三年级图形的个数修订稿
三年级图形的个数
三年级图形的个数Prepared on 21 November 2021第5讲图形个数一、知识要点同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:(1)数出下图中有多少条线段(2)数出下图中有几个长方形【例题2】数出图中有几个角?【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有:∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
练习2:数出图中有几个角?(1) (2)【例题3】数出右图中共有多少个三角形? 【思路导航】方法一:我们可以采用按边分类数的方法。
苏教版数学教科书三年级上册修订说明(2014)
苏教版数学教科书三年级上册修订说明一、主要的调整和变化1.重新整合乘、除数是一位数的乘、除法。
把实验教材分4个单元安排的乘、除法是一位数的乘、除法整合成《两、三位数乘一位数》和《两、三位数除以一位数》两个单元,安排在本册教学。
这样做的原因主要有两个,一是修订后的教材把千以内数的认识和万以内数的认识这两个教学段落整合成了《认识万以内的数》,因而没有必要再把一位数乘、除两位数作为千以内数的认识相匹配的计算内容单独安排;二是为了给学生提供更多的自主探索计算方法的机会,帮助他们更好地保持对计算学习的好奇心,更加完整地理解计算的基本原理和方法。
2.增设“从条件出发分析和解决问题”的策略。
解决问题的策略是本套教科书的特色内容之一。
修订后的教材,从本册起每册安排一个《解决问题的策略》单元。
本册教材侧重引导学生从实际问题中的条件出发展开思考,通过在条件与问题之间建立适当的联系使问题得以解决。
这部分内容与三年级下册安排的从问题出发思考的策略、四年级上册安排的从条件或问题出发灵活思考的策略一起,构成了“解决问题的策略”内容板块的基石,能为学生分析和解决问题能力的进一步提升提供有力的支撑。
3.增设“探索规律”专题活动。
在一、二年级,教材主要结合相关内容引导学生自主探索一些简单的数和图形规律。
从本册起,教材开始逐册安排相对独立的“探索规律”专题活动。
与实验教材相比,这部分内容不再设置教学单元,而是通过专题活动让学生经历探索和发现规律的过程,并在此过程中体会由具体到抽象、由特殊到一般的归纳思想;同时,突出对探索过程的回顾和反思,大幅度降低应用规律解决问题的要求。
本册教材主要引导学生通过分析间隔排列的两类事物数量之间的关系,总结、归纳其中的规律,经历数学抽象的过程,发展初步的推理能力。
4.提前安排“平移、旋转和轴对称”,适当降低教学要求。
本册教材安排的《平移、旋转和轴对称》,由实验教材中两个单元整合而成。
根据课程标准的要求,这部分内容的教学要求有所降低:不再要求在方格纸上平移简单图形,也不再要求补全一个轴对称图形。
三年级奥数专题-图形个数
三年级奥数专题-图形个数一、知识要点同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果.要正确数出图形的个数,关键是要从基本图形入手.首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和. 二、精讲精练【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法.以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条.所以,图中共有线段3+2+1=6(条).方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条.所以,图中一共有3+2+1=6(条)线段.练习1:(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?【例题2】数出图中有几个角?【思路导航】数角的个数可以采用与数线段相同的方法来数.方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有:∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD1个.所以,图中共有角3+2+1=6(个).方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本EA B C D DABCOD C B ABA角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个.所以,图中一共有3+2+1=6(个)角.练习2:数出图中有几个角? (1) (2)【例题3】数出右图中共有多少个三角形?【思路导航】方法一:我们可以采用按边分类数的方法.以PA 为边的三角形有:△PAB 、△PAC 、△PAD 、3个;以PB 为边的三角形还有:△PBC 、△PBD 2个;以PC 为边的三角形还有:△PCD 1个.所以,图中共有三角形3+2+1=6(个).方法二:把图中三角形 △PAB 、△PBC 、△PCD 看做基本三角形来数,那么,由1个基本三角形构成的三角形有:△PAB 、△PBC 、△PCD 3个;由2个基本三角形构成的三角形有: △PAC 、△PBD 2个;由3个基本三角形构成的三角形有:△PAD 1个.所以,图中一共有3+2+1=6(个)三角形.方法三:我们发现,要数出图中三角形的个数,只需数出线段 AD 中包含几条线段就可以了,即3+2+1=6(个).所以图中共有6个三角形.练习3:数出图中共有多少个三角形?(1) (2)【例题4】数出下图中有多少个长方形?【思路导航】数图中有多少个长方形和数三角形的方法一样,长方形是由长、宽两对线段围成,线段 CD 上有3+2+1=6(条)线段,其中每一条与AC 中一条线段对应,分别作为长方形的长和宽,这里共有6×1=6(个)长方形,而AC 上共有2+1=3(条)线段也就有6×3=18(个)长方形.它的计算公式为:长方形的总数=长边线段的总数×宽边线段的总数(3+2+1)×(2+1)=18(个) 答:图中共有18个长方形.O CBAFEAKGI H G FE ADCBAPC B练习4:(1)数出下图中有多少个长方形? (2)数出下图中有多少个正方形?【例题5】有5个同学,每两个人握手一次,一共要握手多少次? 【思路导航】这道题可以用数线段的方法来解答.根据题意,画出线段图,每一个端点代表一个同学. 从图上可以看出,第1个同学要与其余4个同学握手共握手4次;第2个同学还要与其余3个同学握手共握手3次,第3个同学要与其余2个同学握手共握手2次;第4个同学还要与最后1个同学握手共握手1次.所以,一共要握手4+3+2+1=10(次)练习5:(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数?DCBA54321。
小学奥数讲座标准教案-学案-三年级第5讲 图形个数
第5讲 图形个数计算: 308+203-399-97同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?【例题2】数出图中有几个角?EA B C D DABCODC BA【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有: ∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
练习2:数出图中有几个角?(1) (2)【例题3】数出右图中共有多少个三角形?【思路导航】方法一:我们可以采用按边分类数的方法。
三年级图形的个数
三年级图形的个数集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]第5讲图形个数一、知识要点同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:(1)数出下图中有多少条线段?(2)数出下图中有几个长方形?【例题2】数出图中有几个角?【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有:∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB、∠BOC、∠COD看做基本角来数,那么,由1个基本角构成的角有:∠AOB、∠BOC、∠COD 3个;由2个基本角构成的角有: ∠AOC、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
练习2:数出图中有几个角?(1) (2)【例题3】数出右图中共有多少个三角形? 【思路导航】方法一:我们可以采用按边分类数的方法。
三年级奥数 第五讲 图形个数
辅导教案
学员姓名
辅导科目
奥数
年 级
三年级
授课教师
课 题
图形个数
授课时间
教学目标
重点、难点
教学内容
一、知识要点
同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练
【例题1】数出下图中有多少条线段?
【思路导航】方法一:我们可以采用以线段左端点分类数的方法。以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。所以,图中一共有3+2+1=6(条)线段。
小学奥数三级图形计数演示文稿(共27张PPT)
【作业15】 一列火车从石家庄开往上海,中间要停靠6个车站。这条铁 路上有多少条不同的路段?
石家庄 1
2
3
4
56
上海
解:7+6+5+4+3+2+1=28(条).
【思考一下】 一列火车从石家庄开往上海,中间要停靠6个车站。铁路
公司需要为这条线路准备多少种车票?
解:(7+6+5+4+3+2+1)×2=56(种).
【随堂练习2】 数一数,图中共有多少个长方形?
解法二: 长被分成5段,宽被分成2段,所以一共有 (5+4+3+2+1)×(2+1)=45(个)长方形。
【例6】含有☆的正方形有( )个。
☆
解:(1)含有☆的单个小正方形:1个; (2)含有☆,四个小正方形组成的正方形:4个; (3)含有☆,九个小正方形组成的正方形:1个; 因此,含有☆的正方形总共有1+4+1=6(个).
数正方形规律:对于n行n列(n×n)的大正方形来说,正方形 的总数为1×1+2×2+3×3+⋯+n×n.
【作业1】
数一数,下列各图中有多少个三角形?
(5)以E为端点的线段有:2条;
【思考一下】
一列火车从石家庄开往上海,中间要停靠6个车站。
(7)八块组成的长方形:2个;
(2)两块图形的三角形有5个;
(1)解:从上往下数: 第一层:1个; 第二层:1+2=3个; 第三层:3+3=6个; 共有小正方形木块:1+3+6=10个.
(2)解:从上往下数:
第一层:2个; 第二层:2+2=4个; 第三层:4+2=6个; 共有小正方形木块:2+4+6=12个.
小学奥数举一反三三年级优秀教案修订版
小学奥数举一反三三年级优秀教案修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。
如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。
按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。
寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。
善于发现数列的规律是填数的关键。
二、精讲精练【例题1】在括号内填上合适的数。
(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。
(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。
(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。
(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。
(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,(),()(4)2,3,7,18,47,(),()【例题4】根据前面图形里的数的排列规律,填入适当的数。
三年级图形的个数
第5讲 图形个数一、知识要点同学们,你想学会数图形的方法吗要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练【例题1】数出下图中有多少条线段【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:(1)数出下图中有多少条线段 (2)数出下图中有几个长方形【例题2】数出图中有几个角【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有:∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6EA B C D DABCODC BA(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
练习2:数出图中有几个角(1) (2)【例题3】数出右图中共有多少个三角形【思路导航】方法一:我们可以采用按边分类数的方法。
三年级 奥数 第5讲 图形个数
第5讲 图形个数一、知识要点同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练【例题1】数出下图中有多少条线段?【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:(1)数出下图中有多少条线段? (2)数出下图中有几个长方形?【例题2】数出图中有几个角?【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有: ∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
EA B C D DABCODC BA练习2:数出图中有几个角? (1) (2)【例题3】数出右图中共有多少个三角形?【思路导航】方法一:我们可以采用按边分类数的方法。
小学三年级奥数-数图形个数_2022年学习资料
练习2:-·数出图中有几个角?->-●-1-A-B-C-·2-D-E
P-·【例题3】数出右图中共有多少个三角形?-A B-【思路导航】方法一:我们可以采用按边分类 的方法-以PA为边的三角形有:△PAB、△PAC、△PAD、3个:-以PB为边的三角形还有:△ BC、△PBD2个;以PC为-边的三角形还有:△PCD1个。所以,图中共有三角形-3+2+1= 个。-方法二:把图中三角形△PAB、△PBC、△PCD看做基-本三角形来数,那么,由1个基本三 形构成的三角形有:-△PAB、△PBC、△PCD3个;由2个基本三角形构成的-三角形有:△PA 、△PBD2个;由3个基本三角形构成-的三角形有:△PAD1个。所以,图中一共有3+2+1=6 三角形。
【一>-·方法三:我们发现,要数出图中三角形的个数,只需-数出线段AD中包含几条线段就可以了, 3+2+1=6-个。所以图中共有6个三角形。
练习3:-·数出图中共有多少个三角形?->-1-A-B C D E-F-2-K-G可iG
·【例题4】数出下图中有多少个长方形?-【思路导航】数图中有多少个长方形和数三角形的方法-一,长方形是由长、宽两对线段围成,线段CD上有-3+2+1=6(条线段,其中每一条与AC中一条线 对应,-分别作为长方形的长和宽,这里共有6×1=6(个)长方-形,而AC上共有2+1=3(条) 段也就有6×3=18(个)-长方形。它的计算公式为:-长方形的总数=长边线段的总数×宽边线段的 数-3+2+1×2+1=18个-答:图中共有18个
I>-图形个数小学三年级奥数-数图形个数
一、知识要点-·同学们,你想学会数图形的方法吗?要想不重复也不-遗漏地数出线段、角、三角形、长 形…那就必须要-有次序、有条理地数,从中发现规律,以便得到正确-的结果。-·要正确数出图形的个 ,关键是要从基本图形入手。-首先要弄清图形中包含的基本图形是什么,有多少个-,然后再数出由基本 形组成的新的图形,并求出它-们的和。
三年级图形的个数
三年级图形的个数 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】第5讲 图形个数一、知识要点同学们,你想学会数图形的方法吗要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练【例题1】数出下图中有多少条线段【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A 点为左端点的线段有:AB 、AC 、AD 3条;以B 点为左端点的线段有:BC 、BD 2条;以C 点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB 、BC 、CD 看做基本线段来数,那么,由1条基本线段构成的线段有:AB 、BC 、CD 3条;由2条基本线段构成的线段有:AC 、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:(1)数出下图中有多少条线段 (2)数出下图中有几个长方形【例题2】数出图中有几个角【思路导航】数角的个数可以采用与数线段相同的方法来数。
EA B C D DABCODC BA方法一:以OA 为一边的角有:∠AOB 、∠AOC 、∠AOD 3个;以OB 为一边的角还有:∠BOC 、∠BOD 2个;以OC 为一边的角还有:∠COD 1个。
所以,图中共有角3+2+1=6(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
三年级计数问题之数图形(2021年整理)
(完整)三年级计数问题之数图形(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)三年级计数问题之数图形(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)三年级计数问题之数图形(word版可编辑修改)的全部内容。
数图形
一、例题
1、下图中一共有多少条线段?
2、下图中长方形和正方形一共有多少个?
3、下图中长方形和正方形一共有多少个?
4、下图中一共有多少个三角形?
5、下图中有多少个三角形?
二、练习题
1
2、图中长方形和正方形一共有多少个?
3、下图中有多少个长方形和正方形。
4、下图中有多少三角形。
4、下图中有多少个平形四边形。
作业1、数一数下图中有多少条线段。
2、下图中有多少个长方形和正方形?
3、下图中有多少个三角形?
(选作题)4、图中有多少个三角形?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三年级图形的个数集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
第5讲图形个数
一、知识要点
同学们,你想学会数图形的方法吗?要想不重复也不遗漏地数出线段、角、三角形、长方形……那就必须要有次序、有条理地数,从中发现规律,以便得到正确的结果。
要正确数出图形的个数,关键是要从基本图形入手。
首先要弄清图形中包含的基本图形是什么,有多少个,然后再数出由基本图形组成的新的图形,并求出它们的和。
二、精讲精练
【例题1】数出下图中有多少条线段?
【思路导航】方法一:我们可以采用以线段左端点分类数的方法。
以A点为左端点的线段有:AB、AC、AD 3条;以B点为左端点的线段有:BC、BD 2条;以C点为左端点的线段有:CD 1条。
所以,图中共有线段3+2+1=6(条)。
方法二:把图中线段 AB、BC、CD看做基本线段来数,那么,由1条基本线段构成的线段有:AB、BC、CD 3条;由2条基本线段构成的线段有:AC、BD 2条;由3条基本线段构成的线段有:AD 1条。
所以,图中一共有3+2+1=6(条)线段。
练习1:
(1)数出下图中有多少条线段(2)数出下图中有几个长方形
【例题2】数出图中有几个角?
【思路导航】数角的个数可以采用与数线段相同的方法来数。
方法一:以OA为一边的角有:∠AOB、∠AOC、∠AOD 3个;以OB为一边的角还有:
∠BOC、∠BOD 2个;以OC为一边的角还有:∠COD 1个。
所以,图中共有角
3+2+1=6(个)。
方法二:把图中∠AOB 、∠BOC 、∠COD 看做基本角来数,那么,由1个基本角构成的角有:∠AOB 、∠BOC 、∠COD 3个;由2个基本角构成的角有: ∠AOC 、∠BOD 2个;由3个基本角构成的角有:∠AOD 1个。
所以,图中一共有3+2+1=6(个)角。
练习2:数出图中有几个角?
(1) (2)
【例题3】数出右图中共有多少个三角形? 【思路导航】方法一:我们可以采用按边分类数的方法。
以PA 为边的三角形有:△PAB 、△PAC 、△PAD 、3个;以PB 为边的三角形还有:△PBC 、△PBD 2个;以PC 为边的三角形还有:△PCD 1个。
所以,图中共有三角形3+2+1=6(个)。
方法二:把图中三角形 △PAB 、△PBC 、△PCD 看做基本三角形来数,那么,由1个基本三角形构成的三角形有:△PAB 、△PBC 、△PCD 3个;由2个基本三角形构成的三角形有: △PAC 、△PBD 2个;由3个基本三角形构成的三角形有:△PAD 1个。
所以,图中一共有3+2+1=6(个)三角形。
方法三:我们发现,要数出图中三角形的个数,只需数出线段 AD 中包含几条线段就可以了,即3+2+1=6(个)。
所以图中共有6个三角形。
练习3:数出图中共有多少个三角形?
(1) (2) 【例题4】数出下图中有多少个长方形?
【思路导航】数图中有多少个长方形和数三角形的方法一样,长方形是由长、宽两对线段围成,线段 CD 上有3+2+1=6(条)线段,其中每一条与AC 中一条线段对应,分别作为长方形的长和宽,这里共有6×1=6(个)长方形,而AC 上共有2+1=3(条)线段也就有6×3=18(个)长方形。
它的计算公式为:
长方形的总数=长边线段的总数×宽边线段的总数
(3+2+1)×(2+1)=18(个) 答:图中共有18个长方形。
练习4:(1)数出下图中有多少个长方形 (2)数出下图中有多少个正方形
【例题5】有5个同学,每两个人握手一次,一共要握手多少次?
O C
B
A F E A
K G I H G F
E D C B A
D C B A
【思路导航】这道题可以用数线段的方法来解答。
根据题意,画出线段图,每一个端点代表一个同学。
从图上可以看出,第1个同学要与其余4个同学握手共握手4次;第2个同学还要与其余3个同学握手共握手3次,第3个同学要与其余2个同学握手共握手2次;第4个同学还要与最后1个同学握手共握手1次。
所以,一共要握手4+3+2+1=10(次)
练习5:
(1)银海学校三年级有9个班,每两个班要比赛拔河一次,这样一共要拔河几次?
(2)有1,2,3,4,5,6,7,8等8个数字,能组成多少个不同的两位数? 5
4321。