ASK调制解调设计报告
ask调制与解调实验报告
ask调制与解调实验报告ASK调制与解调实验报告一、引言调制与解调是通信领域中非常重要的技术手段之一。
本实验旨在通过实际操作,探索并理解ASK调制与解调的原理和实现方法。
二、实验目的1. 理解ASK调制与解调的基本原理;2. 掌握ASK调制与解调的实验操作方法;3. 分析ASK调制与解调的优缺点及应用领域。
三、实验原理ASK(Amplitude Shift Keying)调制是一种基于信号幅度变化的数字调制技术。
在ASK调制中,将数字信号的高低电平分别对应于载波信号的高低幅度,从而实现数字信息的传输。
解调过程则是将调制信号恢复为原始的数字信号。
四、实验步骤1. 搭建ASK调制电路:将数字信号源与载波信号源连接至调制器,调制器输出ASK调制信号。
2. 搭建ASK解调电路:将ASK调制信号与载波信号输入解调器,解调器输出解调信号。
3. 连接示波器:将ASK调制信号和解调信号分别连接至示波器,观察波形变化。
4. 调整参数:根据实验要求,调整数字信号源的频率和幅度,观察ASK调制信号和解调信号的变化。
五、实验结果与分析1. 观察ASK调制信号的波形:通过示波器显示的波形图,我们可以清晰地看到数字信号的高低电平对应于载波信号的高低幅度。
这种幅度变化的方式可以有效地传输数字信息。
2. 观察ASK解调信号的波形:解调器将ASK调制信号恢复为原始的数字信号,解调信号的波形应与数字信号源的波形一致。
通过比较两者的波形图,可以验证解调的准确性。
3. 分析ASK调制与解调的优缺点:ASK调制与解调的优点是实现简单,传输效率高。
然而,由于ASK调制信号的幅度变化较大,容易受到噪声的干扰,因此抗干扰性较差。
4. 应用领域:ASK调制与解调广泛应用于短距离通信系统中,如遥控器、无线门铃等。
在这些应用中,传输距离相对较短,抗干扰性要求不高,因此ASK调制与解调是一种经济实用的选择。
六、实验总结通过本次实验,我们深入了解了ASK调制与解调的原理和实现方法。
ASK调制及解调实验报告
ASK调制及解调实验报告实验报告:ASK调制及解调实验一、实验目的1.了解ASK调制及解调的原理和方法;2.通过实验掌握ASK信号的调制与解调过程;3.掌握ASK调制与解调在通信系统中的应用。
二、实验原理1. 调制过程:将数字信号作为调制信号,其数学表示为sm(t),调制信号经过调制传输给接收端。
2.解调过程:接收端将接收到的ASK信号进行解调,得到数字信号。
三、实验器材1.信号源(调制信号的产生);2.信号发生器(源载波信号的产生);3.功率放大器(将源载波信号放大以供调制器使用);4.带通滤波器(将调制后的信号进行滤波,去掉多余频率成分);5.示波器(用于观测信号波形);6.解调器(对ASK信号进行解调得到原始数字信号)。
四、实验步骤1.首先,将信号发生器输出的方波信号连接到调制信号的输入端;2.将信号发生器输出的正弦波信号连接到功率放大器的输入端,以产生载波信号;3.将调制信号通过调制器与载波信号相乘,生成ASK调制信号;4.将ASK调制信号经过带通滤波器滤波,去掉多余频率成分;5.将滤波后的ASK信号输入到示波器中,观测ASK调制信号的波形;6.将ASK信号输入到解调器中,解调得到原始数字信号;7.通过示波器观测解调后的信号波形;8.调整调制信号的频率和幅度,观察ASK调制信号和解调后的数字信号的变化。
五、实验结果及分析1.调制信号与载波信号相乘得到ASK调制信号,通过带通滤波器滤波后的ASK信号波形应该与调制信号保持一致;2.解调器将接收到的ASK信号进行解调,得到原始的数字信号;3.调制信号的频率和幅度的改变会影响ASK调制信号的波形,从而影响解调后的数字信号。
六、实验结论通过本次实验,我们了解了ASK调制及解调的原理和方法。
实验结果表明,调制信号的频率和幅度对ASK调制信号和解调后的数字信号有较大影响。
ASK调制与解调在通信系统中具有广泛应用。
七、实验心得通过本次实验,我对ASK调制及解调有了更深入的了解。
ASK调制与解调--通原实验报告
ASK调制与解调
一、实验目的
1.掌握2ASK调制器的基本工作原理;
2.掌握2ASK解调器的基本工作原理。
二、实验原理
1.2ASK信号波形
2.2ASK调制信号的产生
实验原理图,如图所示:方法一和方法二
方法一
方法二
3.2ASK调制信号的解调
2ASK信号的解调可以采用同步或非同步解调方式。
三、 实验设备
音频振荡器、主振荡器、序列码产生器、双模开关、加法器、乘法器、可变直流电压、共享模块,可变直流电压、移相器
四、 实验过程
1.2ASK 信号调制连接图如下:
方法一中:
(1) 数字信号的产生方法
利用主振荡器模块的2KHz 正弦信号加到序列码产生器的时钟控制端(CLK )产生序列信号;
(2) 数字信号的调制要注意时钟同步问题
在本实验中可利用主振荡器模块的8.33KHz 加到音频振荡器的SYNC 端,用于时钟同步;
(3) 利用双模开关产生二进制振幅键控信号(2ASK )
方法二中:
(1)序列信号应为单极性0,1序列,可加入“可变直流电压”调节。
2.2ASK 信号解调连接图如下:
(1)在非同步解调中,将ASK已调信号经过整流器,低通滤波器最后通过比较器输出。
(2)在同步解调中,载波提取可利用主振荡器和移相器(若有相位偏移)完成;然后再通过低通滤波器最后通过比较器输出。
五、实验结果
1.基带信号(黄色)与调制信号(蓝色)波形:
2.调制信号(黄色)与调制信号(蓝色)波形:
六、实验分析
ASK调制实际上就是将信号波形与载波相乘,得到调制波形,相当于是通过开关来控制信号的通断,这个实验较为简单,所以比较顺利地完成了。
实验三 ASK调制与解调
实验三 ASK调制解调一、实验目的1.掌握ASK调制器的工作原理及性能测试;2.学习基于软件无线电技术实现ASK调制、解调的实现方法。
二、实验仪器1.RZ9681实验平台2.实验模块:●主控模块●基带信号产生与码型变换模块-A2●信道编码与频带调制模块-A4●纠错译码与频带解调模块-A53.信号连接线4.100M四通道示波器三、实验原理3.1调制与解调数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程称为数字调制(digital modulation)。
在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调(digital demodulation)。
通常把包括调制和解调过程的数字传输系统叫做数字频带传输系统。
数字信息有二进制和多进制之分,因此,数字调制可分为二进制调制和多进制调制。
在二进制调制中,信号参量只有两种可能的取值;而在多进制调制中,信号参量可能有M(M>2)种取值。
本章主要讨论二进制数字调制系统的原理。
3.2 2ASK调制振幅键控(Amplitude Shift Keying,ASK)是利用载波的幅度变化来传递数字信号,而其频率和初始相位保持不变。
在2ASK中,载波的幅度只有两种变换状态,分别对应二进制信息“0”或“1”。
2ASK信号的产生方法通常有两种:数字键控法和模拟相乘法。
实验中采用了数字键控法,并且采用了最新的软件无线电技术。
结合可编程逻辑器件和D/A转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成ASK,FSK 调制,还可以完成PSK,DPSK,QPSK,OQPSK等调制方式。
振幅键控(ASK)调制与解调实验报告
锁相环法位同步提取信号输入
模块7:BS
模块4:FSK-BS
提取的位同步信号
2、将模块7上的拨码开关S2拨为“1000”,观察模块4上信号输出点“FSK-DOUT”处的波形,并调节模块4上的电位器W5(顺时针拧到最大),直到在该点观测到稳定的PN码。
3、用示波器双踪分别观察模块3上的“FSK-NRZ”和模块四上的“OUT2”出的波形,将“OUT2”出FSK解调信号与信号源产生的PN码进行比较。
FSK调制模块:
TH7:FSK-NRZ经过反相后信号观测点。
FSK-OUT:FSK调制信号输出点。
FSK解调模块:
TH7: FSK调制信号经整形1后的波形观测点。
TH8:FSK调制信号经单稳(U10A)的信号观测点。
TH9:FSK调制信号经单稳(U10B)的信号观测点
TH10:FSK调制信号经两路单稳后相加信号观测点。
3、观察ASK解调输出“OUT1”处波形,并与信号源产生的PN码进行比较。调制前的信号与解调后的信号形状一致,相位有一定偏移。
4、通过信号源模块上的拨码开关S4控制产生PN码,改变送人的基带信号,重复上述实验;也可以改变载波频率来实验。
实验感想:通过此次实验,使我更加地了解用键控法产生ASK信号的方法,更深地懂得了ASK非相干解调的原理。观察到ASK调制和解调地波形。也使我更加熟练地操作示波器。
目的端口
连线说明
模块3:ASK-OUT
模块4:ASKIN
ASK解调输入
模块4:ASK-DOUT
模块7:DIN
锁相环法位同步提取信号
模块7:BS
模块4:ASK—BS
提取的位同步信号
2、将模块上的拨码开关S2拨为“ASK-NRZ”频率的16倍,如:“ASK-NRZ”选8K时,s2选128k,即拨“1000”。观察模块4上信号输出点“ASK-DOUT”处的波形,把电位器W3顺时针拧到最大,并调节电位器W1(改变判决门限),直到在“ASK-DOUT”出观察到稳定的PN码。
通信原理实验ASK调制和解调实验报告
新疆师范大学实验报告2020年4月27日课程名称通信原理实验项目实验四:ASK调制及解调实验物理与电子工程学院电子17-5 姓名赵广宇同组实验者指导教师阿地力一、实验目的掌握用键控法产生ASK信号的方法。
掌握ASK非相干解调的原理二、实验器材主控&信号源模块9号数字调制解调模块示波器三、实验原理1、实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。
已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。
四、实验步骤实验项目一ASK调制概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。
在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理实验项目二ASK解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。
观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。
若解调出的信号与原基带信号有差别,可调节抽样判决旋钮进行微调观察眼图时,1.位同步信号CLK,2.低通滤波输出信号调整主控模块,16K,PN127五、实验分析●ASK即“幅移键控”又称为“振幅键控”,所以又记作OOK信号。
ASK是一种相对简单的调制方式。
●这次实验首先对输入信号利用相关的模块进行ASK调制,再通过加入高斯白噪声传输信道,接着在接收端对信号进行ASK解调,最后把输出的信号和输入的信号进行比较。
●幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。
●所谓幅移就是把频率、相位作为常量,而把振幅作为变量,信息比特是通过载波的幅度来传递的。
六、实验总结●第一次进行实验时,开始运行后,跳出了如图所示的提示。
在停止运行后,在加入了数字终端模块后,提示消失,在今后进行数字实验时,可引以为戒。
ask调制实验报告(一)
ask调制实验报告(一)实验报告-ask调制引言•介绍实验的背景和目的•简要解释ask调制的原理实验步骤1.准备实验所需材料和设备2.搭建ask调制电路–列出所需元器件–给出电路连接图3.调试电路–检查电路连接是否正确–确保电源稳定–测试信号发生器输出4.进行实验–设置信号发生器产生调制信号–连接示波器观察输出信号–记录相关数据5.结果分析–分析调制信号和输出信号的波形–计算调制深度和带宽等参数6.讨论–总结实验结果–比较ask调制与其他调制方式的优缺点–探讨应用领域和未来发展方向结论•简要总结实验结果的重要发现•提出对未来实验和研究的建议参考文献•引用相关的书籍、论文或资料,遵守学术规范。
实验报告-ask调制引言在通信和无线电领域,调制是一项关键的技术,它能将信息信号转换成适合传输的信号。
其中一种常见的调制方式是amplitude shiftkeying (ASK)调制。
本实验旨在通过搭建ASK调制电路,观察和分析调制信号和输出信号的波形,进一步了解ASK调制的原理和应用。
实验步骤1.准备实验所需材料和设备–信号发生器–示波器–频谱分析仪–电阻、电容、二极管等电子元器件2.搭建ASK调制电路–使用所需的电子元器件搭建ASK调制电路–按照电路连接图进行连接3.调试电路–检查电路连接是否正确,确保没有接错或短路的情况–确保电源稳定,准备好信号发生器和示波器4.进行实验–设置信号发生器产生调制信号,可以尝试不同频率和幅度的信号–连接示波器观察输出信号的波形,记录相关数据–还可以使用频谱分析仪观察频域特性5.结果分析–分析调制信号和输出信号的波形,观察其时域和幅度变化–计算调制深度、调制度和带宽等参数,进一步理解ASK调制的特性6.讨论–总结实验结果,概括重要发现和观察到的规律–比较ASK调制与其他调制方式的优缺点,探讨适用的应用领域和未来发展方向结论经过实验观察和数据分析,我们得出以下结论: - ASK调制是一种将数字或模拟信号转换为调幅信号的常用方法。
实验3 ASK调制与解调实验报告
(采用双踪示波器比较信号源的位同步波形与提取的位同步信号波形,它们应当一致,表示发送端与接收端的码元宽度是一样的)
ASK解调输出波形:
(采用双踪示波器比较提取的位同步信号波形与ASK解调输出波形,从而可以得到数字信号,它与我们在SW01、SW02、SW03设置的数字信号应该一致)
OUT2测试点输出波形:(即ASK调幅波经半波整流器后的信号输出波形)
OUT3测试点输出波形:(即ASK调幅波经低通滤波器后的信号输出波形)
ASK—OUT测试点输出波形:(即ASK调幅波经电压比较器后的信号输出波形,未经同步判决。波形与ASK判决电压调节的调节幅度有关)
a、ASK判决电压调节过高,误判为0的概率增加:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
b、ASK判决电压调节过低,误判为1的概率增加:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
c、适当调节ASK判决电压,使ASK—OUT输出波形与ASK基带输入波形最接近:
(采用双踪示波器比较ASK基带输入波形与ASK—OUT测试点输出波形)
七、实验思考题解答
1、说明用键控法产生2ASK信号的方法。
2、调节判决电平,当它过大或过小时会出现误码,说明为什么会产生误码。
八、调试中遇到的问题及解决方法
现代通信原理
实验室名称:通信原理实验室实验日期: 年 月 日
学院班级、Biblioteka 号姓名实验项目名称
ASK调制与解调实验
指导
教师
一、实验目的
二、实验内容
三、实验仪器
四、实验原理
五、实验步骤
六、实验结果及分析
ASK基带输入: 信号源测试点NRZ输出的NRZ码
ASK调制及解调实验报告
实验三ASK调制及解调实验、实验目的1、掌握用键控法产生 ASK信号的方法。
2、掌握ASK非相干解调的原理。
、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图ASK调制及解调实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。
已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。
四、实验步骤实验项目一 ASK调制概述:ASK调制实验中,ASK (振幅键控)载波幅度是随着基带信号的变化而变化。
在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】T【通信原理】T【ASK数字调制解调】将9号模块的S1拨为0000。
3、此时系统初始状态为: PN序列输出频率32KHZ,调节128KHZ载波信号峰峰值为 3V。
4、实验操作及波形观测。
(1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。
RIGOL-aoooaojocu?T f- 0 a oorvpT…「. 7TpF 口讲(&卫;1二 融 N 』=:41 V 1 _ …fit实验项目二 ASK 解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证 ASK 解调原理。
观测解调输出的中间观测点,如: TP4 (整流输出),TP5( LPF-ASK ),深入理解ASK 解调过程。
1?Ti 小r^ri »><B. ODusfiiv<m 血匚Fr-e(t=Zl Tell(2)将PN 序列输出频率改为 64KHz ,观察载波个数是否发生变化。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH6,调节W1直至二者波形相同;再观测TP4(整流输出)、TP5( LPF-ASK ) 两个中间过程测试点,验证ASK 解调原理。
通信原理实验报告-实验七 振幅键控(ASK)调制与解调实验 实验八 移频键控FSK调制与解调实验 实验九 移相键
观察 ASK 解调输出“OUT1”处波形,并与信号源产生的 PN 码进行比较:
4 / 17
创
2、 打开电源, 将模块 7 上的拨码开关 S2 拨为 “ASK-NRZ” 频率的 16 倍, 如: “ASK-NRZ” 选 8K 时,S2 选 128K,即拨“1000” 。观察模块 4 上信号输出点“ASK-DOUT”处的波形, 把电位器 W3 逆时针拧到最大, 并缓慢调节电位器 W1 (改变判决门限) , 直到在 “ASK-DOUT” 处观察到稳定的 PN 码。
低通 滤 波器 抽样 判决 器 解调信号 输出
耦合 电路
位 同 步 信号
(b)相干方式
五、 实验步骤
一、ASK 调制实验 1、将信号源模块和模块 3、4、7 固定在主机箱上。 2、关闭电源,按照下表进行实验连线: 源端口 信号源:PN(8K) 信号源: 64K 同步正弦波 目的端口 模块 3:ASK-NRZ 模块 3:ASK 载波 连线说明 S4 拨为 1100,PN 是 8K 伪随机序 列 提供 ASK 调制载波,幅度为 4V
3、打开电源模块 3 上拨码开关 S1(为“11” )都拨上。 观测并记录 FSK 调制输出的波形,CH1 接 FSK-NRZ 信号做示波器的触发源,CH2 接 FSK-OUT 输出的波形。
图 8-1 FSK 载波(CH1 是 64K 同步正弦波,CH2 是 128K 同步正弦波)
原
创
图 8-2 FSK 调制波形(CH1 是 8kb/s 伪随机码,CH2 是 FSK 调制)
2 / 17
= S (t ) cos ω c t
式中,Ts 为码元间隔, g (t ) 为持续时间 [-Ts/2,Ts/2] 内任意波形形状的脉冲(分析时一 般设为归一化矩形脉冲),而 S (t ) 就是代表二进制信息的随机单极性脉冲序列。
ASK调制解调电路设计
ASK调制解调电路设计调制解调电路是通信系统中的关键组成部分,它负责将原始信号转换成适合传输的模拟或数字信号,并在接收端将其恢复原始形式。
在本文中,将介绍调制解调电路的设计原理、常见的调制解调技术以及一些实际设计中的考虑因素。
调制解调电路的设计原理:调制的目的是将原始信号与载波信号进行合并,以便在传输过程中提高信号的传输效率。
调制技术主要分为模拟调制和数字调制两种类型。
模拟调制是将原始信号通过其中一种调制方式,将其频率、振幅或相位与载波信号进行调制,生成调制信号。
常见的模拟调制技术有幅度调制(AM)、频率调制(FM)、相位调制(PM)等。
对于模拟调制,常用的调制解调电路包括运算放大器、功率放大器、滤波器等。
数字调制则是通过将原始信号转换为数字形式,以便在数字通信系统中传输和处理。
常见的数字调制技术有振幅移键(ASK)、频率移键(FSK)、相位移键(PSK)和正交振幅移键(QAM)等。
常见的调制解调技术:1.ASK调制解调电路设计:ASK是一种简单的数字调制技术,它将二进制信号转换为有限数量的离散振幅级别。
在调制端,二进制信号通过将载波的振幅进行调制。
在解调端,使用信号检波器将调制信号转换为原始二进制信号。
2.FSK调制解调电路设计:FSK是一种将二进制信号转换为不同频率的数字调制技术。
调制端通过控制两个频率,将二进制信号转换成相应频率的调制信号。
解调端通过对不同频率信号的检测,将调制信号恢复为原始二进制信号。
3.PSK调制解调电路设计:PSK是一种将二进制信号转换为不同相位的数字调制技术。
调制端通过控制载波的相位,将二进制信号转换成相应相位的调制信号。
解调端通过相位解调器将调制信号恢复为原始二进制信号。
考虑因素:在设计调制解调电路时1.带宽和数据率:调制解调电路的带宽需要与传输信号的带宽相匹配,以确保传输的完整性。
2.抗噪性能:调制解调电路需要在有噪声存在的环境中工作,并恢复原始信号的准确性。
3.功耗:调制解调电路在设计中应尽可能降低功耗,以提高系统的效率和延长电池寿命。
ASK 调制解调
《信息处理综合实验》实验报告(三)班级:姓名:学号:日期: 2020-11-20实验三 ASK 调制解调一、实验目的1.掌握ASK 调制器的工作原理及性能测试;2.学习基于软件无线电技术实现ASK 调制、解调的实现方法。
二、实验内容及步骤ASK 调制观测(1). 基带数据设置及时域观测使用双踪示波器分别观察2P1 和2P3,使用鼠标点击“基带设置”按钮,设置基带速率为“15-PN”“2K”,点击“设置”进行修改。
观察示波器观测波形的变化,理解并掌握基带数据设置的基本方法。
(2). 基带数据频域观测采用频谱仪或示波器的FFT 功能,观测分析2P3 的频谱特性。
将基带信号设置为“16bit”,“2K”,自己设置16bit 基带数据,观测分析其频谱变化。
思考将信号进行ASK 调制频谱会有什么变化?进行FSK 调制频谱会有什么变化?(3). ASK 调制信号时域观测在ASK 实验内容页面,示波器一个通道测基带信号2P1,并用基带信号作示波器同步源;用示波器另一个通道观测研究4TP9 调制信号,观测并记录ASK 调制信号特性;鼠标点击“载波频率”按钮,尝试ASK 调制的载波频率,观察ASK 调制波形的变化;ASK 解调观测(1). ASK 解调整形输出观测在实验中ASK 解调采用了包络检波法。
示波器同时观测ASK 调制输入5P1 和调制信号整形输出5TP3,观测ASK 调制整形前后的波形对比,并思考后面怎么处理整形后波形;(2). 整形信号滤波后输出示波器同时观测ASK 调制输入5TP3 和滤波后输出5TP5,对比整形后输出和滤波后输出,分析是否和基带信号相关;(3). 判决输出观测示波器同时观测判决前5TP5 和判决后输出5P2,结合当前的判决电平5TP7,判断判决后数据是否正确。
通过模块右下角的“编码器”修改当前的判决电平,观测5TP7 的变化以及判决后5P2 的变化情况。
观测在不同判决电平下的判决输出,分析解调对判决电平有什么要求?ASK 系统加噪及误码率分析(1). ASK 系统加噪设置在前面实验步骤中,直接将调制输出4P9 连接到了解调输入端5P1,没有经过模拟信道。
数字载波调制实验报告(3篇)
第1篇一、实验目的1. 理解数字载波调制的基本原理和过程。
2. 掌握常见的数字调制方式,如振幅键控(ASK)、频移键控(FSK)和相移键控(PSK)。
3. 学习数字调制信号的生成和解调方法。
4. 通过实验,加深对数字调制技术在实际通信系统中的应用理解。
二、实验原理数字载波调制是数字通信中一种常见的信号处理技术,它通过改变载波的某些参数(如幅度、频率或相位)来携带数字信息。
常见的数字调制方式包括:1. 振幅键控(ASK):通过改变载波的幅度来表示数字信息,通常用高电平表示“1”,低电平表示“0”。
2. 频移键控(FSK):通过改变载波的频率来表示数字信息,通常用不同的频率分别表示“1”和“0”。
3. 相移键控(PSK):通过改变载波的相位来表示数字信息,通常用不同的相位来表示不同的数字符号。
数字调制信号可以通过以下步骤生成:1. 基带信号生成:将数字信息转换成基带信号,通常为二进制序列。
2. 调制:将基带信号与载波信号相乘,得到已调信号。
3. 滤波:对已调信号进行滤波,去除不必要的频率分量。
数字调制信号的解调过程如下:1. 载波恢复:从已调信号中恢复出载波信号。
2. 解调:将恢复的载波信号与已调信号相乘,得到基带信号。
3. 判决:根据基带信号的幅度或频率,判断原始数字信息。
三、实验器材1. 数字信号发生器2. 数字示波器3. 数字信号分析仪4. 信号源5. 连接线四、实验步骤1. 实验一:ASK调制和解调- 使用数字信号发生器生成二进制序列。
- 将基带信号与载波信号相乘,得到ASK调制信号。
- 使用数字示波器观察ASK调制信号的波形。
- 将ASK调制信号与恢复的载波信号相乘,得到解调信号。
- 使用数字示波器观察解调信号的波形。
2. 实验二:FSK调制和解调- 使用数字信号发生器生成二进制序列。
- 将基带信号与两个不同频率的载波信号相乘,得到FSK调制信号。
- 使用数字示波器观察FSK调制信号的波形。
ASK调制与解调电路设计
ASK调制与解调电路设计调制与解调电路是无线通信中的重要组成部分,用于将信息信号转换为适合传输的高频信号,并在接收端将高频信号还原为原始信息信号。
接下来将详细介绍调制与解调电路的设计。
一、调制电路设计:调制电路主要用于将低频信息信号调制到高频载波上进行传输,常见的调制方式有幅度调制(AM)、频率调制(FM)和相位调制(PM)。
1.AM调制电路设计:AM调制主要包括信号放大、频率变换、调幅和输出滤波等环节。
具体设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,一般使用运放进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调幅:将频率变换后的高频信号经过调幅电路进行调幅,常用的调幅电路有晶体二极管调制器和集成电路调制器等。
(4)输出滤波:将调幅后的信号通过低通滤波器进行滤波,去除高频噪声和杂波。
2.FM调制电路设计:FM调制是将信息信号的频率变化转换为载波频率的变化,并将其用于传输。
FM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调频:将频率变换后的高频信号进行调频,一般采用三角调制电路进行调频。
(4)输出滤波:将调频后的信号经过低通滤波器进行滤波,去除高频噪声和杂波。
3.PM调制电路设计:PM调制是将信息信号的相位变化转换为载波相位的变化,并将其用于传输。
PM调制电路的设计步骤如下:(1)信号放大:将输入的低频信号经过放大电路进行放大,使用运放或差动放大电路进行放大。
(2)频率变换:将放大后的信号通过频率变换电路转换为所需的高频信号,常见的频率变换方式有上、下变频和乘法变频等。
(3)调相:将频率变换后的高频信号进行调相,一般采用集成电路调相器进行调相。
ask调制实验报告
ask调制实验报告ask调制实验报告实验目的1.了解和掌握ask调制的原理及实验流程;2.学习使用实验设备进行ask调制实验;3.分析和研究不同参数对ask调制信号的影响。
实验器材•型号XXX的信号发生器•型号XXX的调制器•型号XXX的示波器•型号XXX的衰减器•型号XXX的导线实验步骤1.准备实验器材,并确保各设备的连接正确、稳定;2.调节信号发生器的频率为XXX Hz;3.设置调制器的调制深度为XXX;4.连接调制器输出与示波器的输入,并调节示波器的时基、垂直灵敏度;5.开始录制示波器上的ASK调制波形,并记录相关参数;6.将调制器的调制深度调整至不同数值,重复步骤5,并记录结果;7.改变信号发生器的频率为不同数值,重复步骤5和6,并记录结果;8.汇总实验数据,并进行数据分析。
实验数据调制深度 | 频率 (Hz) | 调制指数 ||::|::|::| | 0.2 | 1000 | 0.6 | | 0.4 | 2000 | 0.8 | |0.6 | 3000 | 1.0 |数据分析•随着调制深度的增加,ASK调制信号的峰峰值也随之增加;•调制指数对ASK调制信号的影响非常显著,当调制指数大于1时,信号畸变严重;•频率对ASK调制信号的影响较小,不同频率下的ASK调制信号形态相似。
实验结论•在ASK调制实验中,调制深度是控制信号幅度变化的关键因素;•调制指数影响ASK调制信号的质量,过高或过低都会导致信号畸变;•频率对ASK调制信号形态影响小。
实验心得通过本次ASK调制实验,我对调制深度、调制指数和频率对信号质量的影响有了更深入的理解。
实验中的数据和分析结果让我对ASK调制的特点有了更清晰的认识。
同时,这次实验也锻炼了我的操作和数据记录能力,提高了我在实验中的观察和分析能力。
实验报告的撰写也让我更加熟悉Markdown格式,对于今后的科研写作有了更好的准备。
ask调制实验报告(续)实验误差分析在实验过程中,可能会存在以下误差: 1. 仪器误差:实验器材的精度、稳定性和校准状态等问题都可能对实验结果产生影响; 2. 环境误差:环境的温度、湿度等因素也可能对实验结果产生影响; 3. 人为误差:实验操作过程中的不准确操作或者观察判断的主观因素等都可能引入误差。
ask调制与解调实验报告
ask调制与解调实验报告Title: Ask Modulation and Demodulation Experiment ReportIntroductionIn the field of telecommunications, modulation and demodulation are crucial processes that enable the transmission and reception of information over a communication channel. In this experiment, we aimed to study the concept of ask modulation and demodulation and understand how it is utilized in practical applications.Experimental SetupThe experimental setup consisted of a signal generator, an amplitude modulator, a demodulator, and an oscilloscope. The signal generator was used to generate a carrier signal, which was then modulated using amplitude shift keying (ASK) modulation. The modulated signal was then transmitted through the communication channel and received by the demodulator. The demodulated signal was then displayed on the oscilloscope for analysis.ProcedureTo begin the experiment, the signal generator was set to produce a carrier signal of a specific frequency. The amplitude modulator was then used to modulatethe carrier signal with a low-frequency message signal. The modulated signal was then transmitted through the communication channel and received by the demodulator. The demodulated signal was displayed on the oscilloscope, and the characteristics of the signal were analyzed.ResultsThe experiment yielded a clear demodulated signal on the oscilloscope, indicating the successful demodulation of the modulated signal. The amplitude variations in the modulated signal were accurately recovered, demonstrating the effectiveness of ASK modulation and demodulation.ConclusionIn conclusion, the experiment provided valuable insights into the concept of ASK modulation and demodulation. The successful demodulation of the modulated signal highlighted the importance of these processes in modern communication systems. Overall, the experiment was a success, and it enhanced our understanding of modulation and demodulation techniques in telecommunications.。
ask调制及解调实验报告
ask调制及解调实验报告ASK调制及解调实验报告引言调制与解调是通信系统中的重要环节,它们负责将信息信号转化为适合传输的信号,并在接收端将信号恢复为原始信息。
本实验旨在通过实际操作,探究幅度调制(Amplitude Shift Keying, ASK)调制与解调的原理和方法。
一、实验目的1. 了解ASK调制与解调的基本原理;2. 掌握ASK调制与解调的实验操作方法;3. 分析调制与解调过程中的信号特点。
二、实验原理ASK调制是通过改变载波的幅度来传输数字信号的一种调制方式。
当数字信号为1时,载波的幅度为A,当数字信号为0时,载波的幅度为0。
解调过程则是根据接收到的ASK信号的幅度来恢复原始的数字信号。
三、实验步骤1. 搭建实验电路:将信号源、调制电路和解调电路依次连接,确保连接正确并稳定;2. 调制信号:将信号源的输出信号与载波信号进行ASK调制,得到ASK信号;3. 解调信号:将ASK信号输入到解调电路中,通过解调电路将ASK信号恢复为数字信号;4. 观察实验结果:通过示波器观察调制前后的信号波形,并比较解调后的数字信号与原始信号的一致性。
四、实验数据与分析在实验中,我们选择了一个频率为f的正弦波作为载波信号,并将其与数字信号进行ASK调制。
通过示波器观察到调制前后的信号波形,发现调制后的信号波形在数字信号为1时,幅度为A;数字信号为0时,幅度为0。
这验证了ASK调制的基本原理。
在解调过程中,通过解调电路将ASK信号恢复为数字信号。
观察解调后的数字信号与原始信号的一致性,发现它们基本上是一致的。
然而,由于实际电路中存在噪声等因素,解调后的数字信号可能会有一定的误差。
因此,在实际应用中需要采取一些措施来提高解调的准确性。
五、实验总结通过本次实验,我们深入了解了ASK调制与解调的原理和方法。
我们通过实际操作,掌握了ASK调制与解调的实验操作方法,并通过观察实验结果,分析了调制与解调过程中的信号特点。
FSK(ASK)调制解调实验报告
实验6 FSK(ASK)调制解调实验一、实验目的:1.掌握FSK(ASK)调制器的工作原理及性能测试;2.掌握FSK(ASK)锁相解调器工作原理及性能测试;3. 学习FSK(ASK)调制、解调硬件实现,掌握电路调整测试方法。
二、实验仪器:1.信道编码与 ASK.FSK.PSK.QPSK 调制模块,位号: A,B 位2. FSK 解调模块,位号: C 位3.时钟与基带数据发生模块,位号: G 位4. 100M 双踪示波器三、实验内容:观测m序列(1,0, 0/1码)基带数据FSK (ASK)调制信号波和解调后基带数据信号波形。
观测基带数字和FSK(ASK)调制信号的频谱。
改变信噪比(S/N),观察解调信号波形。
四、实验原理:数字频率调制是数据通信中使用较早的一种通信方式。
由于这种调制解调方式容易实现,抗噪声和抗群时延性能较强,因此在无线中低速数据传输通信系统中得到了较为广泛的应用。
(一) FSK 调制电路工作原理FSK 的调制模块采用了可编程逻辑器件+D/A 转换器件的软件无线电结构模式,由于调制算法采用了可编程的逻辑器件完成,因此该模块不仅可以完成 ASK, FSK 调制,还可以完成 PSK, DPSK, QPSK, OQPSK 等调制方式。
不仅如此,由于该模块具备可编程的特性,学生还可以基于该模块进行二次开发,掌握调制解调的算法过程。
在学习 ASK, FSK 调制的同时,也希望学生能意识到,技术发展的今天,早期的纯模拟电路调制技术正在被新兴的技术所替代,因此学习应该是一个不断进取的过程。
下图为调制电路原理框图上图为应用可编程逻辑器件实现调制的电路原理图(可实现多种方式调制)。
基带数据时钟和数据,通过 JCLK 和 JD 两个铆孔输入到可编程逻辑器件中,由可编程逻辑器件根据设置的工作模式,完成 ASK 或 FSK 的调制,因为可编程逻辑器件为纯数字运算器件,因此调制后输出需要经过 D/A 器件,完成数字到模拟的转换,然后经过模拟电路对信号进行调整输出,加入射随器,便完成了整个调制系统。
FSK调制解调实验报告
FSK调制解调实验报告实验目的:通过实验,进一步了解FSK(ASK)调制和解调的基本原理和方法,掌握实验仪器的操作技巧,熟悉实验过程中的测量方法和数据处理,培养实验操作能力和数据分析能力。
实验仪器:1.双示波器:2.信号发生器:3.波特率计:4.时钟信号源:实验原理和流程:FSK(Frequency Shift Keying)调制是一种数字调制方法,根据发送信号的不同频率进行调制,接收端根据频率差异来识别不同的信号。
ASK(Amplitude Shift Keying)调制是将数字信号变换为模拟信号的过程,通过调整载波波形的幅度来表示数据的0和1FSK调制的基本原理是:将数字信号转换为频率序列,利用频率切换来表示0和1、在调制时,根据数字信号的0和1,选择不同频率的载波信号进行调制。
解调是将接收到的FSK信号变换为与FSK信号相同的数字信号,可以根据频率的变化判断原始数字信号的0和1实验步骤:1.连接实验电路,将信号发生器的输出接入EL1端,EL2端接入波特率计。
将示波器的两个通道分别接入EL1和EL22.调整信号发生器的频率为f1和f2,设置合适的幅度和起始相位。
3.打开示波器,设置观察模式为X-Y模式,并调整示波器的水平和垂直触发使波形恢复稳定。
4.通过调整信号发生器的频率和幅度,观察并记录调制信号波形。
5.使用示波器观察到的调制信号波形,利用该波形计算波特率。
6.通过信号发生器产生时钟信号,将时钟信号输入到解调电路中进行解调。
7.观察解调后信号的波形并进行比较,记录解调后的数据。
8.对比解调后的数据与原始数据,验证解调是否准确。
实验结果:通过实验观察和测量,得到了调制信号的波形,利用该波形计算出了波特率。
经过解调后,与原始数据进行对比发现解调准确无误。
实验总结:通过这次实验,我们深入了解了FSK(ASK)调制和解调的基本原理和方法。
通过实验操作,我们掌握了实验仪器的操作技巧,熟悉了实验过程中的测量方法和数据处理方法,提高了我们的实验操作能力和数据分析能力。
ASK调制及解调实验报告
实验三ASK调制及解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。
2、掌握ASK非相干解调的原理。
二、实验器材1、主控&信号源、9号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图ASK调制及解调实验原理框图2、实验框图说明ASK调制是将基带信号和载波直接相乘。
已调信号经过半波整流、低通滤波后,通过门限判决电路解调出原始基带信号。
四、实验步骤实验项目一ASK调制概述:ASK调制实验中,ASK(振幅键控)载波幅度是随着基带信号的变化而变化。
在本项目中,通过调节输入PN序列频率或者载波频率,对比观测基带信号波形与调制输出波形,观测每个码元对应的载波波形,验证ASK调制原理。
1、关电,按表格所示进行连线。
2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【ASK数字调制解调】。
将9号模块的S1拨为0000。
3、此时系统初始状态为:PN序列输出频率32KHz,调节128KHz载波信号峰峰值为3V。
4、实验操作及波形观测。
(1)分别观测调制输入和调制输出信号:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH4,验证ASK调制原理。
(2)将PN序列输出频率改为64KHz,观察载波个数是否发生变化。
实验项目二ASK解调概述:实验中通过对比观测调制输入与解调输出,观察波形是否有延时现象,并验证ASK解调原理。
观测解调输出的中间观测点,如:TP4(整流输出),TP5(LPF-ASK),深入理解ASK解调过程。
1、保持实验项目一中的连线及初始状态。
2、对比观测调制信号输入以及解调输出:以9号模块TH1为触发,用示波器同时观测9号模块TH1和TH6,调节W1直至二者波形相同;再观测TP4(整流输出)、TP5(LPF-ASK)两个中间过程测试点,验证ASK解调原理。
3、以信号源的CLK为触发,测9号模块LPF-ASK,观测眼图。
五、实验报告1、分析实验电路的工作原理,简述其工作过程;ASK是一种相对简单的调制方式,幅移键控(ASK)相当于模拟信号中的调幅,只不过与载频信号相乘的是二进制数码而已。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1 2ASK的调制基本原理
调制信号为二进制数字信号时,这种调制称为二进制数字调制。
在2ASK调制中,载波的幅度只有两种变化状态,即利用数字信息“0”或“1”的基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出。
有载波输出时表示“1”,无载波输出时表示发送“0”。
2ASK信号可表示为
式中,为载波角频率,是为单极性NRZ矩形脉冲序列
其中,g(t)是持续时间为Ts的基带脉冲波形。
为简便起见,通常假设g(t)是高度为1、宽度等于Ts的矩形脉冲;是第n个符号的电平取值。
则相应的2ASK信号就是OOK信号。
图4-1.1 2ASK/OOK信号的时间波形
2ASK/OOK信号的产生方法通常有两种:模拟调制法和键控法,相应的调制器如下图所示。
图(a)就是一般的模拟幅度调制的方法,用乘法器实现;图(b)就是一种数字键控法,其中的开关电路受s(t)控制。
(a)模拟相乘法(b)数字键控法
图4-1.2 2ASK/OOK信号调制器原理框图
4.2 2ASK/OOK的调制仿真
2ASK/OOK信号调制仿真结果:
图4-2 2ASK/OOK信号调制仿真图
4.3 2ASK的解调基本原理
与AM信号的解调方法一样。
2ASK/OOK信号也有两种基本的解调方法:非相干解调(包络检波法)和相干解调(同步检测法),相应的接受系统组成方框图如图所示。
与模拟信号的接受系统相比,这里增加了一个“抽样判决器”方框,
这对于提高数字信号的接受性能是必要的。
(a)非相干解调方式
(b)相干解调方式
图4-3 2ASK/OOK信号的接收系统组成方框图
抽样判决器的作用是:信号经过抽样判决器,即可确定接收码元是“1”还是“0”。
假设抽样判决门限为b,当信号抽样值大于b时,判为“1”码;信号抽样值小于b时,判为“0”码。
当本实验为简化设计电路,在调制的输出端没有加带通滤波器,并且假设信道时理想的,所以在解调部分也没有加带通滤波器。
2ASK是20世纪初最早运用于无线电报中的数字调制方式之一。
但是,ASK 传输技术受噪声影响很大。
噪声电压和信号一起改变了振幅。
在这种情况下,“0”可能变为“1”,“1”可能变为“0”。
可以想象,对于主要依赖振幅来识别比特的ASK调制方法,噪声是一个很大的问题。
由于ASK是受噪声影响最大的调制技术,现已较少应用,不过,2ASK常常作为研究其他数字调制的基础,还是有必要了解它。
4.4 2ASK的解调仿真
2ASK解调仿真结果:
图4-4 2ASK/OOK的信号解调仿真图。