,满足(4(fxfx=,且在区间[0,2] 上是増函数,若方程f(x=m(m>0在区间[]& 8-上有四个不同的根1234,..xxxx,则1234X xxx +++=5.(函数)已知函数(1. fxa =\/x2+1女在区间(KM上是减函数,则实数a的取值范围是6.(函数)方程x22x-l = 0的解可视为函数y=x2的图像与函数ylx横坐标,若x4+ax -4=0的各个实根xl, x2, xk (k <4所对应的点(xi,(i=12,“k)均在直线y=x的同侧,则实数a的取值范围是7.(函数)如图放置的边长为1的正方形PABC沿x轴滚动。
设顶点p (x , y )的轨迹方程是(y f x =,则(fx的最小正周期为;(yfx地其两个相邻零点间的图像与x轴所围区域的面积为O8.(三角函数)已知(sin (0 363f x x f f ©coiunifn 1(i =+>=i I I u u u,,且(fx 在区间637mf ] I U有最小值,无最大值,则3=9.(三角函数)已知函数271(sin sin 2cos 662x fxxxxococof1 *+-e I I U U R.(其中g>),若对任意的aER,函数(yfx=, (7i]xaae+,的图像与直线l=y交点个数的最大值为2,则co的取值范围为1 0.(三角函数)已知方程x 2+3x+4=0的两个实根分别是xl, x2,则21arct anarc tanxx+ 1 1 .(数列)设定义在*N上的函数:(21(((22nnkfnnfnk=-[ | =| =| [,其中*kN € ,记(1(2(3(4(2n naf ffff=+++++ ,则In n a a +=1 2.(数列)在m (m>2)个不同数的排列PlP2…Pn中,若<j <m 时Pi>Pj (即前面某数大于后面某数),则称Pi与Pj构成一个逆序。
上海高考数学压轴题50道(有答案-精品)
高考压轴题目选(50题)1.(函数)设32()log (f x x x =++,则对任意实数,a b ,“0a b +≥”是“()()0f a f b +≥”的 条件。
2.(函数)设)22,22(),(y x y x y x f +-=为定义在平面上的函数,且+=2),{(x y x A }0,0,12≥≥≤y x y ,令}),(),({A y x y x f B ∈=,则B 所覆盖的面积为3.(函数)老师在黑板上写出了若干个幂函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数;(2)在(,)-∞+∞上是增函数;(3)函数图像经过原点。
小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幂函数共有 个。
4.(函数)已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程f(x)=m(m>0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,则1234_________.x x x x +++=5.(函数)已知函数()1).f x a =≠在区间(]0,1上是减函数,则实数a 的取值范围是6.(函数)方程x 2+2x -1=0的解可视为函数y =x +2的图像与函数y =1x的图像交点的横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4)所对应的点(x i ,4x i)(i =1,2,…,k )均在直线y =x 的同侧,则实数a 的取值范围是7.(函数)如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点p (x ,y )的轨迹方程是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。
8.(三角函数)已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫ ⎪⎝⎭,有最小值,无最大值,则ω=__________ 9.(三角函数)已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>),若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图像与直线1=y 交点个数的最大值为2,则ω的取值范围为10.(三角函数)已知方程x 2+33x+4=0的两个实根分别是x 1,x 2,则21a r c t a n a r c t a n x x += 11.(数列)设定义在*N 上的函数:(21)()()(2)2n n k f n n f n k =-⎧⎪=⎨=⎪⎩,其中*k N ∈,记(1)(2)(3)(4)(2)n n a f f f f f =+++++,则1n n a a +-=12.(数列)在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序。
上海市第一中学2023届高考压轴卷数学试卷含解析
2023年高考数学模拟试卷 注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b ca b +++=+,若c 为最大边,则a b c +的取值范围是( )A.1⎛ ⎝⎭ B.( C.1⎛ ⎝⎦ D. 2.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .43.已知非零向量a ,b 满足||a b |=|,则“22a b a b+=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:4.已知命题:p 若1a <,则21a <,则下列说法正确的是( )A .命题p 是真命题B .命题p 的逆命题是真命题C .命题p 的否命题是“若1a <,则21a ≥” D .命题p 的逆否命题是“若21a ≥,则1a <”5.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A .35B .710C .45D .9106.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2e B .4e CD7.已知R 为实数集,{}2|10A x x =-≤,1|1B x x ⎧⎫=≥⎨⎬⎩⎭,则()A B =R( )A .{|10}x x -<≤B .{|01}x x <≤C .{|10}x x -≤≤D .{|101}x x x -≤≤=或8.已知圆1C :22(1)(1)1x y -++=,圆2C :22(4)(5)9x y -+-=,点M 、N 分别是圆1C、圆2C 上的动点,P为x 轴上的动点,则PN PM-的最大值是( )A .254+B .9C .7D .252+9.若不等式32ln(1)20a x x x +-+>在区间(0,)+∞内的解集中有且仅有三个整数,则实数a 的取值范围是( ) A .932,2ln 2ln 5⎡⎤⎢⎥⎣⎦ B .932,2ln 2ln 5⎛⎫ ⎪⎝⎭ C .932,2ln 2ln 5⎛⎤ ⎥⎝⎦ D .9,2ln 2⎛⎫+∞ ⎪⎝⎭ 10.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .111.设点(,0)A t ,P 为曲线xy e =上动点,若点A ,P 间距离的最小值为6,则实数t 的值为( )A .5B .52C .ln 222+ D .ln 322+12.如图所示点F 是抛物线28y x =的焦点,点A 、B 分别在抛物线28y x =及圆224120x y x +--=的实线部分上运动, 且AB 总是平行于x 轴, 则FAB ∆的周长的取值范围是( )A .(6,10)B .(8,12)C .[6,8]D .[8,12]二、填空题:本题共4小题,每小题5分,共20分。
2025届上海市市西中学高三压轴卷数学试卷含解析
2025届上海市市西中学高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2] 2.已知双曲线C :22221x y a b-=(0a >,0b >)的右焦点与圆M :22(2)5x y -+=的圆心重合,且圆M 被双曲线的一条渐近线截得的弦长为22,则双曲线的离心率为( )A .2B .2C .3D .3 3.函数的图象可能是下列哪一个?( )A .B .C .D .4.已知抛物线y 2= 4x 的焦点为F ,抛物线上任意一点P ,且PQ ⊥y 轴交y 轴于点Q ,则 PQ PF ⋅的最小值为( )A .-14B .-12C .-lD .15.数列{}n a 满足:21n n n a a a +++=,11a =,22a =,n S 为其前n 项和,则2019S =( )A .0B .1C .3D .46.若复数z 满足()1i z i +=(i 是虚数单位),则z 的虚部为( )A .12B .12-C .12iD .12i - 7.231+=-i i ( ) A .15i 22-+ B .1522i -- C .5522i + D .5122i - 8.复数的()12z i i =--为虚数单位在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 9.若复数z 满足i 2i z -=,则z =( )A B C .2 D10.“”αβ≠是”cos cos αβ≠的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.已知非零向量a ,b 满足||a b |=|,则“22a b a b +=-”是“a b ⊥”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解:12.双曲线22:21C x y -=的渐近线方程为( )A .0x ±=B .20x y ±=C 0y ±=D .20x y ±= 二、填空题:本题共4小题,每小题5分,共20分。
上海高考数学(函数)经典压轴习题解析详解
欢迎阅读上海高考数学压轴题系列训练含答案及解析详解1.(本小题满分12分)已知常数a>0,n 为正整数,f n (x)=x n –(x+a)n (x>0)是关于x 的函数. (1)判定函数f n (x)的单调性,并证明你的结论. (2)对任意n ?a,证明f`n+1(n+1)<(n+1)f n `(n) n –1n –1n –1n –1解:(1)若u,v ?[–1,1],|p(u)–p(v)|=|u 2–v 2|=|(u+v)(u –v)|,取u=43?[–1,1],v=21?[–1,1],则|p(u)–p(v)|=|(u+v)(u –v)|=45|u –v|>|u –v|, 所以p(x)不满足题设条件. (2)分三种情况讨论:10.若u,v ?[–1,0],则|g(u)–g(v)|=|(1+u)–(1+v)|=|u –v|,满足题设条件; 20.若u,v ?[0,1],则|g(u)–g(v)|=|(1–u)–(1–v)|=|v –u|,满足题设条件; 30.若u ?[–1,0],v ?[0,1],则:|g(u)–g(v)|=|(1–u)–(1+v)|=|–u –v|=|v+u|≤|v –u|=|u –v|,满足题设条件; 40若u ?[0,1],v ?[–1,0],同理可证满足题设条件.综合上述得g(x)满足条件. 3.(本小题满分14分)(3)(仅理科做)∵f(x)在x>–1时单调递增,|c|?|a |>0, ∴f(|c|)?f(|a |4)=1|a |4|a |4+=4|a |4+f(|a|)+f(|c|)=1|a ||a |++4|a |4+>4|a ||a |++4|a |4+=1. 即f(|a|)+f(|c|)>1.4.(本小题满分15分)设定义在R 上的函数43201234()f x a x a x a x a x a =++++(其中i a ∈R ,i=0,1,2,3,4),当x=-1时,f(x)取得极大值23,并且函数y=f(x+1)的图象关于点(-1,0)对称.(1) 求f(x)的表达式;221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩………………………………………………………3分由(1)-(2)可得1.3MN QN k k ∙=-………………………………6分又MN ⊥MQ ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3y y x x y x =+-,又直线PT 的方程为11.x y x y =-……10分从而得1111,.22x x y y ==-所以112,2.x x y y ==- 代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程.………………13分由①②得:⎪⎩⎨∈-==),(,142121R x x x x y ∴点P 的轨迹方程是).(1R x y ∈-=……………………………………6分(2)由(1)得:),14,(211-=x x ),14,(222-=x x )1,2(21-+xx P42)14)(14(2221222121x x x x x x FB FA +--=--+=⋅…………………………10分所以0)(2=+⋅故存在λ=1使得0)(2=+⋅FP FB FA λ…………………………………………12分 解法(二):(1)∵直线PA 、PB 与抛物线相切,且,0=⋅PB PA ∴直线PA 、PB 的斜率均存在且不为0,且,PB PA ⊥ 设PA 的直线方程是)0,,(≠∈+=k R m k m kx y(1) 求正实数a 的取值范围; (2) 设1,0>>a b ,求证:.ln 1bba b b a b a +<+<+ 解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立 又11≤x1≥∴a 为所求.…………………………4分(2)取b b a x +=,1,0,1>+∴>>bba b a , 一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,即b a b b a +>+1ln ……………………………………8分 另一方面,设函数)1(ln )(>-=x x x x G∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G求出所有这样定点的坐标;若不存在,请说明理由.解:(1)设双曲线E 的方程为22221(0,0)x y a b a b-=>>,则(,0),(,0),(,0)B c D a C c -.由3BD DC =,得3()c a c a +=-,即2c a =.∴222||||16,||||124,||||2.AB AC a AB AC a AB AC a ⎧-=⎪+=-⎨⎪-=⎩(3分)xx解之得1a =,∴2,c b ==∴双曲线E 的方程为2213y x -=.(5分)(2)设在x 轴上存在定点(,0)G t ,使()BC GM GN λ⊥-.1y λ=-GM GN λ-(BC GM GN λ⊥-12(ky m t ky m λ+-=+-2226(1)6()03131k m km m t k k ---=--,化简得kmt k =. 当1t m=时,上式恒成立. 因此,在x 轴上存在定点1(,0)G m,使()BC GM GN λ⊥-.(12分)9.(本小题满分14分)已知数列{}n a 各项均不为0,其前n 项和为n S ,且对任意*n ∈N 都有(1)n n p S p pa -=-(p 为大于1的常数),记12121C C C ()2n n n n nn na a a f n S ++++=.(1)求n a ; (2)试比较(1)f n +与1()2p f n p+的大小(*n ∈N ); 2C na a ++(1)np +(1)f n +1111(1)2(1)n n n p p p p +++-+=⋅-. 而1()2p f n p+1111(1)2()n n n p p p p p +++-+=⋅-,且1p >, ∴1110n n p p p ++->->,10p ->.∴(1)f n +<1()2p f n p+,(*n ∈N ).(8分) (3)由(2)知1(1)2p f p +=,(1)f n +<1()2p f n p+,(*n ∈N ). ∴当2n …时,211111()(1)()(2)()(1)(2222n np p p p f n f n f n f p pp p-++++<-<-<<=. 111(21)222p p p f n p p p ⎛⎫⎛⎫+++++-+++ ⎪ ⎪⎝⎭⎝⎭…2,,21n -时,1)n+⎣⎦分)。
上海市南汇第一中学2025届高考数学押题试卷含解析
上海市南汇第一中学2025届高考数学押题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( ) A .35B .710C .45D .9102.已知m 为实数,直线1l :10mx y +-=,2l :()3220m x my -+-=,则“1m =”是“12//l l ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件3.已知直线22y x a =-是曲线ln y x a =-的切线,则a =( ) A .2-或1B .1-或2C .1-或12D .12-或1 4.在ABC ∆中,M 是BC 的中点,1AM =,点P 在AM 上且满足2AP PM =,则()PA PB PC ⋅+等于( ) A .49B .49- C .43D .43-5.若,则( ) A .B .C .D .6.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种B .15种C .16种D .18种7.已知12,F F 分别为双曲线2222:1x y C a b-=的左、右焦点,点P 是其一条渐近线上一点,且以12F F 为直径的圆经过点P ,若PF F ∆223,则双曲线的离心率为( )A .3B .2C .5D .38.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .9.已知集合|03x A x Z x ⎧⎫=∈≤⎨⎬+⎩⎭,则集合A 真子集的个数为( ) A .3B .4C .7D .810.如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近()lg 20.3≈( )A .30010B .40010C .50010D .6001011.已知函数1()2x f x e x -=+-的零点为m ,若存在实数n 使230x ax a --+=且||1m n -≤,则实数a 的取值范围是( ) A .[2,4]B .72,3⎡⎤⎢⎥⎣⎦C .7,33⎡⎤⎢⎥⎣⎦D .[2,3]12.在直角坐标系中,已知A (1,0),B (4,0),若直线x +my ﹣1=0上存在点P ,使得|PA |=2|PB |,则正实数m 的最小值是( ) A .13B .3C 3D 3二、填空题:本题共4小题,每小题5分,共20分。
上海高考数学压轴题50道(有答案,精品).
2011高考压轴题目选(50题)1.(函数)设32( log (f x x x =++,则对任意实数, a b ,“0a b +≥”是“( ( 0f a f b +≥”的条件。
2.(函数)设 22, 22( , (y x y x y x f +-=为定义在平面上的函数,且+=2 , {(x y x A }0, 0, 12≥≥≤y x y ,令} , ( , ({A y x y x f B ∈=,则B 所覆盖的面积为3.(函数)老师在黑板上写出了若干个幂函数。
他们都至少具备一下三条性质中的一条:(1)是奇函数;(2)在(, -∞+∞上是增函数;(3)函数图像经过原点。
小明统计了一下,具有性质(1)的函数共10个,具有性质(2)的函数共6个,具有性质(3)的函数共有15个,则老师写出的幂函数共有个。
4.(函数)已知定义在R 上的奇函数 (x f ,满足(4 ( f x f x -=-, 且在区间[0,2]上是增函数, 若方程f(x=m(m>0在区间[]8, 8-上有四个不同的根1234, , , x x x x , 则1234_________.x x x x +++=5.(函数)已知函数( 1. f x a =≠在区间(]0,1上是减函数,则实数a 的取值范围是6.(函数)方程x 22x -1=0的解可视为函数y =x 2的图像与函数y 1x横坐标,若x 4+ax -4=0的各个实根x 1,x 2,…,x k (k ≤4 所对应的点(x i , 4x i(i =1,2, …, k )均在直线y =x 的同侧,则实数a 的取值范围是7.(函数)如图放置的边长为1的正方形PABC 沿x 轴滚动。
设顶点p (x ,y )的轨迹方程是( y f x =,则(f x 的最小正周期为;( y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为。
8.(三角函数)已知( sin (0 363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪⎪⎪⎝⎭⎝⎭⎝⎭,,且( f x 在区间63ππ⎛⎫⎪⎝⎭有最小值,无最大值,则ω=__________ 9.(三角函数)已知函数2ππ( sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈⎪⎪⎝⎭⎝⎭R ,(其中0ω>),若对任意的a ∈R ,函数( y f x =,(π]x a a ∈+,的图像与直线1=y 交点个数的最大值为2,则ω的取值范围为10.(三角函数)已知方程x 2+3x+4=0的两个实根分别是x 1,x 2,则21a r c t a n a r c t a n x x + 11.(数列)设定义在*N 上的函数:(21 ( ( (2 2n n k f n n f n k =-⎧⎪=⎨=⎪⎩,其中*k N ∈,记(1(2(3(4(2 n n a f f f f f=+++++ ,则1n n a a +-=12.(数列)在m (m ≥2)个不同数的排列P 1P 2…P n 中,若1≤i <j ≤m 时P i >P j (即前面某数大于后面某数),则称P i 与P j 构成一个逆序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海历年高考数学压轴题题选(2012 文)23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分对于项数为m的有穷数列a n,记b k max印©,…©(k 1,2,..., m),即b k为a i,a2,...,a k中的最大值,并称数列b n是a n的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5(1)若各项均为正整数的数列a n的控制数列为2,3,4,5,5,写出所有的a n(2)设b n是a n的控制数列,满足3k b m k 1 C(C 为常数,k 1,2,..., m),求证:b k a k(k 1,2,..., m)(3)设m100,常数a 1 n(n 1),1 ,若a n an? ( 1) 2n,b n是a n的控制数列,求(b1aj(b2a2)... (b j00 a100)(2012 理)23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分r r 对于数集X 1,x1,x2,...,x n,其中0 X1 X2 ... x n,n 2,定义向量集Y a a (s,t),s X,t X ,ir uu ir m若对任意a1Y,存在a2Y,使得Q& 0,则称X具有性质P,例如1,1,2具有性质P(1)若x 2,且1,1,2, x具有性质P,求x的值(3)若X具有性质P,且为1、x2 q (q为常数),求有穷数列x1, x2,..., x n的通项公式(2)若X具有性质P,求证:1 X,且当冷1时,为1(3)若X具有性质P,且为1、x2 q (q为常数),求有穷数列x1, x2,..., x n的通项公式(2012 春)23. (本题满分18 分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.(2011 文)23、(18分)已知数列{a n}和{b n}的通项公式分别为a n 3n 6 , b n 2n 7 (n N*),将集合{x|x a n,n N*}U{x|x b n,n N*}中的元素从小到大依次排列,构成数列c1,c2,c3,L ,c n,L 。
⑴ 求三个最小的数,使它们既是数列{a n}中的项,又是数列{b n}中的项;⑵C1,C2,C3丄,C40中有多少项不是数列{b n}中的项?说明理由;⑶求数列{c n}的前4n项和S4n(n N )。
(2011 理)22、(18分)已知数列{a n}和{b n}的通项公式分别为a n 3n 6,b n 2n 7(n N*),将集合{x|x a n,n N*}U{x|x b n,n N*}中的元素从小到大依次排列,构成数列C1,C2,C3,L ,C n,L 。
⑴ 求C1,C2,C3,C4;⑵求证:在数列{C n}中、但不在数列{b n}中的项恰为a2,a4,L ,a2n,L ;⑶ 求数列{C n}的通项公式。
(2011 理)23、(18分)已知平面上的线段丨及点P,在丨上任取一点Q,线段PQ长度的最小值称为点P到线段丨的距离, 记作d(P,l)。
⑴求点P(1,1)到线段l: x y 3 0(3 x 5)的距离d(P,l);⑵设丨是长为2的线段,求点集D {P|d(P,l)1}所表示图形的面积;A, B,C,D 是下列三组点中的一组。
对于下列三组点只需选做一种,满分分别是①了多于一种的情形,则按照序号较小的解答计分。
① A(1,3),B(1,0),C( 1,3), D( 1,0)。
② A(1,3),B(1,0),C( 1,3), D( 1, 2)。
③ A(0,1), B(0,0), C(0,0), D(2,0)。
(2011 春)21. (本题满分14分)本题公园小题,第1小题满分4分,第2小题满分10分。
已知抛物线F:x 2 4y(ABC 的三个顶点在抛物线 F 上,记△ ABC 的三边AB BC CA 所在的直线的斜率分别为k AB ,k BC ,k CA ,若A 的坐标在原点,求k AB k BC k CA 的值; (2) 请你给出一个以 P(2,1)为顶点、其余各顶点均为抛物线F 上的动点的多边形,写出各多边形各边所在的直线斜率之间的关系式,并说明理由。
说明:第(2)小题将根据结论的一般性程度给与不同的评分。
(2010 文)22 .(本题满分16分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分8分.若实数x 、y 、m 满足x m y m ,则称x 比y 接近m . (1) 若x 21比3接近0,求x 的取值范围;(2)对任意两个不相等的正数a 、b ,证明:a 2b ab 2比a 3 b 3接近2ab ・.ab ;⑶写出到两条线段丨1,丨2距离相等的点的集合{P|d(P, I 1) d(P,l 2)},其中丨1 AB, 12 CD ,2分,②6分,③8分;若选择(3)已知函数f (x)的定义域D x x k ,k Z,x R .任取x D , f (x)等于1 sinx和1 sinx中接近0的那个值•写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).为CD 的中点;uurPQ ?令a 10 , b 5,点P 的坐标是(-8 , -1 ),若椭圆(2010 理)22 .(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分5分,第3小题满分10分。
若实数x 、y 、m 满足x m y m ,则称x 比y 远离m .2(1)若x 1比1远离0,求x 的取值范围;(2)对任意两个不相等的正数 a 、b ,证明:a 3 b 3比a 2b ab 2远离2ab 、、ab ;(3)已知函数f(x)的定义域DXX,k Z, x R •任取 x D , f (x)等于 sinx 和 cosx 中 4远离0的那个值•写出函数f (x)的解析式,并指出它的基本性质(结论不要求证明)(2010 文)23 (本题满分 18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8 分.已知椭圆的方程为工a(1)若点uuurM 满足AM1 uuu -(AQ2(2)设直线 |1 : y k 1x p 交椭圆 b 0) , A(0,b)、B(0, b)和 Q(a,0)为 的三个顶点.于C 、D 两点,交直线12 :y k 2X 于点E •若k 1k 2b 2飞,证明:Ea(3) 设点P 在椭圆内且不在x 轴上,如何构作过PQ 中点F 的直线l ,使得I 与椭圆的两个交点R 、F 2 uur uuu 满足PR PF 2 上的点R 、F 2满足2urnAB),求点M 的坐标;urn uuu uunPR PF2 PQ,求点P、P2的坐标.(2010 理)23 (本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.已知椭圆2的方程为笃a21(a bb20),点P的坐标为( a,b).uuur 1 uir uir (PAPB),(1)若直角坐标平面上的点M、A(0,b), B(a,0)满足PM求点M的坐标;2(2) 设直线h : y k i x p交椭圆于C、D两点,交直线12: y k?x于点E.若& k? —2 ,a证明:E为CD的中点;(3) 对于椭圆上的点Q(acos ,bsin )(0 ),如果椭圆上存在不同的两个交点P、P2满足urn uuu urnPP PP, PQ,写出求作点P、P,的步骤,并求出使P、P>存在的的取值范围.(2010 春)23、(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分。
已知首项为X i的数列{X n}满足X n 1 -aX^ ( a为常数)。
X n 1(1)若对于任意的X1 1,有X n 2 X n对于任意的n N都成立,求a的值;(2)当a 1时,若X1 0,数列{X n}是递增数列还是递减数列?请说明理由;(3)当a确定后,数列{ X n}由其首项X1确定,当a 2时,通过对数列{X n}的探究,写出"{ X n}是有穷数列”的一个真命题(不必证明)。
说明:对于第3题,将根据写出真命题所体现的思维层次和对问题探究的完整性,给予不同的评分。
2009 理)22. (本题满分16 分)本题共有3个小题,第1小题满分4分,第2 小题满分6 分,第3 小题满分6分。
1已知函数y f(x)的反函数。
定义:若对给定的实数a(a 0),函数y f(x a)与y f (x a)互为反函数,则称y f (x)满足“ a和性质”;若函数y f (ax)与y f 1 (ax)互为反函数,则称y f (x)满足“ a 积性质”。
(1)判断函数g(x) x2 1(x 0)是否满足“ 1 和性质”,并说明理由;(2)求所有满足“ 2 和性质”的一次函数;(3) 设函数y f(x)(x 0)对任何a 0,满足“ a积性质”。
求y f(x)的表达式。
( 2009 文)23. (本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分.已知a n是公差为d的等差数列,b n是公比为q的等比数列(1)若a n 3n 1,是否存在m,n N*,有a m a m 1 a k ?请说明理由;(2)若b n aq n( a、q为常数,且aq 0)对任意m存在k,有b m b m 1 b k,试求a、q满足的充要条件;(3)若a n 2n 1,b n 3n试确定所有的p,使数列 0中存在某个连续p项的和式数列中a.的一项,请证明.( 2009 理)23. (本题满分18分)本题共有3个小题,第1小题满分5分,第2 小题满分5分,第3小题满分8分。
已知a n是公差为d的等差数列,b n是公比为q的等比数列。
( 1) 若a n 3n 1 ,是否存在m、k N*,有a m a m 1 a k ?说明理由;(2) 找出所有数列* a “ 1a n 和b n ,使对一切nN ,— b n ,并说明理由;a n(3)若 a 15,d 4,b 1 q 3,试确定所有的 p ,使数列 a n 中存在某个连续 p 项的和是数列b n 中的一项,请证明。
(2008 文)21.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 已知数列{a *} : 3 1, a 2 2 , a 3r , a n3 a n2( n 是正整数),与数列{g } : b i 1,6 0, b 3 1 ,b 4 0,b n 4 b n ( n 是正整数).记 T n 0*1b 2 *2匕3玄3 L b n a *(1) 若 a-i a 2 a 3 La 12 64,求 r 的值;(2) 求证:当n 是正整数时,T 2n 4n ;(3) 已知r 0,且存在正整数 m ,使得在T 12m 1, T 12m 2,…,T 12m 12中有4项为100.求r 的值,并指出哪4 项为100.(2008 理)已知a 1为首项的数列{a n }满足:a n 1 a n 7,a n3,d1,d 3时,试用a 1表示数列{a n }前100项的和Si00 ;1(m 是正整数),c ,正整数d 3m 时,求证:数列 m1 1m 2 , a 9m 2 成等比数列当且仅当 d 3m 。