遗传算法优化BP神经网络的实现代码-共6页
基于遗传算法的BP神经网络MATLAB代码
基于遗传算法的BP神经网络MATLAB代码以下是基于遗传算法的BP神经网络的MATLAB代码,包括网络初始化、适应度计算、交叉运算、突变操作和迭代训练等。
1.网络初始化:```matlabfunction net = initialize_network(input_size, hidden_size, output_size)net.input_size = input_size;net.hidden_size = hidden_size;net.output_size = output_size;net.hidden_weights = rand(hidden_size, input_size);net.output_weights = rand(output_size, hidden_size);net.hidden_biases = rand(hidden_size, 1);net.output_biases = rand(output_size, 1);end```2.适应度计算:```matlabfunction fitness = calculate_fitness(net, data, labels)output = forward_propagation(net, data);fitness = sum(sum(abs(output - labels)));end```3.前向传播:```matlabfunction output = forward_propagation(net, data)hidden_input = net.hidden_weights * data + net.hidden_biases;hidden_output = sigmoid(hidden_input);output_input = net.output_weights * hidden_output +net.output_biases;output = sigmoid(output_input);endfunction result = sigmoid(x)result = 1 ./ (1 + exp(-x));end```4.交叉运算:```matlabfunction offspring = crossover(parent1, parent2)point = randi([1 numel(parent1)]);offspring = [parent1(1:point) parent2((point + 1):end)]; end```5.突变操作:```matlabfunction mutated = mutation(individual, mutation_rate) for i = 1:numel(individual)if rand < mutation_ratemutated(i) = rand;elsemutated(i) = individual(i);endendend```6.迭代训练:```matlabfunction [best_individual, best_fitness] =train_network(data, labels, population_size, generations, mutation_rate)input_size = size(data, 1);hidden_size = round((input_size + size(labels, 1)) / 2);output_size = size(labels, 1);population = cell(population_size, 1);for i = 1:population_sizepopulation{i} = initialize_network(input_size, hidden_size, output_size);endbest_individual = population{1};best_fitness = calculate_fitness(best_individual, data, labels);for i = 1:generationsfor j = 1:population_sizefitness = calculate_fitness(population{j}, data, labels);if fitness < best_fitnessbest_individual = population{j};best_fitness = fitness;endendselected = selection(population, data, labels);for j = 1:population_sizeparent1 = selected{randi([1 numel(selected)])};parent2 = selected{randi([1 numel(selected)])};offspring = crossover(parent1, parent2);mutated_offspring = mutation(offspring, mutation_rate);population{j} = mutated_offspring;endendendfunction selected = selection(population, data, labels) fitnesses = zeros(length(population), 1);for i = 1:length(population)fitnesses(i) = calculate_fitness(population{i}, data, labels);end[~, indices] = sort(fitnesses);selected = population(indices(1:floor(length(population) / 2)));end```这是一个基于遗传算法的简化版BP神经网络的MATLAB代码,使用该代码可以初始化神经网络并进行迭代训练,以获得最佳适应度的网络参数。
BP算法代码实现
BP算法代码实现BP算法(Backpropagation Algorithm)是一种常用的神经网络训练算法,它主要用于监督式学习任务中的模型训练。
BP算法的核心思想是通过反向传播来更新神经网络的权重和偏差,以使得神经网络的输出逼近目标输出。
在反向传播的过程中,通过求解梯度来更新每个连接权重和偏置的值,从而最小化损失函数。
以下是BP算法的代码实现示例:```pythonimport numpy as npclass NeuralNetwork:def __init__(self, layers):yers = layersself.weights = []self.biases = []self.activations = []#初始化权重和偏置for i in range(1, len(layers)):self.weights.append(np.random.randn(layers[i], layers[i-1])) self.biases.append(np.random.randn(layers[i]))def sigmoid(self, z):return 1 / (1 + np.exp(-z))def sigmoid_derivative(self, z):return self.sigmoid(z) * (1 - self.sigmoid(z))def forward_propagate(self, X):self.activations = []activation = X#前向传播计算每一层的激活值for w, b in zip(self.weights, self.biases):z = np.dot(w, activation) + bactivation = self.sigmoid(z)self.activations.append(activation)return activationdef backward_propagate(self, X, y, output):deltas = [None] * len(yers)deltas[-1] = output - y#反向传播计算每一层的误差(梯度)for i in reversed(range(len(yers)-1)):delta = np.dot(self.weights[i].T, deltas[i+1]) * self.sigmoid_derivative(self.activations[i])deltas[i] = delta#更新权重和偏置for i in range(len(yers)-1):self.weights[i] -= 0.1 * np.dot(deltas[i+1],self.activations[i].T)self.biases[i] -= 0.1 * np.sum(deltas[i+1], axis=1)def train(self, X, y, epochs):for epoch in range(epochs):output = self.forward_propagate(X)self.backward_propagate(X, y, output)def predict(self, X):output = self.forward_propagate(X)return np.round(output)```上述代码使用numpy实现了一个简单的多层神经网络,支持任意层数和任意神经元个数的构建。
遗传算法及遗传算法优化BP神经网络实现代码
遗传算法开放分类:编程、程序、数学、计算机、算法目录• 遗传算法定义• 遗传算法特点• 遗传算法的应用• 遗传算法的现状• 遗传算法的一般算法• 遗传算法实例遗传算法定义[编辑本段]遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan 大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。
遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。
每个个体实际上是染色体(chromosome)带有特征的实体。
染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。
因此,在一开始需要实现从表现型到基因型的映射即编码工作。
由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。
这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。
遗传算法特点[编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。
C++实现的BP神经网络代码
#pragma hdrstop#include <stdio.h>#include <iostream.h>const A=30.0;const B=10.0;const MAX=500;//最大训练次数const COEF=0.0035; //网络的学习效率const BCOEF=0.001;//网络的阀值调整效率const ERROR=0.002; // 网络训练中的允许误差const ACCURACY=0.0005;//网络要求精度double sample[41][4]={{0,0,0,0},{5,1,4,19.020},{5,3,3,14.150},{5,5,2,14.360},{5,3,3,14.150},{5,3,2,15.390},{5,3,2,15.390},{5,5,1,19.680},{5,1,2,21.060},{5,3,3,14.150},{5,5,4,12.680},{5,5,2,14.360},{5,1,3,19.610},{5,3,4,13.650},{5,5,5,12.430},{5,1,4,19.020},{5,1,4,19.020},{5,3,5,13.390},{5,5,4,12.680},{5,1,3,19.610},{5,3,2,15.390},{1,3,1,11.110},{1,5,2,6.521},{1,1,3,10.190},{1,3,4,6.043},{1,5,5,5.242},{1,5,3,5.724},{1,1,4,9.766},{1,3,5,5.870},{1,5,4,5.406},{1,1,3,10.190},{1,1,5,9.545},{1,3,4,6.043},{1,5,3,5.724},{1,1,2,11.250},{1,3,1,11.110},{1,3,3,6.380},{1,5,2,6.521},{1,1,1,16.000},{1,3,2,7.219},{1,5,3,5.724}};double w[4][10][10],wc[4][10][10],b[4][10],bc[4][10];double o[4][10],netin[4][10],d[4][10],differ;//单个样本的误差double is; //全体样本均方差int count,a;void netout(int m, int n);//计算网络隐含层和输出层的输出void calculd(int m,int n); //计算网络的反向传播误差void calcalwc(int m,int n);//计算网络权值的调整量void calcaulbc(int m,int n); //计算网络阀值的调整量void changew(int m,int n); //调整网络权值void changeb(int m,int n);//调整网络阀值void clearwc(int m,int n);//清除网络权值变化量wcvoid clearbc(int m,int n);//清除网络阀值变化量bc-void initialw(void);//初始化NN网络权值Wvoid initialb(void); //初始化NN网络阀值void calculdiffer(void);//计算NN网络单个样本误差void calculis(void);//计算NN网络全体样本误差void trainNN(void);//训练NN网络//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*计算NN网络隐含层和输出层的输出*/void netout(int m,int n){int i,j,k;//隐含层各节点的的输出for (j=1,i=2;j<=m;j++) //m为隐含层节点个数{netin[i][j]=0.0;for(k=1;k<=3;k++)//隐含层的每个节点均有三个输入变量netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];netin[i][j]=netin[i][j]-b[i][j];o[i][j]=A/(1+exp(-netin[i][j]/B));}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------////输出层各节点的输出for (j=1,i=3;j<=n;j++){netin[i][j]=0.0;for (k=1;k<=m;k++)netin[i][j]=netin[i][j]+o[i-1][k]*w[i][k][j];netin[i][j]=netin[i][j]-b[i][j];o[i][j]=A/(1+exp(-netin[i][j]/B)) ;}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*计算NN网络的反向传播误差*/void calculd(int m,int n){int i,j,k;double t;a=count-1;d[3][1]=(o[3][1]-sample[a][3])*(A/B)*exp(-netin[3][1]/B)/pow(1+exp(-netin[3][1]/B),2);//隐含层的误差for (j=1,i=2;j<=m;j++){t=0.00;for (k=1;k<=n;k++)t=t+w[i+1][j][k]*d[i+1][k];d[i][j]=t*(A/B)*exp(-netin[i][j]/B)/pow(1+exp(-netin[i][j]/B),2);}}/*计算网络权值W的调整量*/void calculwc(int m,int n){int i,j,k;// 输出层(第三层)与隐含层(第二层)之间的连接权值的调整for (i=1,k=3;i<=m;i++){for (j=1;j<=n;j++){wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];}// printf("\n");}//隐含层与输入层之间的连接权值的调整for (i=1,k=2;i<=m;i++){for (j=1;j<=m;j++){wc[k][i][j]=-COEF*d[k][j]*o[k-1][i]+0.5*wc[k][i][j];}//printf("\n");}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*计算网络阀值的调整量*/void calculbc(int m,int n){int j;for (j=1;j<=m;j++){bc[2][j]=BCOEF*d[2][j];}for (j=1;j<=n;j++){bc[3][j]=BCOEF*d[3][j];}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*调整网络权值*/void changw(int m,int n){int i,j;for (i=1;i<=3;i++)for (j=1;j<=m;j++){w[2][i][j]=0.9*w[2][i][j]+wc[2][i][j];//为了保证系统有较好的鲁棒性,计算权值时乘惯性系数0.9printf("w[2][%d][%d]=%f\n",i,j,w[2][i][j]);}for (i=1;i<=m;i++)for (j=1;j<=n;j++){w[3][i][j]=0.9*w[3][i][j]+wc[3][i][j];printf("w[3][%d][%d]=%f\n",i,j,w[3][i][j]);}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*调整网络阀值*/void changb(int m,int n){int j;for (j=1;j<=m;j++)b[2][j]=b[2][j]+bc[2][j];for (j=1;j<=n;j++)b[3][j]=b[3][j]+bc[3][j];}//------------------------------------------------------------------------------------------------- ---------------////------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*清除网络权值变化量wc*/void clearwc(void){for (int i=0;i<4;i++)for (int j=0;j<10;j++)for (int k=0;k<10;k++)wc[i][j][k]=0.00;}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*清除网络阀值变化量*/void clearbc(void){for (int i=0;i<4;i++)for (int j=0;j<10;j++)bc[i][j]=0.00;}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*初始化网络权值W*/void initialw(void){int i,j,k,x;double weight;for (i=0;i<4;i++)for (j=0;j<10;j++)for (k=0;k<10;k++){randomize();x=100+random(400);weight=(double)x/5000.00;w[i][j][k]=weight;}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*初始化网络阀值*/void initialb(void){int i,j,x;double fazhi;for (i=0;i<4;i++)for (j=0;j<10;j++){randomize();for (int k=0;k<12;k++){x=100+random(400);}fazhi=(double)x/50000.00;b[i][j]=fazhi;}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*计算网络单个样本误差*/void calculdiffer(void){a=count-1;differ=0.5*(o[3][1]-sample[a][3])*(o[3][1]-sample[a][3]);}void calculis(void){is=0.0;for (i=0;i<=19;i++){o[1][1]=sample[i][0];o[1][2]=sample[i][1];o[1][3]=sample[i][2];netout(8,1);is=is+(o[3][1]-sample[i][3])*(o[3][1]-sample[i][3]);}is=is/20;}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------///*训练网络*/void trainNN(void){long int time;initialw();initialb();for (time=1;time<=MAX;time++){count=0;while(count<=40){o[1][1]=sample[count][0];o[1][2]=sample[count][1];o[1][3]=sample[count][2];count=count+1;clearwc();clearbc();netout(8,1);calculdiffer();while(differ>ERROR)calculd(8,1);calculwc(8,1);calculbc(8,1);changw(8,1);changb(8,1);netout(8,1);calculdiffer();}}printf("This is %d times training NN...\n",time);calculis();printf("is==%f\n",is);if (is<ACCURACY) break;}}//------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// //------------------------------------------------------------------------------------------------- ---------------// #pragma argsusedint main(int argc, char* argv[]){double result;int m,test[4];char ch='y';cout<<"Please wait for the train of NN:"<<endl;trainNN();cout<<"Now,this modular network can work for you."<<endl;while(ch=='y' || ch=='Y'){cout<<"Please input data to be tested."<<endl;for (m=1;m<=3;m++)cin>>test[m];ch=getchar();o[1][1]=test[1];o[1][2]=test[2];o[1][3]=test[3];netout(8,1);result=o[3][1];printf("Final result is %f.\n",result); printf("Still test?[Yes] or [No]\n"); ch=getchar();}return 0;}。
GA优化BP网络代码
根据他人的代码,稍微改进后,并附上个人对代码的理解情况。
采用遗传算法(GA)对BP网络的权值进行优化。
其思路如下:(1)根据BP的输入值和目标值,确定好BP网络的输入层单元数、隐层单元数(本例只处理1个隐层的情况;多个隐层的方法类似,主要是在构造GA种群基因时有所差异)、以及输出层的单元个数。
(2)根据BP网络的各层单元数来确定其输入层与隐层之间的权值w12,和隐层输出值b1,以及隐层到输出层的权值w23,和输出层输出b2。
这四个值各个元素的组合就组成了一个基因,即根据他们来确定基因长度。
这一步非常重要!可根据以下代码进行理解。
% 权值矩阵分配% 输入到隐层用w_he表示,3x4,3表示输入层个数,4表示输出层个数% w_he=[chrom(i,1) chrom(i,5) chrom(i,9) chrom(i,13);% chrom(i,2) chrom(i,6) chrom(i,10) chrom(i,14);% chrom(i,3) chrom(i,7) chrom(i,11) chrom(i,15)];%以下for循环的作用是将某个基因,分别转换为bp网络所对应的权值或输出值。
% 其中chrom(i,:)表示第i个基因的所有元素% in_num表述输入层单元个数% n表示基本的元素个数% w_he表示输入层到输出层权值;w_out表示因此到输出层的权值% b_he表示隐层输出向量;b_out表示输出层的输出向量。
for j=1:nw_he(:,j)=chrom(i,(j-1)*(in_num+1)+1:j*(in_num+1)-1);w_out(j)=chrom(i,(in_num+1)*n+j);b_he(j)=chrom(i,(in_num+1)*j);endb_out=chrom(i,len);% 隐层到输出层用w_out表示,4x1% w_out=[chrom(i,17) chrom(i,18) chrom(i,19) chrom(i,20)];% b_he=[chrom(i,4) chrom(i,8) chrom(i,12) chrom(i,16)];% b_out=chrom(i,21);(3)确定好权值与基因的对应关系后。
遗传算法优化BP神经网络权值和阈值(完整版)
/viewthread.php?tid= 50653&extra=&highlight=%E9%81%97%E4%BC%A0%E7% AE%97%E6%B3%95&page=1Matlab遗传算法优化神经网络的例子(已调试成功)最近论坛里问到用遗传算法优化神经网络问题的人很多,而且论坛里有很多这方面的代码。
但可惜的是所有代码都或多或少有些错误!最郁闷的莫过于只有发帖寻求问题答案的探索者,却很少有对问题进行解答的victor。
本人在论坛里看到不少会员对能运行成功的遗传算法优化神经网络例子的需求是多么急切,我也深有感触!现把调试成功的一个例子贴出来,供大家参考!(本例子是基于一篇硕士论文里的代码为蓝本改编的,此处就不再注明作者了。
)遗传算法优化bp.rar (3.34 KB)注:该代码是由会员“书童”耗费了一整天的时间调试成功的,在此再次对我们的“书童”同学乐于助人的高尚品德致敬,并对其深表感谢!PS:参考会员“ilovexyq”意见,先对其做以补充。
该网络为遗传算法优化bp的一个典型例子,输入为7,输出为7,隐层为25。
该网络输入输出数据就是为了说明问题而随便加的,没有实际意义。
如用于自己的实际问题,把数据替换并根据需要改一下网络结构就行了。
PS:如有问题,请先阅读此贴:/thread-52587-1-1.html###[本帖最后由 yuthreestone 于 2009-10-15 10:52 编辑]搜索更多相关主题的帖子: 调试例子算法Matlab神经网络/thread-52587-1-1.html遗传算法优化BP神经网络权值和阈值(完整版)会员renjia前一段时间分享的程序,地址如下:/viewthread.php?tid=50653&extra=&highlight=% E9%81%97%E4%BC%A0%E7%AE%97%E6%B3%95&page=1:(1)renjia提供的程序存在一些小错误,主要是设计的bp网络是两个隐含层,但编码的时候只有一个隐含层。
基于遗传算法的BP神经网络优化算法
案例3:基于遗传算法的BP神经网络优化算法******************************************************************************* ****论坛申明:1 案例为原创案例,论坛拥有帖子的版权,转载请注明出处(MATLABSKY论坛,《MATLAB智能算法30个案例分析》2 案例内容为书籍原创内容,内容为案例的提纲和主要内容。
3 作者长期驻扎在板块,对读者和会员问题有问必答。
4 案例配套有教学视频和完整的MATLAB程序,MATLAB程序在购买书籍后可以自由下载,教学视频需要另外购买。
MATLAB书籍预定方法和优惠服务:/thread-9258-1-1.html点击这里,预览该案例程序:/znsf/view/s3/GABPMain.html 已经预定的朋友点此下载程序源代码:/thread-11921-1-1.html ******************************************************************************** **1、案例背景BP网络是一类多层的前馈神经网络。
它的名字源于在网络训练的过程中,调整网络的权值的算法是误差的反向传播的学习算法,即为BP学习算法。
BP算法是Rumelhart等人在1986年提出来的。
由于它的结构简单,可调整的参数多,训练算法也多,而且可操作性好,BP 神经网络获得了非常广泛的应用。
据统计,有80%~90%的神经网络模型都是采用了BP网络或者是它的变形。
BP网络是前向网络的核心部分,是神经网络中最精华、最完美的部分。
BP神经网络虽然是人工神经网络中应用最广泛的算法,但是也存在着一些缺陷,例如:①、学习收敛速度太慢;②、不能保证收敛到全局最小点;③、网络结构不易确定。
另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。
pso优化bp算法python代码
pso优化bp算法python代码PSO优化BP算法Python代码是基于粒子群算法(PSO)和BP(反向传播)神经网络算法的优化算法,用于解决分类和回归问题。
以下是一些关键的Python代码段来实现此算法:1. 导入必要的库```pythonimport numpy as npimport random```2. 定义神经网络类```pythonclass NeuralNetwork:def __init__(self, inputs, hidden, outputs):self.input_nodes = inputsself.hidden_nodes = hiddenself.output_nodes = outputsself.weights_ih = np.random.randn(self.hidden_nodes, self.input_nodes)self.weights_ho = np.random.randn(self.output_nodes, self.hidden_nodes)self.bias_h = np.random.randn(self.hidden_nodes, 1)self.bias_o = np.random.randn(self.output_nodes, 1)```3. 定义激活函数sigmoid```pythondef sigmoid(x):return 1 / (1 + np.exp(-x))```4. 定义前向传播函数```pythondef feedforward(self, input_array):inputs = np.array(input_array, ndmin=2).Thidden_inputs = np.dot(self.weights_ih, inputs) +self.bias_hhidden_outputs = sigmoid(hidden_inputs)final_inputs = np.dot(self.weights_ho, hidden_outputs) + self.bias_ofinal_outputs = sigmoid(final_inputs)return final_outputs```5. 定义损失函数```pythondef mse_loss(self, input_array, target):inputs = np.array(input_array, ndmin=2).Ttargets = np.array(target, ndmin=2).Toutputs = self.feedforward(inputs)return np.mean((targets - outputs)**2)```6. 定义粒子类```pythonclass Particle:def __init__(self, dim):self.position = np.random.randn(dim, 1)self.velocity = np.random.randn(dim, 1)self.best_position = self.positionself.best_cost = float('inf')```7. 定义PSO算法类```pythonclass PSO:def __init__(self, cost_function, dimension, swarm_size, max_iter):self.cf = cost_functionself.dim = dimensionself.swarm_size = swarm_sizeself.max_iter = max_iterself.swarm = [Particle(self.dim) for i inrange(self.swarm_size)]self.best_swarm_position = self.swarm[0].positionself.best_swarm_cost = float('inf')```8. 定义更新粒子位置和速度的函数```pythondef update_particle(self, particle):w = 0.729c1 = 1.49445c2 = 1.49445r1 = random.random()r2 = random.random()new_velocity = w * particle.velocity + c1 * r1 * (particle.best_position - particle.position) + c2 * r2 * (self.best_swarm_position - particle.position)new_position = particle.position + new_velocityparticle.velocity = new_velocityparticle.position = new_position```9. 定义运行PSO算法的函数```pythondef run(self):for i in range(self.max_iter):for particle in self.swarm:cost = self.cf(particle.position)if cost < particle.best_cost:particle.best_position = particle.positionparticle.best_cost = costif cost < self.best_swarm_cost:self.best_swarm_position = particle.positionself.best_swarm_cost = costfor particle in self.swarm:self.update_particle(particle)```10. 实例化神经网络和PSO算法,运行PSO优化BP算法```pythonnn = NeuralNetwork(2, 3, 1)pso = PSO(nn.mse_loss, nn.weights_ih.size +nn.weights_ho.size + nn.bias_h.size + nn.bias_o.size, 20, 100) pso.run()```以上是使用Python实现PSO优化BP算法的主要代码段。
遗传算法优化BP神经网络权值和阈值的通用
B2(i,1)=x((R*S1+S1*S2+S1)+i);
end
% 计算S1与S2层的输出
A1=tansig(W1*P,B1);
A2=purelin(W2*A1,B2);
% 计算误差平方和
SE=sumsqr(T-A2);
val=1/SE; % 遗传算法的适应值
figure(2)
plot(trace(:,1),trace(:,3),'r-');
hold on
plot(trace(:,1),trace(:,2),'b-');
xlabel('Generation');
ylabel('Fittness');
%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络
net.trainParam.epochs=50;
net.trainParam.goal=0.001;
%训练网络
net=train(net,XX,YY);
程序二:适应值函数
function [sol, val] = gabpEval(sol,options)
% val - the fittness of this individual
%--------------------------------------------------------------------------
%数据归一化预处理
nntwarn off
XX=premnmx(XX);
YY=premnmx(YY);
%创建网络
net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');
BP神经网络算法的C语言实现代码
BP神经网络算法的C语言实现代码以下是一个BP神经网络的C语言实现代码,代码的详细说明可以帮助理解代码逻辑:```c#include <stdio.h>#include <stdlib.h>#include <math.h>#define INPUT_SIZE 2#define HIDDEN_SIZE 2#define OUTPUT_SIZE 1#define LEARNING_RATE 0.1//定义神经网络结构体typedef structdouble input[INPUT_SIZE];double hidden[HIDDEN_SIZE];double output[OUTPUT_SIZE];double weights_ih[INPUT_SIZE][HIDDEN_SIZE];double weights_ho[HIDDEN_SIZE][OUTPUT_SIZE];} NeuralNetwork;//激活函数double sigmoid(double x)return 1 / (1 + exp(-x));//创建神经网络NeuralNetwork* create_neural_networNeuralNetwork* nn =(NeuralNetwork*)malloc(sizeof(NeuralNetwork));//初始化权重for (int i = 0; i < INPUT_SIZE; i++)for (int j = 0; j < HIDDEN_SIZE; j++)nn->weights_ih[i][j] = (double)rand( / RAND_MAX * 2 - 1;}}for (int i = 0; i < HIDDEN_SIZE; i++)for (int j = 0; j < OUTPUT_SIZE; j++)nn->weights_ho[i][j] = (double)rand( / RAND_MAX * 2 - 1;}}return nn;//前向传播void forward(NeuralNetwork* nn)//计算隐藏层输出for (int i = 0; i < HIDDEN_SIZE; i++)double sum = 0;for (int j = 0; j < INPUT_SIZE; j++)sum += nn->input[j] * nn->weights_ih[j][i];}nn->hidden[i] = sigmoid(sum);}//计算输出层输出for (int i = 0; i < OUTPUT_SIZE; i++)double sum = 0;for (int j = 0; j < HIDDEN_SIZE; j++)sum += nn->hidden[j] * nn->weights_ho[j][i];}nn->output[i] = sigmoid(sum);}void backpropagation(NeuralNetwork* nn, double target)//计算输出层误差double output_error[OUTPUT_SIZE];for (int i = 0; i < OUTPUT_SIZE; i++)double delta = target - nn->output[i];output_error[i] = nn->output[i] * (1 - nn->output[i]) * delta;}//更新隐藏层到输出层权重for (int i = 0; i < HIDDEN_SIZE; i++)for (int j = 0; j < OUTPUT_SIZE; j++)nn->weights_ho[i][j] += LEARNING_RATE * nn->hidden[i] * output_error[j];}}//计算隐藏层误差double hidden_error[HIDDEN_SIZE];for (int i = 0; i < HIDDEN_SIZE; i++)double delta = 0;for (int j = 0; j < OUTPUT_SIZE; j++)delta += output_error[j] * nn->weights_ho[i][j];}hidden_error[i] = nn->hidden[i] * (1 - nn->hidden[i]) * delta;}//更新输入层到隐藏层权重for (int i = 0; i < INPUT_SIZE; i++)for (int j = 0; j < HIDDEN_SIZE; j++)nn->weights_ih[i][j] += LEARNING_RATE * nn->input[i] * hidden_error[j];}}void train(NeuralNetwork* nn, double input[][2], double target[], int num_examples)int iteration = 0;while (iteration < MAX_ITERATIONS)double error = 0;for (int i = 0; i < num_examples; i++)for (int j = 0; j < INPUT_SIZE; j++)nn->input[j] = input[i][j];}forward(nn);backpropagation(nn, target[i]);error += fabs(target[i] - nn->output[0]);}//判断误差是否已达到允许范围if (error < 0.01)break;}iteration++;}if (iteration == MAX_ITERATIONS)printf("Training failed! Error: %.8lf\n", error); }void predict(NeuralNetwork* nn, double input[]) for (int i = 0; i < INPUT_SIZE; i++)nn->input[i] = input[i];}forward(nn);printf("Prediction: %.8lf\n", nn->output[0]); int maiNeuralNetwork* nn = create_neural_network(; double input[4][2] ={0,0},{0,1},{1,0},{1,1}};double target[4] =0,1,1,};train(nn, input, target, 4);predict(nn, input[0]);predict(nn, input[1]);predict(nn, input[2]);predict(nn, input[3]);free(nn);return 0;```以上代码实现了一个简单的BP神经网络,该神经网络包含一个输入层、一个隐藏层和一个输出层。
用Python实现BP神经网络(附代码)
⽤Python实现BP神经⽹络(附代码)⽤Python实现出来的机器学习算法都是什么样⼦呢?前两期线性回归及逻辑回归项⽬已发布(见⽂末链接),今天来讲讲BP神经⽹络。
BP神经⽹络全部代码https:///lawlite19/MachineLearning_Python/blob/master/NeuralNetwok/NeuralNetwork.py神经⽹络model先介绍个三层的神经⽹络,如下图所⽰输⼊层(input layer)有三个units(为补上的bias,通常设为1)表⽰第j层的第i个激励,也称为为单元unit为第j层到第j+1层映射的权重矩阵,就是每条边的权重所以可以得到:隐含层:输出层,其中,S型函数,也成为激励函数可以看出为3x4的矩阵,为1x4的矩阵==》j+1的单元数x(j层的单元数+1)代价函数假设最后输出的,即代表输出层有K个单元,其中,代表第i个单元输出与逻辑回归的代价函数差不多,就是累加上每个输出(共有K个输出)正则化L-->所有层的个数-->第l层unit的个数正则化后的代价函数为共有L-1层,然后是累加对应每⼀层的theta矩阵,注意不包含加上偏置项对应的theta(0)正则化后的代价函数实现代码:# 代价函数def nnCostFunction(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):length = nn_params.shape[0] # theta的中长度# 还原theta1和theta2Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1)Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1)# np.savetxt("Theta1.csv",Theta1,delimiter=',')m = X.shape[0]class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系# 映射yfor i in range(num_labels):class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值'''去掉theta1和theta2的第⼀列,因为正则化时从1开始'''Theta1_colCount = Theta1.shape[1]Theta1_x = Theta1[:,1:Theta1_colCount]Theta2_colCount = Theta2.shape[1]Theta2_x = Theta2[:,1:Theta2_colCount]# 正则化向theta^2term = np.dot(np.transpose(np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1)))),np.vstack((Theta1_x.reshape(-1,1),Theta2_x.reshape(-1,1))))'''正向传播,每次需要补上⼀列1的偏置bias'''a1 = np.hstack((np.ones((m,1)),X))z2 = np.dot(a1,np.transpose(Theta1))a2 = sigmoid(z2)a2 = np.hstack((np.ones((m,1)),a2))z3 = np.dot(a2,np.transpose(Theta2))h = sigmoid(z3)'''代价'''J = -(np.dot(np.transpose(class_y.reshape(-1,1)),np.log(h.reshape(-1,1)))+np.dot(np.transpose(1-class_y.reshape(-1,1)),np.log(1-h.reshape(-1,1)))-Lambda*term/2)/mreturn np.ravel(J)反向传播BP上⾯正向传播可以计算得到J(θ),使⽤梯度下降法还需要求它的梯度BP反向传播的⽬的就是求代价函数的梯度假设4层的神经⽹络,记为-->l层第j个单元的误差《===》(向量化)没有,因为对于输⼊没有误差因为S型函数的倒数为:,所以上⾯的和可以在前向传播中计算出来反向传播计算梯度的过程为:(是⼤写的)for i=1-m:--正向传播计算(l=2,3,4...L)-反向计算、...;--最后,即得到代价函数的梯度实现代码:# 梯度def nnGradient(nn_params,input_layer_size,hidden_layer_size,num_labels,X,y,Lambda):length = nn_params.shape[0]Theta1 = nn_params[0:hidden_layer_size*(input_layer_size+1)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[hidden_layer_size*(input_layer_size+1):length].reshape(num_labels,hidden_layer_size+1) m = X.shape[0]class_y = np.zeros((m,num_labels)) # 数据的y对应0-9,需要映射为0/1的关系# 映射yfor i in range(num_labels):class_y[:,i] = np.int32(y==i).reshape(1,-1) # 注意reshape(1,-1)才可以赋值'''去掉theta1和theta2的第⼀列,因为正则化时从1开始'''Theta1_colCount = Theta1.shape[1]Theta1_x = Theta1[:,1:Theta1_colCount]Theta2_colCount = Theta2.shape[1]Theta2_x = Theta2[:,1:Theta2_colCount]Theta1_grad = np.zeros((Theta1.shape)) #第⼀层到第⼆层的权重Theta2_grad = np.zeros((Theta2.shape)) #第⼆层到第三层的权重Theta1[:,0] = 0;Theta2[:,0] = 0;'''正向传播,每次需要补上⼀列1的偏置bias'''a1 = np.hstack((np.ones((m,1)),X))z2 = np.dot(a1,np.transpose(Theta1))a2 = sigmoid(z2)a2 = np.hstack((np.ones((m,1)),a2))z3 = np.dot(a2,np.transpose(Theta2))h = sigmoid(z3)'''反向传播,delta为误差,'''delta3 = np.zeros((m,num_labels))delta2 = np.zeros((m,hidden_layer_size))for i in range(m):delta3[i,:] = h[i,:]-class_y[i,:]Theta2_grad = Theta2_grad+np.dot(np.transpose(delta3[i,:].reshape(1,-1)),a2[i,:].reshape(1,-1))delta2[i,:] = np.dot(delta3[i,:].reshape(1,-1),Theta2_x)*sigmoidGradient(z2[i,:])Theta1_grad = Theta1_grad+np.dot(np.transpose(delta2[i,:].reshape(1,-1)),a1[i,:].reshape(1,-1))'''梯度'''grad = (np.vstack((Theta1_grad.reshape(-1,1),Theta2_grad.reshape(-1,1)))+Lambda*np.vstack((Theta1.reshape(-1,1),Theta2.reshape(-1,1))))/mreturn np.ravel(grad)BP可以求梯度的原因实际是利⽤了链式求导法则因为下⼀层的单元利⽤上⼀层的单元作为输⼊进⾏计算⼤体的推导过程如下,最终我们是想预测函数与已知的y⾮常接近,求均⽅差的梯度沿着此梯度⽅向可使代价函数最⼩化。
BP神经网络算法代码
BP神经网络算法代码以下是一个简单实现的BP神经网络算法代码,实现了一个简单的二分类任务。
代码主要分为四个部分:数据准备、网络搭建、训练和预测。
```pythonimport numpy as np#数据准备def prepare_data(:X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) # 输入数据return X, y#网络搭建def build_network(X, y, hidden_dim):input_dim = X.shape[1] # 输入维度output_dim = y.shape[1] # 输出维度#初始化权重和偏置np.random.seed(0)W1 = np.random.randn(input_dim, hidden_dim) /np.sqrt(input_dim)b1 = np.zeros((1, hidden_dim))W2 = np.random.randn(hidden_dim, output_dim) / np.sqrt(hidden_dim)b2 = np.zeros((1, output_dim))return W1, b1, W2, b2#前向传播def forward_propagation(X, W1, b1, W2, b2):z1 = np.dot(X, W1) + b1a1 = sigmoid(z1)z2 = np.dot(a1, W2) + b2a2 = sigmoid(z2)return a1, a2#激活函数def sigmoid(x):return 1 / (1 + np.exp(-x))#反向传播def backward_propagation(X, y, a1, a2, W1, W2): m = X.shape[0] # 样本数量#计算损失loss = np.sum((a2-y)**2) / (2*m)#计算梯度delta2 = 1/m * (a2-y) * a2 * (1-a2)dW2 = np.dot(a1.T, delta2)db2 = np.sum(delta2, axis=0, keepdims=True)delta1 = np.dot(delta2, W2.T) * a1 * (1-a1)dW1 = np.dot(X.T, delta1)db1 = np.sum(delta1, axis=0)return loss, dW1, db1, dW2, db2#更新参数def update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate):W1 -= learning_rate * dW1b1 -= learning_rate * db1W2 -= learning_rate * dW2b2 -= learning_rate * db2return W1, b1, W2, b2#训练def train(X, y, hidden_dim, num_epochs, learning_rate):W1, b1, W2, b2 = build_network(X, y, hidden_dim)for epoch in range(num_epochs):a1, a2 = forward_propagation(X, W1, b1, W2, b2)loss, dW1, db1, dW2, db2 = backward_propagation(X, y, a1, a2, W1, W2)W1, b1, W2, b2 = update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate)if (epoch+1) % 100 == 0:print("Epoch {}: loss = {}".format(epoch+1, loss))return W1, b1, W2, b2#预测def predict(X, W1, b1, W2, b2):_, a2 = forward_propagation(X, W1, b1, W2, b2)predictions = (a2 > 0.5).astype(int)return predictions#主函数def main(:X, y = prepare_datahidden_dim = 3num_epochs = 1000learning_rate = 0.1W1, b1, W2, b2 = train(X, y, hidden_dim, num_epochs, learning_rate)predictions = predict(X, W1, b1, W2, b2)print("Predictions:", predictions)if __name__ == "__main__":main```注意:这段代码只是一个简单的实现,可能在复杂任务上效果不佳。
遗传算法优化的BP神经网络建模
遗传算法优化的B P神经网络建模-CAL-FENGHAI.-(YICAI)-Company One1遗传算法优化的BP神经网络建模十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。
遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。
目标:对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。
由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。
本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。
步骤:未经遗传算法优化的BP神经网络建模1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。
并将数据存储在data中待遗传算法中使用相同的数据。
2、数据预处理:归一化处理。
3、构建BP神经网络的隐层数,次数,步长,目标。
4、使用训练数据input_train训练BP神经网络net。
5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。
6、分析预测数据与期望数据之间的误差。
遗传算法优化的BP神经网络建模1、读取前面步骤中保存的数据data;2、对数据进行归一化处理;3、设置隐层数目;4、初始化进化次数,种群规模,交叉概率,变异概率5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数;6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值;7、将得到最佳初始权值和阈值来构建BP神经网络;8、使用训练数据input_train训练BP神经网络net;9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理;10、分析预测数据与期望数据之间的误差。
pso优化bp算法python代码精选全文完整版
可编辑修改精选全文完整版pso优化bp算法python代码PSO优化BP算法Python代码BP神经网络是一种常用的人工神经网络,它可以用于分类、回归等任务。
但是,BP神经网络的训练过程需要大量的计算和时间,而且容易陷入局部最优解。
为了解决这些问题,我们可以使用粒子群优化(PSO)算法来优化BP神经网络。
PSO算法是一种基于群体智能的优化算法,它模拟了鸟群或鱼群等生物的行为,通过不断地搜索和迭代,找到最优解。
在PSO算法中,每个粒子代表一个解,它们通过不断地移动和更新自己的位置和速度,来寻找最优解。
下面是使用Python实现PSO优化BP算法的代码:```pythonimport numpy as npimport random# 定义BP神经网络类class BPNN:def __init__(self, input_size, hidden_size, output_size):self.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.W1 = np.random.randn(self.input_size, self.hidden_size) self.W2 = np.random.randn(self.hidden_size, self.output_size) # 定义sigmoid函数def sigmoid(self, x):return 1 / (1 + np.exp(-x))# 定义前向传播函数def forward(self, X):self.z2 = np.dot(X, self.W1)self.a2 = self.sigmoid(self.z2)self.z3 = np.dot(self.a2, self.W2)y_hat = self.sigmoid(self.z3)return y_hat# 定义损失函数def loss(self, X, y):y_hat = self.forward(X)J = 0.5 * sum((y - y_hat) ** 2)return J# 定义反向传播函数def backward(self, X, y):y_hat = self.forward(X)delta3 = np.multiply(-(y - y_hat), self.sigmoid(self.z3) * (1 - self.sigmoid(self.z3)))dJdW2 = np.dot(self.a2.T, delta3)delta2 = np.dot(delta3, self.W2.T) * self.sigmoid(self.z2) * (1 - self.sigmoid(self.z2))dJdW1 = np.dot(X.T, delta2)return dJdW1, dJdW2# 定义PSO算法类class PSO:def __init__(self, n_particles, input_size, hidden_size, output_size, max_iter, c1, c2, w):self.n_particles = n_particlesself.input_size = input_sizeself.hidden_size = hidden_sizeself.output_size = output_sizeself.max_iter = max_iterself.c1 = c1self.c2 = c2self.w = wself.particles = []self.gbest = Noneself.gbest_loss = float('inf')# 初始化粒子群for i in range(self.n_particles):bpnn = BPNN(self.input_size, self.hidden_size, self.output_size) particle = {'position': [bpnn.W1, bpnn.W2], 'velocity': [np.zeros((self.input_size, self.hidden_size)), np.zeros((self.hidden_size, self.output_size))], 'pbest': None, 'pbest_loss': float('inf')}self.particles.append(particle)# 定义更新粒子位置和速度的函数def update(self):for particle in self.particles:# 更新速度particle['velocity'][0] = self.w * particle['velocity'][0] + self.c1 * random.random() * (particle['pbest'][0] - particle['position'][0]) + self.c2 * random.random() * (self.gbest[0] - particle['position'][0])particle['velocity'][1] = self.w * particle['velocity'][1] + self.c1 * random.random() * (particle['pbest'][1] - particle['position'][1]) + self.c2 * random.random() * (self.gbest[1] - particle['position'][1])# 更新位置particle['position'][0] += particle['velocity'][0]particle['position'][1] += particle['velocity'][1]# 更新pbest和gbestbpnn = BPNN(self.input_size, self.hidden_size, self.output_size) bpnn.W1 = particle['position'][0]bpnn.W2 = particle['position'][1]loss = bpnn.loss(X, y)if loss < particle['pbest_loss']:particle['pbest'] = [bpnn.W1, bpnn.W2]particle['pbest_loss'] = lossif loss < self.gbest_loss:self.gbest = [bpnn.W1, bpnn.W2]self.gbest_loss = loss# 定义训练函数def train(self, X, y):for i in range(self.max_iter):self.update()print('Iteration:', i, 'Loss:', self.gbest_loss)# 测试代码X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])y = np.array([[0], [1], [1], [0]])pso = PSO(n_particles=10, input_size=2, hidden_size=4, output_size=1,max_iter=100, c1=2, c2=2, w=0.8)pso.train(X, y)```在上面的代码中,我们首先定义了一个BP神经网络类,包括前向传播、损失函数和反向传播等方法。
基于遗传算法BP网络优化.
班级:控制5班 学号:2111504213 姓名:张睿设计一个BP 神经网络监督控制系统,被控对象为:321000()s 87.35s 10470G s s=++ 采样时间1ms ,输入信号为方波信号,幅值0.5,频率2hz 。
设计一个BP 神经网络监督控制系统,并采用遗传算法进行BP 神经网络参数及权值的优化设计,并进行matlab 仿真。
需要说明控制系统结构,遗传算法优化BP 网络的具体步骤,并对仿真结果做出分析。
解决过程及思路如下:1 BP 网络算法以第p 个样本为例,用于训练的BP 网络结构如图1所示。
图1 具有一个隐含层和输出层的BP 神经网络结构网络的学习算法如下: (1)信息的正向传播隐含层神经元的输入为所有输入加权之和,j ij i ix w x =∑隐层神经元的输出'j x 采用S 函数激发j x ,则'1()1j j j x x f x e-==+ '''(1)j j j jx x x x ∂=-∂…......... (i)jk输入层隐含层输出层… ……ij wjk wx kj x'jx输出层的神经元输出为'k jk j jx w x =∑网络输出与理想输出误差为()k k e k x x =-误差性能指标函数为211()2N p k E e k ==∑上式的N 表示网络输出层的个数。
(2)利用梯度下降法调整各层间权值的反向传播 对从第j 个输入到第k 个输出的权值有:'11()NNp k jk k j k k jkjk E x w e e k x w w ηηη==∂∂∆=-==∂∂∑∑ 其中,η为学习速率,[]0,1η∈。
K+1时刻网络权值为(1)()jk jk jk w k w k w +=+∆对从第i 个输入到第j 个输出的权值有:1Np kij kk ijijE x w e w w ηη=∂∂∆=-=∂∂∑ 式中,''''(1)j jk k jk j j i ij j j ijx x x x w x x x w x x w ∂∂∂∂=⋅⋅=⋅⋅-⋅∂∂∂∂ t+1时刻网络权值为(1)()ij ij ij w k w k w +=+∆2.BP 网络的监督控制系统结构设计的BP 网络监督控制系统结构如图2所示。
用遗传算法优化BP神经网络的Matlab编程实例
用遗传算法优化BP神经网络的Matlab编程实例程序一:GA训练BP权值的主函数function net=GABPNET(XX,YY)%--------------------------------------------------------------------------% GABPNET.m% 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络%--------------------------------------------------------------------------%数据归一化预处理nntwarn offXX=premnmx(XX);YY=premnmx(YY);%创建网络net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');%下面使用遗传算法对网络进行优化P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度aa=ones(S,1)*[-1,1];popu=50;%种群规模initPpp=initializega(popu,aa,'gabpEval');%初始化种群gen=100;%遗传代数%下面调用gaot工具箱,其中目标函数定义为gabpEval[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);%绘收敛曲线图figure(1)plot(trace(:,1),1./trace(:,3),'r-');hold onplot(trace(:,1),1./trace(:,2),'b-');xlabel('Generation');ylabel('Sum-Squared Error');figure(2)plot(trace(:,1),trace(:,3),'r-');hold onplot(trace(:,1),trace(:,2),'b-');xlabel('Generation');ylabel('Fittness');%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);{3,2}=W2;net.b{2,1}=B1;net.b{3,1}=B2;XX=P;YY=T;%设置训练参数=1;=1;s=50;=0.001;%训练网络net=train(net,XX,YY);程序二:适应值函数function [sol, val] = gabpEval(sol,options)% val - the fittness of this individual% sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation]load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S2=size(T,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度for i=1:S,x(i)=sol(i);end;[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);程序三:编解码函数function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2nntwarn offXX=premnmx(XX);YY=premnmx(YY);P=XX;T=YY;R=size(P,1);S1=25;%隐含层节点数S=R*S1+S1*S2+S1+S2;%遗传算法编码长度% 前R*S1个编码为W1for i=1:S1,for k=1:R,W1(i,k)=x(R*(i-1)+k);endend% 接着的S1*S2个编码(即第R*S1个后的编码)为W2for i=1:S2,for k=1:S1,W2(i,k)=x(S1*(i-1)+k+R*S1);endend% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1for i=1:S1,B1(i,1)=x((R*S1+S1*S2)+i);end% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2 for i=1:S2,B2(i,1)=x((R*S1+S1*S2+S1)+i);end% 计算S1与S2层的输出A1=tansig(W1*P,B1);A2=purelin(W2*A1,B2);% 计算误差平方和SE=sumsqr(T-A2);val=1/SE; % 遗传算法的适应值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%读取数据data=xlsread('data.xls');%训练预测数据data_train=data(1:113,:);data_test=data(118:123,:);input_train=data_train(:,1:9)';output_train=data_train(:,10)';input_test=data_test(:,1:9)';output_test=data_test(:,10)';%数据归一化[inputn,mininput,maxinput,outputn,minoutput,maxoutput]=premnmx(input_tr ain,output_train); %对p和t进行字标准化预处理net=newff(minmax(inputn),[10,1],{'tansig','purelin'},'trainlm');net.trainParam.epochs=100;net.trainParam.lr=0.1;net.trainParam.goal=0.00001;%net.trainParam.show=NaN%网络训练net=train(net,inputn,outputn);%数据归一化inputn_test = tramnmx(input_test,mininput,maxinput);an=sim(net,inputn);test_simu=postmnmx(an,minoutput,maxoutput);error=test_simu-output_train;plot(error)k=error./output_trainfunction ret=Cross(pcross,lenchrom,chrom,sizepop,bound)%本函数完成交叉操作% pcorss input : 交叉概率% lenchrom input : 染色体的长度% chrom input : 染色体群% sizepop input : 种群规模% ret output : 交叉后的染色体for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性 flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性if flag1*flag2==0flag=0;else flag=1;end%如果两个染色体不是都可行,则重新交叉endendret=chrom;% 清空环境变量clcclear%%% 网络结构建立%读取数据load data input output%节点个数inputnum=2;hiddennum=5;outputnum=1;%训练数据和预测数据input_train=input(1:1900,:)';input_test=input(1901:2019,:)';output_train=output(1:1900)';output_test=output(1901:2019)';%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%构建网络net=newff(inputn,outputn,hiddennum);%% 遗传算法参数初始化maxgen=10; %进化代数,即迭代次数sizepop=10; %种群规模pcross=[0.3]; %交叉概率选择,0和1之间pmutation=[0.1]; %变异概率选择,0和1之间%节点总数numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;lenchrom=ones(1,numsum);bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围%------------------------------------------------------种群初始化--------------------------------------------------------individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体avgfitness=[]; %每一代种群的平均适应度bestfitness=[]; %每一代种群的最佳适应度bestchrom=[]; %适应度最好的染色体%初始化种群for i=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound); %编码(binary和grey的编码结果为一个实数,float的编码结果为一个实数向量)x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,ou tputn); %染色体的适应度end%找最好的染色体[bestfitness bestindex]=min(individuals.fitness);bestchrom=individuals.chrom(bestindex,:); %最好的染色体avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度% 记录每一代进化中最好的适应度和平均适应度trace=[avgfitness bestfitness];%% 迭代求解最佳初始阀值和权值% 进化开始for i=1:maxgeni% 选择individuals=Select(individuals,sizepop);avgfitness=sum(individuals.fitness)/sizepop;%交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound );% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop ,i,maxgen,bound);% 计算适应度for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,inputn,ou tputn);end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上一次进化中最好的染色体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;avgfitness=sum(individuals.fitness)/sizepop;trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度end%% 遗传算法结果分析figure(1)[r c]=size(trace);plot([1:r]',trace(:,2),'b--');title(['适应度曲线 ''终止代数=' num2str(maxgen)]);xlabel('进化代数');ylabel('适应度');legend('平均适应度','最佳适应度');disp('适应度变量');x=bestchrom;%% 把最优初始阀值权值赋予网络预测% %用遗传算法优化的BP网络进行值预测w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hidden num*outputnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hidden num+hiddennum+hiddennum*outputnum+outputnum);net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%% BP网络训练%网络进化参数net.trainParam.epochs=100;net.trainParam.lr=0.1;%net.trainParam.goal=0.00001;%网络训练[net,per2]=train(net,inputn,outputn);%% BP网络预测%数据归一化inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test);test_simu=mapminmax('reverse',an,outputps);error=test_simu-output_test;。