高中数学必修四:第二章 平面向量的概念及其表示活动单

合集下载

高中数学必修4第二章平面向量教案完整版

高中数学必修4第二章平面向量教案完整版

§ 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:;④向量的大小――长度称为向量的模,记作||.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点)B(终点)aO ABaaab b b§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作=a ,=b,则向量叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|<||+||; (3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||. (4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作= =,则+=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aABCa +ba +baa bbabb aa2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 a (2) 规定:零向量的相反向量仍是零向量.(a ) = a. 任一向量与它的相反向量的和是零向量.a + (a ) = 0如果a 、b 互为相反向量,则a = b , b = a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a b = a + (b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a b ) + b = a + (b ) + b = a + 0 = a作法:在平面内取一点O , 作OA = a , AB = b则BA = a b 即a b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b a.O abBa ba b2)若a ∥b , 如何作出ab§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ=0 2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量a bAABBB ’Oa baa b bOAOBa ba bBA Ob§2.3.2—§ 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相.等的向量的坐标也为.........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a =,则点A 的位置由a 唯一确定. 设yj xi +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB OA =( x 2, y 2) (x 1,y 1)= (x 2 x 1, y 2 y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x --=二、讲解新课:a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中bρa ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵bρ0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y =∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (bρ)01221=-=⇔y x y x λ§平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (bρ0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ, 使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F ||s |cos ,是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b;(4)注意在两向量的夹角定义,两向量必须是同起点的.范围0≤≤1802.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos 的符号所决定.(2)两个向量的数量积称为内积,写成a b ;今后要学到两个向量的外积a ×b ,而a b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a 0,且a b =0,则b =0;但是在数量积中,若a 0,且a b =0,不能推出b =0.因为其中cos 有可能为0.(4)已知实数a 、b 、c (b 0),则ab=bc a=c .但是a b = b c a = c 如右图:a b = |a ||b |cos = |b ||OA|,bc = |b ||c |cos = |b ||OA|a b = b c 但a c(5)在实数中,有(a b )c = a (b c ),但是(a b )ca (bc )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos 2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a ba ⋅5 |ab | ≤ |a ||b |C二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0. 3.“投影”的概念:作图定义:|b |cos 叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 |b |;当 = 180时投影为 |b |. 4.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1 e a = a e =|a |cos ; 2 ab a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4cos =||||b a ba ⋅ ;5|ab | ≤ |a ||b |二、讲解新课: 平面向量数量积的运算律1.交换律:a b = b a 证:设a ,b 夹角为,则a b = |a ||b |cos ,ba = |b ||a |cos ∴a b = b a 2.数乘结合律:(λa )b =λ(a b ) = a (λb ) 证:若λ> 0,(λa )b =λ|a ||b |cos, λ(a b ) =λ|a ||b |cos ,a (λb )=λ|a ||b |cos ,若λ< 0,(λa )b =|λa ||b |cos() =λ|a ||b |(cos ) =λ|a ||b |cos ,λ(a b ) =λ|a ||b |cos ,a (λb ) =|a ||λb |cos() =λ|a ||b |(cos ) =λ|a ||b |cos .C3.分配律:(a + b )c = a c + b c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos = |a | cos1 + |b | cos2 ∴| c | |a + b | cos =|c | |a | cos1 + |c | |b | cos 2, ∴c (a + b ) = c a + c b即:(a + b )c = a c + b c 说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2 三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos 叫a与b的数量积,记作a b ,即有a b = |a ||b |cos ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a b 等于a 的长度与b 在a 方向上投影|b |cos 的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1 e a = a e =|a |cos ;2 a b a b = 03 当a 与b 同向时,a b = |a ||b |;当a 与b 反向时,a b = |a ||b |. 特别的a a = |a |2或a a a ⋅=||4 cos =||||b a b a ⋅ ;5|a b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a b = ba 数乘结合律:(λa )b =λ(a b ) = a (λb ) 分配律:(a + b )c = a c + b c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s =||||b a b a ⋅⋅。

高中数学 必修四 课件:第二章 平面向量

高中数学  必修四 课件:第二章 平面向量
专题突破
第二章 章末归纳总结
数学 ·人教A版 · 必修4
专题一 有关向量的共线问题 已知a=(1,2),b=(-3,2).若ka+2b与2a-4b
平行,求实数k的值. [分析] 本题考查两向量的共线问题,要求学生熟练掌握
两向量共线的条件.
第二章 章末归纳总结
数学 ·人教A版 · 必修4
[解析] ∵ka+2b=k(1,2)+2(-3,2)=(k-6,2k+4), 2a-4b=2(1,2)-4(-3,2)=(14,-4), ka+2b与2a-4b平行, ∴(k-6)(-4)-(2k+4)×14=0. 解得k=-1.
→ OP

→ OQ

直,求x的值.
第二章 章末归纳总结
数学 ·人教A版 · 必修4
[解析]

→ OP
=(2cosx+1,2cos2x+2),
→ OQ
=(cosx,-
1),
∴由两向量垂直的条件得cosx(2cosx+1)-1×(2cos2x+2)
=0,
即2cos2x+cosx-2(2cos2x-1)-2=0.
数学 ·人教A版 · 必修4
[解析] 解法1:∵||a|-|b||≤|a-b|≤|a|+|b|, ∴1≤|a-b|≤7. 即:|a-b|的范围是[1,7]. 解法2:∵|a-b|2=a2+b2-2a·b =a2+b2-2|a||b|cosθ =25-24cosθ, θ为两向量a、b的夹角,∴θ∈[0,π], ∴|a-b|2∈[1,49].∴|a-b|∈[1,7].
[点拨] 本题易犯的三点错误: (1)求a=2e1+e2或b=-3e1+2e2的模时,错认为|a|= 22+12 或|b|= -32+22 ,这是因为e1与e2不是互相垂直的 单位向量,所以(2,1)或(-3,2)不是a或b的坐标,要将其转化 成模的平方. (2)求点乘e1·e2时极易漏掉cosθ, 应为e1·e2=|e1||e2|cosθ(θ为e1与e2的夹角).

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

高中数学 第二章 平面向量 2.3.1 平面向量基本定理课件 新人教A版必修4

1.若向量 a,b 不共线,则 c=2a-b,d=3a-2b, 试判断 c,d 能否作为基底. 解:设存在实数 λ,使 c=λd, 则 2a-b=λ(3a-2b), 即(2-3λ)a+(2λ-1)b=0, 由于向量 a,b 不共线, 所以 2-3λ=2λ-1=0,这样的 λ 是不存在的, 从而 c,d 不共线,c,d 能作为基底.
探究点二 用基底表示平面向量
如图所示,在▱ABCD 中,点 E,F
分别为 BC,DC 边上的中点,DE 与 BF 交 于点 G,若A→B=a,A→D=b,试用 a,b 表 示向量D→E,B→F.
[解] D→E=D→A+A→B+B→E =-A→D+A→B+12B→C
=-A→D+A→B+12A→D=a-12b.
4.若 a,b 不共线,且 la+mb=0(l,m∈R),则 l=________, m=________. 答案:0 0 5.若A→D是△ABC 的中线,已知A→B=a,A→C=b,若 a,b 为基底,则A→D=________. 答案:12(a+b)
探究点一 对基底的理解
设 O 是平行四边形 ABCD 两对角线的交点,给出下列向
解:D→E=D→C+C→E=2F→C+C→E=-2C→F+C→E=-2b+a.
B→F=B→C+C→F=2E→C+C→F
=-2C→E+C→F=-2a+b.
用基底表示向量的两种方法 (1基底表示为止. (2)通过列向量方程或方程组的形式,利用基底表示向量的唯一 性求解.
对基底的理解 (1)两个向量能否作为一组基底,关键是看这两个向量是否共 线.若共线,则不能作基底,反之,则可作基底. (2)一个平面的基底若确定,那么平面上任意一个向量都可以由 这组基底唯一线性表示出来,设向量 a 与 b 是平面内两个不共 线的向量,若 x1a+y1b=x2a+y2b,则xy11==yx22.,

高中数学必修4第二章平面向量教案完整版

高中数学必修4第二章平面向量教案完整版

§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小.2.向量的表示方法:①用有向线段表示;②用字母a、b(黑体,印刷用)等表示; ③用有向线段的起点与终点字母:AB ; ④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.A(起点) B (终点)aO A B a a a b b b §2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法.2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +bAC BC AB =+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |;(3)当a 与b 同向时,则a +b 、a 、b 同向,且|a +b |=|a |+|b |,当a 与b 反向时,若|a |>|b |,则a +b 的方向与a 相同,且|a +b |=|a |-|b |;若|a |<|b |,则a +b 的方向与b 相同,且|a +b|=|b |-|a |.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到n 个向量连加 3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=.4.加法的交换律和平行四边形法则 问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)aA B C a +b a +b a a b b a b b aa2)向量加法的交换律:a +b =b +a5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a ) = a.任一向量与它的相反向量的和是零向量.a + (-a ) = 0如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0(3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差.即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法.2. 用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b3. 求作差向量:已知向量a 、b ,求作向量∵(a -b ) + b = a + (-b ) + b = a + 0 = a作法:在平面内取一点O ,作OA = a , AB = b 则BA = a - b 即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b -a. O ab B a b a -b2)若a ∥b , 如何作出a - b§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa(1)|λa |=|λ||a |;(2)λ>0时λa 与a 方向相同;λ<0时λa 与a方向相反;λ=0时λa =02.运算定律结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e .探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解;(4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量a -b A A B B B’ O a -b a a b b O A O B a -b a -b B A O -b§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解;(4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量二、讲解新课:1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x .特别地,)0,1(=i ,)1,0(=j ,)0,0(0=. 如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定. 设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=(2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=二、讲解新课:a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=0设a =(x 1, y 1) ,b =(x 2, y 2) 其中b ≠a .由a =λb 得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0 探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ∥b (b ≠0)01221=-=⇔y x y x b a λ§2.4平面向量的数量积一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa .2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a=λ11e +λ22e3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ∥b (b ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比. 8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点.9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b,可得OP =b a b a λλλλλ+++=++1111. 10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角.二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向;(3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅ca = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.C4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒ cos θ =||||b a b a ⋅ 5︒ |a ⋅b | ≤ |a ||b |二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 0C3︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a 证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a 数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅.设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+=又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x +=这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。

高中数学 第二章 平面向量教案 北师大版必修4

高中数学 第二章 平面向量教案  北师大版必修4

第二章平面向量§1从位移、速度、力到向量1.1 位移、速度和力1.2 向量的概念(教师用书独具)●三维目标1.知识与技能(1)理解、掌握向量的概念.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念.2.过程与方法在理解向量等有关概念的基础上,充分联系实际,培养学生解决生活实际问题的能力.3.情感、态度与价值观(1)通过对向量的学习,使学生对现实生活中的向量和标量有一个清楚的认识,培养学生对现实生活中的真善美的识别能力.(2)对学生进行辨证思想的教育.●重点难点重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.难点:向量的概念,平行向量、相等向量和共线向量的区别和联系.(教师用书独具)●教学建议1.本节的教学应当特别注意从向量的物理背景、几何背景入手,从学生熟悉的矢量概念引出向量概念,还可以要求学生自己举出一些“既有大小,又有方向的量”,从而使学生更好地把握向量的特点.2.本节介绍了两种向量的表示方法:几何表示和字母表示.几何表示为用向量处理几何问题打下了基础,而字母表示则利于向量运算,这两种方法需要学生熟练掌握.教科书用黑体字母表示向量,如a ,在手写时可用a →表示.用有向线段表示向量时,要提醒学生注意AB →的方向是由点A 指向点B ,点A 是向量的起点.3.相等向量是长度相等且方向相同的向量,相等向量是一类向量的集合.任何一组平行向量都可以移动到同一直线上,因此平行向量与共线向量是等价的,这一点值得特别注意.还要注意平行向量与平行线段的区别.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量,当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.教学中,可以借助信息技术,通过向量的平移来说明向量的相等与起点无关.讲解中要求学生辨析“向量就是有向线段,有向线段就是向量”的说法是否正确,目的是引导学生体会向量只与方向及模的大小有关而与起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.●教学流程创设问题情境,引出问题:位移是既有大小,又有方向的量,你还能举出一些这样的量吗?引入向量概念.⇒通过引导学生回答相关问题,引出有向线段、向量的构成要素,向量的长度(模)、零向量、单位向量等相关概念,并加深对向量的理解,熟悉其几何表示方法.⇒引导学生探究相等向量、共线向量的含义与性质,深刻领会相等向量是一类向量的集合,共线(平行)向量所在线段不一定平行等性质,避免与平面几何中直线平行相混淆.⇒通过例1及其变式训练,强化对向量相关概念的理解,深刻把握好各概念的内涵和外延.⇒通过例2及其变式训练,使学生掌握向量的表示方法及其应用策略.⇒引导学生探究相等向量、共线向量等概念,并完成例3及其互动探究,掌握解此类问题的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解向量的有关概念及向量的几何表示.(重点)2.掌握共线向量、相等向量的概念.(难点)3.正确区分向量平行与直线平行.(易混点)向量及其表示【问题导思】1.在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别? 【提示】 面积、质量只有大小,没有方向;而速度和位移既有大小又有方向. 2.对既有大小又有方向的量,如何形象、直观地表示出来? 【提示】 利用有向线段来表示. 1.定义既有大小又有方向的量叫作向量. 2.有向线段具有方向和长度的线段叫作有向线段.其方向是由起点指向终点,以A 为起点、B 为终点的有向线段记作AB →,线段AB 的长度也叫作有向线段AB →的长度.记作|AB →|.3.向量的长度|AB →|(或|a |)表示向量AB →(或a )的大小,即长度(也称模). 4.向量的表示法(1)向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.(2)向量也可以用黑体小写字母如a ,b ,c …来表示,书写用a →,b →,c →…来表示.向量的有关概念名称 定义 表示方法零向量 长度为零的向量 0单位向量与向量a 同方向,且长度为1a 0(向量a方向上)的向量,叫作a方向上的单位向量相等向量长度相等且方向相同的向量若a等于b,记作a=b向量平行或共线表示两个向量的有向线段所在的直线平行或重合a与b平行或共线,记作a∥b向量的有关概念下列说法正确的是( )A .若向量AB →与CD →是共线向量,则A 、B 、C 、D 必在同一直线上 B .若向量a 与b 平行,则a 与b 的方向相同或相反 C .向量AB →的长度与向量BA →的长度相等 D .单位向量都相等【思路探究】 利用共线(平行)向量、单位向量、相等向量、向量的长度等概念逐项判断正确与否.【自主解答】 对于A ,考查的是有向线段共线与向量共线的区别.事实上,有向线段共线要求线段必须在同一直线上.而向量共线时,表示向量的有向线段可以是平行的,不一定在同一直线上.对于B ,由于零向量与任一向量平行,因此若a ,b 中有一个为零向量时,其方向是不确定的.对于C ,向量AB →与BA →方向相反,但长度相等.对于D ,需要强调的是:单位向量不仅仅指的是长度,还有方向,而向量相等不仅仅需要长度相等而且还要求方向相同.【答案】 C1.对共线向量的理解是本题的关键点.向量共线即表示共线向量的有向线段在同一条直线上或平行.2.熟知向量的基本概念,弄清基本概念之间的区别与联系是解决向量概念辨析题的基础.下列说法正确的是( )A.AB →∥CD →就是AB →所在的直线平行于CD →所在的直线 B .长度相等的向量叫相等向量 C .零向量的长度等于0D .共线向量是在同一条直线上的向量【解析】 AB →∥CD →包含AB →所在的直线与CD →所在的直线平行和重合两种情况,故选项A 错;相等向量不仅要求长度相等,还要求方向相同,故选项B 错;共线向量可以是在一条直线上的向量,也可以是所在直线互相平行的向量,故选项D 错.【答案】 C向量的表示一辆汽车从A 点出发向西行驶了100km 到达B 点,然后又改变方向向北偏西40°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →; (2)求|AD →|.【思路探究】 先作出表示东南西北的方位图及100 km 长度的线段,然后解答问题.【自主解答】 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线, 又∵|AB →|=|CD →|.∴在四边形ABCD 中,AB 綊CD .∴四边形ABCD 为平行四边形. ∴AD →=BC →,∴|AD →|=|BC →|=200(km).1.在画图时,向量是用有向线段来表示的,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.2.用有向线段来表示向量,显示了图形的直观性,为以后学习向量提供了几何方法,这也体现了数形结合的数学思想.应注意的是有向线段是向量的表示方法,并不是说向量就是有向线段.3.要注意能够运用向量观点将实际问题抽象成数学模型.“数学建模”能力是今后能力培养的主要方向.图2-1-1在如图的方格纸中,画出下列向量.(每个小正方形的边长为1) (1)|OA →|=4,点A 在点O 正北方向;(2)|OB →|=22,点B 在点O 东偏南45°方向;(3)画一个以C 为起点的向量c ,使|c |=2,并说出c 的终点的轨迹是什么? 【解】 (1)(2)(3)的图像如图所示.(3)c 的终点轨迹是以C 为圆心半径为2的圆.相等向量与共线向量图2-1-2如图2-1-2所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点.(1)写出与EF →共线的向量; (2)写出与EF →的模相等的向量;(3)写出与EF →相等的向量.【思路探究】 解答本题可依据相等向量及共线向量的定义求解. 【自主解答】 ∵E 、F 分别是AC 、AB 的中点, ∴EF ∥BC ,且EF =12BC .又∵D 是BC 的中点,∴EF =BD =DC .(1)与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →. (2)与EF →的模相等的向量有:FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量有:DB →,CD →.1.本题以三角形中位线与底边的关系为载体,融相等向量及共线向量的知识于其中,求解时可充分借助于几何图形的相关性质,使向量与几何有机地结合起来,用共线向量反映几何图形中的位置关系,用向量模的关系,反映几何图形中的长度关系.2.判断一组向量是否相等,关键看向量是否方向相同和长度相等,与起点和终点位置无关.对于共线向量,则只要同向或反向即可.在本例条件不变的情况下,写出与AC →共线的向量和与CE →相等的向量. 【解】与AC →共线的向量有:CA →,FD →,DF →,CE →,EC →,AE →,EA →; 与CE →相等的向量有:EA →,DF →.忽视零向量方向致误给出下列六个命题:①两个向量相等,则它们的起点相同、终点相同; ②若|a |=|b |,则a =b ;③若AB →=DC →,则ABCD 是平行四边形; ④在平行四边形ABCD 中,一定有AB →=DC →; ⑤若m =n ,n =k ,则m =k ; ⑥若a ∥b ,b ∥c ,则a ∥c . 其中不正确的命题的个数为( )A .2B .3C .4D .5 【错解】 选B.【错因分析】 ⑥中若b =0则结论不成立,因为0的方向不确定.【防范措施】 对于向量的概念要认真理解,尤其是零向量一定要记住其特殊性.【正解】 两个向量起点相同、终点相同,则两个向量相等;但两个向量相等,却不一定起点相同,终点相同,故①不正确.根据向量相等的定义,要保证两向量相等,不仅模相等,而且方向相同,而②中方向不一定相同,故不正确.③也不正确,因为A ,B ,C ,D 可能落在同一条直线上.零向量方向不确定,它与任一向量都平行,故⑥中若b =0,则a 与c 就不一定平行了.因此⑥也不正确.【答案】 C1.学习了向量的概念及其表示,明确了有向线段与向量之间的关系. 2.掌握了特殊向量及向量之间的关系,以及它们的性质特点. 3.能在具体图形中找出相等向量与共线向量.1.下列命题中,正确的是( ) A .|a |=|b |⇒a =b B .|a |>|b |⇒a >b C .a =b ⇒a ∥bD .|a |=0⇒a =0【解析】 如果两个向量相等,则这两个向量必定平行. 【答案】 C2.如图2-1-3,AB →=DC →,AC 与BD 相交于点O ,则相等的向量是( )A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →图2-1-3【解析】 |DO →|=|OB →|,且DO →与OB →方向相同,则DO →=OB →,故选D. 【答案】 D 3.给出下列命题:①若|a |>|b |,则a >b ;②若a =b ,则a ∥b ;③若|a |=0,则a =0;④0=0;⑤向量AB →大于向量CD →;⑥方向不同的两个向量一定不平行.其中,正确命题的序号是________.(把你认为正确的命题序号都填上)【解析】 ①不正确.|a |>|b |知模的大小,而不能确定方向,向量不能比较大小;②正确.共线向量是指方向相同或相反的向量,相等向量一定共线;③正确;④不正确.0是一个向量,而0是一个数量,应|0|=0;⑤不正确.因为向量不能比较大小,这是向量与数量的显著区别,向量的模可以比较大小;⑥不正确.因为平行向量包括方向相同和方向相反两种情况.【答案】 ②③图2-1-44.如图,在等腰梯形ABCD 中,对角线AC 与BD 相交于点O ,EF 是过点O 且平行于AB 的线段.(1)写出图中的各组共线向量; (2)写出图中的各对同向向量; (3)写出图中的各对反向向量.【解】 (1)向量DC →,BA →,EO →,OF →为一组共线向量; 向量AO →与OC →为一组共线向量; 向量OD →与OB →为一组共线向量; 向量AE →与ED →为一组共线向量; 向量BF →与FC →为一组共线向量.(2)向量DC →与EO →,OF →为同向向量,向量AO →与OC →,AE →与ED →,BF →与FC →分别为同向向量. (3)DC →与BA →,BA →与EO →,BA →与OF →,OD →与OB →为反向向量.一、选择题1.如图2-1-5,在正方形ABCD 中,可以用同一条有向线段表示的向量是( )图2-1-5A.DA →与BC →B.AB →与DC →C.DC →与DA →D.BC →与AB →【解析】 ∵AB →=DC →,∴AB →与DC →可用同一条有向线段表示. 【答案】 B图2-1-62.如图2-1-6所示,梯形ABCD 为等腰梯形,则两腰上的向量AB →与DC →的关系是( ) A.AB →=DC → B .|AB →|=|DC →| C.AB →>DC → D.AB →<DC →【解析】 |AB →|与|DC →|表示等腰梯形两腰的长度,故相等. 【答案】 B图2-1-73.如图所示,△ABC 的三边均不相等,E 、F 、D 分别是AC 、AB 、BC 的中点,则与E F →的模相等的向量共有( )A .6个B .5个C .4个D .3个【解析】 ∵E 、F 、D 分别是边AC 、AB 和BC 的中点, ∴EF =12BC ,BD =DC =12BC .又∵AB ,BC ,AC 均不相等,从而与EF →的模相等的向量是:FE →,BD →,DB →,DC →,CD →. 【答案】 B图2-1-84.如图,点O 是正六边形ABCDEF 的中心,则以图中A ,B ,C ,D ,E ,F ,O 中任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA →外,与向量OA →共线的向量共有( )A .6个B .7个C .8个D .9个【解析】 由共线向量的定义及正六边形的性质,与向量OA →共线的向量有AO →,OD →,DO →,AD →,DA →,EF →,FE →,BC →,CB →,共有9个.故选D.【答案】 D5.下列说法中,不正确的是( ) A .0与任意一个向量都平行B .任何一个非零向量都可以平行移动C .长度不相等而方向相反的两个向量一定是共线向量D .两个有共同起点且共线的向量其终点必相同【解析】 易知A 、B 、C 均正确,D 不正确,它们的终点可能相同,故选D. 【答案】 D 二、填空题6.已知边长为3的等边△ABC ,则BC 边上的中线向量AD →的模等于________. 【解析】 由于AD =32AB =332.∴|AD →|=3 32.【答案】3 32图2-1-97.如图,设O 是正方形ABCD 的中心,则:①AO →=OC →;②AO →∥AC →;③AB →与CD →共线;④AO →=BO →.其中,所有正确的序号为________.【解析】 根据正方形的几何性质以及向量的相等和共线的条件知①②③正确,AO →与BO →的方向不相同,故④不正确.【答案】 ①②③图2-1-108.如图2-1-10所示,四边形ABCD 是边长为3的正方形,把各边三等分后,连接相应分点,共有16个交点,从中选取2个交点组成向量,则与AC →平行且长度为2 2的向量个数是________.【解析】 图中共有4个边长为2的正方形,每个正方形中有符合条件的向量2个(它们分别是连接左下和右上顶点的向量,方向相反),故满足条件的向量共有8个.【答案】 8 三、解答题9.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC →相等的向量; (2)与OB →长度相等的向量; (3)与DA →共线的向量.【解】 如图可知,(1)易知BC =AD ,所以与BC →相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点可知OB =OD =OA =OC ,所以与OB →长度相等的向量有BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA →共线的向量有AD →,BC →,CB →.图2-1-1110.如图2-1-11所示,四边形ABCD 中AB →=DC →,N 、M 分别是AD 、BC 上的点,且CN →=MA →.求证:DN →=MB →.【证明】 ∵AB →=DC →,∴|AB →|=|DC →|且AB ∥CD , ∴四边形ABCD 是平行四边形, ∴|DA →|=|CB →|,且DA ∥CB . 又∵DA →与CB →的方向相同,∴CB →=DA →.同理可证,四边形CNAM 是平行四边形,∴CM →=NA →. ∵|CB →|=|DA →|,|CM →|=|NA →|,∴|MB →|=|DN →|, 又∵DN →与MB →的方向相同,∴DN →=MB →.图2-1-1211.如图2-1-12,A 、B 、C 三点的坐标依次是(-1,0)、(0,1)、(x ,y ),其中x 、y ∈R .当x 、y 满足什么条件时,向量OC →与AB →共线(其中O 为坐标原点)?【解】 由已知,A 、B 的坐标是(-1,0)、(0,1),所以∠BAO =45°. 当点C (x ,y )的坐标满足x =y =0时,OC →=0, 这时OC →与AB →共线(零向量与任意向量都共线); 当xy ≠0,且x =y ,即点C 在一、三象限角平分线上时, 有AB ∥OC ,这时OC →与AB →共线.综上,当x =y 时,OC →与AB →共线.(教师用书独具)如图是中国象棋的半个棋盘,“马走日”是中国象棋的走法,“马”可以从A 跳到A 1或A 2,用向量AA 1→、AA 2→表示“马”走了一步.试在图中画出“马”在B 、C 分别走了一步的所有情况.【解】如图所示,在B处有3种走法;在C处有8种走法.如图,在4×5的方格图中,有一个向量AB →,分别以图中的格点为起点和终点作向量.(1)与向量AB →相等的向量有多少个? (2)与向量AB →长度相等的向量有多少个?【解】 (1)结合向量相等的定义及方格的特征可知与向量AB →相等的向量有3个. (2)与向量AB →长度相等的向量有39个,因为对角线长度与AB →长度相等的每个矩形中有4个与向量AB →长度相等的向量.而这样的矩形共有10个,所以共有4×10-1=39个.§2从位移的合成到向量的加法2.1 向量的加法 2.2 向量的减法(教师用书独具)●三维目标1.知识与技能(1)能熟练运用三角形法则和平行四边形法则,作出几个向量的和、差向量.(2)能结合图形进行向量计算.(3)能准确表达向量加法的交换律和结合律,并能熟练地进行向量计算.2.过程与方法由概念的形成过程和解题的思维过程,体验数形结合思想的指导作用.3.情感、态度与价值观通过阐述向量的减法运算可以转化为向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.●重点难点重点:向量的加法、减法运算.难点:向量加法、减法的几何意义.(教师用书独具)●教学建议几何中的向量加法是用几何作图来定义的,教科书给出了两个向量求和的三角形法则和平行四边形法则,多个向量求和的多边形法则.教科书采用三角形法则来定义向量的加法,这种定义对两向量共线时同样适用,而当两个向量共线时,平行四边形法则就不适用了.当两向量不共线时,向量加法的三角形法则和平行四边形法则是一致的.当求两个或多个不共线向量的和时,和向量是从第一个向量的始点指向最后一个向量的终点.类比数的运算中减法是加法的逆运算,将向量的减法定义为向量加法的逆运算.教学时,要结合三角形法则认真体会其含义.两个向量的减法是把两个向量的始点放在一起,它们的差是以减向量的终点为起点,被减向量的终点为终点的向量.●教学流程创设问题情境:对比实数的加法运算,如何求出两向量的和呢?⇒引导学生结合物理中力的合成,类比发现向量加法的定义及其运算性质.⇒引导学生探究向量减法的定义及向量减法的几何意义.⇒通过例1及变式训练,使学生熟练掌握向量的加、减运算.⇒通过例2及变式训练,使学生熟练掌握利用向量加、减法的几何意义作用.⇒通过例3及变式训练,掌握向量加、减法的综合应用.⇒归纳整理,进行课堂小结,整体认识所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.掌握向量的加法、减法运算.(重点)2.理解向量加法与减法的几何意义及加、减法的关系.(难点)向量求和法则及运算律【问题导思】一架飞机要从A地经B地运物资到C地,问从A地到B地,与从B地到C地这两次位移之和是什么?【提示】 如图所示,这两次位移之和为AB →+BC →,而实际位移为AC →. 由此可以看出AB →+BC →=AC →. 类别图示几何意义向量求和 的法则平行 四边 形法则已知向量a ,b ,作AB →=a ,AD →=b ,再作平行AD →的BC →=b ,连接DC ,则四边形ABCD 为平行四边形,向量AC →叫作向量a 与b 的和,表示为AC →=a +b向量加 法的运 算律交换律 a +b =b +a结合律(a +b )+c =a +(b +c )相反向量【问题导思】向量AB →与向量BA →是一对特殊的向量,它们的长度和方向之间有什么关系? 【提示】 向量AB →与向量BA →长度相等,但方向相反,即AB →=-BA →. 定义把与a 长度相等、方向相反的向量,叫作a 的相反向量,记作-a性质(1)零向量的相反向量仍是零向量,于是-(-a )=a ;(2)互为相反向量的两个向量的和为0,即a +(-a )=(-a )+a =0;(3)若a +b =0,则a =-b ,b =-a向量的减法【问题导思】1.两个相反数的和为零,那么两个相反向量的和也为零向量吗? 【提示】 是零向量.2.根据向量的加法,如何求作a -b?【提示】 先作出-b ,再按三角形或平行四边形法则作出a +(-b ).定义向量a 加上b 的相反向量叫作a 与b 的差,即a -b =a +(-b ),求两个向量差的运算,叫作向量的减法几何 意义如图,设OA →=a ,OB →=b ,则BA →=a -b ,即a -b 表示为从向量b 的终点指向向量a 的终点的向量向量的加法、减法运算(1)在平行四边形ABCD 中,AB →+CB →-DC →=( )A.BC →B.AC →C.DA →D.BD →(2)化简AB →+DA →+BD →-BC →-CA →=________. 【思路探究】 (1)利用平行四边形法则和性质;(2)可用三角形法则,即所谓“首尾相连”;也可以引入空间一点O ,转化成以O 为起点的向量进行化简.【自主解答】 (1)在▱ABCD 中,AB →=DC →,CB →=DA →, ∴AB →+CB →-DC →=(AB →-DC →)+CB →=DA →. (2)法一 原式=AB →+BD →+DA →-(BC →+CA →) =0-BA →=AB →.法二 在平面内任取一点O ,连接OA ,OB ,OC ,OD ,则 原式=(OB →-OA →)+(OA →-OD →)+(OD →-OB →)-(OC →-OB →)-(OA →-OC →) =OB →-OA →+OA →-OD →+OD →-OB →-OC →+OB →-OA →+OC →=OB →-OA →=AB →. 【答案】 (1)C (2)AB →1.求解这类问题,一定要灵活应用向量加法、减法的三角形与平行四边形法则,并注意向量的起点和终点,当向量首尾相连且为和时,用加法;运用向量减法的三角形法则时,一定有两向量起点相同.2.运用向量减法法则时,常考虑方法:(1)通过相反向量,把向量减法转化为加法;(2)引入点O ,将向量起点统一.化简:(1)(BA →-BC →)-(ED →-EC →); (2)(AC →+BO →+OA →)-(DC →-DO →-OB →). 【解】 (1)(BA →-BC →)-(ED →-EC →) =CA →-CD →=DA →.(2)(AC →+BO →+OA →)-(DC →-DO →-OB →) =AC →+BA →-DC →+(DO →+OB →) =AC →+BA →-DC →+DB → =BC →-DC →+DB → =BC →+CD →+DB → =BC →+CB →=0.利用向量加法、减法的几何意义作图图2-2-1如图2-2-1所示,O 为△ABC 内一点,OA →=a ,OB →=b ,OC →=c .求作b +c -a .【思路探究】 解答本题可用平行四边形法则作b +c ,再作b +c -a .【自主解答】 法一 以OB →、OC →为邻边作▱OBDC ,连接OD →、AD →,则OD →=OB →+OC →=b +c ,AD →=OD →-OA →=b +c -a .法二 作CD →=OB →=b ,连接AD ,则AC →=OC →-OA →=c -a ,AD →=AC →+CD →=c -a +b =b +c -a .1.运用三角形法则,作两个向量和的关键是作平移,首尾连.作两个向量差的关键是作平移,共起点,两尾连,指被减.2.当两向量不共线时,也可采用平行四边形法则,多个向量相加减时要注意灵活运用运算律.如图,已知向量a,b,c不共线,求作向量a+b-c.图2-2-2图(1)【解】 法一 如图(1)所示,在平面内任取一点O , 作OA →=a ,AB →=b , 则OB →=a +b ,再作OC →=c , 则CB →=a +b -c .图(2)法二 如图(2)所示,在平面内任取一点O ,作OA →=a ,AB →=b , 则OB →=a +b ,再作CB →=c ,则BC →=-c 连接OC ,则OC →=a +b -c .向量加减法的综合应用图2-2-3如图2-2-3所示,O 是平行四边形ABCD 的对角线AC 、BD 的交点,设AB →=a ,DA →=b ,OC →=c ,求证:b +c -a =OA →.【思路探究】 要证明b +c -a =OA →,可转化为证明b +c =OA →+a ,从而利用向量加法证明;也可以从c -a 入手,利用向量减法证明.【自主解答】 在▱ABCD 中,DA →=CB →=b ,OC →=c 法一 ∵b +c =DA →+OC →=OC →+CB →=OB →, 又∵OA →+a =OA →+AB →=OB →.∴b +c =OA →+a ,即b +c -a =OA →. 法二 ∵c -a =OC →-AB →=OC →-DC →=OD →, OD →=OA →+AD →=OA →-b ,∴c -a =OA →-b ,即b +c -a =OA →.1.法一是利用三角形加法法则证明两个向量的和相等;法二是利用向量减法法则证明两个向量的差相等,证明时可灵活选择方法.2.灵活选择方法,优化思维过程,通过恒等变形来证明等价命题是常用的证明恒等式的方法.P 、Q 是△ABC 的边BC 上的两点,且BP →=QC →,求证:AB →+AC →=AP →+AQ →. 【证明】 ∵AP →=AB →+BP →, AQ →=AC →+CQ →,∴AP →+AQ →=AB →+BP →+AC →+CQ →, 又∵BP →=QC →,∴BP →+CQ →=0, ∴AP →+AQ →=AB →+AC →.错用向量减法法则致误如图所示,已知一点O 到平行四边形ABCD 的三个顶点A 、B 、C 的向量分别为r 1、r 2、r 3,求OD →.图2-2-4【错解】 因为OD →=OC →+CD →, CD →=BA →=OB →-OA →,所以OD →=OC →+OB →-OA →=r 3+r 2-r 1.【错因分析】 错误使用了向量的减法法则导致解错.【防范措施】 减法口决:始点相同,连接终点,箭头指向被减向量.应把首尾相接的放在一起计算,始点相同的放在一起计算.必要时,可画出图像,结合图像观察将使问题更为直观.【正解】 OD →=OC →+CD →=OC →+BA →=OC →+OA →-OB →=r 3+r 1-r 2.1.学习了向量加法的三角形法则和平行四边形法则.2.学习了相反向量的概念,知道向量的减法是向量加法的逆运算. 3.学习了向量减法运算并且掌握了它的几何意义.4.掌握了利用向量的加、减法进行化简、作图、表示其他向量,体会了数形结合的应用.1.正方形ABCD 的边长为1,则|AB →+AD →|为( ) A .1 B. 2 C .3D .2 2【解析】 ∵AB →+AD →=AC →,∴|AB →+AD →|=|AC →|=2,故选B. 【答案】 B2.下列说法正确的是( ) A .0+0=0B .对任意向量a ,b ,都有a +b =b +aC .对任意向量a ,b ,有|a +b |>0D .等式|a +b |=|a |+|b |不可能成立【解析】 ∵0+0=0,∴A 不正确;|a +b |≥0,∴C 不正确;当a ,b 同向共线时,|a +b |=|a |+|b |成立,∴D 不正确;B 正确,故选B. 【答案】 B3.化简AB →-DC →-AD →=________. 【解析】 原式=AB →-(AD →+DC →) =AB →-AC →=CB →. 【答案】 CB →图2-2-54.如图2-2-5,已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为a 、b 、c ,试用a ,b ,c 表示向量OD →.【解】 OD →=OA →+AD →。

高一数学人教A版必修4课件:第二章 平面向量

高一数学人教A版必修4课件:第二章 平面向量

第二章 平面向量章末复习课内容索引0102理网络明结构探题型提能力0304理网络·明结构探题型·提能力题型一 数形结合思想在向量中的运用解析 建立如图所示的直角坐标系.答案 C反思与感悟 数形结合是求解数学问题最常用的方法之一,其大致有以下两条途径:(1)以数解形,通过对数量关系的讨论,去研究图形的几何性质.(2)以形助数,一些具有几何背景的数学关系或数学结构,如能构造与之相应的图形分析,则能获得更直观的解法,这种解题思想在不少章节都有广泛的应用.答案 C题型二 基底思想在解题中的应用则易知OM⊥BC.答案 反思与感悟 平面向量基本定理是平面向量坐标表示的基础,它表明同一平面内的任一向量都可表示为其他两个不共线向量的线性组合.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表示.这样,几何问题就转化为代数问题.题型三 向量坐标法在平面几何中的运用例3 已知在等腰△ABC中,BB′,CC′是两腰上的中线,且BB′⊥CC′,求顶角A的余弦值的大小.解 建立如图所示的平面直角坐标系,设A(0,a),C(c,0),则B(-c,0),因为BB′、CC′为AC、AB边的中线,反思与感悟 把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这种解题方法具有普遍性.解析 建立如图所示的直角坐标系,根据题设条件即可知-2呈重点、现规律1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.。

(完整版)高中数学必修4第二章平面向量教案完整版

(完整版)高中数学必修4第二章平面向量教案完整版

第1课时§2.1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..向线段的起点无关......... A(起点)B(终点)aOABaaa bb b7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关)...... 说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.第2课时§2.2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法. 2、三角形法则(“首尾相接,首尾连”)如图,已知向量a 、b.在平面内任取一点A ,作AB =a ,BC =b,则向量AC 叫做a 与b的和,记作a +b,即 a +b=+=,规定: a + 0-= 0 + a探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |; (3)当与同向时,则+、、同向,且|+|=||+||,当与反向时,若||>||,则+的方向与相同,且|+|=||-||;若||<||,则+的方向与相同,且|+b|=||-||.(4)“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点,可以推广到A BCa +ba +baa b b abb aan 个向量连加3.例一、已知向量a 、b ,求作向量a +b作法:在平面内取一点,作a OA = b AB =,则b a OB +=. 4.加法的交换律和平行四边形法则问题:上题中b +a 的结果与a +b 是否相同? 验证结果相同 从而得到:1)向量加法的平行四边形法则(对于两个向量共线不适应)2)向量加法的交换律:a +b =b +a 5.向量加法的结合律:(a +b ) +c =a + (b +c ) 证:如图:使a AB =, b BC =, c CD =则(a +b ) +c =AD CD AC =+,a + (b +c ) =AD BD AB =+ ∴(a +b ) +c =a + (b +c )从而,多个向量的加法运算可以按照任意的次序、任意的组合来进行.第3课时§2.2.2 向量的减法运算及其几何意义1. 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a 长度相同、方向相反的向量.记作 -a (2) 规定:零向量的相反向量仍是零向量.-(-a ) = a. 任一向量与它的相反向量的和是零向量.a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 (3) 向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差. 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法. 2. 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:若b + x = a ,则x 叫做a 与b 的差,记作a - b 3. 求作差向量:已知向量a 、b ,求作向量 ∵(a -b ) + b = a + (-b ) + b = a + 0 = aOabBa ba -b作法:在平面内取一点O , 作= a , = b 则BA = a - b即a - b 可以表示为从向量b 的终点指向向量a 的终点的向量. 注意:1︒AB 表示a - b .强调:差向量“箭头”指向被减数 2︒用“相反向量”定义法作差向量,a - b = a + (-b ) 显然,此法作图较繁,但最后作图可统一.4. 探究:1)如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是b - a.2)若a ∥b , 如何作出a - b ?2.3平面向量的基本定理及坐标表示第4课时§2.3.1 平面向量基本定理复习引入:1.实数与向量的积:实数λ与向量a ρ的积是一个向量,记作:λa ρ(1)|λa ρ|=|λ||a ρ|;(2)λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λO ABa B’b-b bBa + (-b )a b a -bA ABBB’Oa -b a a bbO AOBa -ba -b BA O-ba ρ=2.运算定律结合律:λ(μa ρ)=(λμ)a ρ ;分配律:(λ+μ)a ρ=λa ρ+μa ρ, λ(a ρ+b ρ)=λa ρ+λb ρ3. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e . 探究:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线;(3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量第5课时§2.3.2—§2.3.3 平面向量的正交分解和坐标表示及运算一、复习引入:1.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e(1)我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2)基底不惟一,关键是不共线;(3)由定理可将任一向量a在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ρ,1e ,2e 唯一确定的数量 二、讲解新课: 1.平面向量的坐标表示如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a +=…………○1 我们把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =…………○2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x . 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定.设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示.2.平面向量的坐标运算(1) 若),(11y x a =,),(22y x b =,则ba +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差.设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++= 即b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --= (2) 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标.AB =OB -OA =( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)(3)若),(y x a =和实数λ,则),(y x a λλλ=.实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即),(y x a λλλ=第6课时§2.3.4 平面向量共线的坐标表示一、复习引入: 1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a =其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=.2.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=. 若),(11y x A ,),(22y x B ,则()1212,y y x x AB --= 二、讲解新课:a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=0设a ρ=(x 1, y 1) ,b ρ=(x 2, y 2) 其中b ρ≠a ρ.由a ρ=λb ρ得, (x 1, y 1) =λ(x 2, y 2) ⎩⎨⎧==⇒2121y y x x λλ 消去λ,x 1y 2-x 2y 1=0探究:(1)消去λ时不能两式相除,∵y 1, y 2有可能为0, ∵b ρ≠0 ∴x 2, y 2中至少有一个不为0(2)充要条件不能写成2211x y x y = ∵x 1, x 2有可能为0 (3)从而向量共线的充要条件有两种形式:a ρ∥b ρ (b ρ≠0)01221=-=⇔y x y x ba λ§2.4平面向量的数量积第7课时一、 平面向量的数量积的物理背景及其含义一、复习引入:1. 向量共线定理 向量b ρ与非零向量a ρ共线的充要条件是:有且只有一个非零实数λ,使b ρ=λa ρ.2.平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ρ,有且只有一对实数λ1,λ2使a ρ=λ11e +λ22e 3.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得yj xi a += 把),(y x 叫做向量a 的(直角)坐标,记作),(y x a = 4.平面向量的坐标运算若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=5.a ρ∥b ρ (b ρ≠0)的充要条件是x 1y 2-x 2y 1=06.线段的定比分点及λP 1, P 2是直线l 上的两点,P 是l 上不同于P 1, P 2的任一点,存在实数λ,使 P P 1=λ2PP ,λ叫做点P 分21P P 所成的比,有三种情况:λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0)7. 定比分点坐标公式:若点P 1(x 1,y 1) ,P2(x 2,y 2),λ为实数,且P P 1=λ2PP ,则点P 的坐标为(λλλλ++++1,12121y y x x ),我们称λ为点P 分21P P 所成的比.8. 点P 的位置与λ的范围的关系:①当λ>0时,P P 1与2PP 同向共线,这时称点P 为21P P 的内分点.②当λ<0(1-≠λ)时,P P 1与2PP 反向共线,这时称点P 为21P P 的外分点. 9.线段定比分点坐标公式的向量形式:在平面内任取一点O ,设1OP =a,2OP =b, 可得OP =b a b a λλλλλ+++=++1111.10.力做的功:W = |F |⋅|s |cos θ,θ是F 与s 的夹角. 二、讲解新课:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.说明:(1)当θ=0时,a与b同向;(2)当θ=π时,a与b反向; (3)当θ=2π时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0︒≤θ≤180︒2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0. ⋅探究:两个向量的数量积与向量同实数积有很大区别(1)两个向量的数量积是一个实数,不是向量,符号由cos θ的符号所决定.(2)两个向量的数量积称为内积,写成a ⋅b ;今后要学到两个向量的外积a ×b ,而a ⋅b 是两C个向量的数量的积,书写时要严格区分.符号“· ”在向量运算中不是乘号,既不能省略,也不能用“×”代替.(3)在实数中,若a ≠0,且a ⋅b =0,则b =0;但是在数量积中,若a ≠0,且a ⋅b =0,不能推出b =0.因为其中cos θ有可能为0.(4)已知实数a 、b 、c (b ≠0),则ab=bc ⇒ a=c .但是a ⋅b = b ⋅c a = c如右图:a ⋅b = |a ||b |cos β = |b ||OA|,b ⋅c = |b ||c |cos α = |b ||OA|⇒ a ⋅b = b ⋅c 但a ≠ c(5)在实数中,有(a ⋅b )c = a (b ⋅c ),但是(a ⋅b )c ≠ a (b ⋅c )显然,这是因为左端是与c 共线的向量,而右端是与a 共线的向量,而一般a 与c 不共线.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影.投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |. 4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量. 1︒ e ⋅a = a ⋅e =|a |cos θ 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a ba ⋅5︒ |a ⋅b | ≤ |a ||b |第8课时二、平面向量数量积的运算律一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.“投影”的概念:作图定义:|b |cos θ叫做向量b 在a 方向上的投影. 投影也是一个数量,不是向量;当θ为锐角时投影为正值;当θ为钝角时投影为负值;当θ为直角时投影为0;当θ = 0︒时投影为 |b |;当θ = 180︒时投影为 -|b |.4.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积.5.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=|| 4︒cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | 二、讲解新课:平面向量数量积的运算律1.交换律:a ⋅ b = b ⋅ a证:设a ,b 夹角为θ,则a ⋅ b = |a ||b |cos θ,b ⋅ a = |b ||a |cos θ∴a ⋅ b = b ⋅ a2.数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )C证:若λ> 0,(λa )⋅b =λ|a ||b |cos θ, λ(a ⋅b ) =λ|a ||b |cos θ,a ⋅(λb ) =λ|a ||b |cos θ,若λ< 0,(λa )⋅b =|λa ||b |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ,λ(a ⋅b ) =λ|a ||b |cos θ, a ⋅(λb ) =|a ||λb |cos(π-θ) = -λ|a ||b |(-cos θ) =λ|a ||b |cos θ.3.分配律:(a + b )⋅c = a ⋅c + b ⋅c在平面内取一点O ,作OA = a , AB = b ,OC = c , ∵a + b (即OB )在c 方向上的投影等于a 、b 在c 方向上的投影和,即 |a + b | cos θ = |a | cos θ1 + |b | cos θ2∴| c | |a + b | cos θ =|c | |a | cos θ1 + |c | |b | cos θ2, ∴c ⋅(a + b ) = c ⋅a + c ⋅b 即:(a + b )⋅c = a ⋅c + b ⋅c说明:(1)一般地,(a·b)с≠a(b·с)(2)a·с=b·с,с≠0a=b(3)有如下常用性质:a2=|a|2,(a+b)(с+d)=a·с+a·d+b·с+b·d(a+b)2=a2+2a·b+b2第9课时三、平面向量数量积的坐标表示、模、夹角一、复习引入:1.两个非零向量夹角的概念已知非零向量a与b,作OA =a,OB =b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a ||b |cos θ叫a与b的数量积,记作a ⋅b ,即有a ⋅b = |a ||b |cos θ,(0≤θ≤π).并规定0与任何向量的数量积为0.3.向量的数量积的几何意义:数量积a ⋅b 等于a 的长度与b 在a 方向上投影|b |cos θ的乘积. 4.两个向量的数量积的性质:设a 、b 为两个非零向量,e 是与b 同向的单位向量.1︒ e ⋅a = a ⋅e =|a |cos θ; 2︒ a ⊥b ⇔ a ⋅b = 03︒ 当a 与b 同向时,a ⋅b = |a ||b |;当a 与b 反向时,a ⋅b = -|a ||b |. 特别的a ⋅a = |a |2或a a a ⋅=||4︒ cos θ =||||b a b a ⋅ ;5︒|a ⋅b | ≤ |a ||b | C5.平面向量数量积的运算律交换律:a ⋅ b = b ⋅ a数乘结合律:(λa )⋅b =λ(a ⋅b ) = a ⋅(λb )分配律:(a + b )⋅c = a ⋅c + b ⋅c二、讲解新课:⒈ 平面两向量数量积的坐标表示已知两个非零向量),(11y x a =,),(22y x b =,试用a 和b 的坐标表示b a ⋅. 设i 是x 轴上的单位向量,j 是y 轴上的单位向量,那么j y i x a 11+=,j y i x b 22+= 所以))((2211j y i x j y i x b a ++=⋅2211221221j y y j i y x j i y x i x x +⋅+⋅+= 又1=⋅i i ,1=⋅j j ,0=⋅=⋅i j j i ,所以b a ⋅2121y y x x += 这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即b a ⋅2121y y x x +=2. 平面内两点间的距离公式一、 设),(y x a =,则222||y x a +=或22||y x a +=.(2)如果表示向量a 的有向线段的起点和终点的坐标分别为),(11y x 、),(22y x ,那么221221)()(||y y x x a -+-=(平面内两点间的距离公式)二、 向量垂直的判定设),(11y x a =,),(22y x b =,则b a ⊥ ⇔02121=+y y x x三、 两向量夹角的余弦(πθ≤≤0)co s θ =||||b a b a ⋅⋅222221212121y x y x y y x x +++=。

(完整版)数学必修4-第二章-平面向量知识点,推荐文档

(完整版)数学必修4-第二章-平面向量知识点,推荐文档

形法则”
① 三量角b 的形终法点则指:向当被a,减b 有向共量同a起的点终时点,的向a 量b 表。示为从减向
② 平行四边形法则:两个已知向量是要共始点的,差向量是如图
所示的对角线。设
AB
a,
AC
b

a
-
b
=
AB
AC
CB
.
3.实数与向量的积
(1)
定义:实数
λ
与向量
a
的积是一个向量,记作
4.平面向量的坐标运算:
①若
a
( x1 ,
y1
),
b
( x2
,
y2
)
,则
a
b
x1
x2
,
y1
y2

②若
Ax1 ,
y1
,
Bx2
,
y2
,则
AB
x2
x1,
y2
y1

③若
a
=(x,y),则
a
=(
x,
y);
④若
a
( x1 ,
y1 ), b
(x2 ,
y2
)
,则
a
//
b
x1 y2
x2
y1
1.平面向量基本定理:如果 e1 , e2 是同一平面内的两个不共线向量,
那么对于这一平面内的任一向量
a
,有且只有一对实数
λ1,λ2
使
a
=λ1
e1
+λ2
e2
.
注意:(1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量 的一组基底;
(2) 基底不惟一,关键是不共线;

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点

数学必修四第二章平面向量知识点第二章平面向量1. 平面向量的概念:平面上具有大小和方向的箭头。

2. 向量的表示:向量通常用小写字母加上一个箭头表示,如a→。

3. 平行向量:具有相同或相反的方向的向量。

4. 向量的加法:向量a→与向量b→相加得到向量c→,其坐标分别相加,即c→ = a→ + b→。

5. 向量的减法:向量a→与向量b→相减得到向量c→,其坐标分别相减,即c→ = a→ - b→。

6. 向量的数量积:向量a→与向量b→的数量积,用a·b表示,满足a·b = |a||b|cosθ,其中|a|和|b|分别表示向量a→和向量b→的模,θ为两个向量夹角的大小。

7. 向量的数量积的性质:具有交换律、结合律和分配律。

8. 向量的夹角:向量a→与向量b→的夹角可以通过向量的数量积来计算夹角的余弦值。

9. 向量的夹角的性质:两个向量夹角为0°,当且仅当它们是同一向量或其中一个向量是另一个向量的相反向量。

10. 向量的共线与垂直:两个向量共线,当且仅当它们的夹角为0°或180°;两个向量垂直,当且仅当它们的数量积为0。

11. 平面向量的坐标表示:平面上的向量可以用坐标表示,即向量a→可以表示为(a,b)。

12. 平面向量的数量积的坐标表示:向量a→(a1, a2)与向量b→(b1, b2)的数量积为a1b1 + a2b2。

13. 向量的数量积与坐标表示的关系:向量a→(a1, a2)与向量b→(b1, b2)的数量积等于它们的坐标相乘的和。

14. 平移向量:平面上的一点A沿着一条向量a→移动到另一点B,其位置关系可以用带箭头的线段→AB表示,这条线段就是向量a→。

15. 平面向量的模运算:给定向量a→(a1, a2),有|a→| = √(a1^2 + a2^2)。

这些是数学必修四第二章平面向量的核心知识点。

(完整版)高中数学必修4第二章平面向量教案完整版

(完整版)高中数学必修4第二章平面向量教案完整版

第1课时§2。

1 平面向量的实际背景及基本概念1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。

2.向量的表示方法: ①用有向线段表示; ②用字母a、b(黑体,印刷用)等表示;③用有向线段的起点与终点字母:AB ;④向量AB 的大小――长度称为向量的模,记作|AB |.3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; (2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段. 4、零向量、单位向量概念:①长度为0的向量叫零向量,记作0。

0的方向是任意的. 注意0与0的含义与书写区别.②长度为1个单位长度的向量,叫单位向量。

说明:零向量、单位向量的定义都只是限制了大小。

5、平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行。

说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c. 6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段.....的起点无关...... 7、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关..........).。

说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系。

A(起点)B(终点)aOABaaa bb b第2课时§2。

2.1 向量的加法运算及其几何意义二、探索研究:1、向量的加法:求两个向量和的运算,叫做向量的加法。

苏教版高中数学必修四第二章平面向量归纳整合课件

苏教版高中数学必修四第二章平面向量归纳整合课件

解析 如图所示,A→D=A→O+O→D=12a+12b, D→C=A→C-A→D=a-12a-12b=12a-12b. ∵A、E、F 共线,∴A→F=λA→E=λ(A→D+D→E). =λ12a+12b-b4=2λa+4λb.
又∵A→F=A→D+D→F=A→D+μD→C=12a+12b+μ12a-12b =1+2 μa+1-2 μb, ∴2λa+4λb=1+2 μa+1-2 μb. ∵向量 a、b 不共线,由平面向量基本定理,得
几何意义有两个:一是以减向量的终点为起点,被减向量 的终点为终点的向量;二是加法的平行四边形法则的另外一条 对角线的向量.注意两向量要移至共起点.
减法也满足交换律、结合律. (3)数乘运算即通过实数与向量的乘积,实现同向或反向上 向量长度的伸缩变换. 数乘向量满足结合律和分配律.
3.共线定理与平面向量基本定理 (1)共线向量定理:向量 a(a≠0)与 b 共线,当且仅当有唯一一 个实数 λ,使得 b=λa. 共线向量定理是证明平行的主要依据,也是解决三点共线问 题的重要方法. 特别地,平面内一点 P 位于直线 AB 上的条件是存在实数 x, 使A→P=xA→B(或 xA→C),或对直线外任意一点 O,有O→P=xO→A+yO→B (x+y=1).
(3)关于零向量的有关规定 ①0 =0,-0 =0(所有零向量相等,零向量的相反向量是 零向量) ②0∥a(零向量与任意向量共线) ③0 +a=a(零向量与任意向量 a 的和仍是 a) ④0a=0,λ0 =0(零乘任何向量得零向量,任意实数乘零向 量得零向量) ⑤0·a=0(零向量与任意向量的数量积为 0) ⑥0 =(0,0)(零向量的坐标表示中,横、纵坐标都是 0)
答案 -14
4.(2011·安徽)已知向量 a,b 满足(a+2b)·(a-b)=-6,且|a| =1,|b|=2,则 a 与 b 的夹角为________.

高中数学 第二章 平面向量 2.1 向量的概念及表示教案 苏教版必修4(2021年最新整理)

高中数学 第二章 平面向量 2.1 向量的概念及表示教案 苏教版必修4(2021年最新整理)

高中数学第二章平面向量2.1 向量的概念及表示教案苏教版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章平面向量2.1 向量的概念及表示教案苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章平面向量2.1 向量的概念及表示教案苏教版必修4的全部内容。

2.1 向量的概念及表示错误!教学分析1.本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形、实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.2.在类比数量的抽象过程引出向量的概念后,为了使学生更好地理解向量概念,可采用与数量概念比较的方法,引导学生认识年龄、身高、长度、面积、体积、质量等量是“只有大小,没有方向的量",同时给出“时间、路程、功是向量吗?速度、加速度是向量吗?”的思考题.通过这样的比较,可以使学生在区分相似概念的过程中更深刻地把握向量概念.实数与数轴上的点是一一对应的,数量常常用数轴上的一个点表示.教科书通过类比实数在数轴上的表示,给出了向量的几何表示——用有向线段表示向量.用有向线段表示向量,赋予了向量一定的几何意义.有向线段使向量的“方向”得到了表示,那么,向量的大小又该如何表示呢?一个自然的想法是用有向线段的长度来表示,从而引出向量的模、零向量及单位向量等概念,为学习向量作了很好的铺垫.3.数学中,引进一个新的量后,首先要考虑的是如何规定它的“相等",这是讨论这个量的基础.如何规定“相等向量”呢?由于向量涉及大小和方向,因此把“长度相等且方向相同的向量”规定为相等向量是非常自然的.由向量相等的定义可以知道,对于一个向量,只要不改变它的方向和大小,就可以任意平行移动.因此,用有向线段表示向量时,可以任意选取有向线段的起点,这为用向量处理几何问题带来方便,并使平面上的向量与向量的坐标得以一一对应.教学时可结合例题、习题说明这种思想.4.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量.当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念和确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.4.通过本节学习,培养学生从数学的角度思考生活中实际问题的习惯.加强数学的应用意识,切实做到学以致用.用联系、发展的观点观察世界.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.教具准备实物投影仪,多媒体课件.课时安排1课时错误!导入新课思路1。

高中数学 第二章《平面向量》全部教案 北师大版必修4

高中数学 第二章《平面向量》全部教案 北师大版必修4

高中数学第二章《平面向量》全部教案北师大版必修4 第一课时 2.1从位移、速度、力到向量一、教学目标1.知识与技能:(1)理解向量与数量、向量与力、速度、位移之间的区别;(2)理解向量的实际背景与基本概念,理解向量的几何表示,并体会学科之间的联系.(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力。

2.过程与方法:通过力与力的分析等实例,引导学生了解向量的实际背景,帮助学生理解平面向量与向量相等的含义以及向量的几何表示;最后通过讲解例题,指导学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题.3.情感态度价值观:通过本节的学习,使同学们对向量的实际背景、几何表示有了一个基本的认识;激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神.二.教学重、难点:重点: 向量及向量的有关概念、表示方法.难点: 向量及向量的有关概念、表示方法.三.学法与教法学法:(1)自主性学习+探究式学习法:(2)反馈练习法:以练习来检验知识的应用情况,找出未掌握的内容及其存在的差距.教法:探究交流法.四.教学过程(一)、创设情境实例:老鼠由A向西北逃窜,猫在B处向东追去。

问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了.(二)、探究新知1.学生阅读教材思考如下问题A B[展示投影](学生先讲,教师提示或适当补充)(1). 举例说明什么是向量?向量与数量有何区别?既有大小又有方向的量叫向量。

例:力、速度、加速度、冲量等。

注意:①数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。

②从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。

2.向量的表示方法有哪些?①几何表示法:有向线段有向线段:具有方向的线段叫做有向线段。

记作:−→−AB 注意:起点一定写在终点的前面。

北师大版必修4高中数学第2章平面向量11.1位移速度和力1.2向量的概念

北师大版必修4高中数学第2章平面向量11.1位移速度和力1.2向量的概念

1.准确画出向量的方法是先确定向量的起点,再确定向量的方 向,然后根据向量的大小确定向量的终点.用有向线段来表示向量是 向量的几何表示,必须确定起点、长度和终点,三者缺一不可.
2.起点相同,长度也相同的向量的终点组成以该起点为圆心、 向量长度为半径的圆.
2.一辆消防车从 A 地去 B 地执行任务,先从 A 地向北偏东 30°方向行驶 2 千米到 D 地,然后 从 D 地沿北偏东 60°方向行驶 6 千米到达 C 地, 从 C 地又向南偏西 30°方向行驶了 2 千米才到达 B 地.
→ OA.
1.向量共线有三种情形: ①共线且同向;②共线且反向;③有一个是零向量. 2.向量的平行与直线平行的关系 两条直线平行时,直线上的有向线段平行,两向量平行时,表示 向量的有向线段所在直线不一定平行,也可能重合.若直线 m,n,l, m∥n,n∥l,则 m∥l;若向量 a,b,c,a∥b,b∥c,而 a,c 不一定 平行.
向量的表示 【例 2】 一艘军舰从基地 A 出发向东航行了 200 海里到达基地 B,然后改变航线向东偏北 60°航行了 400 海里到达 C 岛,最后又改 变航线向西航行了 200 海里到达 D 岛. (1)试作出向量A→B,B→C,C→D;
(2)求|A→D |.
[思路探究] 准确画出向量的方法是先确定向量的起点,再确定 向量的方向,然后结合向量的大小确定向量的终点.
(1)在如图所示的坐标系中画出A→D,D→C,C→B,A→B; (2)求 B 地相对于 A 地的位置向量.
[解] (1)向量A→D,D→C,C→B,A→B如图所示.
(2)由题意知A→D=B→C,∴AD 綊 BC, ∴四边形 ABCD 为平行四边形, ∴A→B=D→C, ∴B 地相对于 A 地的位置向量为“北偏东 60°,6 千米”.

高中数学北师大版必修4第二章《平面向量》ppt课件

高中数学北师大版必修4第二章《平面向量》ppt课件

知识结构 知识要点 例题解析 巩固练习 课外作业
1.向量的加法运算 三角形法则
AB+BC= AC
A
C BO
平行四边形法则
B
C
OA+OB= OC
A
重要结论:AB+BC+CA= 0
坐标运算: 设 a = (x1, y1), b = (x2, y2)
则a + b = ( x1 + x2 , y1 + y2 )
例2
知识结构 知识要点 例题解析 巩固练习 课外作业
练习4 n为何值时, 向量a=(n,1)与b=(4,n)
共线且方向相同?
答案: n= 2
思考: 何时 n=±2 ?
知识结构 知识要点 例题解析 巩固练习 课外作业
例3 设AB=2(a+5b),BC= 2a + 8b,CD=3(a b), 求证:A、B、D 三点共线。
其实质就是向量的伸长或缩短! 坐标运算: 若a = (x , y), 则λa = λ (x , y)
= (λ x , λ y)
知识结构 知识要点 例题解析 巩固练习 课外作业
非零向量平行(共线)的充要条件
向量表示: a∥b
a=λb (λ∈R,b≠0)
坐标表示:设a = ( x1, y1 ) , b = ( x2, y2 ),则
平面向量复习
平面向量复习
知识结构 要点复习 例题解析 巩固练习
知识结构 知识要点 例题解析 巩固练习 课外作业
表示 向量的三种表示

三角形法则

向量加法与减法

平行四边形法则

向量平行的充要量的基本定理
向量的数量积

高中数学第2章平面向量2.1平面向量的概念及其表示活动单苏教版必修4(2021学年)

高中数学第2章平面向量2.1平面向量的概念及其表示活动单苏教版必修4(2021学年)

江苏省射阳县高中数学第2章平面向量2.1 平面向量的概念及其表示活动单苏教版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省射阳县高中数学第2章平面向量 2.1 平面向量的概念及其表示活动单苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省射阳县高中数学第2章平面向量 2.1 平面向量的概念及其表示活动单苏教版必修4的全部内容。

向量的概念及其表示【学习目标】1.了解向量的实际背景;理解向量的基本概念和几何表示;理解向量相等的含义。

2.理解零向量、单位向量、平行向量、共线向量、相反向量等概念.3。

通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别【重难点】重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量。

难点: 准确理解向量的有关概念;平行向量、相等向量和共线向量的区别和联系.【预习案】•看书P59—60,弄懂下列概念1、书P58实例,位移和距离有什么不同?;2、你能举出一些不仅有大小, 而且有方向的量么?比如?;3、这些量有何共同特征?;4、向量的概念:;5、根据以前所学知识,你认为可用哪些方法表示向量呢?;6、向量有数的属性,类比特殊的数,你想到了哪几种特殊向量?零向量: ;单位向量: ;7。

类比数与数之间的特殊关系,你想到了向量与向量之间有哪几种特殊关系?相等向量: ;相反向量: ;8.向量也有形的属性,类比线段与线段的特殊位置关系,你想到了向量与向量之间有什么样的特殊关系?平行向量:;共线向量:;9、实数可以比较大小,向量能吗?为什么? ;10、直线平行与向量平行有区别吗?如果有,你认为区别在那里?【探究案】探究一:判断下列命题的真假, 并说明理由。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

活动单49:向量的概念及其表示
【学习目标】
1.了解向量的实际背景;理解向量的基本概念和几何表示;理解向量相等的含义.
2.理解零向量、单位向量、平行向量、共线向量、相反向量等概念.
3. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别
【重难点】
重点: 理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.
难点: 准确理解向量的有关概念;平行向量、相等向量和共线向量的区别和联系.
【预习案】•看书P59—60,弄懂下列概念
1、书P58实例, 位移和距离有什么不同?

2、你能举出一些不仅有大小, 而且有方向的量么?比如?

3、这些量有何共同特征?

4、向量的概念:

5、根据以前所学知识,你认为可用哪些方法表示向量呢?

6、向量有数的属性,类比特殊的数,你想到了哪几种特殊向量?
零向量:;单位向量:;
7.类比数与数之间的特殊关系,你想到了向量与向量之间有哪几种特殊关系?
相等向量:;相反向量:;
8.向量也有形的属性,类比线段与线段的特殊位置关系,你想到了向量与向量之间有什么样的特殊关系?
平行向量:;共线向量:;
9、实数可以比较大小,向量能吗?为什么? ;
10、直线平行与向量平行有区别吗?如果有,你认为区别在那里?
【探究案】
探究一:判断下列命题的真假, 并说明理由.(以讨论为主)
(1)平行向量一定方向相同 ( ); (2)共线向量一定相等( );
(3)起点不同, 但方向相同且模相等的几个向量是相等的向量( );
(4)不相等的向量一定不平行( ); (5)向量的模是一个正实数( );
(6)两个相反向量必是共线向量( ) (7)单位向量都相等( )
(8)若两个单位向量互相平行, 则这两个单位向量相等( )
(9)向量与是共线向量,则A 、B 、C 、D 四点必在一直线上( )
(10)任一向量与它的相反向量不相等. ( )
(11)共线的向量,若起点不同,则终点一定不同.( )
(12)a 与b 共线,b 与c 共线,则a 与c 也共线( )
(13)向量a 与b 不共线,则a 与b 都是非零向量( )
(14)有相同起点的两个非零向量不平行. ( ) (15)若a ∥b ,b ∥c ,则 a ∥c ( )
探究二:
已知O 为正六边形ABCDEF 的中心, 在图中所标出的向量中:
(1)试找出与FE 共线的向量; ;
(2)确定与相等的向量; ; (3)与相等吗? ;
探究三:
在如图的4×5方格纸中有一个向量, 分别以图中的格点为起点和终点作向量, 其中与相等的向量有多少个? 与长度相等的共线向量有多少个? (除外)
C
A。

相关文档
最新文档