有理数教案

合集下载

初中数学有理数教案5篇

初中数学有理数教案5篇

初中数学有理数教案5篇关于初中数学有理数教案5篇初中数学有理数教案(篇1)教学目标:1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

(2)精通有理数的减法。

2、过程与方法通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

重点、难点1.重点:有理数减法规则及其应用。

2.难点:有理数减法规则的应用改变了符号。

教学过程:一、创设情景,导入新课1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=—3+(+5)=2、-(-2)= -[-(+23)]=,+[-(-2)]=3、20__的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。

(出示课题)二、合作交流,解读探究1(-2)-(-10)=8=(-2)+82:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?3、通过以上列式,你能发现减法运算与加法运算的关系吗?(学生分组讨论,大胆发言,总结有理数的.减法法则)减去一个数等于加上这个数的相反数教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?三、应用迁移,巩固提高1、P.24例1 计算:(1) 0-(-3.18)(2)(-10)-(-6)(3)-解:(1)0-(-3.18)=0+3.18=3.18(2)(-10)-(-6)=(-10)+6=-4(3)-=+=12、课内练习:P.241、2、33、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。

七级数学教案有理数

七级数学教案有理数

七级数学教案有理数第一章:有理数的概念与分类1.1 学习目标了解有理数的定义与特点掌握有理数的分类及相互关系1.2 教学内容有理数的定义与特点有理数的分类:整数(正整数、负整数、零)、分数(正分数、负分数)有理数的大小比较1.3 教学步骤1. 引入话题:讨论日常生活中的数量,引导学生思考如何表示正负数和零。

2. 讲解有理数的定义与特点,通过实例加深理解。

3. 讲解有理数的分类,引导学生通过图形表示理解不同类型的有理数。

4. 练习有理数的大小比较,让学生通过实际操作来掌握规则。

1.4 作业布置完成课后练习题,巩固有理数的概念与分类。

第二章:有理数的运算2.1 学习目标掌握有理数的加法、减法、乘法、除法的运算规则能够正确进行有理数的混合运算2.2 教学内容有理数的加法与减法:同号相加、异号相加、零的加减法有理数的乘法:正数乘以正数、负数乘以正数、正数乘以负数、负数乘以负数有理数的除法:整数除以整数、分数除以整数、整数除以分数2.3 教学步骤1. 复习有理数的分类,引导学生回顾有理数的概念。

2. 讲解有理数的加法与减法运算规则,通过示例进行演示。

3. 讲解有理数的乘法运算规则,引导学生通过实际操作来理解。

4. 讲解有理数的除法运算规则,通过示例进行演示。

5. 练习有理数的混合运算,让学生通过实际操作来掌握规则。

2.4 作业布置完成课后练习题,巩固有理数的运算规则。

第三章:有理数的应用3.1 学习目标能够运用有理数解决实际问题掌握有理数在生活中的应用3.2 教学内容有理数在生活中的应用:购物、计算距离、温度转换等有理数的估算:整数与分数的估算方法3.3 教学步骤1. 引入话题:讨论日常生活中遇到的有理数问题,引导学生思考如何运用有理数解决实际问题。

2. 讲解有理数在生活中的应用,通过实例加深理解。

3. 讲解有理数的估算方法,引导学生通过实际操作来掌握。

3.4 作业布置完成课后练习题,巩固有理数在生活中的应用。

七年级数学《有理数》教案模板

七年级数学《有理数》教案模板

七年级数学《有理数》教案模板教案包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等。

有理数指整数可以看作分母为1的分数。

下面就是整理的《有理数》教案,希望大家喜欢。

《有理数》教案1一、素质教育目标(一)知识教学点1.理解有理数乘方的意义.2.掌握有理数乘方的运算.(二)能力训练点1.培养学生观察、分析、比较、归纳、概括的能力.2.渗透转化思想.(三)德育渗透点:培养学生勤思、认真和勇于探索的精神.(四)美育渗透点把记成,显示了乘方符号的简洁美.二、学法引导1.教学方法:引导探索法,尝试指导,充分体现学生主体地位.2.学生学法:探索的性质→练习巩固三、重点、难点、疑点及解决办法1.重点:运算.2.难点:运算的符号法则.3.疑点:①乘方和幂的区别.②与的区别.四、课时安排1课时五、教具学具准备投影仪、自制胶片.六、师生互动活动设计教师引导类比,学生讨论归纳乘方的概念,教师出示探索性练习,学生讨论归纳乘方的性质,教师出示巩固性练习,学生多种形式完成.七、教学步骤(一)创设情境,导入新课师:在小学我们已经学过:记作,读作的平方(或的二次方);记作,读作的立方(或的三次方);那么可以记作什么?读作什么?生:可以记作,读作的四次方.师:呢?生:可以记作,读作的五次方.师:(为正整数)呢?生:可以记作,读作的次方.师:很好!把个相乘,记作,既简单又明确.【教法说明】教师给学生创设问题情境,鼓励学生积极参与,大大调动了学生学习的积极性.同时,使学生认识到数学的发展是不断进行推广的,是由计算正方形的面积得到的,是由计算正方体和体积得到的,而,……是学生通过类推得到的.师:在小学对底数,我们只能取正数.进入中学以后我们学习了有理数,那么还可取哪些数呢?请举例说明.生:还可取负数和零.例如:0×0×0记,(-2)×(-2)×(-2)×(-2)记作.非常好!对于中的,不仅可以取正数,还可以取0和负数,也就是说可以取任意有理数,这就是我们今天研究的课题:(板书).【教法说明】对于的范围,是在教师的引导下,学生积极动脑参与,并且根据初一学生的认知水平,分层逐步说明可以取正数,可以取零,可以取负数,最后总结出可以取任意有理数.(二)探索新知,讲授新课1.求个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在中,取任意有理数,取正整数.注意:乘方是一种运算,幂是乘方运算的结果.看作是的次方的结果时,也可读作的次幂.巩固练习(出示投影1)(1)在中,底数是__________,指数是___________,读作__________或读作___________;(2)在中,-2是__________,4是__________,读作__________或读作__________;(3)在中,底数是_________,指数是__________,读作__________;(4)5,底数是___________,指数是_____________.【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.生:到目前为止,已经学习过五种运算,它们是:运算:加、减、乘、除、乘方;运算结果:和、差、积、商、幂;教师对学生的回答给予评价并鼓励.【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.2.练习:(出示投影2)计算:1.(1)2,(2),(3),(4).2.(1),,,.(2)-2,,.3.(1)0,(2),(3),(4).学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.师:请同学思考一个问题,任何一个数的偶次幂是什么数?生:任何一个数的偶次幂是非负数.师:你能把上述结论用数学符号表示吗?生:(1)当时,(为正整数);(2)当(3)当时,(为正整数);(4)(为正整数);(为正整数);(为正整数,为有理数).【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.《有理数》教案2教学目标1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

第一章有理数-有理数(教案)

第一章有理数-有理数(教案)
-有理数的乘除运算:特别是分数的乘除,以及运算过程中的符号处理。
-难点解释:分数乘除时,分子分母的交叉相乘相除,以及结果的符号判定。
-数轴上的有理数比较:特别是负数的大小比较。
-难点解释:在数轴上,负数的绝对值越大,其值越小,对于学生来说是思维上的一个转换点。
-应用题的建模:如何将实际问题抽象为有理数运算问题。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题,如购物时如何计算总价。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,使用数轴来表示不同的有理数,并观察它们之间的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
在讲授新课内容时,我尽量用简洁明了的语言解释有理数的性质和运算规则,并通过案例分析让学生们看到有理数在实际中的应用。然而,我也发现,仅仅依靠讲解和案例可能还不够,学生们需要更多的实践活动来加深理解。因此,在实践活动中,我安排了分组讨论和实验操作,让学生们亲自动手去解决问题,这样能够更好地帮助他们消化吸收所学知识。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。

《有理数》教案

《有理数》教案

《有理数》教案一、教学目标理解有理数的概念,掌握有理数的分类方法。

能正确判断一个数是有理数,并能将有理数进行分类。

体会数学分类思想,培养学生的逻辑思维能力。

二、教学重难点教学重点有理数的概念和分类。

对有理数不同分类标准的理解。

教学难点有理数分类中零的地位。

无限循环小数与分数的关系及在有理数分类中的归属。

三、教学方法讲授法:讲解有理数的概念和分类方法。

讨论法:组织学生讨论有理数分类的不同方式及特点。

举例法:通过大量实例帮助学生理解有理数的概念和分类。

练习法:通过课堂练习巩固学生对有理数概念和分类的掌握。

四、教学过程导入新课回顾小学所学的数的种类,如自然数、整数、小数、分数等。

提出问题:进入初中后,我们又学习了哪些新的数呢?这些数可以怎样进行分类呢?引出课题《有理数》。

讲解有理数的概念定义有理数:整数和分数统称为有理数。

解释整数包括正整数、零、负整数;分数包括正分数和负分数。

举例说明一些常见的有理数,如 2、-3、0、1/2、-2/3 等。

有理数的分类按定义分类教师讲解按定义分类的方法:有理数分为整数和分数。

整数又分为正整数、零、负整数;分数分为正分数和负分数。

让学生举例说明不同类型的有理数,并进行分类练习。

按性质分类讲解按性质分类的方法:有理数分为正有理数、零、负有理数。

正有理数包括正整数和正分数;负有理数包括负整数和负分数。

引导学生思考这种分类方法的特点和意义。

重点讨论零的地位提问学生:零在有理数分类中属于哪一类?为什么?组织学生讨论零的特殊性,明确零既不是正数也不是负数,但它是整数。

探讨无限循环小数与有理数的关系提出问题:无限循环小数是有理数吗?如果是,它属于哪一类有理数?引导学生回忆无限循环小数可以化成分数的方法,从而得出无限循环小数是有理数,且属于分数的结论。

课堂练习出示一些数,让学生判断这些数是否为有理数,并进行分类。

设计一些填空、选择题,巩固学生对有理数概念和分类的掌握。

课堂小结回顾本节课的主要内容,包括有理数的概念和分类方法。

1.2.1有理数(教案,新教材)-2024-2025学年七年级数学上册同步备课(人教版2024)

1.2.1有理数(教案,新教材)-2024-2025学年七年级数学上册同步备课(人教版2024)

1.2.1有理数教案【教学目标】1.借助生活中的实例理解有理数的概念,掌握有理数的分类方法;2.经历对有理数进行分类探索的过程,能够把所给的有理数分类到相应的数集中,初步感受分类讨论的数学思想;3.体会有理数与实际生活的广泛应用.【教学重点】理解有理数的概念,掌握有理数的分类方法.【教学难点】有理数的不同分类.【课时安排】本节用1课时进行教学。

【教学过程】一、情境导入活动一:从生活情境中引入新课,探究整数问题1.小明从天气预报中得到如下信息:某地今天的最高气温为7℃,最低气温达到-11℃,平均气温是0℃,而今天北京的气温-3℃~8℃.这里出现了哪些数?我们到目前为止学过了哪些数?学生活动:交流总结归纳,这里的数有正的整数、0、负的整数.教师活动:(1)给学生活动评价,说明负的整数叫负整数。

(2)提出问题这些数在一起时,我们把它叫什么数最合适?师生活动:师生共同归纳为整数、0、负整数统称为整数.二、合作探究活动二:探究分数问题2.前面我们学习了正分数、负分数,我们把它们放在一起叫做什么数呢?学生活动:类比整数讨论.教师活动:对学生进行评价,类比整数的说法,叫分数.问题3.下列数是分数吗?0.1、0.3、0.5-学生活动:交流总结,这里的数10.110=,10.33=是正分数,10.52-=-是负分数.教师活动:评价学生交流总结的结论,强调:有限小数和无限循环小学都可以化为分数。

问题4.整数能否看成分数的形式?你能举例说明吗?学生活动:交流讨论,举例说明.教师活动:对学生讨论结果进行评价,强调整数可以看成分母为1的分数形式。

活动三:探究有理数问题5.整数和分数都可以统一写成分数的形式,能写成分数形式的数叫什么数? 学生活动:交流讨论.教师活动:对学生讨论结果进行评价,强调能够写分数的形式的数叫有理数,反过来任何一个有理数可以写成分数的形式,举例说明。

活动四:探究有理数的分类学生活动:学生讨论,按什么标准来分类师生活动:按两种标准进行分类,可以得到如下两种分类形式。

初中《有理数》教案

初中《有理数》教案

初中《有理数》教案教学目标:1. 理解有理数的定义及其分类;2. 掌握有理数的加法、减法、乘法、除法运算规则;3. 能够运用有理数解决实际问题。

教学重点:1. 有理数的定义及其分类;2. 有理数的运算规则。

教学难点:1. 有理数的乘除法运算;2. 运用有理数解决实际问题。

教学准备:1. 教材或教学PPT;2. 练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的整数和小数知识,询问学生是否了解整数和小数的局限性;2. 提问:有没有比小数更精确的数呢?引出有理数的概念。

二、新课讲解(15分钟)1. 讲解有理数的定义:有理数是可以表示为两个整数比的数,包括整数、分数、小数等;2. 讲解有理数的分类:正有理数、负有理数和零;3. 讲解有理数的加法、减法、乘法、除法运算规则;4. 通过例题演示和讲解,让学生熟练掌握有理数的运算规则。

三、课堂练习(15分钟)1. 布置练习题,让学生独立完成;2. 选取部分学生的作业进行讲解和点评;3. 针对学生的错误,进行针对性的讲解和辅导。

四、应用拓展(10分钟)1. 让学生举例说明有理数在实际生活中的应用;2. 引导学生思考有理数在科学研究和工程技术中的应用;3. 鼓励学生发挥想象,创造自己的有理数应用实例。

五、总结(5分钟)1. 回顾本节课所学内容,让学生复述有理数的定义、分类和运算规则;2. 强调有理数在实际生活中的重要性;3. 提醒学生要注意有理数运算的细节。

六、作业布置(5分钟)1. 布置课后作业,要求学生巩固本节课所学内容;2. 鼓励学生进行有理数应用题的练习。

教学反思:本节课通过讲解和练习,让学生掌握了有理数的定义、分类和运算规则,了解了有理数在实际生活中的应用。

在教学过程中,要注意引导学生积极参与课堂活动,发挥学生的主动性,提高学生的学习兴趣。

同时,要关注学生的学习情况,及时发现和纠正学生的错误,提高学生的学习效果。

有理数教案(精选多篇)

有理数教案(精选多篇)

有理数教案(精选多篇)第一篇:《有理数》教案2《有理数》教案教学目标1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数.2、能力目标:能应用正负数表示生活中具有相反意义的量.3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系. 教学重难点重点:理解有理数的意义.难点:能用正负数表示生活中具有相反意义的量.教学过程一、创设情境、提出问题某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分.两个队答题情况见书上第23页.二、分析探索、问题解决分组讨论扣的分怎样表示?用前面学的数能表示吗?数怎么不够用了?引出课题.讲授正数、负数、有理数的定义.用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数. 启发学生再从生活中例举出用负数表示具有相反意义的数.三、巩固练习1、用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______;(3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______.分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量.2、下面说法中正确的是().a.“向东5米”与“向西10米”不是相反意义的量;b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米.三、小结回顾、纳入体系学生交流回顾、讨论总结,教师补充如下:概念:正数、负数、有理数.分类:有理数的分类:两种分法.应用:有理数可以用来表示具有相反意义的量.第二篇:有理数减法教案一、课题2.4有理数的减法二、教学目标1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;2.培养学生观察、分析、归纳及运算能力.三、教学重点有理数减法法则四、教学难点有理数减法法则五、教学用具三角尺、小黑板、小卡片六、课时安排1课时七、教学过程(一)、从学生原有认知结构提出问题1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).3.填空:(1)______+6=20;(2)20+______=17;(3)______+(-2)=-20;(4)(-20)+______=-6.在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.(二)、师生共同研究有理数减法法则问题1(1)(+10)-(+3)=______ ;(2)(+10)+(-3)=______.教师引导学生发现:两式的结果相同,即 (+10)-(+3)=(+10)+(-3).教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性?问题2(1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).至此,教师引导学生归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)(三)、运用举例变式练习例1计算:(1)(-3)-(-5);(2)0-7.例2计算:(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).通过计算上面一组有理数减法算式,引导学生发现:在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?阅读课本63页例3(四)、小结1.教师指导学生阅读教材后强调指出:由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.(五)、课堂练习1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;2.计算:(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.3.计算:(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).利用有理数减法解下列问题4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?八、布置课后作业:课本习题2.6知识技能的2、3、4和问题解决1九、板书设计2.5有理数的减法(一)知识回顾(三)例题解析(五)课堂小结例1、例2、例3(二)观察发现(四)课堂练习练习设计十、课后反思第三篇:有理数的减法教案有理数的减法教案赵英俊一、教学目标:知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。

有理数教案(精彩8篇)

有理数教案(精彩8篇)

有理数教案(精彩8篇)有理数教案篇一1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。

重点:对乘法运算法则的运用,对积的确定。

难点:如何在该知识中注重知识体系的延续。

一、知识导向:有理数的乘法是小学所学乘法运算的延续,也是在学习了有理数的加法法则与有理数的减法法则的基础上所学习的,所以应注意到各种法则间的必然联系,在本节中应注重学生学习的过程,多让学生经历知识、规律发现的过程。

在学习中应掌握有理数的乘法法则。

二、新课:1、知识基础:其一:小学所学过的乘法运算方法;其二:有关在加法运算中结果的确定方法与步骤。

2、知识形成:(引例)一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行。

情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的东方6米处拓展:如果规定向东为正,向西为负情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?列式:即:小虫位于原来出发位置的西方6米处发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的。

积6的相反数-6概括:把一个因数换成它的相反数,所得的积是原来的积的相反数3、设疑:如果我们把中的一个因数2换成它的相反数-2时,所得的积又会有什么变化?当然,当其中的一个因数为0时,所得的积还是等于0。

综合:有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零。

例:计算:(1)(2)三、巩固训练:p52.1、2、3四、知识小结:本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。

在运算中应强调注意如何正确得到积的结果。

五、家庭作业:p57.1、2,3六、每日预题:1、小学多学过哪些乘法的运算律?2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?有理数教案篇二知识与技能:熟记有理数的减法法则,能熟练进行有理数减法运算。

高一数学教案的三维目标5篇

高一数学教案的三维目标5篇

高一数学教案的三维目标5篇最新高一数学教案的三维目标1有理数教案(三维目标,精讲预设,教学反思)《有理数》教学开篇精讲稿1.如果把数学比作一个成长中的生气勃勃的人,把问题比作人身体的一个重要的器官,那你将用什么器官比喻问题的重要性呢2.“问题是数学的心脏”,是一切科学发现与发明的源泉.在数学学习中,明确提出问题比解决问题有同等甚至是更高的价值.因此在进入初中数学学习的时候,同学们要重视发现和明确提出数学问题,把这看作是提升自身数学能力的最重要的途径.3.看到《有理数》这一章的标题,你想到的第一个问题是什么?接下来你又会明确提出什么问题呢?4.“有理数”这个名词有点怪,难道还有“无理数”吗?” 这个问题提得好!既然有“有理数”,当然会有“无理数”.要回答什么是“有理数”的问题,一个途径就是先回答“什么是无理数的问题”.5.我们在小学所学的数中,就有无理数,那就是无限不循环小数.有限小数、无限循环小数都是有理数. 大家想一想下面的问题:①有限小数、无限循环小数与分数是什么关系?②整数能不能化成分数的形式?③由此你能不能联想出有理数的“理”是什么?也就是说,什么样的数是有理数?1.1正数和负数一.教学目标知识与技能:了解正数和负数是怎样产生的,会识别正数和负数,理解0表示的量的意义;学会用正数和负数表示相反意义的量; 过程与方法:在形成负数概念的过程中,培养观察、归纳与概括能力. 情感、态度与价值观:通过师生合作,联系实际,感受数学与生活的联系,激发学生学习数学的热情.重点难点重点:形成负数概念;学会用正数和负数表示相反意义的量. 难点:负数的意义及0的内涵.二.精讲预设: 1.其实,在进入初中之前,我们就有同学初步学习过“负数”概念,知道什么是正数和负数,但在跨入初中数学的大门的时候,我们还是要隆重地引入负数概念,因为它是我们建立有理数概念不可缺少的基础.2.什么叫做正数?什么叫做负数?负数的概念是建立在什么基础上的?你能换一种方式解释负数这个概念吗?请注意,给概念下定义的表达方式:……叫做…….3.①把0以外的数分成正数和负数,起源于什么?②表示相反意义的量,数的性质(正与负)是怎样规定的?有几种方式?③表示相反意义的量,要特别注意量的表达,也就是一定不能忽略单位!否则就不是量,而是数了.④正数可以省略“+”号,负数可以省略“—”号吗?为什么? 4.还记得我在前面明确提出的关于“问题”在数学学习中地位的话吗?请你明确提出关于“正数和负数”的概念与应用的问题,我们来开一次“数学记者招待会”.三.教学反思 1.这次尝试着从无理数的概念入手,“曲线教学”,一步到位,导出有理数的概念,从后续效果上看,还是比较成功的.这一点在今后的教学中还可以延续.2.在学生自主学习与尝试展示的过程中,采用事前精心设计的连续追问的方式,可以起到打通思维,贯通知识,加深理解的作用.1.2.1 有理数一.教学目标知识与技能:理解有理数的意义;能把有理数按要求分类;了解0在分类中作用. 过程与方法:初步了解分类的思想方法,能正确地对有理数进行分类. 情感、态度与价值观:在体系中理解知识的内涵,在分类中了解概念之间的联系,在学生的头脑中初步建立起对立与统一的思考方法. 重点难点重点:理解有理数的分类方法. 难点:掌握有理数的两种分类,避免混淆.二.精讲预设 1.在罗列出所学过的有理数,并对有理数给出定义之后,明确提出“你能把所有的这些有理数作出分类吗?” 的问题.2.在让学生充分尝试对有理数作出分类之后,讲解数学学习的效益与分类讨论的标准问题. 数学学习的效益,不但体现在数学知识与数学方法的掌握上,更体现在对数学数学思想方法的理解与利用上,这才是数学学习最重要的价值所在. 分类讨论就是一种重要的数学学习方法.在分类时首先要确定分类的`标准,其次要注意遵循不重复、不遗漏的原则.3.在解把有理数填入汇编圈的习题时,会出现哪些问题?原因何在?怎么解决?①在画汇编圈时忽略省略号; ②在填分数汇编时,把遗漏有限小数和无限循环小数; ③把无限循环小数误成分数.、补充分类练习,采用《鼎新教案》P10例2,以加深学生对分类讨论的理解三.教学反思 1.这是学生在初中数学学习中第一次接触分类思想,课本在这方面的处理太过简略,几乎到忽略不计的地步.为了弥补教材的不足,有必要加以补充. 2.因为有理数的概念在本章教学的开篇就与学生进行过比较深入的讨论,因此本节教学的重点还是以放到对分类的标准与原则上为宜,在这方面对学生进行训练的后续教学效益应该是比较高的,今后还应坚持.1.2.2数轴一.教学目标知识与技能:了解数轴的概念,知道数轴的三要素,会画数轴;能将已知数在数轴上表示出来,能说出数轴上已知点表示的数. 过程与方法:通过对数轴的学习体会数形结合的数学思想. 情感、态度与价值观:通过对数轴的直观认识,对数形结合思想的体会,认识不同事物之间的内在关系,感受数学与生活的联系. 重点难点重点:数轴的概念. 难点:数轴的画法与应用. 二.精讲预设 1.画数轴注意事项歌诀直线要直切勿曲,原点方向单位齐;右为箭头左出头,无限延伸要留意; (长度) 正负分布须对称,位置长度要适宜.数轴画在格子中,舒展大方贵清晰. (数) (原点)(单位长度) 2.在数轴上表示有理数的方法歌诀先画数轴要素全,数点描成实心圆;注意方向与距离,负数分数思虑全; 点在线上勿飘起,数据标在点上面.3.应用归类.明确提出问题,组织学生完成.三.教学反思 1.数轴是学生所接触的数形结合的第一个实例,因为对数轴概念的理解的不足,也因为教学中对数轴画法的练习设计数量偏少,导致形形色色的画法上的问题.对此一方面要在后续教学中加以弥补,另一方面在修改导学案的时候要对这一环节予以加强. 2.在数轴上表示分数与小数,尤其是负分数与负小数时,学生出现了较多的错误,方向性的错误有,距离上的错误更多.对此要反复加以强调与来练习.1.2.3相反数一.教学目标知识与技能:借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系,给出一个数,能说出和写出它的相反数. 过程与方法:经历操作、对比,发现、明确提出、解决问题的过程,从形和数两个不同的侧面来理解相反数的意义,领会数形结合的思想,培养分析问题与解决问题的能力. 情感、态度与价值观:让学生充分参与问题的解决过程,体验参与的快乐与成就感. 重点难点重点:相反数的概念. 难点:相反数的识别与理解.二.精讲预设 1.如何理解“两点关于原点对称”? 位置关系,数量关系.2.如何理解互为相反数的概念? “只有符号不同”,什么必须相同?3.怎样表示一个数的相反数? 在一个数的前面添上“—”时,要注意哪些问题?①如果数不带符号,直接在数的前面添加“—”号; ②如果数本身带有符号,首先要用括号将这个数括起来,再在括号前前面; ③如果数是几个数的和或差的形式,参照第②条处理;4. 的相反数怎样表示? 的相反数怎样表示? 的相反数呢?你能明确提出更复杂的问题并自身解决吗?这里面的规律是什么?三.教学反思1.相反数是相对简单的概念,对于这个简单的知识,通过从形到数的认识过程,可以培养学生的数学认识能力,对此如果重视不够,将是一个损失.2.相反数的表示方法其实是一个有一定难度的问题,解决的最好方法不是直接教给学生要注意什么,而是与学生一起探讨解决的方法.让学生参与解决问题的过程,也许是解决问题的最有效的方法.1.2.4 绝对值一.教学目标知识与技能:理解绝对值的意义,会求一个数的绝对值;会比较两个有理数的大小. 过程与方法:通过对正数、负数、0的绝对值的学习,体验分类讨论的数学思想.通关对有理数大小比较的学习,体验数形结合的数学思想. 情感、态度与价值观:在充分的参与中体验数学的美与价值. 重点难点重点:绝对值的意义;有理数的大小的比较. 难点:绝对值的意义与两个负数的大小比较.二.精讲预设 1.串讲相反数和绝对值问题提纲:①相反数的几何意义是什么?(借助数轴解释相反数) ②在数轴上表示互为相反数的两个点的异同点分别是什么?③什么叫做数的绝对值?数的绝对值是什么? ④依据绝对值的定义,怎样求一个数的绝对值?⑤求绝对值的方法体现了什么数学思想方法?(分类讨论)⑥求一个数的绝对值时要注意哪些问题?2.有理数大小比较的方法讲解提纲:⑴试用分类讨论的方法分解有理数大小的比较问题:①比较两个正数的大小; ②比较正数和0的大小; ③比较0和负数的大小; ④比较正数和负数的大小; ⑤比较两个负数的大小.⑵上述问题中,真正需要解决的问题是什么?怎么解决?解决的程序是什么⑶解决一般的有理数大小问题的思维与表达程序是什么?(先分类,后表述) 一看能不能直接比较大小? 二看需不需化简后再比较大小? 三要注意比较结果的表达要求(答案保持数的原有形式与排列顺序).三.教学反思1.诱导学生分析相反数的几何意义的共同特征,从而引出绝对值的概念,借助于知识之间的联系,使新知识在“出场”的时候,就与学生建立起“亲密”的联系.这一点是本节教学的亮点之一.高一数学教案的三维目标2数学课堂教学三维目标的具体内容和层次划分请阐述数学课堂教学三维目标的具体内容和层次划分知识与技能掌握应用,既是课堂教学的出发点,又是课堂教学的归宿。

初一数学有理数教案5篇

初一数学有理数教案5篇

初一数学有理数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!初一数学有理数教案5篇教案的撰写过程促使教师思考教学目标,确保教学的针对性和有效性,为了提高教学质量,教案在撰写过程需要更加注重教学效果的评估,下面是本店铺为您分享的初一数学有理数教案5篇,感谢您的参阅。

初一上册数学《有理数》教案

初一上册数学《有理数》教案

初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。

的有理数的混合运算教案3篇

的有理数的混合运算教案3篇

的有理数的混合运算教案3篇有理数的混合运算教案篇1教学目标:1、知识与技能了解有理数的混合运算顺次,在运算过程中能合理运用运算律简化运算。

2、过程与方法通过适量的有理数的混合运算,掌控混合运算的顺次,获得运用运算律简化运算的阅历。

重点、难点1、重点:有理数的混合运算。

2、难点:有理数混合运算中的符号确定以及运算中的顺次问题。

教学过程:一、创设情景,导入新课已学过的有理数的运算有哪些?你能分别说出有理数的加、减、乘、除、乘方的运算法那么吗?观测:(1) (2)-3-[-5+(1-0.6)]你能说出这个算式里有哪几种运算?二、合作沟通,解读探究1、上面算式中,含有有理数的加、减、乘、除、乘方多种运算,我们称为有理数的混合运算。

那有理数混合运算的顺次是什么?组织同学争论:在学校里所学的'混合运算顺次是什么?这些运算顺次在有理数的混合运算中是否适用?归纳有理数的混合运算顺次:先算乘方,再算乘除,最末算加减;假如有括号,就先算括号里的三、应用迁移,巩固提高1、同学活动,计算以下各题:(1) (2) -3-[-5+(1-0.6)]老师活动:鼓舞同学独立完成,指定两名同学到黑板演示,完成后,评析,强调运算顺次。

解:(1)原式=17-8÷(-2)×3 (先乘方)=17-(-12) (再乘除)=17+12 (后加减)=29(2)原式=-3-[-5×0.4] (先算小括号里面的)=-3-(-2) (再算中括号里面的)=-1留意:在运算过程中,注明运算顺次,目的是使同学明确运算顺次。

2、同学练习并与同伴沟通:计算:老师活动:鼓舞同学独立完成然后沟通各自的计算方法,选三位同学上黑板演示,比较不同的解法。

解法一:原式= (先算括号里的)= (后算乘方)=-11 (再算乘除)解法二:原式= (运用安排律)= (先算乘方)=-6+(-5) (后算乘除)=-11 (最末算加减)引导同学比较两种不同的解法,体会运用运算律可以简化运算。

初中数学有理数教案

初中数学有理数教案

初中数学有理数教案教案一:有理数的引入与比较教学目标:1.理解有理数的概念;2.掌握有理数的比较方法;3.能够在实际问题中应用有理数进行比较。

教学准备:教师:教学投影仪,教学课件学生:草稿纸,铅笔,橡皮教学过程:一、导入(5分钟)1.教师出示一张纸上有一堆点,问学生这些点是否有规律?2.提问学生,对于这些点的位置,我们能不能用一个数来表示呢?二、探究(15分钟)1.教师出示“2/3”和“3/4”两张纸条,分别折叠,让学生讨论折叠后哪个更长。

引导学生发现“3/4”>“2/3”。

2.教师出示轨道图,让学生利用轨道图上刻度的位置比较“5”和“-3”的大小。

引导学生发现“5”>“-3”。

3.引导学生思考,为什么有理数可以进行比较?三、讲解(15分钟)1.教师出示有理数的定义,并对有理数的大小进行讲解。

2.教师通过具体的例子,向学生解释有理数的比较方法。

四、练习(15分钟)1.学生个别完成练习册上的相关练习。

2.教师对学生的答题情况进行检查,及时给予指导和帮助。

五、拓展(15分钟)1.教师出示一些实际问题,让学生运用比较有理数的知识求解。

2.学生个别或小组完成问题,教师及时进行指导和解答。

六、归纳总结(10分钟)1.教师引导学生归纳总结有理数的比较方法。

2.教师解答学生提出的问题。

七、作业布置(5分钟)1.布置相关练习。

教学反思:通过教师导入和引导,学生对有理数的概念和比较方法有了初步的了解。

课堂上通过具体示例的比较让学生在实践中理解概念和方法。

通过训练和练习,学生对有理数的比较掌握的更加熟练。

整个教学过程注重学生的实践操作和解决实际问题的能力,培养学生的观察力和分析能力。

有理数的教案

有理数的教案

有理数的教案教学目标:1. 理解何为有理数及其特点。

2. 掌握有理数的加法、减法、乘法和除法运算规律。

3. 解决与有理数相关的实际问题。

教学重点:1. 有理数的定义及特点。

2. 有理数的加减乘除运算规律。

教学难点:解决与有理数相关的实际问题。

教学准备:1. 教师准备黑板、白板和彩色粉笔。

2. 学生准备课本、练习册和记录工具。

教学过程:Step 1: 引入教师可以通过创设情境、提问引发学生对有理数的认识。

例如,可以让学生想象饭店的收入和支出,以此引导学生思考有理数的特点。

Step 2: 导入教师在黑板上画出数轴,并标示出一些有理数,如-3,0,2/3等。

通过让学生观察数轴上的有理数,引导学生发现有理数的特点,并帮助学生总结有理数的定义。

Step 3: 讲解教师通过板书和示例,详细讲解有理数的加法、减法、乘法和除法运算规律。

教师可以引导学生重点掌握有理数的相反数、零的概念、两个有理数相加减的方法、乘法和除法法则等知识点。

Step 4: 操练教师提供一些练习题,让学生在课堂上完成并相互讨论。

教师在学生操练过程中及时给予指导和反馈,确保学生掌握有理数的运算规律。

Step 5: 拓展教师提供一些与有理数相关的实际问题,让学生应用所学知识解决问题。

鼓励学生思考和讨论,培养学生的解决问题能力。

Step 6: 归纳总结教师和学生共同总结本节课所学内容,强化学生对有理数的理解和掌握程度。

Step 7: 练习巩固布置相应的练习题和作业,让学生进一步巩固和运用学到的知识。

评价方法:1. 教师可以通过观察学生在课堂上的表现,评估学生对有理数的理解和掌握程度。

2. 教师可以布置一些书面作业和练习题,通过批改来评价学生的学习成绩。

教学拓展:1. 学生可以通过使用在线学习资源或参加数学学习小组,进一步加强对有理数的理解和运用能力。

2. 学生可以阅读相关的数学教材和参考书籍,拓宽对有理数的认识。

《有理数》的教学设计【优秀5篇】

《有理数》的教学设计【优秀5篇】

《有理数》的教学设计【优秀5篇】有理数教案篇一教学目标:1、经历探索有理数减法法则的过程。

2、理解并初步掌握有理数减法法则,会做有理数减法运算。

3、能根据具体问题,培养抽象概括能力和口头表达能力。

教学重点运用有理数减法法则做有理数减法运算。

教学难点有理数减法法则的得出。

教具学具多媒体、教材、计算器教学方法研讨法、讲练结合教学过程一、引入新课:师:下面列出的是连续四周的最高和最低气温:第1周第二周第三周第四周最高气温+6℃0℃+4℃-2℃最低气温+2℃-5℃-2℃-5℃周温差求每周的温差时,应运用哪一种运算?℃生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。

列式为;(+6)-(+2)=40-(-5)=5(+4)-(-2)=6(-2)-(-5)=3教学过程二、有理数减法法则的推倒:师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。

2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?3、自己设计一些有理数的减法,用计算器检验一下你归纳的减法法则是否正确。

举例:(-5)+()=-2得出(-5)+(+3)=-2所以得到(-2)-(-5)=+3而(-2)+(+5)=+3有理数减法法则:减去一个数,等于加上这个数的相反数。

教学过程三、法则的应用:例1:先做笔算,再用计数器检验。

(1)(-34)-(+56)-(-28);(2)(+25)-(-293)-(+472)教学过程解:(1)原式=-34+(-56)+(+28)=-90+(+28)=-62(2)原式=+25+(+293)+(-472)=+25+(-836)= 676注意:强调计算过程不能跳步,体现有理数减法法则的运用。

检测题教学过程四、练习反馈:师:巡视个别指导,订正答案。

教学过程五、小结:有理数减法法则:减去一个数,等于加上这个数的相反数。

有理数减法法则:减去一个数,等于加上这个数的相反数。

初一数学有理数教案模板6篇

初一数学有理数教案模板6篇

初一数学有理数教案模板6篇初一数学有理数教案模板6篇提高课堂教学质量是每个教师的共同目标。

然而,在实际教学中,我们常常会遇到一些问题,下面是小编为大家整理的初一数学有理数教案,如果大家喜欢可以分享给身边的朋友。

初一数学有理数教案【篇1】学习目标:1、学会用计算器进行有理数的除法运算.2、掌握有理数的混合运算顺序.3、通过探究、练习,养成良好的学习习惯学习重点:有理数的混合运算学习难点:运算顺序的确定与性质符号的处理教学方法:观察、类比、对比、归纳教学过程一、学前准备1、计算1)(—0.0318)÷(—1.4)2)2+(—8)÷2二、探究新知1、由上面的问题1,计算方便吗想过别的方法吗2、由上面的问题2,你的计算方法是先算法,再算法。

3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)4、结合问题2,你先猜想,有理数的混合运算顺序应该是?5、阅读P36,并动手做做三、新知应用1、计算1)、18—6÷(—2)×2)11+(—22)—3×(—11)3)(—0.1)÷×(—100)2、师生小结四、回顾与反思请你回顾本节课所学习的主要内容3页五、自我检测1、选择题1)若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数2)下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.-1的倒数是-13)关于0,下列说法不正确的是()A.0有相反数B.0有绝对值C.0有倒数D.0是绝对值和相反数都相等的数4)下列运算结果不一定为负数的是()A.异号两数相乘B.异号两数相除C.异号两数相加D.奇数个负因数的乘积5)下列运算有错误的是()A.÷(-3)=3×(-3)B.C.8-(-2)=8+2D.2-7=(+2)+(-7)6)下列运算正确的是()A.;B.0-2=-2;C.;D.(-2)÷(-4)=22、计算1)6—(—12)÷(—3)2)3×(—4)+(—28)÷73)(—48)÷8—(—25)×(—6)4)六、作业1、P39第7题(4、5、7、8)、第8题2、选做题:P39第10、11、12、1314、15题初一数学有理数教案【篇2】教学目标1,在现实背景中理解有理数加法的意义。

小学生有理数教案2篇

小学生有理数教案2篇

很高兴为你撰写一篇关于小学生有理数教案的文章。

小学生有理数教案1【教学目标】通过本课的学习,在小学生中培养出对有理数的认知能力和能够进行有理数的加减法运算的能力。

【教学内容】1.有理数的概念通过课堂讲授和多媒体演示,让学生了解有理数的概念,了解有理数的数轴表示方式,以及有理数的正、负、零的概念。

2.有理数的大小比较通过课堂讲授和实践练习,让学生学会用数线图比较不同有理数的大小,进一步熟悉有理数的表示方法和大小关系。

3.有理数的加减法运算通过演示和实践练习,让学生掌握有理数加减法运算的方法与技巧,进一步提高学生的数学运算能力。

【教学方法】1.讲授法教师采用课堂讲授的方式让学生了解有理数的概念和表示方法,让学生弄清有理数的正、负、零的概念。

2.实践演练教师通过实践演练的方式让学生熟悉有理数的大小比较和加减法运算。

3.互动教学教师采用互动教学的方式,让学生互相交流讨论、自主思考,以培养学生的积极主动性和自主学习能力。

【教学重点与难点】1.教学重点:有理数的概念、大小比较和加减法运算方法的讲解和实践练习。

2.教学难点:有理数的表示方法、大小关系的理解和掌握加减法运算的技巧。

【教学评估】通过每堂课的练习,听课展示,小考试等方式对学生掌握情况进行评估。

小学生有理数教案2【教学目标】通过本课程的学习,让小学生掌握有理数的基本性质和有理数的乘除法运算方法,从而培养学生的运算能力,提高数学素养。

【教学内容】1.有理数的基本性质通过讲解和多媒体演示,让学生了解有理数的基本性质,如可逆性、结合律、交换律、分配律等。

2.有理数的乘法运算通过课堂讲授和实践练习,让学生掌握有理数的乘法运算方法和技巧,进一步提高学生的数学运算能力。

3.有理数的除法运算通过演示和实践练习,让学生学会有理数的除法运算方法和技巧,培养学生的运算能力。

【教学方法】1.讲授法教师采用讲授法让学生了解有理数的基本性质,以及有理数的乘除法运算方法。

2.实践演练教师通过讲解和实践演练的方式,帮助学生掌握有理数的乘除法运算技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数教案
有理数
教学目标 1.知识与技能
①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用. 2.过程与方法
经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力. 3.情感、态度与价值观
通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育. 教学重点难点
重点:会把所给的各数填入它所在的数集的图里. 难点:掌握有理数的两种分类. 教与学互动设计
(一)创设情境,导入新课
讨论交流 现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数. (二)合作交流,解读探究 学生列举:3,,-7,-9,-10,0,
13,25,-35
6
, ,… 议一议 你能说说这些数的特点吗?
学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数. 说明:我们把所有的这些数统称为有理数.
试一试 你能对以上各种类型的数作出一张分类表吗?
有理数⎪⎪⎪

⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩
⎪⎨⎧负分数正分数
分数负整数
零正整数
整数 说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?
做一做 以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.
有理数⎧⎧
⎪⎨




⎪⎧
⎪⎨
⎪⎩

正整数正有理数
正分数零
负整数负有理数
负分数
(3)数的集合:把所有正数组成的集合,叫做正数集合.
试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高
例1把下列各数填入相应的集合内:
12 7,,0,2004,-
8
5
,,10%,,,-89

有理数⎧⎧
⎪⎨
⎪⎩







正整数
正有理数
正分数
负整数
负有理数
负分数
有理数







⎪⎩
正数
整数
分数
负数

【讲解答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视(B)
①0是最小的正整数②0是最小的有理数
③0不是负数④0既是非正数,也是非负数
个个个个
例3 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.
【答案】不一定,a可能是正数,可能是负数,也可能是0.
【点评】此题开放性较强.同时,要求学生能用分类的思想对a全面认识.
备选例题
-12
5
0.4
813
0(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.2
3

34,4
5
,________,67,…你的理解是_________.
【点拨】 找出各项数的特点是本题关键所在,第一个数为2
3
,后一个数是前一个数的分子,分母都加1所得的数. 【答案】 56
(四)总结反思,拓展升华 提问:今天你获得了哪些知识?
由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.
1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集. 【答案】 答案不唯一,如图1-2-2所示.
2.有理数按正、负可分为⎧⎪
⎨⎪⎩正有理数
零负有理数
按整数分,可分为⎧⎨⎩整数分数
(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明.
【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数. (2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年. 3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?
答案 负分数
课堂跟踪反馈
夯实基础
1.把下列各数填入相应的大括号内: -7,,
12,-31
2
,3,0,50%, (1)整数集合{ } (2)分数集合{ } (3)负分数集合{ } (4)非负数集合{ } (5)有理数集合{ }
2.下列说法正确的是()
A.整数就是自然数B.0不是自然数
C.正数和负数统称为有理数D.0是整数而不是正数
3.某商店出售的三种规格的面粉袋上写着(25±)千克,(25±•千克),(25±)千克的字样,从中任意两袋,它们质量相差最大的是千克.
提升能力
4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?
【答案】a可以表示正整数,正分数,0,负整数或负分数.
5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:
-2 -1 2 -1 3 0 -1 -2 1 0
(1)这10名男生有百分之几达标(即达标率)?【答案】(1)50%;
(2)这10名男生共做了多少个引体向上?【答案】(2)5×10-1=49(个)开放探究
6.应用创新题
若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处. 7.新中考题
(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高() A.4℃ B.-4℃ C.8℃ D.-8℃
资料采撷
原始的计算工具
计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.
在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.
在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.
古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.数轴
课题:相反数
课题:绝对值?。

相关文档
最新文档