化学与生物传感器优秀课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)ISFET具有体积小,重量轻,机械强度大等特 点,特别适合于生物体内和高压条件下的测量使用。
(3)敏感膜可以做得很薄,一般可小于100nm。这 可使ISFET的水化时间很短,从而使离子活度的响应速 度很快,响应时间可小于1s。
(4)易于将信息转换部分和信号放大检出部分与敏 感器件集成在一块芯片上,实现整个系统的智能化、小 型化和全固态化。
非极性界面和极性界面电荷分布的 大致情况如图8-7和如图8-8所示 :
8.1.2.2 ISFET的特点和应用
ISFET的特点:
根据以上介绍的ISFET的结构和工作原理可知,它 具有以下特点:
(1)ISFET器件本身就能完成由高阻抗到低阻抗的 变换,同时具有展宽频带和对信号进行放大的作用,这 将使测量仪器大为简化。
所示是其输
出特性和转
移特性曲线。
离子敏传感器的结构与工作原理
将普通的MOSFET的金属栅去掉,让 绝缘体氧化层直接与溶液相接触,或者将 栅极用铂膜作引出线,并在铂膜上涂覆一 层离子敏感膜,就构成了一只ISFET。如 图8-6所示。
ISFET是利用其 对溶液中离子有选 择作用而改变栅极 电位,以此来控制 漏源电流变化的。
(5)ISFET无需考虑离子敏感材料导电性问题,这 就可在包括绝缘材料在内的广泛材料领域中找到更多更 好的离子敏感材料。
ISFET的应用:
(1)对生物体液中无机离子的检测 (2)在环境保护中的应用
(3)在其他方面的应用串行通信
8.1.3 气敏传感器
早在20世纪30年代就已发现氧 化亚铜的导电率随水蒸气的吸附而发 生改变,其后又发现其它许多金属氧 化物也都具有气敏效应。20世纪 60 年代研制成功了SnO2气敏元件,从 此进入了实用阶段。这些金属氧化物 都是利用陶瓷工艺制成的具有半导体 特性的材料,因此称之谓半导体陶瓷 (简称半导瓷)。
8.1 化学传感器
化学传感器包括电化学传感器、 光化学传感器、质量化学传感器和热化 学传感器。
根据转换的电信号种类不同,可 将电化学传感器分为电流型化学传感器、 电位型化学传感器和电阻型化学传感器。
8.1.1 电位型电化学传感器原理
有三种基本电化学过程适用于构成传 感器:
1.电位法:测量零电流下的电池电 位;
图8-1 将一金属电极浸在电解液中为一半电池
图8-2 两个半电池电极组合成一完整的电池
图 8-3 氢电极与其它半电池相连接
溶液浓度与测量电极电位的关系由能斯特 方程确定,基本能斯持方程是从基础热力学方 程导出的对数关系式
EE00.06lgO Rx
式中 E-测量电极电位,V;
E0-参考电极电位,V;
化学与生物传感器优秀课件
8.1 化学传感器
8.1.1 电位型电化学传感器原理 8.1.2 离子敏感器件 8.1.2.1 ISFET的结构与工作原理 8.1.2.2 ISFET的特点和应用 8.1.3 气敏传感器 8.1.3.1气敏半导体材料的导电机理 8.1.3.2 电阻型气敏器件 8.1.3.3 非电阻型气敏器件
根据电化学观点,敏感膜与溶液界面 可分如下两种情况:
(1)非极性界面这种界面至少可让一种带 电粒子通过,界面产生电势的大小取决于电子或 离子的交换作用。可以认为,在H+-ISFET的表 面存在如下平衡:
(2)极性界面 这种界面不允许带电粒子 通过或传递极缓慢,此时界面电势的情况取决于 带电粒子的表面吸附或偶极子的定向排列作用。
当将ISFET插入溶液时,被测溶液与敏感膜接 触处就会产生一定的界面电势,其大小决定于溶液 中被测离子的活度,这一界面电势的大小将直接影 响VT的值。如果以ai表示响应离子的活度,则当被 测溶液中的干扰离子影响极小时,阈值电压可用下 式表示:
V a CSlg
T
i 式(8-2)
式中的C、S,对一定的器件、一定的溶液而 言,在固定参考电极电位时是常数,因此ISFET的 阈值电压与被测溶液中的离子活度的对数成线性关 系。
[Ox]-溶液中氧化性物质浓度(活度), mol/L;
[R]- 溶液中还原性物质浓度(活度), mol/L,金属电极[R]=1。
Leabharlann Baidu 8.1.2 离子敏感器件
离子敏感器件是一种对离子具有选择敏 感作用的场效应晶体管。它是由离子选择性 电极(ISE)与金属-氧化物-半导体场效 应晶体管(MOSFET)组合而成,简称ISFET 。IS-FET是用来测量溶液(或体液)中的 离子活度的微型固态电化学敏感器件。
在栅极不加偏压
时,栅氧化层下面的
硅是P型,而源漏是N
型,故源漏之间不导
通。
当栅源之间加正
向 偏 压 VGS , 且 有 VGS>VT(阈电压)时,则栅氧化层下面 的硅就反型,从P型变为N型。这个N型区 就将源区和漏区连接起来,起导电通道的 作用,称为沟道,此时MOSFET就进人工 作状态。
在 MOSFET的栅电极加上大于VT的 正偏压后,源漏之间加电压VDS,则源 和 漏 之 间 就 有 电 流 流 通 , 用 IDS 表 示 。 IDS的大小随VGS和VDS的大小而变化, 其变化规律即MOS-FET的电流电压特性, 图8-5
2. 伏安法(电流法):在电池电位间设 置氧化(或还原)电位来测量电池的 电流;
3. 电导法:用一交流电桥方法来测量 电池的电导。
现在只讨论电位法:
将一金属条(例如银)置于一含离子的 溶液(如银离子)中,沿着金属和溶液的界 面会产生电荷分布,这就产生了人们所 说的电子压力,通常称为电位。
电动势数值大小取决于几个因素: ①电极材料;②各个半电池内的溶液性 质及浓度;③通过膜(或盐桥)的液体接界 电位。 如图图 8-1,8-2,8-3.
8.1.2.1 ISFET的结构与工作原理
MOFET的结构和特性
用半导体工艺制作的金属-氧化物-半导体 场效应晶体管的典型结构如图8-4所示。它的衬 底材料为P型硅。用扩散法做两个N+区,分别 称为源(S)和漏(D),在漏源之间的P型硅表 面,生长一薄层SiO2,在SiO2上再蒸发一层金 属Al,称为栅电极,用G所示。
8.2 生物传感器
8.2.1 酶传感器 8.2.1.1 酶反应 8.2.1.2 酶传感器 8.2.2 微生物传感器 8.2.2.1 微生物反应 8.2.2.2 微生物传感器 8.2.3 免疫传感器 8.2.3.1 免疫学反应 8.2.3.2 免疫传感器 8.2.4 生物组织传感器 8.2.5 光生物传感器
相关文档
最新文档