2019-2020学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷

合集下载

2019-2020学年星海实验中学九年级(上)月考数学试卷(9月份)及答案解析

2019-2020学年星海实验中学九年级(上)月考数学试卷(9月份)及答案解析

18.(3 分)如图,把矩形纸片 OABC 放入平面直角坐标系中,使 OA 、 OC 分别落在 x 轴、
y 轴上,连接 OB ,将纸片 OABC 沿 OB 折叠,使点 A 落在点 A 的位置,若 OB = 5 ,
tan BOC = 1 ,则点 A 的坐标为

2
19.(3 分)已知实数 ab 满足等式 a2 + 3a − 2 = 0 ,b2 + 3b − 2 = 0 ,那么求 b + a 的值是 . ab
A. 1 2
B. 2 2
C. 3 2
D. 2 2 3
4.(3 分)如果 ABC 中, sin A = cos B = 2 ,则下列最确切的结论是 (
)
2
A. ABC 是直角三角形
B. ABC 是等腰三角形
C. ABC 是等腰直角三角形
D. ABC 是锐角三角形
5.(3 分)下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是 (
2019-2020 学年江苏省苏州市工业园区星海实验中学九年级(上)
月考数学试卷(9 月份)
一、选择题:(本大题共有 10 小题,每小题 3 分,共 30 分,请将正确选项前的字母代号填 涂在答题纸相应位置上).
1.(3 分)一元二次方程 3x2 − 2x =1 的二次项系数、一次项系数、常数项分别是 ( )
则 AD 的长为 ( )
第1页(共8页)

A.3
B. 16 3
C. 20 3
D. 16 5
9.(3 分)如图,2 条宽为 1 的带子以 角交叉重叠,则重叠部分(阴影部分)的面积为 (
)
A. sin
B. 1 sin
C. 1 cos

2019-2020学年第一学期苏科版星海中学初三数学期初考试卷(解析版)

2019-2020学年第一学期苏科版星海中学初三数学期初考试卷(解析版)

2019-2020学年星海中学第一学期初三9月练习卷数学试卷(解析版)一、选择题(每题3分,共30分)1.下面的几何图形中,是轴对称图形但不是中心对称图形的是( ) A.等边三角形 B.圆 C.平行四边形 D.正六边形 【考点】轴对称图形,中心对称图形 【参考答案】A解:A. 等边三角形是轴对称图形,不是中心对称图形,符合题意; B. 圆既是轴对称图形,也是中心对称图形,不合题意;C. 平行四边形不是轴对称图形,是中心对称图形,不合题意;D. 正六边形既是轴对称图形,也是中心对称图形,不合题意。

2.下列事件是必然事件的是( )A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180° 【考点】随机事件 【参考答案】D解:A. 乘坐公共汽车恰好有空座,是随机事件; B. 同位角相等,是随机事件;C. 打开手机就有未接电话,是随机事件;D. 三角形内角和等于180∘,是必然事件。

3.若y x ,的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A.y x x -+2B.22x yC.2332x yD.()222y x y - 【考点】分式的基本性质【参考答案】DA.51B.10C.20D.2x 【考点】最简二次根式 【参考答案】B 解:x x ===252205551,,不是最简二次根式D C A ..∴5.根据下列条件,一定可以判定四边形为菱形的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线互相垂直平分D. 对角线互相平分且相等 【考点】菱形的判定 【参考答案】C解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形; ②四边相等;③对角线互相垂直平分的四边形是菱形。

只有C 能判定为是菱形6. 若关于x 的分式方程22142---=-xxx m 的解是正数,则实数m 的取值范围是( )A. 6<mB.2,10-≠<m m 且C.10<mD.2,6≠<m m 且 【考点】分式方程的解 【参考答案】D解:去分母得:()()42212---=x x m 解得:23m x -= 由分式方程的根是正数,得到023>-m ,且223≠-m7.如图,在正方形网格中,线段''B A 是线段AB 绕某点逆时针旋转角α得到的,点'A 与A 对应,则角α的大小为( )A. 30∘B. 60∘C. 90∘D. 120∘ 【考点】旋转的性质 【参考答案】C 如图:显然,旋转角为90∘8.已知反比例函数y=,当1<x<2时,y的最小整数值是( )A.5B.6C.8D.10 【考点】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.本题主要考查反比例函数的性质,当时,在每一个象限内,y随x的增大而减小;当时,在每一个象限,y随x的增大而增大.【参考答案】B解:答案解析当x=1时,y==10;当x=2时,y==5,∴当1<x<2时,y的取值范围是5<y<10,y的最小整数值是6,故选B..9.某同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立米长的标杆测得其影长为米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为米和米,则学校旗杆的高度为()米。

2023-2024学年江苏省苏州市工业园区重点学校九年级(上)10月月考数学试卷(含解析)

2023-2024学年江苏省苏州市工业园区重点学校九年级(上)10月月考数学试卷(含解析)

2023-2024学年江苏省苏州市工业园区重点学校九年级(上)10月月考数学试卷一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.将一元二次方程5x 2−1=4x 化成一般形式后,它的二次项系数是5,则一次项系数是( )A. −4B. 4C. −1D. 12.一元二次方程3x 2−mx−3=0有一根是x =1,则另一根是( )A. x =1B. x =−1C. x =2D. x =43.将x 2−6x−4=0进行配方变形,下列正确的是( )A. (x−6)2=13B. (x−6)2=9C. (x−3)2=13D. (x−3)2=94.一元二次方程x 2−8x +16=0根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 有一个实数根D. 没有实数根5.将抛物线y =4x 2向上平移6个单位,再向右平移9个单位,得到的抛物线的解析式为( )A. y =4(x +9)2+6B. y =4(x−9)2+6C. y =4(x +9)2−6D. y =4(x−9)2−66.2019年在武汉市举行了军运会.在军运会比赛中,某次羽毛球的运动路线可以看作是抛物线y =−14x 2+34x +1的一部分(如图),其中出球点B 离地面O 点的距离是1米,球落地点A 到O 点的距离是( )A. 1米B. 3米C. 4米D. 2516米7.若一个二次函数y=ax2+bx+c(a>0)的图象经过五个点A(−1,n)、B(3,n)、C(0,y1)、D(−2,y2)和E (2.5,y3),则下列关系正确的是( )A. y1>y2>y3B. y2>y3>y1C. y1<y2<y3D. y3>y1>y28.已知点M(x1,y1),N(x2,y2)在抛物线y=mx2−2m2x+m(m≠0)上,当x1+x2>4且x1<x2时,都有y1<y2,则m的取值范围为( )A. 0<m≤2B. −2≤m<0C. m>2D. m<−2二、填空题(本大题共8小题,共24.0分)9.有一人患了流感,经过两轮传染后,共有100人患了流感.假设每轮传染中,平均一个人传染了x个人,则依题意可列方程为.10.二次函数y=2(x−4)2+3的开口方向是,对称轴是,顶点坐标是.11.如图所示是一座抛物线拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,则当水面上升3m时,水面的宽度是米.12.第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图这个图案绕着它的中心旋转后能够与它本身重合,则旋转角α最小可以为度.13.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表,则抛物线与x轴的交点坐标为.x⋅⋅⋅⋅⋅⋅−2−101⋅⋅⋅⋅⋅⋅y⋅⋅⋅⋅⋅⋅0466⋅⋅⋅⋅⋅⋅14.如图,将▵ABC绕点A按逆时针方向旋转100∘,得到▵AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小是度.15.如图一段抛物线:y=−x(x−3)(0≤x≤3),记为C1,它与x轴交于点O和A1:将C1绕A1旋转180∘得到C2,交x轴于A2:将C2绕A2旋转180∘得到C3,交x轴于A3,如此进行下去,直至得到C11,若点P(31,m)在第11段抛物线C11上,则m的值为.16.如图:已知二次函数y=ax2+bx+c(a≠0)过(−1,−2),对称轴为直线x=2.并且二次函数与x轴的一个的最大值为3;④对于任意实数t,一定有at2交点位于0和1之间.①4a−2b+c<0;②b<1;③a+b+cb−a+bt≤4a+2b.上述结论正确的是(填序号).三、解答题(本大题共8小题,共64.0分。

江苏省苏州市星海实验初中2024-2025学年九年级第一学期数学10月月考卷(含答案)

江苏省苏州市星海实验初中2024-2025学年九年级第一学期数学10月月考卷(含答案)

苏州市星海实验初中2024-2025学年第一学期初三10月练习卷数 学2024.10一、选择题1.顶点为(﹣6,0),开口向下,形状与函数y =x 2的图象相同的抛物线所对应的函数是( )A .y =(x ﹣6)2B .y =(x +6)2C .y =﹣(x ﹣6)2D .y =﹣(x +6)22.如图,在Rt △ABC 中,∠C =90°,tan A =2,则sin B =( )A .B .2C .D .3.已知在△ABC 中,∠C =90°,45°<∠B <60°,设cos B =n ,那么n 的取值范围是( )AB .C .D.4.如图,传送带和地面所成斜坡AB 的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为( )A .5 米B .5米C .2 米D .4米5.将抛物线y =(x ﹣2)2﹣8向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为( )A .y =(x +1)2﹣13B .y =(x ﹣5)2﹣3C .y =(x ﹣5)2﹣13D .y =(x +1)2﹣36.如图,矩形ABCD 的对角线交于点O .已知AB =m ,∠BAC =∠α,则下列结论错误的是( )1n <<12n <<n <<A.∠BDC=∠αB.BC=m•tanαC.AO=D.BD=7.如图,在Rt△ABC中,∠C=90°,AB=6,AC=2,CD⊥AB于D,设∠ACD=α,则cosα的值为( )A.B.C.2D.8.函数y=﹣x2+2|x|+3的自变量x的取值范围为全体实数,其中x≥0部分的图象如图所示,对于此函数有下列结论:①函数图象关于y轴对称;②函数既有最大值,也有最小值;③当x<﹣1时,y随x的增大而增大;④当3<m<4时,关于x的方程﹣x2+2|x|+3=m有4个实数根.其中正确的结论个数是( )A.3B.2C.1D.0二、填空题9.抛物线y=3x2﹣6x+5的顶点坐标为 .10.如图,点A、B、C为正方形网格纸中的3个格点,则sin∠BAC的值是 .第10题第11题11.将一个装有水的圆柱体杯子斜放在水平桌面上,当倾斜角α=37°时,其主视图如图所示.若该水杯的杯口宽度BC=6cm,则水面宽度EF= cm.(参考数据:sin37°=,cos37°=,tan37°=)12.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:x…﹣10123…y…105212…则当y>5时,x的取值范围是 .13.若实数a,b满足a+b2=1,则a2+4b2的最小值是 .14.坐标平面内向上的抛物线y=a(x+2)(x﹣8)与x轴交于A、B两点,与y轴交于C点,若∠ACB=90°,则a的值是 .15.已知点A(4,y1),B(﹣1,y2),C(﹣3,y3)均在抛物线y=ax2﹣4ax+c(a>0)上.则y1,y2,y3的大小关系为 .16.如图,二次函数y=﹣x2+2mx+2m+1(m是常数,且m>0)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.其对称轴与线段BC交于点E,与x轴交于点F.连接AC.若∠BEF=2∠ACO,则m的值为 .三、解答题17.解方程:(1)(x+5)2=25;(2)x2﹣6x+2=0;(3)3x(x﹣1)=2(x﹣1);(4)(3x﹣2)2=(2x﹣3)2.18.计算:2cos230°﹣|tan60°﹣2|+sin45°•cos45°.19.在Rt △ABC 中,∠ACB =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,已知3b =2c ,斜边上的高CD =.(1)求tan A 的值;(2)求BD 的长.20.如图,已知抛物线y =ax 2+bx +c 的顶点是(﹣1,﹣4),且与x 轴交于A 、B (1,0)两点,交y 轴于点C ;(1)求此抛物线的解析式;(2)①当x 的取值范围满足条件 时,y <﹣3;②若D (m ,y 1),E (2,y 2)是抛物线上两点,且y 1>y 2,求实数m 的取值范围;(3)直线x =t 平行于y 轴,分别交线段AC 于点M 、交抛物线于点N ,求线段MN 的长度的最大值;(4)若以抛物线上的点P 为圆心作圆与x 轴相切时,正好也与y 轴相切,求点P 的坐标.21.在平面直角坐标系中,抛物线()的对称轴为直线x =2,它的形状与y =x 2相同,且它与x 轴交于A 、B 两点,与y 轴交于点C ,AB =8.(1)求抛物线的表达式:(2)若x >m 时,y 的值随着x 的增大而减小,则m 的取值范围_______________。

江苏省2019-2020学年九年级月考数学试题及答案

江苏省2019-2020学年九年级月考数学试题及答案

初三 数学试卷本卷满分 130分 , 用时 120 分钟 一.选择题(每题3分,共24分)1.式子1x -在实数范围内有意义,则x 的取值范围是 ( ) A .x <1 B.x≤1 C. x>1 D.x ≥12. 用配方法解关于x 的一元二次方程x 2﹣2x ﹣3=0,配方后的方程可以是 ( ) A .(x ﹣1)2=4 B .(x+1)2=4 C .(x ﹣1)2=16 D .(x+1)2=163、 若方程()a x =-24有解,则a 的取值范围是 ( )A .0≤aB .0≥aC .0>aD .无法确定4.下列说法中,不正确的是 ( )A.直径是弦, 弦是直径B.半圆周是弧C.圆上的点到圆心的距离都相等D.在同圆或等圆中,优弧一定比劣弧长5.为落实“两免一补”政策,某市2011年投入教育经费2500万元,预计2013年要投入教育经 费3600万元,已知2011年至2013年的教育经费投入以相同的百分率逐年增长,该增长率为 ( )A. 10%B.20 %C. 30%D.40%6. 如图1,△ABC 是⊙O的内接三角形,AC 是⊙O的直径,∠C=500,∠ABC的平分线BD 交⊙O于点D ,则∠BAD的度数是 ( )A.450B.850C.900D.9507、设a b ,是方程220090x x +-=的两个实数根, 则22a a b ++的值为 ( )A .2006B .2007C .2008D .20098.关于x 的方程a (x +m )2+b =0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程 0)2(2=+++b m x a 解是 ( )A .-2或1B .-4或-1C .1或3D .无法求解(图1) (图2)二.填空题(本大题共有10小题,每空2分,共22分) 9.在实数范围内分解因式:2a 2-6= . 10.64的算术平方根是 . 已知0xy >, 2yx x-= 11.如果关于x 的方程(m -3)x m 2-2m -1+mx +1=0是一元二次方程,则m 为 =12.对于任意不相等的两个实数a 、b ,定义运算※如下:a ※b =, 如3※2= , 那么8※12= .13.若x 、y 为实数,且满足|x -3|+y +3=0,则(x y)2012的值是 .14. 若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是 .15.已知实数a 在数轴上的位置如图所示,则化简 22)1(a a +-= .16.如图2,在⊙O 中,直径AB⊥弦CD 于点M,AM=18,BM=8,则CD 的长为________.17.等腰三角形一边长是3,另两边长是方程的0452=+-x x 根,则这个三角形的周长为 。

苏州工业园区星海中学初一~初三年级2019年春学期和秋学期期末试卷解析版

苏州工业园区星海中学初一~初三年级2019年春学期和秋学期期末试卷解析版

2019-2020学年星海中学第一学期初三9月练习卷数学试卷试卷分析一、选择题(每题3分,共30分)1.下面的几何图形中,是轴对称图形但不是中心对称图形的是( )A.等边三角形B.圆C.平行四边形D.正六边形【考点】轴对称图形,中心对称图形【参考答案】A 解:A. 等边三角形是轴对称图形,不是中心对称图形,符合题意;B. 圆既是轴对称图形,也是中心对称图形,不合题意;C. 平行四边形不是轴对称图形,是中心对称图形,不合题意;D. 正六边形既是轴对称图形,也是中心对称图形,不合题意。

2.下列事件是必然事件的是( )A.乘坐公共汽车恰好有空座B.同位角相等C.打开手机就有未接电话D.三角形内角和等于180° 【考点】随机事件【参考答案】D解:A. 乘坐公共汽车恰好有空座,是随机事件;B. 同位角相等,是随机事件;C. 打开手机就有未接电话,是随机事件;D. 三角形内角和等于180∘,是必然事件。

3.若y x ,的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.y x x-+2 B.22x y C.2332x y D.()222y x y -【考点】分式的基本性质【参考答案】D4.下列式子为最简二次根式的是( ) A.51B.10C.20D.2x【考点】最简二次根式【参考答案】B 解:x x ===252205551,,Θ不是最简二次根式D C A ..∴5.根据下列条件,一定可以判定四边形为菱形的是()A. 对角线互相平分B. 对角线互相垂直C. 对角线互相垂直平分D. 对角线互相平分且相等 【考点】菱形的判定【参考答案】C解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形。

只有C 能判定为是菱形6. 若关于x 的分式方程22142---=-x xx m的解是正数,则实数m 的取值范围是()A. 6<mB.2,10-≠<m m 且C.10<mD.2,6≠<m m 且【考点】分式方程的解 【参考答案】D解:去分母得:()()42212---=x x m解得:23mx -=由分式方程的根是正数,得到023>-m,且223≠-m7.如图,在正方形网格中,线段''B A 是线段AB 绕某点逆时针旋转角α得到的,点'A 与A 对应,则角α的大小为( )A. 30∘B. 60∘C. 90∘D. 120∘【考点】旋转的性质【参考答案】C如图:显然,旋转角为90∘8. 已知反比例函数y=,当1<x<2时,y 的最小整数值是( )A.5B.6C.8D.10【考点】利用反比例函数的性质,由x 的取值范围并结合反比例函数的图象解答即可.本题主要考查反比例函数的性质,当时,在每一个象限内,y 随x 的增大而减小;当时,在每一个象限,y 随x 的增大而增大.【参考答案】B解:答案解析 当x=1时,y==10;当x=2时,y==5,∴当1<x<2时,y 的取值范围是5<y<10,y 的最小整数值是6,故选B..9.某同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立米长的标杆测得其影长为米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为米和米,则学校旗杆的高度为( )米。

2019-2020年九年级数学上学期第一次月考试题苏科版.docx

2019-2020年九年级数学上学期第一次月考试题苏科版.docx

2019-2020 年九年级数学上学期第一次月考试题苏科版一、选择题(本大题共6 小题,每小题 3 分,共 18 分)1.下列方程中,一元二次方程是()A . ax2bxc 0B . x 213 0 C . x 24x 10 D . x-2y=0x2. 下列不能反映一组数据集中趋势的是 ()A. 众数B. 中位数C. 方差 D . 平均数3.方程 x2x 1的解的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个实数根4. 九年级( 1)班与( 2)班各选出 20 名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5 ( 2)班成绩的方差为 15,由此可知 ( )A: ( 1)班比( 2)班的成绩稳定B:( 2)班比( 1)班的成绩稳定C: 两个班的成绩一样稳定D:无法确定哪班的成绩更稳定 5.如图,△ ABC 内接于⊙ O ,∠ A =60°, 则∠ BOC 等于( )A .30°B .100°C .110°D .120°6. 如图,⊙ O 的半径为 2,点 O 到直线 l 的距离为 3,点 P 是直线 l 上的一个动点.若 PB 切 ⊙O 于点 B ,则 PB 的最小值是 ()A 213B5C3 D2AOCB第5题图第6题图二、填空题(本大题共有 10 小题,每小题 3 分,共 30 分)7. 一元二次方程 x22x 的解是8. 已知一元二次方程x 24x 3 0的两根分别为x 1,x2 ,则x 1x2.9.直角三角形两直角边长分别为 3 和 4,这个三角形内切圆的半径为OAB第10题图第16题图10.如图,已知⊙ O的半径为 13,弦 AB 长为 24,则点 O到 AB的距离是11.一组数据: 2, 3, 4, 5,6 的方差是12.已知⊙ O的直径10,弦 AB∥ CD,且 AB=6, CD=8, AB、 CD之间的距离是13.方程 x2﹣ 9x+18=0 的两个根是等腰三角形的底和腰,则这个三角形的周长为14. 圆的一条弦把圆分成度数的比为1:3 的两条弧,则该弦所对的圆周角等于.15.用半径为 10cm 的半圆,做成一个圆锥的侧面,那么这个圆锥的底面半径为16.在扇形 OAB中 , ∠AOB=90°, 半径 OA=18,将扇形 OAB沿着过点 B 的直线折叠 , 点 O恰好落在上的点 D 处 , 折痕交 OA于点 C, 则的长等于( 结果保留)三、解答题(共11 小题,满分102 分)17.解下列方程。

江苏省苏州市苏州工业园区星海实验中学2023-2024学年九年级上学期10月月考数学试题

江苏省苏州市苏州工业园区星海实验中学2023-2024学年九年级上学期10月月考数学试题

江苏省苏州市苏州工业园区星海实验中学2023-2024学年九年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题三、解答题17.解方程:(1)()235160x --=;(2)2680x x -+=.18.先化简,再求值:19.已知二次函数y(1)填写下表,在图平面直角坐标系中描出表中的点并画出函数图象.x …2-1-012y…(2)利用图象写出当21x -<≤时,20.已知关于x 的一元二次方程(1)求证:无论m 取何值时,方程都有两个不相等的实数根;(2)设该方程的两个实数根为a ,b 21.如图,老李想用长为70m 的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD ,并在边BC 上留一个(1)当羊圈的长和宽分别为多少米时,能围成一个面积为(2)羊圈的面积能达到6502m 吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,已知一次函数y kx =+()2,4B -.(1)求两个函数的解析式;(2)求AOB 的面积.23.如图,矩形ABCD 中,AB =(不与点A,B重合),一直到达点B为止;同时,点Q从点C出发沿CD向点D移动(不与点C、D重合).(1)若点P、Q均以3cm/s的速度移动,经过多长时间四边形BPDQ为菱形?V为直角(2)若点P为3cm/s的速度移动,点Q以2cm/s的速度移动,经过多长时间DPQ三角形?24.如图,正方形纸片ABCD的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH.设AE的长为x.(1)四边形EFGH的面积为___________.(用含x的式子表示);(2)当AE取何值时,四边形EFGH的面积为10?(3)四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.25.20世纪20年代起,苏州河沿岸集中了大量工厂和棚户简屋,工业污水和生活污水未经处理直接排入河中,使苏州河的水质不断恶化,最终变成一条臭河.90年代起,上海市政府加大监管力度,投放大量财力用于苏州河的治理,并对沿岸工厂的污水排放量实行监控.通过实践表明,若每天有1000吨污水排入苏州河,则每吨需要500元来进行污水处理,并且每减少10吨污水排放,每吨的污水处理费可以减少4元,为了使每天的污水处理费用为30万元,则沿岸的工厂每天的污水排放量是多少吨?26.综合与实践8m的矩形地块ABCD种植农作物,地块一边如图1,某兴趣小组计划开垦一个面积为2m a.靠墙,另外三边用木栏围住,木栏总长为2【问题提出】小组同学提出这样一个问题:若【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设AB 为m x ,BC 为m y .由矩形地块面积为成是反比例函数8y x=的图象在第一象限内点的坐标;满足条件的(),x y 可看成一次函数这两个条件的(),x y 就可以看成两个函数图象交点的坐标.(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若6a =,能否围出矩形地块?请仿照小颖的方法,在图说明理由.【问题延伸】当木栏总长为m a 时,小颖建立了一次函数是直线2y x =-通过平移得到的,在平移过程中,当过点(1)求点B 的坐标;(2)若:2:1OD OC =,直线y x =-+。

江苏省苏州工业园区九年级上学期第二次月考模拟数学试题

江苏省苏州工业园区九年级上学期第二次月考模拟数学试题

江苏省苏州工业园区九年级上学期第二次月考模拟数学试题一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0) B .(﹣3,﹣9) C .(3,﹣9) D .(0,﹣6) 2.在半径为3cm 的⊙O 中,若弦AB =32,则弦AB 所对的圆周角的度数为( ) A .30°B .45°C .30°或150°D .45°或135°3.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .34.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:35.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则∠AOB 的大小是( )A .70°B .72°C .74°D .76°6.抛物线223y x x =++与y 轴的交点为( ) A .(0,2) B .(2,0) C .(0,3) D .(3,0) 7.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-28.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( ) A .16B .13C .12D .239.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,1510.将二次函数22y x =的图象先向左平移4个单位长度,再向下平移1个单位长度后,所得新的图象的函数表达式为( ) A .()2241y x =-- B .()2241y x =+- C .()2241y x =-+ D .()2241y x =++ 11.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定 12.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( ) A .5πB .10πC .20πD .40π13.下列方程中,关于x 的一元二次方程是( ) A .2x ﹣3=xB .2x +3y =5C .2x ﹣x 2=1D .17x x+= 14.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.386cmD .7.64cm15.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x ,则下列方程中,正确的是( ) A .600(1+x )=950 B .600(1+2x )=950 C .600(1+x )2=950D .950(1﹣x )2=600二、填空题16.若m 是方程2x 2﹣3x =1的一个根,则6m 2﹣9m 的值为_____.17.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.18.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.19.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____.20.如图,在边长为4的菱形ABCD 中,∠A=60°,M 是AD 边的中点,点N 是AB 边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.21.如图,四边形ABCD内接于⊙O,若∠BOD=140°,则∠BCD=_____.22.如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线kyx的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=_____.23.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB=10米,则该圆锥的侧面积是_____平方米(结果保留π).24.如图,直线y=12x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.25.已知圆锥的底面半径是3cm,母线长是5cm,则圆锥的侧面积为_____cm2.(结果保留π)26.已知3a =4b ≠0,那么ab=_____. 27.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.28.已知二次函数y =ax 2+bx +c 的图象如图,对称轴为直线x =1,则不等式ax 2+bx +c >0的解集是_____.29.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8. (1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.30.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.三、解答题31.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为x 元(30x >)时,每周的销售量y (件)满足关系式:10600y x =-+.(1)若每周的利润W 为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当3552x ≤≤时,求每周获得利润W 的取值范围.32.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.33.如图,已知直线l 切⊙O 于点A ,B 为⊙O 上一点,过点B 作BC ⊥l ,垂足为点C ,连接AB 、OB .(1)求证:∠ABC =∠ABO ;(2)若AB =10,AC =1,求⊙O 的半径.34.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?35.如图,已知△ABC 中,∠ACB =90°,AC =4,BC =3,点M 、N 分别是边AC 、AB 上的动点,连接MN ,将△AMN 沿MN 所在直线翻折,翻折后点A 的对应点为A ′.(1)如图1,若点A ′恰好落在边AB 上,且AN =12AC ,求AM 的长; (2)如图2,若点A ′恰好落在边BC 上,且A ′N ∥AC . ①试判断四边形AMA ′N 的形状并说明理由; ②求AM 、MN 的长;(3)如图3,设线段NM 、BC 的延长线交于点P ,当35AN AB =且67AM AC =时,求CP 的长.四、压轴题36.已知:在ABC 中,,90AC BC ACB ︒=∠=,点F 在射线CA 上,延长BC 至点D ,使CD CF =,点E 是射线BF 与射线DA 的交点.(1)如图1,若点F 在边CA 上; ①求证:BE AD ⊥;②小敏在探究过程中发现45BEC ︒∠=,于是她想:若点F 在CA 的延长线上,是否也存在同样的结论?请你在图2上画出符合条件的图形并通过测量猜想BEC ∠的度数. (2)选择图1或图2两种情况中的任一种,证明小敏或你的猜想.37.我们知道,如图1,AB 是⊙O 的弦,点F 是AFB 的中点,过点F 作EF ⊥AB 于点E ,易得点E 是AB 的中点,即AE =EB .⊙O 上一点C (AC >BC ),则折线ACB 称为⊙O 的一条“折弦”.(1)当点C 在弦AB 的上方时(如图2),过点F 作EF ⊥AC 于点E ,求证:点E 是“折弦ACB ”的中点,即AE =EC+CB .(2)当点C 在弦AB 的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AE 、EC 、CB 满足怎样的数量关系?直接写出,不必证明.(3)如图4,已知Rt △ABC 中,∠C =90°,∠BAC =30°,Rt △ABC 的外接圆⊙O 的半径为2,过⊙O 上一点P 作PH ⊥AC 于点H ,交AB 于点M ,当∠PAB =45°时,求AH 的长.38.如图,在Rt △ABC 中,∠A=90°,0是BC 边上一点,以O 为圆心的半圆与AB 边相切于点D ,与BC 边交于点E 、F ,连接OD ,已知BD=3,tan ∠BOD=34,CF=83.(1)求⊙O 的半径OD ; (2)求证:AC 是⊙O 的切线; (3)求图中两阴影部分面积的和.39.抛物线()20y ax bx c a =++≠的顶点为(),P h k ,作x 轴的平行线4y k =+与抛物线交于点A 、B ,无论h 、k 为何值,AB 的长度都为4. (1)请直接写出a 的值____________; (2)若抛物线当0x =和4x =时的函数值相等, ①求b 的值;②过点()0,2Q 作直线2y =平行x 轴,交抛物线于M 、N 两点,且4QM QN +=,求c 的取值范围;(3)若1c b =--,2727b -<<,设线段AB 与抛物线所夹的封闭区域为S ,将抛物线绕原点逆时针旋转α,且1tan 2α=,此时区域S 的边界与y 轴的交点为C 、D 两点,若点D 在点C 上方,请判断点D 在抛物线上还是在线段AB 上,并求CD 的最大值.40.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标. 【详解】解:∵y =x 2﹣6x =x 2﹣6x +9﹣9=(x ﹣3)2﹣9, ∴二次函数y =x 2﹣6x 图象的顶点坐标为(3,﹣9). 故选:C . 【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.2.D【解析】【分析】根据题意画出图形,连接OA和OB,根据勾股定理的逆定理得出∠AOB=90°,再根据圆周角定理和圆内接四边形的性质求出即可.【详解】解:如图所示,连接OA,OB,则OA=OB=3,∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴劣弧AB的度数是90°,优弧AB的度数是360°﹣90°=270°,∴弦AB对的圆周角的度数是45°或135°,故选:D.【点睛】此题主要考查圆周角的求解,解题的关键是根据图形求出圆心角,再得到圆周角的度数. 3.B解析:B【解析】【分析】x x-=的两根,再利用韦达定理即可求解.根据题干可以明确得到p,q是方程2330【详解】x x-=的两根,解:由题可知p,q是方程2330∴3,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.4.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键.5.D解析:D【解析】【分析】连接OC,根据等腰三角形的性质得到∠OAC=∠OCA=16°;∠OBC=∠OCB=54°求出∠ACB 的度数,然后根据同圆中同弧所对的圆周角等于圆心角的一半求解.【详解】解:连接OC∵OA=OC,OB=OC∴∠OAC=∠OCA=16°;∠OBC=∠OCB=54°∴∠ACB=∠OCB-∠OCA=54°-16°=38°∴∠AOB=2∠ACB=76°故选:D【点睛】本题考查的是等腰三角形的性质及同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,掌握相关性质定理是本题的解题关键.6.C解析:C【解析】【分析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,∴抛物线与y轴的交点为(0,3),故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.7.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.8.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张,所以抽到偶数的概率是46=23,故选:D.【点睛】本题主要考查了随机事件的概率,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.9.C解析:C【解析】【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为(1516)2+÷=15.5岁,故选:C .【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.10.B解析:B【解析】【分析】根据题意直接利用二次函数平移规律进而判断得出选项.【详解】解:22y x =的图象向左平移4个单位长度,再向下平移1个单位长度,平移后的函数关系式是:()2241y x =+-.故选:B .【点睛】本题考查二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 11.C解析:C【解析】【分析】点到圆心的距离大于半径,得到点在圆外.【详解】∵点P 到圆心O 的距离为4.5,⊙O 的半径为4,∴点P 在圆外.故选:C.此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.12.B解析:B【解析】【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.13.C解析:C【解析】【分析】利用一元二次方程的定义判断即可.【详解】A、方程2x﹣3=x为一元一次方程,不符合题意;B、方程2x+3y=5是二元一次方程,不符合题意;C、方程2x﹣x2=1是一元二次方程,符合题意;D、方程x+1x=7是分式方程,不符合题意,故选:C.【点睛】本题考查了一元一次方程的问题,掌握一元一次方程的定义是解题的关键.14.A解析:A【解析】【分析】根据黄金分割的比值约为0.618列式进行计算即可得解.【详解】解:∵书的宽与长之比为黄金比,书的长为20cm,∴书的宽约为20×0.618=12.36cm.故选:A.【点睛】本题考查了黄金比例的应用,掌握黄金比例的比值是解题的关键.解析:C【解析】【分析】设快递量平均每年增长率为x,根据我国2018年及2020年的快递业务量,即可得出关于x的一元二次方程,此题得解.【详解】设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二、填空题16.3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,解析:3【解析】【分析】把m代入方程2x2﹣3x=1,得到2m2-3m=1,再把6m2-9m变形为3(2m2-3m),然后利用整体代入的方法计算.【详解】解:∵m是方程2x2﹣3x=1的一个根,∴2m2﹣3m=1,∴6m2﹣9m=3(2m2﹣3m)=3×1=3.故答案为3.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=223534+=厘米,∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.18.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3π【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正六边形内接于O,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA ,∵∠CDA=∠BDO,∴△CDA≌△BDO,∴S△CDA=S△BDO,∴图中涂色部分的面积等于扇形AOB的面积为:26022 3603ππ⨯=.故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.19.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.20.【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2-解析:272【解析】【分析】【详解】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=1MD=1,2∴FM=DM×cos30°=3,∴2227=+=,MC FM CF∴A′C=MC﹣MA′=272-.-.故答案为272【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.21.110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°解析:110°.【解析】【分析】由圆周角定理,同弧所对的圆心角是圆周角的2倍.可求∠A=12∠BOD=70°,再根据圆内接四边形对角互补,可得∠C=180-∠A=110°【详解】∵∠BOD=140°∴∠A=12∠BOD=70°∴∠C=180°-∠A=110°,故答案为:110°.【点睛】此题考查圆周角定理,解题的关键在于利用圆内接四边形的性质求角度. 22.24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),解析:24【解析】【详解】点B是抛物线y=﹣x2+4x+2的顶点,∴点B的坐标为(2,6),2018÷6=336…2,故点P离x轴的距离与点B离x轴的距离相同,∴点P的坐标为(2018,6),∴m=6;点B(2,6)在kyx的图象上,∴k=6;即12yx=,2025÷6=337…3,故点Q离x轴的距离与当x=3时,函数12yx=的函数值相等,又x=3时,1243y==,∴点Q的坐标为(2025,4),即n=4,∴mn=6424.⨯=故答案为24.【点睛】本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P、Q在A﹣B﹣C段上的对应点是解题的关键.23.【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的解析:60π【解析】【分析】根据勾股定理求得OB,再求得圆锥的底面周长即圆锥的侧面弧长,根据扇形面积的计算方法S=12lr,求得答案即可.【详解】解:∵AO=8米,AB=10米,∴OB=6米,∴圆锥的底面周长=2×π×6=12π米,∴S扇形=12lr=12×12π×10=60π米2,故答案为60π.【点睛】本题考查圆锥的侧面积,掌握扇形面积的计算方法S=12lr是解题的关键.24.【解析】【分析】【详解】试题分析:把x=2代入y=x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y 轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D解析:【解析】【分析】【详解】试题分析:把x=2代入y=12x﹣2求出C的纵坐标,得出OM=2,CM=1,根据CD∥y轴得出D的横坐标是2,根据三角形的面积求出CD的值,求出MD,得出D的纵坐标,把D的坐标代入反比例函数的解析式求出k即可.解:∵点C在直线AB上,即在直线y=12x﹣2上,C的横坐标是2,∴代入得:y=12×2﹣2=﹣1,即C(2,﹣1),∴OM=2,∵CD∥y轴,S△OCD=52,∴12CD×OM=52,∴CD=52,∴MD=52﹣1=32,即D的坐标是(2,32),∵D在双曲线y=kx上,∴代入得:k=2×32=3.故答案为3.考点:反比例函数与一次函数的交点问题.点评:本题考查了反比例函数与一次函数的交点问题、一次函数、反比例函数的图象上点的坐标特征、三角形的面积等知识点,通过做此题培养了学生的计算能力和理解能力,题目具有一定的代表性,是一道比较好的题目.25.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.26..【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得=,故答案为:.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此解析:43.【解析】【分析】根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】解:两边都除以3b,得a b =43,故答案为:43.【点睛】此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.27.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.28.﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个解析:﹣1<x<3【解析】【分析】先求出函数与x轴的另一个交点,再根据图像即可求解.【详解】解:∵抛物线的对称轴为直线x=1,而抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∵当﹣1<x<3时,y>0,∴不等式ax2+bx+c>0的解集为﹣1<x<3.故答案为﹣1<x<3.【点睛】此题主要考查二次函数的图像,解题的关键是求出函数与x轴的另一个交点. 29.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键. 30.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

2019-2020学年九年级数学上学期12月月考试题 苏科版.doc

2019-2020学年九年级数学上学期12月月考试题 苏科版.doc

(第7题) (第9题) (第6题) 2019-2020学年九年级数学上学期12月月考试题 苏科版注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.一、选择题(本大题共有10小题,每小题3分,共30分.)1.下列函数关系中,y 是x 的二次函数的是 ( )A .y =1xB .y =2x +1C .y =x 2+x −2D .y 2=x 2+3x2.在平面直角坐标系中,二次函数y =a (x −h )2(a ≠0)的图象可能是 ( )A .B .C .D .3.学校艺术节组织才艺比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是( ).A .众数B .方差C .中位数D .平均数4.某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x ,则下面所列方程中正确的是 ( ) A .289(1―2x )=256 B .256(1+x )2=289C .289(1―x )2=256D .289―289(1―x )―289(1―x )2=2565.已知圆锥的底面的半径为3cm ,高为4cm ,则它的侧面积为 ( ) A .15πcm 2 B .16πcm 2 C .19πcm 2 D .24πcm 26.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列有4个结论:①b 2-4ac >0;②abc <0;③b <a +c ;④4a +b =1,其中正确的结论为 ( )A .①②B .①②③C .①②④D .①③④7.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ( )A .28°B .30°C .43°D .60°8.一个多边形的每个外角都等于72°,则这个多边形的边数是 边 ( )A .4B .5C .6D .79.如图,△ABC 中,AB =AC =13 cm ,BC =10 cm .则△ABC 内切圆的半径是 ( )A .103B .132C .4D . 510.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC ,则图中阴影部分面第10题 A B C第14题 积是 A .4π3-2 3 B .2π3-2 3 C .4π3- 3 D .2π3- 3 ( )二、填空题(本大题共8空,每空2分,共16分.)11.函数y =5-x 12.二次函数y =x 2−4x 13.已知m ,n 是方程1415从B 测得船C16.已知二次函数y =关于x 的不等式ax 2+的取值范围是 .17.如图,△ABC 和△BOD 都是等腰直角三角形,∠ACB =∠BDO =90°,且点A 在反比例函数y =k x(k >0)的图像上,若OB 2-AB 2=10,则k 的值为 . 18.如图,已知直线l : y =−43 x −43以每秒3个单位的速度向右平移;同时以点M (3,3)为圆心,3个单位长度为半径的⊙M 以每秒2个单位长度的速度向右平移,当直线l 与⊙M 相切时,则它们运动的时间为 秒.三、解答题:(本大题共10小题,共84分.解答时需有证明过程或演算步骤.)19.(本题满分8分)计算:(1)计算:(1)计算: |−4|+20120−16 +2sin 30° (2)解方程:x 2−4x +2=020.(本题满分6分)先化简: (3a +1−a +1)÷a 2−4a +4a+1,并从0,−1,2中选一个合适的数作为a 的值代入求值.21.(本题满分8分)已知:如图,AB 是⊙O 的直径,点C 、D 为圆上两点,且CB ︵=CD ︵,CF ⊥AB 于点F ,CE ⊥AD 的延长线于点E .(1)试说明:DE =BF ;(2)若∠DAB =60°,AB =8,求△ACD 的面积.A B22.(本题满分8分)近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)本次被调查的学生数是人;(2)统计表中a的值为;(3)各组人数的众数是;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.23.(本题满分8分)2015年某市中考招生政策发生较大改变,其中之一是:省级示范性高中批次志愿中,每个考生可填报两所学校(有先后顺序),我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D、E五所.(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;(2)求填报方案中含有A学校的概率.24.(本题满分8分)如图在△ABC中,CD是AB边上的中线,已知∠B=45º,tan∠ACB=2,AC=5,求:(1)△ABC面积;(2)CD的长;(3)sin∠ACD的值.ADB C25.(本题满分10分)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)26.(本题满分8分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=12,AB=4,求DC的长.27.(本题满分10分)如图1,已知抛物线y=ax2+bx (a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若异于点A的点N在抛物线上,且∠NBO=∠ABO,求点N的坐标;28.(本题10分)如图1,已知正方形ABCD边长为1,点P是AD边上的一个动点,点A关于直线BP的对称点是点Q,连结PQ、DQ、CQ、BQ.设AP﹦x.(1)BQ+DQ的最小值是,此时x的值是;(2)如图2,若PQ的延长线交CD边于E,并且∠CQD=90°.①求证:QE﹦EC;②求x的值.(3)若点P是射线AD上的一个动点,请直接写出当△CDQ为等腰三角形时x的值.QCDABP图1QCDABPE图2 备用图CDAB。

2022-2023学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷(10月份)

2022-2023学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷(10月份)

2022-2023学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷(10月份)一.选择题(每小题3分,共30分)1.下列方程中,是一元二次方程的是( )A .x 2+3x +y =0B .x +y +1=0C .x 2=0D .x 2+1x +5=0 2.已知关于x 的一元二次方程x 2+5x ﹣m =0的一个根是2,则另一个根是( )A .﹣7B .7C .3D .﹣33.关于x 的一元二次方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤14.在Rt △ACB 中,∠C =90°,tan A =2√6,则sin B 的值为( )A .15B .12C .√2D .√35.已知在△ABC 中,∠C =90°,∠B <∠A ,设sin B =n ,那么n 的取值范围是( )A .0<n <1B .0<n <12C .0<n <√22D .0<n <√326.下列关于x 一元二次方程中,两根之和为﹣4的是( )A .x 2+2x ﹣4=0B .x 2﹣4x +4=0C .x 2+4x +10=0D .x 2+4x ﹣10=07.下列式子错谒的是( )A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°8.若A =x 2+2x ﹣6y ,B =﹣y 2+4x ﹣11,则A 、B 的大小关系为( )A .A >B B .A <BC .A ≥BD .A =B9.如图,矩形ABCD 的对角线交于点O ,若AB =m ,∠BAC =∠α,则下列结论错误的是( )A .∠BDC =∠αB .BC =m •tan α C .AO =m 2sinαD .BD =m cosα 10.如图,将图1的正方形剪成四块,恰能拼成图2的矩形,则a b =( )A .√5−12B .2+√34C .√5+12D .√3−1二.填空题(每小题3分,共24分)11.已知一元二次方程(a +1)x 2﹣ax +a 2﹣1=0的一个根为0,则a = .12.如图,点A 、B 、C 为正方形网格纸中的3个格点,则sin ∠BAC 的值是 .13.方程x 2+3x +m =0的一个根是另一个根的2倍,则m 的值为 .14.如图,△ABC 中,∠B =90°,BC =3,AB =5,∠A =α,易知tan α=35,聪明的小强想求tan2α的值,于是他在AB 上取点D ,使得CD =AD ,则tan2α的值为 .15.x 1,x 2为方程x 2﹣4x ﹣2022=0的两根,则x 12﹣2x 1+2x 2的值为 .16.若以方程x 2﹣2(k ﹣3)x +k 2﹣4k ﹣1=0的两个实数根作为横坐标、纵坐标的点恰在反比例函数y =11x 的图象上,则满足条件的k 值为 .17.如图,在△ABC 中,点D 在边BC 上,AD ⊥AC ,∠BAD =∠C ,BD =2,CD =6,那么tan C = .18.如图,在Rt △ABC 中,∠BAC =90°,AB =2√2,AC =6,点E 在线段AC 上,且AE =1,D 是线段BC 上的一点,连接DE ,将四边形ABDE 沿直线DE 翻折,得到四边形FGDE ,当点G 恰好落在线段AC 上时,AF = .三.解答题(共76分)19.解方程:(1)3x (x ﹣1)=2(x ﹣1);(2)2x 2﹣4x +1=0;(3)4(x +3)2=25(x ﹣2)2;(4)(x +2)2﹣3(x +2)﹣4=0.20.计算:√(cos60°−cos45°)2−|tan60°﹣sin30°|.21.圆圆想买一只蓝牙耳机,数码城售卖的某款蓝牙耳机,原来每只售价400元,经过连续两次降价后,现在每只售价256元.(1)求平均每次降价的百分率;(2)某电商平台搞活动,同款蓝牙耳机原价300元,现在7折优惠,包邮到家.同时,数码城按照前两次的平均降价率进行第三次降价.请问:圆圆选择哪种购买方式比较合算?请通过计算说明.22.我们给出定义:如果两个锐角的和为45°,那么称这两个角互为半余角,如图,在△ABC 中,∠A ,∠B 互为半余角,且BC AC =2√23,则求∠A 的正切值.23.已知关于x 的方程kx 2﹣(3k +1)x +2k +2=0.(1)求证:这个方程总有实数根;(2)若方程的两根为α,β,且1α+1β=−1,则k 的值为多少?(3)若方程的实数根都是整数,求k的值.24.如图,在建筑物DF的左边有一个小山坡,坡底B、C同建筑底端F在同一水平线上,斜坡AB的坡比为i=5:12,小李从斜坡底端B沿斜坡走了26米到达坡顶A处,在坡顶A处看建筑物的顶端D的仰角α为35°,然后小李沿斜坡AC走了2√41米到达底部C 点,已知建筑物上有一点E,在C处看点E的仰角为18°,(点A、B、C、D、E、F在同一平面内)建筑物顶端D到E的距离DE长度为28.8米,求建筑物DF的高度.(参考数据:cos35°≈45,tan35°≈710,cos18°≈910,tan18°≈13)25.某网店以每件80元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件的售价每降低2元,其销售量可增加10件.(1)该网店销售该商品原来一天可获利润元.(2)设后来该商品每件售价降价x元,网店一天可获利润y元,①若此网店为了尽可能增加该商品的销售量,且一天仍能获利1080元,则每件商品的售价应降价多少元?②求y与x之间的函数关系式,当该商品每件售价为多少元时,该网店一天所获利润最大?并求最大利润值.26.如图,在矩形ABCD中,设AB=a,AD=b,且a>b.(1)若a,b为方程x2﹣kx+k+4=0的两根,且BD=2√10,求k的值.(2)在(1)的条件下,P为CD上一点(异于C、D两点),P在什么位置时,△APB 为直角三角形?(3)P为CD上一动点(异于C、D两点),当a,b满足什么条件时,使△APB为直角三角形的P点有且只有一个?请直接写出a,b满足的数量关系.27.我们给出定义:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根为x1,x2(x2≤x2),分别以x1,x2为横坐标和纵坐标得到点M(x1,x2),则称点M为该一元二次方程的衍生点.(1)若方程为x2﹣3x+2=0,该方程的衍生点M为.(2)若关于x的一元二次方程x2﹣(5m+1)x+5m=1的衍生点为M,过点M向x轴和y轴作垂线,两条垂线与坐标轴恰好围成一个正方形,求m的值.(3)是否存在b,c,使得不论k(k≠0)为何值,关于x的方程x2+bx+c=0的衍生点M 始终在直线y=kx+2(k+3)的图象上,若有请求出b,c的值,若没有说明理由.28.如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P运动的路程为x,设△AOP的面积为y,y与x的函数关系图象如图②所示.(1)AB=cm,AD=cm;(2)若点P运动的速度为1cm/s,另一点Q同时以23cm/s的速度从A出发沿AD运动,点P运动的时间为t.当P、Q中有一点到达点D时,另一点随之停止.如图③,连结OQ、BQ、DP,设△BOQ面积为S1,△DOP面积为S2,当点P在BC上时,若S1与S2的乘积为S,求S与t的函数关系式.(3)点P运动的时间为t,连结DP,将点A沿直线DP翻折到点E,连结PE、DE,DE 交射线AC于点F,当t为何值时,△DAF为等腰三角形.。

2019-2020年九年级数学上学期第一次月考试题 苏科版 (I)

2019-2020年九年级数学上学期第一次月考试题 苏科版 (I)

2019-2020年九年级数学上学期第一次月考试题 苏科版 (I)一、精心选一选(每题3分,共24分)C 2、用配方法解方程09102=++x x ,配方正确的是( )A .16)5(2=+x B .34)5(2=+x C .16)5(2=-x D .25)5(2=+x3、如图,在△ABC 中,DE ∥ BC ,AD DB = 12,则下列结论中正确的是A. AE EC = 12B.DE BC = 12C.△ADE 的周长△ABC 的周长 = 13D. △ADE 的面积△ABC 的面积 = 134、若03)(2)(22222=-+-+b a b a ,则代数式22b a +的值 ( )A. -1B. 3 C . -1或3 D. 1或-35、已知关于x 的方程)(0a 0c bx ax 2≠=++,且a-b+c=0,则此方程必有一解为( )A .-1B .0C .1D .-1或16、⊙O 的半径为10cm ,两平行弦AC ,BD 的长分别为12cm ,16cm ,则两弦间的距离是 ( ) A. 2cm B. 14cm C. 6cm 或8cm D. 2cm 或14cm7、△ABC 是⊙O 内接三角形,∠BOC=80°,那么∠A 等于 ( ) A 、80° B 、40° C 、140° D 、40°或140°8、如图,已知⊙O的直径AB=12,E 、F 为AB 的三等分点,M 、N 为上两点,且∠MEB=∠NFB=60°,则EM+FN=( )第3题图BA 、B 、C 、2D 、33二、细心填一填(每题3分,共30分) 9、方程x 2+x=0的解是________ 。

10、以-3和6为根且二次项系数为1的一元二次方程是11、如图,AB 是⊙O 的弦,AB=4,点C 是⊙O 上的一个动点,且∠ACB=45°.若点M ,N 分别是AB ,BC的中点,则MN 长的最大值是12.如图,∠C=90°,⊙C 与AB 相交于点D ,AC=5,CB=12,则AD=___________ 13、关于x 的一元二次方程(a+1)x 2+x+a 2-1=0的一个根是0,则a 值为14、已知21x x 、是方程x 2-2x-1=0的两个根,则2111x x的值为 15、关于x 的方程a (x +m )2+b =0的解是x 1=-2,x 2=1(a ,m ,b 均为常数,a ≠0),则方程a (x +m +2)2+b =0的解是16、已知a ,b 是方程x 2﹣x ﹣3=0的两个根,则代数式2a 3+b 2+3a 2﹣11a ﹣b+6的值为________.17、某校去年投资2万元购买实验器材,预计今明2年的投资总额为8万元.若该校这两年购买的实验器材的投资年平均增长率为x ,则可列方程为 .18、如图,已知△ABC 的三边长为a =3,b =4,c =5,若平行于三角形一边的直线l将△AB C 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为1s 、2s 、11题图12题图3s 则1s 、2s 、3s 的大小关系是 (用“﹥”号连接)三、用心做一做(本大题共10小题,共96分) 19. (每题3分 共12分)解一元二次方程.(1)09)3(2=--x (2)0522=--x x(3)3(2)2(2)x x x -=- (4)x x 8172=+20. (6分)关于x 的一元二次方程012)1(2=++--m mx x m . (1)求证:方程有两个不相等的实数根;(2)m 为何整数时,此方程的两个根都为正整数.21.(本题满分6分)如图所示,AB 是圆O 的直径,以OA 为直径的圆C 与圆O 的弦AD 相交于点E 。

江苏省苏州市苏州工业园区苏州中学园区校2023-2024学年九年级上学期10月月考数学试题

江苏省苏州市苏州工业园区苏州中学园区校2023-2024学年九年级上学期10月月考数学试题

江苏省苏州市苏州工业园区苏州中学园区校2023-2024学年九年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .1米B .3米7.若一个二次函数(2y ax bx c =++A .123y y y >>B .231y y y >>C .123y y y <<D .312y y y >>8.已知点()()1122,,,M x y N x y 在抛物线222(0)y mx m x n m =-+≠上,当124x x +>且12x x <时,都有12y y <,则m 的取值范围为()A .02m <≤B .20m -≤<C .m>2D .2m <-二、填空题12.第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.这个图案绕着它的中心旋转后能够与它本身重合,则旋转角13.抛物线2y ax bx c ++=上部分点的横坐标x 轴的交点坐标为x ……﹣2﹣101……y……466……14.如图,将△ABC 绕点A 逆时针旋转线上,则∠11BB C 的度数为15.如图一段抛物线:y =-(16.如图:已知二次函数2=++y ax bx 次函数与x 轴的一个交点位于0和1值为3;④对于任意实数t ,一定有at 号)三、解答题17.解下列方程:(1)22410x x -+=;(2)()24105x x x +=+.四、作图题18.已知二次函数223y x x =+-图象的顶点为D ,与x 轴交于点A 、B (A 左B 右),与y 轴交于点C .(1)请先画出抛物线的大致图象,并直接写出A 、B 、C 三点的坐标(2)当22x -<<时,y 的取值范围是______(直接写出结果)五、解答题六、作图题20.如图,在正方形网格中,每个小正方形的边长为1,格点△ABC (顶点在网格线的交点上)的顶点A 、C 的坐标分别为A (-3,5)、C (0,3)备用图(1)请在网格所在的平面内画出平面直角坐标系,并直接写出点B 的坐标(2)将△ABC 绕着原点O 顺时针旋转90°得△A 1B 1C 1,画出△A 1B 1C 1(3)在x 轴上是否存在点P ,使PA +PC 的值最小,若存在请直接写出点P 的坐标;若不存在请说明理由七、解答题(2)①如图①,当点P 在x 轴负半轴运动时,求证:∠ABQ =90°;②当点P 在x 轴正半轴运动时,①中的结论是否仍然成立?请补全图②,并作出判断(不需要说明理由);(3)在点P 运动的过程中,若△OBQ 是直角三角形,直接..写出点P 的坐标.24.已知二次函数223y x bx b =+-.(1)当该二次函数的图象经过点()1,0A 时,求该二次函数的表达式;(2)在(1)的条件下,二次函数图象与x 轴的另一个交点为点B ,与y 轴的交点为点C ,点P 从点A 出发在线段AB 上以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,直到其中一点到达终点时,两点停止运动,求△BPQ 面积的最大值;(3)若对满足1x ≥的任意实数x ,都使得0y ≥成立,求实数b 的取值范围.参考答案:∴3C y =,将3C y =,代入2149y x =-+,得21349x =-+,解得:3x =±,∴C (3,3),根据抛物线的对称性可知此时水面的宽度是2C x 故答案为:6.【点睛】本题考查二次函数的实际应用.根据题意求出该抛物线解析式是解题关键.12.60【分析】先求出正六边形的中心角,再根据旋转变换的性质解答即可.【详解】解:根据题意得:该图形可以看作为一个正六边形,∵360660案=,∴旋转角α最小可以为60︒,故答案为:60.【点睛】本题考查的是旋转对称图形、正多边形的性质,键.13.(3,0)【分析】根据(0,6)、(1,6)两点求得对称轴,再利用对称性解答即可.【详解】解:∵抛物线2y ax bx c ++=经过(0,【分析】(1)先计算0x =得到=3y -,则C 点坐标为()0,3-,再把一般式配成顶点式得到顶点D 的坐标为()1,4--,接着解方程2230x x +-=得()30A -,,()10B ,,然后利用描点法画出函数图象;(2)先计算出2x =-和2x =对应的函数值,然后结合函数图象写出当22x -<<时对应y 的取值范围.【详解】(1)解:当0x =时,2233y x x =+-=-,则()0,3C -,∵()222314y x x x =+-=+-,∴顶点D 的坐标为()1,4--,当0y =时,2230x x +-=,解得13x =-,21x =,∴()30A -,,()10B ,,如图,A 、B 、C 三点的坐标为:()30A -,,()10B ,,()0,3C -;(2)当2x =-时,=3y -;当2x =时,5y =,而=1x -时,y 有最小值4-,所以当22x -<<时,y 的取值范围是45y -≤<.故答案为:45y -≤<.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.(3)抛物线223y x bx b =+-的对称轴为:直线x =-设2()23y f x x bx b ==+-,∵对1x ≥的任意实数x ,都使得0y ≥成立,∴()110b f -≤⎧⎨≥⎩或()10b f b ->⎧⎨-≥⎩,∴-1≤b ≤1或-3≤b <-1,∴-3≤b ≤1.【点睛】本题主要考查二次函数综合,掌握待定系数法,二次函数的性质以及根据图像对称轴位置,列出不等式组,是解题的关键.。

江苏省苏州工业园区星浦实验中学2023-2024学年10月上学期月考九年级数学试题

江苏省苏州工业园区星浦实验中学2023-2024学年10月上学期月考九年级数学试题

江苏省苏州工业园区星浦实验中学2023-2024学年10月上学期月考九年级数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列关于x 的方程中,一定是一元二次方程的是( ) A .10x -= B .33x x += C .2350x x +-=D .20ax bx c ++=2.抛物线()2225y x =---的顶点坐标是( ) A .()2,5-B .()2,5C .()2,5--D .()2,5-3.一元二次方程2520x x -+=根的判别式的值是( )A .33B .23C .17D 4.将抛物线2y x =向右平移3个单位,再向上平移4个单位,得到的抛物线是( ) A .2(3)4y x =-+ B .2(3)4y x =++ C .2(3)4y x =+-D .2(3)4y x =--5.在同一平面直角坐标系中,函数2y ax k =+与()0y kx a a =+≠的图象可能是( )A .B .C .D .6.如图是某月的月历表,在此月历表上可以用一个矩形圈出33⨯个位置相邻的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的积为192,设这个最小数为x ,则下列方程正确的是( )A .()7192x x ++=B .()7192x x +=C .()16192x x ++=D .()16192x x +=7.已知二次函数224y ax ax =-+的图象开口向上,若点()()()1232,,1,,5,A y B y C y --都在该函数图象上,则12,y y ,3y 三者之间的大小关系是() A .123y y y <<B .132y y y <<C .213y y y <<D .312y y y <<8.对于一元二次方程()200ax bx c a ++=≠,有下列说法:①若0a b c -+=,则方程()200ax bx c a ++=≠必有一个根为1;②若方程20ax c +=有两个不相等的实根,则方程()200ax bx c a ++=≠必有两个不相等的实根;③若c 是方程()200ax bx c a ++=≠的一个根,则一定有10ac b ++=成立;④若0x 是一元二次方程()200ax bx c a ++=≠的根,则()22042b ac ax b -=+.其中正确的是( ) A .只有①B .只有②④C .只有①②③D .只有①②④二、填空题9.若1x =是关于x 的一元二次方程260x mx +-=的一个根,则m 的值为. 10.方程4310m x mx +++=是关于x 的一元二次方程,则m =. 11.二次函数234y x x =--+的最大值是.12.已知抛物线232023y x x =--与x 轴的一个交点为(,0)a ,则代数式232024a a --的值为.13.已知关于x 的方程20mx n +=的解是:13x =-,21x =,则关于x 的方程()250m x n -+=的解是.14.若一个菱形的两条对角线长分别是关于x 的一元二次方程2100x x m -+=的两个实数根,且其面积为11,则该菱形的边长为.15.如图,在Rt ABC V 中,90,BAC AB AC AD ∠=︒==为BC 边上的高,动点P 从点A 出发,沿A 到的D 方向以1/s cm 的速度向点D 运动,设ABP V 的面积为1S ,矩形PDEF 的面积为2S ,运动时间为t 秒(08t <<),则当t =秒时,122S S =.16.如图,平行于x 轴的直线AC 分别交抛物线21(0)y x x =≥与()2104y x x =≥交于B ,C 两点,过点C 作y 轴的平行交1y 于点D ,直线DE ∥AC ,交2y 于点E ,则DEAB=.三、解答题 17.解方程: (1)2430x x --=; (2)()()231231x x -=-.18.已知函数()285my m x x =-+-是二次函数.(1)求m 的值:(2)写出这个二次函数图象的对称轴和顶点坐标. 19.已知关于x 的方程221(2)04x m x m --+=.(1)若方程有两个不相等的实数根,求m 的取值范围;(2)若方程有两个相等的实数根,求m 的值,并求出此时方程的解.20.学校拓展小组研制了绘图智能机器人(如图1),顺次输入点1P ,2P ,3P 的坐标,机器人能根据图2,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数关系式.请根据以下点的坐标,求出线段的长度或抛物线的函数关系式.(1)1(4,0)P ,2(0,0)P ,3(6,6)P . (2)1(0,0)P ,2(4,0)P ,3(6,6)P . 21.已知抛物线222y x x =-++. (1)求抛物线与x 轴交点坐标; (2)当12x <<时,求y 的取值范围; (3)当23y ≤≤时,求x 的取值范围.22.2023年杭州亚运会吉祥物一开售,就深受大家的喜爱,某商店以每件35元的价格购进某款亚运会吉祥物,以每件58元的价格出售,经统计,4月份的销售量为256件,6月份的销售量为400件.(1)求该款吉祥物4月份到6月份销售量的月平均增长率;(2)从7月份起,商场决定采用降价促销的方式回馈顾客,经试验,发现该吉祥物每降价1元,月销售量就会增加20件.当该吉祥物售价为多少元时,月销售利润达8400元? 23.我们规定:对于任意实数a 、b 、c 、d 有[,][,]a b c d ac bd *=-,其中等式右边是通常的乘法和减法运算,如:[3,2][5,1]352113*=⨯-⨯=.(1)求[4,3][2,6]-*-的值;(2)已知关于x 的方程[,21][1,]0x x mx m -*+=有两个实数根,求m 的取值范围. 24.项目式学习: 请设计两条相同宽度的小路连接矩形草坪两组对边,小组内同学们设计的方案主要有甲、乙、丙、丁四种典型的方案.甲:直径简洁型乙:斜径笔直型丙:曲径通幽型丁:弧径优美型为了布置设计好的杭州亚运元素,同学们打算建一个面积为6000m 2的矩形油菜花田ABCD (如图),花田一面靠亚运宜传主题墙(墙足够长),另外三面用篱笆围成.25.阴阳观念是具有鲜明中国特色的哲学思想,它几乎渗透到社会生活、文学艺术、医学等许多方面,以至形成“阴阳对偶律”.比如说“阴阳对偶律”导致左右相对的形式在中国装饰艺术中地位突出.对偶的神兽或神人往往相对而列.多半会形成左右相对(包含左右对称)的样式.对偶在数学上也多有渗透,下面我们就研究下多项式中的对偶. 定义:对于关于x 的多项式,若当x t -取任意一对互为相反数的数时,该多项式的值相等,就称该多项式关于x t =对偶,例如:当12x -=±时,即3x =或1-时,223x x -+的值均为6.那么我们称223x x -+关于1x =对偶.在学习二次函数时,我们知道二次函数223y x x =-+的对称轴是直线1x =,从“形”的角度看,多项式223x x -+的对偶即二次函数223y x x =-+图像的对称性. 运用此定义解决下列问题:(1)多项式2810x x -+关于________对偶;(2)当x m =或4m -时,关于x 的多项式22x bx c ++的值相等,求b 的值;(3)若整式()()2228869x x x x ++-+关于x n =对偶,求n 的值.26.如图,二次函数2184y x bx =+-的图象与x 轴相交于点A 、B 两点,其中()40A -,,顶点为C 点.(1)求二次函数的解析式;(2)D 是第三象限抛物线上的一点,且点D 在直线52y x =上.将原抛物线向左平移,使得平移后的抛物线经过点D ,已知在x k =的左侧,平移前后的两条抛物线y 都随x 的增大而减小,求k 的取值范围_______;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC QC PQ 、、,已知90QPC ∠=︒,求点P 的坐标.(提示:平移前后的抛物线均与214y x =全等)。

苏州市工业园区12月九年级上月考数学试卷含答案解析

苏州市工业园区12月九年级上月考数学试卷含答案解析

2022-2023江苏省苏州市工业园区九年级(上)月考数学试卷(12月份)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案写在答题卷相应表格的位置中.1.下列方程有实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2﹣6x+10=0 D.x2﹣x+1=02.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)3.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°4.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定5.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<26.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6 B. C.5 D.7.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C.D.8.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm10.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A在整个旋转过程中所经过的路程之和是()A.πB.3019.5πC.3018πD.3024π二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在答题卷相应位置.11.方程x2=﹣x的解是.12.若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是cm2.13.把抛物线y=﹣x2﹣1先向左平移3个单位,再向上平移2个单位所得的抛物线与y轴的交点坐标为.14.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为.15.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.16.如图,在矩形ABCD中,AB=,∠DAC=60°,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确的结论有.18.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s时,以C点为圆心,1.5cm为半径的圆与直线EF相切.三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.解方程:(1)2x2﹣7x+3=0(2)(x﹣5)(x+1)=2x﹣10.20.已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.(1)求a的值;(2)求方程的另一根.21.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22.已知:函数y=ax2+x+1的图象与x轴只有一个公共点.求这个函数的关系式.23.如图,已知△ABC内接于⊙O,D是⊙O上一点,连结BD、CD,AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明(不添加其他线条的情况下);(2)若∠D=45°,BC=4,求⊙O的面积.24.如图,AB是⊙O的直径,点C在⊙O上,过点C作射线CM且满足∠ACM=∠ABC.(1)判断CM与⊙O的位置关系,并证明;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径..25.如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,AF ⊥BC,垂足为D.(1)求证:∠BAE=∠CAD.(2)若⊙O的半径为4,AC=5,CD=2,求CF.26.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?27.如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).(1)求这个二次函数的表达式;(2)在抛物线的对称轴上是否存在一点P,使得|PA﹣PC|的值最大?若存在,求出P点坐标;若不存在,请说明理由.(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.28.已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.2022-2023江苏省苏州市工业园区九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案写在答题卷相应表格的位置中.1.下列方程有实数根的是()A.x2﹣x﹣1=0 B.x2+x+1=0 C.x2﹣6x+10=0 D.x2﹣x+1=0【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.一元二次方程有实数根即判别式大于或等于0.【解答】解:A、△=b2﹣4ac=12﹣4×1×(﹣1)=5>0,则方程有实数根.故正确;B、△=1﹣4×1×1=﹣3<0,则方程无解,故错误;C、△=36﹣4×1×10=﹣4<0,则方程无解,故错误;D、△=2﹣4×1×1=﹣2<0,则方程无解,故错误.故选A.2.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【考点】二次函数的性质.【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.3.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是()A.35°B.45°C.55°D.65°【考点】圆周角定理.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A=35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.4.已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定【考点】直线与圆的位置关系.【分析】由直线和圆的位置关系:r>d,可知:直线和圆相交.【解答】解:半径r=5,圆心到直线的距离d=3,∵5>3,即r>d,∴直线和圆相交,故选C.5.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,则使函数值y>0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4≤x≤2 C.x≤﹣4或x≥2 D.﹣4<x<2【考点】二次函数与不等式(组).【分析】由抛物线与x轴的交点及对称轴求出另一个交点坐标,根据抛物线开口向下,根据图象求出使函数值y>0成立的x的取值范围即可.【解答】解:∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=﹣1,∴二次函数的图象与x轴另一个交点为(﹣4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是﹣4<x<2.故选D.6.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6 B. C.5 D.【考点】圆周角定理.【分析】先根据∠BAC=120°,AB=AC求出∠ACB的度数,再根据圆周角定理得出∠ADB的度数,由于BD是⊙O的直径,故∠BAD=90°,在Rt△ABD中,AB=3,利用锐角三角函数的定义即可求出AD的值.【解答】解:∵∠BAC=120°,AB=AC,∴∠ACB=30°,∴∠ACB=∠ADB=30°,∵BD是⊙O的直径,∴∠BAD=90°,∵AB=3,∴AD===3.故选D.7.已知⊙O的面积为2π,则其内接正三角形的面积为()A.3 B.3 C.D.【考点】垂径定理;等边三角形的性质.【分析】先求出正三角形的外接圆的半径,再求出正三角形的边长,最后求其面积即可.【解答】解:如图所示,连接OB、OC,过O作OD⊥BC于D,∵⊙O的面积为2π∴⊙O的半径为∵△ABC为正三角形,∴∠BOC==120°,∠BOD=∠BOC=60°,OB=,∴BD=OB•sin∠BOD==,∴BC=2BD=,∴OD=OB•cos∠BOD=•cos60°=,∴△BOC的面积=•BC•OD=××=,=3×=.∴△ABC的面积=3S△BOC故选:C.8.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.【考点】二次函数的图象;反比例函数的图象.【分析】根据二次函数图象与系数的关系,由抛物线对称轴的位置确定ab<0,由抛物线与y轴的交点位置确定c<0,然后根据一次函数图象与系数的关系可判断一次函数经过第一、二、四象限,根据反比例函数的性质得到反比例函数图象在第二、四象限,由此可对各选项进行判断.【解答】解:∵抛物线对称轴在y轴右侧,∴ab<0,∵抛物线与y轴的交点在x轴下方,∴c<0,对于一次函数y=cx﹣,c<0,图象经过第二、四象限;<0,图象与y轴的交点在x轴上方;对于反比例函数y=,ab<0,图象分布在第二、四象限故选:A.9.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A.10cm B.15cm C.10cm D.20cm【考点】圆锥的计算.【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.【解答】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20π,设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,∴圆锥的高==20.故选D.10.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转次后,顶点A在整个旋转过程中所经过的路程之和是()A.πB.3019.5πC.3018πD.3024π【考点】旋转的性质;弧长的计算.【分析】首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.【解答】解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为: +2π=6π,÷4=503余3顶点A转动次经过的路线长为:6π×504=3024π.故选:D.二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在答题卷相应位置.11.方程x2=﹣x的解是0或﹣1.【考点】解一元二次方程-因式分解法.【分析】本题应对方程进行变形,提取公因式x,将原式化为左边是两式相乘,右边是0的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x2+x=0x(x+1)=0x=0或x=﹣1.12.若圆锥的母线长为4cm,底面半径为3cm,则圆锥的侧面展开图的面积是12πcm2.【考点】圆锥的计算.【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:圆锥的侧面展开图的面积=•2π•3•4=12π(cm2).故答案为12π.13.把抛物线y=﹣x2﹣1先向左平移3个单位,再向上平移2个单位所得的抛物线与y轴的交点坐标为(0,﹣8).【考点】二次函数图象与几何变换.【分析】先由平移规律求出新抛物线的解析式,然后求出抛物线与y轴的两个交点横坐标.【解答】解:把抛物线y=﹣x2﹣1先向左平移3个单位,再向上平移2个单位所得的抛物线是:y=﹣(x+3)2+1,则令x=0,则y=﹣(0+3)2+1=﹣8,即新抛物线与y轴的交点坐标是(0,﹣8).故答案是:(0,﹣8).14.已知a,b是方程x2﹣x﹣3=0的两个根,则代数式2a3+b2+3a2﹣11a﹣b+5的值为23.【考点】因式分解的应用;一元二次方程的解;根与系数的关系.【分析】根据一元二次方程解的定义得到a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,则2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5,整理得2a2﹣2a+17,然后再把a2=a+3代入后合并即可.【解答】解:∵a,b是方程x2﹣x﹣3=0的两个根,∴a2﹣a﹣3=0,b2﹣b﹣3=0,即a2=a+3,b2=b+3,∴2a3+b2+3a2﹣11a﹣b+5=2a(a+3)+b+3+3(a+3)﹣11a﹣b+5=2a2﹣2a+17=2(a+3)﹣2a+17=2a+6﹣2a+17=23.故答案为:23.15.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为50°.【考点】圆心角、弧、弦的关系;三角形内角和定理;直角三角形的性质.【分析】连接CD,求出∠B=65°,再根据CB=CD,求出∠BCD的度数即可.【解答】解:连接CD,∵∠A=25°,∴∠B=65°,∵CB=CD,∴∠B=∠CDB=65°,∴∠BCD=50°,∴的度数为50°.故答案为:50°.16.如图,在矩形ABCD中,AB=,∠DAC=60°,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是﹣.【考点】旋转的性质;矩形的性质.【分析】首先根据题意利用锐角三角函数关系得出旋转角的度数,进而求出S△AB′C′,S扇形BAB′,即可得出阴影部分面积.【解答】解:∵在矩形ABCD中,AB=,∠DAC=60°,∴DC=,AD=1.由旋转的性质可知:D′C′=,AD′=1,∴tan∠D′AC′==,∴∠D′AC′=60°.∴∠BAB′=30°,=×1×=,∴S△AB′C′S扇形BAB′==.S阴影=S△AB′C′﹣S扇形BAB′=﹣.故答案为:﹣.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确的结论有①③④.【考点】二次函数图象与系数的关系.【分析】由函数的图象可以得到a、b、c的符号,再根据图象和灵活的变化得到题目中的结论是否正确.【解答】解:因为函数图象与x轴两个交点,故b2﹣4ac>0,即4ac﹣b2<0,故①正确;因为,所以b=2a,因为图象与y轴交于正半轴,故c>0,故4a﹣2b+c>0,即4a+c>2b,故②错误;由图象可知,x=1时,a+b+c<0,则2a+2b+2c<0,即3b+2c<0,故③正确;由图象可知:x=﹣1时,函数有最大值a﹣b+c,令x=m(m≠﹣1),则am2﹣bm+c <a﹣b+c,则am2﹣bm+b<a,即m(am+b)+b<a(m≠﹣1),④正确.故答案为:①③④.18.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO 上以2cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以1.5cm/s 的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了s 时,以C点为圆心,1.5cm为半径的圆与直线EF相切.【考点】直线与圆的位置关系.【分析】当以点C为圆心,1.5cm为半径的圆与直线EF相切时,即CF=1.5cm,又因为∠EFC=∠O=90°,所以△EFC∽△DCO,利用对应边的比相等即可求出EF 的长度,再利用勾股定理列出方程即可求出t的值,要注意t的取值范围为0≤t ≤4.【解答】解:当以点C为圆心,1.5cm为半径的圆与直线EF相切时,此时,CF=1.5,∵AC=2t,BD=t,∴OC=8﹣2t,OD=6﹣t,∵点E是OC的中点,∴CE=OC=4﹣t,∵∠EFC=∠O=90°,∠FCE=∠DCO∴△EFC∽△DCO∴=∴EF===由勾股定理可知:CE2=CF2+EF2,∴(4﹣t)2=+,解得:t=或t=,∵0≤t≤4,∴t=.故答案为:三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.解方程:(1)2x2﹣7x+3=0(2)(x﹣5)(x+1)=2x﹣10.【考点】解一元二次方程-因式分解法.【分析】(1)根据因式分解法可以解答此方程;(2)先移项,然后根据因式分解法可以解答此方程.【解答】解:(1)2x2﹣7x+3=0(2x﹣1)(x﹣3)=0∴2x﹣1=0或x﹣3=0,解得,x1=,x2=3;(2)(x﹣5)(x+1)=2x﹣10(x﹣5)(x+1)﹣2(x﹣5)=0(x﹣5)(x+1﹣2)=0,∴(x﹣5)(x﹣1)=0,∴x﹣5=0,x﹣1=0,解得,x1=5,x2=1.20.已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.(1)求a的值;(2)求方程的另一根.【考点】根与系数的关系;一元二次方程的定义;一元二次方程的解;解一元二次方程-因式分解法.【分析】(1)将x=1代入方程(a+1)x2﹣x+a2﹣3a﹣3=0可得(a+1)﹣1+a2﹣3a ﹣3=0,解得a的值;(2)根据根与系数的关系,可得两根之积的值,再由其中一根为1,解可得方程的另一根.【解答】解:(1)将x=1代入方程(a+1)x2﹣x+a2﹣3a﹣3=0可得(a+1)﹣1+a2﹣3a﹣3=0,解可得:a=﹣1,a=3;a=﹣1时,原方程是一元一次方程,故舍去;则a=3;(2)由(1)得:a=3,则原方程为4x2﹣x﹣3=0,且其中有一根为1,设另一根是m,则m•1=m=﹣,故m=﹣.21.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?【考点】一元二次方程的应用.【分析】设AB的长度为x米,则BC的长度为米;然后根据矩形的面积公式列出方程.【解答】解:设AB的长度为x米,则BC的长度为米.根据题意得x=400,解得x1=20,x2=5.则100﹣4x=20或100﹣4x=80.∵80>25,∴x2=5舍去.即AB=20,BC=20.答:羊圈的边长AB,BC分别是20米、20米.22.已知:函数y=ax2+x+1的图象与x轴只有一个公共点.求这个函数的关系式.【考点】抛物线与x轴的交点;待定系数法求二次函数解析式.【分析】分两种情形讨论①a=0,②a≠0,且△=0,即可解决问题.【解答】解:①当a=0时,函数是一次函数y=x+1与x轴只有一个公共点.②当a≠0,且△=0时,二次函数与x轴只有一个公点,即1﹣4a=0,∴a=,此时函数解析式为y=x2+x+1.综上所述,这个函数的解析式为y=x+1或y=x2+x+1.23.如图,已知△ABC内接于⊙O,D是⊙O上一点,连结BD、CD,AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明(不添加其他线条的情况下);(2)若∠D=45°,BC=4,求⊙O的面积.【考点】相似三角形的判定;圆周角定理.【分析】(1)容易发现:△ABE与△DCE中,有两个角对应相等,根据相似三角形的判定可得到它们相似;(2)求⊙O的面积,关键是求⊙O的半径,为此作⊙O的直径BF,连接CF,得出△BCF是等腰直角三角形,由BC=2,求出BF的长,从而求出⊙O的面积.【解答】解:(1)结论:△ABE∽△DCE,证明:在△ABE和△DCE中,∵∠A=∠D,∠AEB=∠DEC,∴△ABE∽△DCE.(2)作⊙O的直径BF,连接CF,∴∠F=∠D=45°,∠BCF=90°.∴△BCF是等腰直角三角形.∵FC=BC=4,∴BF=4.∴OB=2.=OB2•π=8π.∴S⊙O24.如图,AB是⊙O的直径,点C在⊙O上,过点C作射线CM且满足∠ACM=∠ABC.(1)判断CM与⊙O的位置关系,并证明;(2)延长BC到D,使BC=CD,连接AD与CM交于点E,若⊙O的半径为3,ED=2,求△ACE的外接圆的半径..【考点】直线与圆的位置关系;三角形的外接圆与外心.【分析】(1)利用圆周角定理结合等腰三角形的性质利用∠ACM=∠ABC求出答案;(2)首先得出△AEC的外接圆的直径是AC,进而结合相似三角形的性质得出AC 的长,进而得出答案.【解答】(1)证明:如图,连接OC∵AB为⊙O的直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,又∵∠ACM=∠ABC,∠OAC=∠OCA,∴∠OCA+∠ACM=90°,∴CM是⊙O的切线;(2)解:∵BC=CD,∴OC∥AD,又∵OC⊥CE,∴AD⊥CE,∴△AEC是直角三角形,∴△AEC的外接圆的直径是AC,又∵∠ABC+∠BAC=90°,∠ACM+∠ECD=90°,∴△ABC∽△CDE,∴=,⊙O的半径为3,∴AB=6,∴=,∴BC2=12,∴BC=2,∴AC==2,∴△AEC的外接圆的半径为.故答案为:.25.如图,△ABC是⊙O的内接三角形,AE是⊙O的直径,AF是⊙O的弦,AF ⊥BC,垂足为D.(1)求证:∠BAE=∠CAD.(2)若⊙O的半径为4,AC=5,CD=2,求CF.【考点】圆周角定理;垂径定理.【分析】(1)由圆周角定理得出∠ABE=90°,得出∠BAE+∠BEA=90°,由AF⊥BC 得出∠ACD+∠CAD=90°,由圆周角定理得出∠BEA=∠ACD,即可得出结论;(2)证明△ABE∽△ADC,得出对应边成比例,求出BE,由圆周角定理,得出CF=BE=即可.【解答】(1)证明:∵AE是⊙O的直径,∴∠ABE=90°,∴∠BAE+∠BEA=90°,∵AF⊥BC,∴∠ADC=90°,∴∠ACD+∠CAD=90°,又∵∠BEA=∠ACD,∴∠BAE=∠CAD;(2)解:∵∠ABE=∠ADC=90°,∠BEA=∠ACD,∴△ABE∽△ADC,∴,即,解得:BE=,由(1)得:∠BAE=∠CAD,∴,∴CF=BE=.26.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?【考点】二次函数的应用.【分析】(1)首先求出y B函数关系式,进而得出交点坐标,即可得出y A函数关系式;(2)首先将y=120代入求出x的值,进而代入y B求出答案;(3)得出y A﹣y B的函数关系式,进而求出最值即可.【解答】解:(1)由题意可得出:y B=(x﹣60)2+m经过(0,1000),则1000=(0﹣60)2+m,解得:m=100,∴y B=(x﹣60)2+100,当x=40时,y B=×(40﹣60)2+100,解得:y B=200,y A=kx+b,经过(0,1000),(40,200),则,解得:,∴y A=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,y B=(44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,y A﹣y B=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x ﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.27.如图,已知二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4).(1)求这个二次函数的表达式;(2)在抛物线的对称轴上是否存在一点P,使得|PA﹣PC|的值最大?若存在,求出P点坐标;若不存在,请说明理由.(3)在平面直角坐标系内,是否存在点Q,使A,B,C,Q四点构成平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.【考点】二次函数综合题.【分析】(1)由A、C两点坐标,利用待定系数法可求得抛物线解析式;(2)由A、B关于对称轴对称,则可知PA=PB,则当P、B、C三点在一条线上时满足|PA﹣PC|最大,利用待定系数法可求得直线BC解析式,则可求得P点坐标;(3)分AB为边和AB为对称线两种情况,当AB为边时,利用平行四边形的性质可得到CQ=AB,可得到关于D点的方程,可求得D点坐标,当AB为对角线时,则AB的中点也为CQ的中点,则可求得Q点坐标.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象交x轴于点A(﹣4,0)和点B,交y轴于点C(0,4),∴,解得,∴二次函数的表达式为y=﹣x2﹣3x+4;(2)∵y=﹣x2﹣3x+4,∴对称轴为x=﹣,∵A(﹣4,0),∴B(1,0),∵P在对称轴上,∴PA=PB,∴|PA﹣PC|=|PB﹣PC|≤BC,即当P、B、C三点在一条线上时|PA﹣PC|的值最大,设直线BC解析式为y=kx+b,∴,解得,∴直线BC解析式为y=﹣4x+4,令x=﹣可得y=﹣4×(﹣)+4=10,∴存在满足条件的点P,其坐标为();(3)存在点Q,使A,B,C,Q四点构成平行四边形,理由:①以AB为边时,则有CQ∥AB,即点Q的纵坐标为4,∵CQ=AB=5,且C(0,4),∴Q(﹣5,4)或(5,4),②以AB为对角线时,CQ必过线段AB中点,且被AB平分,即:AB的中点也是CQ的中点,∵A、B中点坐标为(﹣,0),且C(0,4),∴Q点横坐标=2×(﹣)﹣0=﹣3,Q点纵坐标=0﹣4=﹣4,∴Q(﹣3,﹣4),综合可知存在满足条件的点D,坐标为(﹣5,4)或(5,4)或(﹣3,﹣4).28.已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴可求得b,可求得l1的解析式,令y=0可求得A点坐标,再利用待定系数法可求得l2的表达式;(2)设P点坐标为(1,y),由勾股定理可表示出PC2和PA2,由条件可得到关于y的方程可求得y,可求得P点坐标;(3)可分别设出M、N的坐标,可表示出MN,再根据函数的性质可求得MN 的最大值.【解答】解:(1)∵抛物线l1:y=﹣x2+bx+3的对称轴为x=1,∴﹣=1,解得b=2,∴抛物线l1的解析式为y=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∵抛物线l2经过点A、E两点,∴可设抛物线l2解析式为y=a(x+1)(x﹣5),又∵抛物线l2交y轴于点D(0,﹣),∴﹣=﹣5a,解得a=,∴y=(x+1)(x﹣5)=x2﹣2x﹣,∴抛物线l2的函数表达式为y=x2﹣2x﹣;(2)设P点坐标为(1,y),由(1)可得C点坐标为(0,3),∴PC2=12+(y﹣3)2=y2﹣6y+10,PA2=[1﹣(﹣1)]2+y2=y2+4,∵PC=PA,∴y2﹣6y+10=y2+4,解得y=1,∴P点坐标为(1,1);(3)由题意可设M(x,x2﹣2x﹣),∵MN∥y轴,∴N(x,﹣x2+2x+3),x2﹣2x﹣令﹣x2+2x+3=x2﹣2x﹣,可解得x=﹣1或x=,①当﹣1<x≤时,MN=(﹣x2+2x+3)﹣(x2﹣2x﹣)=﹣x2+4x+=﹣(x ﹣)2+,显然﹣1<≤,∴当x=时,MN有最大值;②当<x≤5时,MN=(x2﹣2x﹣)﹣(﹣x2+2x+3)=x2﹣4x﹣=(x ﹣)2﹣,显然当x>时,MN随x的增大而增大,∴当x=5时,MN有最大值,×(5﹣)2﹣=12;综上可知在点M自点A运动至点E的过程中,线段MN长度的最大值为12.2月12日31 / 31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷一、选择题:(本大题共有10小题,每小题3分,共30分,请将正确选项前的字母代号填涂在答题纸相应位置上). 1.(3分)一元二次方程3x2﹣2x=1的二次项系数、一次项系数、常数项分别是()A.3,2,1B.3,2,1C.3,﹣2,﹣1D.﹣3,2,12.(3分)方程x2=x的两根分别为()A.x1=﹣1,x2=0B.x1=1,x2=0C.x1=﹣l,x2=1D.x1=1,x2=13.(3分)在Rt△ABC中,∠C=90°,AB=3BC,则sin B的值为()A.B.C.D.4.(3分)如果△ABC中,sin A=cos B=,则下列最确切的结论是()A.△ABC是直角三角形B.△ABC是等腰三角形C.△ABC是等腰直角三角形D.△ABC是锐角三角形5.(3分)下列关于x的一元二次方程中,有两个不相等的实数根的方程是()A.x2+1=0B.x2+2x+1=0C.x2+2x+3=0D.x2+2x﹣3=06.(3分)下列一元二次方程中两根之和为﹣4的是()A.x2﹣4x+4=0B.x2+2x﹣4=0C.x2+4x﹣5=0D.x2+4x+10=07.(3分)某品牌服装原价为173元,连续两次降价x%后售价为127元,下面所列方程中正确的是()A.173(1+x%)2=127B.173(1﹣2x%)2=127C.173(1﹣x%)2=127D.127(1+x%)2=1738.(3分)如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A.3B.C.D.9.(3分)如图,2条宽为1的带子以α角交叉重叠,则重叠部分(阴影部分)的面积为()A.sinαB.C.D.10.(3分)如图,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=在第一象限内的图象经过点D,交BC于点E.若AB=4,CE=2BE,tan∠AOD=,则k的值为()A.3B.2C.6D.12二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在笞题纸相对应位置上)11.(3分)当k时,关于x的方程(k﹣2)x2+3x+1=0是一元二次方程.12.(3分)在Rt△ABC中,∠C=90°,cos A=,则sin B=.13.(3分)如图,O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(4,0),则点B的坐标为.14.(3分)当k时,关于x的方程2x2﹣4x+k=0有两个实数根.15.(3分)已知2﹣是方程x2﹣4x+c=0的一个根,则c=.16.(3分)若a为方程x2+x﹣5=0的解,则a2+a+1的值为.17.(3分)如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为米.(保留根号)18.(3分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在点A′的位置,若OB=,tan∠BOC=,则点A′的坐标为.19.(3分)已知实数ab满足等式a2+3a﹣2=0,b2+3b﹣2=0,那么求的值是.20.(3分)如图,已知点D是Rt△ABC的斜边BC上的一点,tan B=,BC=(k+1)BD,CE⊥AD,则tan∠ACE =.(用含k的代数式表示)三、解答题:本大题共8小题,共70分,把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.21.(4分)计算:sin45°﹣tan60°+sin30°tan45°22.(8分)解下列方程(1)(x﹣3)2+2x(x﹣3)=0(2)(x﹣3)(x﹣5)=2523.(5分)先化简,再求值:(÷,其中a是方程x2+3x﹣10=0的根.24.(8分)已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B=.求:(1)线段DC的长;(2)tan∠EDC的值.25.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.(1)求证:方程有两个不相等的实数根;(2)若周长为16的等腰△ABC的两边AB,AC的长是方程的两个实数根,求k的值.26.(10分)如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)27.(12分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想﹣﹣转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2﹣2x=0,可以通过因式分解把它转化为x(x2+x﹣2)=0,解方程x=0和x2+x﹣2=0,可得方程x3+x2﹣2x=0的解.(1)问题:方程x3+x2﹣2x=0的解是x1=0,x2=,x3=;(2)拓展:用“转化”思想求方程=x的解;(3)应用:如图,已知矩形草坪ABCD的长AD=8m,宽AB=3m,小华把一根长为10m的绳子的一端固定在点B,沿草坪边沿BA,AD走到点P处,把长绳PB段拉直并固定在点P,然后沿草坪边沿PD、DC走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C.求AP的长.28.(13分)在数学兴趣小组活动中,小亮进行数学探究活动.△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明.(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长.(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系.并说明理由.(4)如图2,当△ECD的面积S1=时,求AE的长.2019-2020学年江苏省苏州市工业园区星海实验中学九年级(上)月考数学试卷参考答案与试题解析一、选择题:(本大题共有10小题,每小题3分,共30分,请将正确选项前的字母代号填涂在答题纸相应位置上). 1.【解答】解:∵方程3x2﹣2x=1化成一般形式是3x2﹣2x﹣1=0,∴二次项系数是3,一次项系数为﹣2,常数项为﹣1.故选:C.2.【解答】解:方程变形得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:B.3.【解答】解:设BC为x,则AB=3x,由勾股定理得,AC===2x,∴sin B===,故选:D.4.【解答】解:∵sin A=cos B=,∴∠A=∠B=45°,∴△ABC是等腰直角三角形.故选:C.5.【解答】解:A、x2+1=0中△<0,没有实数根;B、x2+2x+1=0中△=0,有两个相等的实数根;C、x2+2x+3=0中△<0,没有实数根;D、x2+2x﹣3=0中△>0,有两个不相等的实数根.故选:D.6.【解答】解:A、∵x1+x2=4;故本选项错误;B、∵x1+x2=1;故本选项错误;C、∵△=16+20=36>0,x1+x2=﹣4;故本选项正确;D、∵△=16﹣40=﹣24<0,所以本方程无根;故本选项错误.故选:C.7.【解答】解:当商品第一次降价x%时,其售价为173﹣173x%=173(1﹣x%);当商品第二次降价x%后,其售价为173(1﹣x%)﹣173(1﹣x%)x%=173(1﹣x%)2.∴173(1﹣x%)2=127.故选:C.8.【解答】解:由已知可知:AB=CD=4,∠ADE=∠ECD=α.在Rt△DEC中,cos∠ECD=cosα=,即,∴CE=.根据勾股定理得DE==.在Rt△AED中,cosα=,即,∴AD=.故选:B.9.【解答】解:由题意可知:重叠部分是菱形,设菱形为ABCD,则∠ABE=α,过A作AE⊥BC于E,则AE=1,∴BC=AB=,∴重叠部分的面积即阴影部分的面积=BC•AE=.故选:B.10.【解答】解:∵tan∠AOD==,∴设AD=3a、OA=4a,则BC=AD=3a,点D坐标为(4a,3a),∵CE=2BE,∴BE=BC=a,∵AB=4,∴点E(4+4a,a),∵反比例函数y=经过点D、E,∴k=12a2=(4+4a)a,解得:a=或a=0(舍),则k=12×=3,故选:A.二、填空题:(本大题共10小题,每小题3分,共30分,把答案直接填在笞题纸相对应位置上)11.【解答】解:关于x的方程(k﹣2)x2+3x+1=0是一元二次方程,得k﹣2≠0,解得k≠2,故答案为:k≠2.12.【解答】解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.13.【解答】解:过点B作BC⊥OA于点C,∵O为坐标原点,∠AOB=30°,∠ABO=90°.且点A的坐标为(4,0),∴OA=4,∴AB=OA=2,OB=OA•cos30°=2,∴OC=OB•cos30°=3,BC=OB•sin30°=,∴点B的坐标为:(3,);故答案为:(3,).14.【解答】解:由△=16﹣8k≥0,∴k≤2,故答案为:k≤215.【解答】解:∵2﹣是方程x2﹣4x+c=0的一个根,∴x=2﹣满足方程x2﹣4x+c=0,∴(2﹣)2﹣4(2﹣)+c=0,解得c=2+.故答案是:2+.16.【解答】解:∵a为方程x2+x﹣5=0的解,∴a2+a﹣5=0,∴a2+a=5,∴a2+a+1=5+1=6.故答案为6.17.【解答】解:如图,作AD⊥CD于D点.∵∠B=30°,∠ACD=60°,∠ACD=∠B+∠CAB,∴∠CAB=30°.∴BC=AC=10m,在Rt△ACD中,CD=AC•cos60°=10×0.5=5m,∴BD=15.∴在Rt△ABD中,AB=BD÷cos30°=15÷=10m.故答案为:10.18.【解答】解:如图,过点A′作A′D⊥x轴与点D;设A′D=λ,OD=μ;∵四边形ABCO为矩形,∴∠OAB=∠OCB=90°;四边形ABA′D为梯形;设AB=OC=γ,BC=AO=ρ;∵OB=,tan∠BOC=,∴,解得:γ=2,ρ=1;由题意得:A′O=AO=1;△ABO≌△A′BO;由勾股定理得:λ2+μ2=1①,由面积公式得:②;联立①②并解得:λ=,μ=.故答案为(,).19.【解答】解:当a=b时,原式=1+1=2;当a≠b时,可把a、b看作方程x2+3x﹣2=0的两根,则a+b=﹣3,ab=﹣2,所以原式====.故答案为:2或.20.【解答】解:过点D作DF⊥AB于点F,如图所示:∵Rt△ABC的斜边BC,∴∠CAB=90°,DF⊥AB,∴AC∥DF,∴=,∵BC=(k+1)BD,∴==,∴AF=k•BF∵tan B=,∴=,∴DF=FB,∴==,∵∠CAE+∠ACE=90°,∠CAE+∠DAB=90°,∴∠ACE=∠DAF,∴tan∠ACE=tan∠DAF==,故答案为:.三、解答题:本大题共8小题,共70分,把解答过程写在答题纸相对应的位置上.解答时应写出必要的计算过程、推演步骤或文字说明.21.【解答】解:原式=×﹣×+×1=1﹣3+=﹣1.22.【解答】解:(1)(x﹣3)2+2x(x﹣3)=0,(x﹣3)(3x﹣3)=0,∴x﹣3=0或3x﹣3=0,x1=3,x2=1,(2)(x﹣3)(x﹣5)=25,整理得:x2﹣8x=10,∴(x﹣4)2=26,∴,∴,.23.【解答】解:原式=[﹣]×=(+)×=×==(a2+3a),∵a是方程x2+3x﹣10=0的根,∴a2+3a=10,∴原式=×10=5.24.【解答】解:(1)∵AD是BC边上的高,△ABD和△ACD是Rt△,在Rt△ABD中,∵sin B=,AD=12,∴,∴AB=15,∴BD=,又∵BC=14,∴CD=BC﹣BD=5;(2)在Rt△ACD中,∵E为斜边AC的中点,∴ED=EC=AC,∴∠C=∠EDC,∴tan∠EDC=tan C=.25.【解答】(1)证明:∵△=[﹣(2k+1)]2﹣4(k2+k)=1>0,∴方程有两个不相等的实数根;(2)解:∵x2﹣(2k+1)x+k2+k=0,即(x﹣k)(x﹣k﹣1)=0,解得:x1=k,x2=k+1.∵等腰△ABC的周长为16,∴k+k+k+1=16或k+k+1+k+1=16,解得:k=5或k=.26.【解答】解:(1)线段BQ与PQ相等.证明:∵∠PQB=90°﹣41°=49°,∠BPQ=90°﹣24.5°=65.5°,∴∠PBQ=180°﹣49°﹣65.5°=65.5°,∴∠BPQ=∠PBQ,∴BQ=PQ;(2)∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,∴AQ===1600,BQ=PQ=1200,∴AB2=AQ2+BQ2=16002+12002,∴AB=2000,答:A、B的距离为2000m.27.【解答】解:(1)x3+x2﹣2x=0,x(x2+x﹣2)=0,x(x+2)(x﹣1)=0所以x=0或x+2=0或x﹣1=0∴x1=0,x2=﹣2,x3=1;故答案为:﹣2,1;(2)=x,方程的两边平方,得2x+3=x2即x2﹣2x﹣3=0(x﹣3)(x+1)=0∴x﹣3=0或x+1=0∴x1=3,x2=﹣1,当x=﹣1时,==1≠﹣1,所以﹣1不是原方程的解.所以方程=x的解是x=3;(3)因为四边形ABCD是矩形,所以∠A=∠D=90°,AB=CD=3m设AP=xm,则PD=(8﹣x)m因为BP+CP=10,BP=,CP=∴+=10∴=10﹣两边平方,得(8﹣x)2+9=100﹣20+9+x2整理,得5=4x+9两边平方并整理,得x2﹣8x+16=0即(x﹣4)2=0所以x=4.经检验,x=4是方程的解.答:AP的长为4m.28.【解答】解:(1)结论:△ABE≌△CBF.理由:如图1中,∴∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF.(2)如图1中,∵△ABE≌△CBF,∴S△ABE=S△BCF,∴S四边形BCEF=S△BEC+s△BCF=S△BCE+S△ABE=S△ABC=,∵S四边形ABCF=,∴S△ABE=,∴•AE•AB•sin60°=,∴AE=.(3)结论:S2﹣S1=.理由:如图2中,∵∵△ABC,△BEF都是等边三角形,∴BA=BC,BE=BF,∠ABC=∠EBF,∴∠ABE=∠CBF,∴△ABE≌△CBF,∴S△ABE=S△BCF,∵S△BCF﹣S△BCE=S2﹣S1,∴S2﹣S1=S△ABE﹣S△BCE=S△ABC=.(4)由(3)可知:S△BDF﹣S△ECD=,∵S△ECD=,∴S△BDF=,∵△ABE≌△CBF,∴AE=CF,∠BAE=∠BCF=60°,∴∠ABC=∠DCB,∴CF∥AB,则△BDF的DF边上的高为,可得DF=,设CE=x,则2+x=CD+DF=CD+,∴CD=x﹣,∵CD∥AB,∴=,即=,化简得:3x2﹣x﹣2=0,解得x=1或﹣(舍弃),∴CE=1,AE=3.。

相关文档
最新文档