高中数学优秀教学设计方案案例
高中数学教学教案5篇
高中数学教学教案5篇一、教学目标【学问与技能】在把握圆的标准方程的根底上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,把握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探究发觉及分析解决问题的实际力量得到提高。
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素养,鼓励学生创新,勇于探究。
二、教学重难点【重点】把握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的关系。
三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。
2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教学教案篇2一、教学目标【学问与技能】把握三角函数的单调性以及三角函数值的取值范围。
【过程与方法】经受三角函数的单调性的探究过程,提升规律推理力量。
【情感态度价值观】在猜测计算的过程中,提高学习数学的兴趣。
二、教学重难点【教学重点】三角函数的单调性以及三角函数值的取值范围。
【教学难点】探究三角函数的单调性以及三角函数值的取值范围过程。
三、教学过程(一)引入新课提出问题:如何讨论三角函数的单调性(二)小结作业提问:今日学习了什么?引导学生回忆:根本不等式以及推导证明过程。
课后作业:思索如何用三角函数单调性比拟三角函数值的大小。
高中数学教学教案篇3[学习目标](1)会用坐标法及距离公式证明Cα+β;(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导C α—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化; (3)把握公式Cα±β、Sα±β、Tα±β,并利用简洁的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
[学习重点]两角和与差的正弦、余弦、正切公式[学习难点]余弦和角公式的推导[学问构造]1、两角和的余弦公式是三角函数一章和、差、倍公式系列的根底。
优秀高中数学教案模板(优秀11篇)
优秀高中数学教案模板(优秀11篇)优秀高中数学教案模板篇一教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。
(2)进一步理解曲线的方程和方程的曲线。
(3)初步掌握求曲线方程的方法。
(4)通过本节内容的教学,培养学生分析问题和转化的能力。
教学重点、难点:求曲线的方程。
教学用具:计算机。
教学方法:启发引导法,讨论法。
教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线。
学生思考并回答。
教师强调。
2.坐标法和解析几何的意义、基本问题。
对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。
解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。
(2)通过方程,研究平面曲线的性质。
事实上,在前边所学的直线方程的理论中也有这样两个基本问题。
而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。
本节课就初步研究曲线方程的求法。
【问题】如何根据已知条件,求出曲线的方程。
【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。
首先由学生分析:根据直线方程的知识,运用点斜式即可解决。
解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决。
可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解。
设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解。
(2)以这个方程的解为坐标的点都是曲线上的点。
设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上。
综合(1)、(2),①是所求直线的方程。
高中数学教学设计案例(优秀4篇)
高中数学教学设计案例(优秀4篇)高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。
教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。
二。
学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三。
教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。
(1)认真把握“标准”的教学要求。
(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。
(3)关注现代信息技术的运用。
(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。
平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。
这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2、以老师的精心备课与充满激情的教学,换取学生学习高效率。
3.将学校和教研组安排的有关工作落到实处。
高中数学教学设计案例篇二以现代教育理论,教学大纲和考纲为指导,以课本和大纲为依据,全面贯彻党的教育方针,积极实施和推进素质教育,提高学生的学习能力。
不仅使学生掌握高中数学基础知识与能力,而且要从全方位培养学生的创新意识,创新精神。
本学期执教班次是高二6班的文科班的数学教学,基础好的学生较少,绝大多数学生数学基础极差。
且成绩参次不齐,针对这种情况,必须要因材施教,充分调动学生学习积极性,提高学生的学习兴趣,力争本学期数学教学上新台阶。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
高中数学优秀教案范例5篇
高中数学优秀教案范例5篇数学是一门日常都要使用的学科,所以要拥有好的教案才能充分教育同学们如何使用数学,这里给大家共享一些关于高中数学优秀教案范例,便利大家学习。
关于高中数学优秀教案范例篇1一、教学目标:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:向量的性质及相关学问的综合应用。
三、教学过程:(一)主要学问:把握向量的概念、坐标表示、运算性质,做到融会贯穿,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略四、小结:1、进一步娴熟有关向量的运算和证明;能运用解三角形的学问解决有关应用问题,2、渗透数学建模的思想,切实培育分析和解决问题的力量。
关于高中数学优秀教案范例篇2一、教学目标1.把握菱形的判定.2.通过运用菱形学问解决详细问题,提高分析力量和观看力量.3.通过教具的演示培育同学的学习爱好.4.依据平行四边形与矩形、菱形的附属关系,通过画图向同学渗透集合思想.二、教法设计观看分析商量相结合的方法三、重点·难点·疑点及解决方法1.教学重点:菱形的判定方法.2.教学难点:菱形判定方法的综合应用.四、课时支配1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计老师演示教具、创设情境,引入新课,同学观看商量;同学分析论证方法,老师适时点拨七、教学步骤复习提问1.表达菱形的定义与性质.2.菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法.此外还有别的两种判定方法,下面就来学习这两种方法.讲解新课菱形判定定理1:四边都相等的四边形是菱形.菱形判定定理2:对角钱相互垂直的平行四边形是菱形.图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形.分析判定2:师问:本定理有几个条件?生答:两个.师问:哪两个?生答:(1)是平行四边形(2)两条对角线相互垂直.师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等.(由同学口述证明)证明时让同学注意线段垂直平分线在这里的应用,师问:对角线相互垂直的四边形是菱形吗?为什么?可画出图,明显对角线,但都不是菱形.菱形常用的判定方法归纳为(同学商量归纳后,由老师板书):注意:(2)与(4)的题设也是从四边形动身,和矩形一样它们的题没条件都包含有平行四边形的判定条件.例4已知:的对角钱的垂直平分线与边、分别交于、,如图.求证:四边形是菱形(按教材讲解).总结、扩展1.小结:(1)归纳判定菱形的四种常用方法.(2)说明矩形、菱形之间的区分与联系.2.思索题:已知:如图4△中,,平分,,,交于.求证:四边形为菱形.八、布置作业教材P159中9、10、11、13关于高中数学优秀教案范例篇3教学目标1.把握平面对量的数量积及其几何意义;2.把握平面对量数量积的重要性质及运算律;3.了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4.把握向量垂直的条件.教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请同学回顾本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
数学高中教学设计(优秀5篇)
数学高中教学设计(优秀5篇)高中数学教学设计篇一教学目标1.掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的`前项和。
(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。
公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。
等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
(6)补充可以化为等差数列、等比数列的数列求和问题。
教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度。
高中数学教案设计(精选12篇)
高中数学教案设计(精选12篇)高中数学教学设计篇一一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。
因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。
所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。
因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。
在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。
为此本节内容在三角函数中占有非常重要的地位。
三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。
四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。
高中数学教学设计优秀14篇
高中数学教学设计优秀14篇高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
高中数学优秀教案(优秀6篇)
高中数学优秀教案(优秀6篇)高中数学优秀教案篇一教学准备教学目标1.数列求和的综合应用教学重难点2.数列求和的综合应用教学过程典例分析3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式(2)求{|an|}的前n项和Tn4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=anxn ,求数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S壹五,求当n为何值时,Sn有最大值,并求出它的最大值.已知数列{an},an∈N,Sn= (an+2)2(1)求证{an}是等差数列(2)若bn= an-30 ,求数列{bn}前n项的最小值0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)12 .某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)= -t/3 +109/3 (0≤t≤100)求这种商品的日销售额的最大值注:对于分段函数型的应用题,应注意对变量x的取值区间的'讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值高中数学优秀教案篇二一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。
高中数学优质课教案5篇
高中数学优质课教案5篇高中数学优质课教案1教学目标知识与技能目标:本节的中心任务是研究导数的几何意义及其应用,概念的形成分为三个层次:(1) 通过复习旧知“求导数的两个步骤”以及“平均变化率与割线斜率的关系”,解决了平均变化率的几何意义后,明确探究导数的几何意义可以依据导数概念的形成寻求解决问题的途径。
(2) 从圆中割线和切线的变化联系,推广到一般曲线中用割线逼近的方法直观定义切线。
(3) 依据割线与切线的变化联系,数形结合探究函数导数的几何意义教案在导数的几何意义教案处的导数导数的几何意义教案的几何意义,使学生认识到导数导数的几何意义教案就是函数导数的几何意义教案的图象在导数的几何意义教案处的切线的斜率。
即:导数的几何意义教案=曲线在导数的几何意义教案处切线的斜率k在此基础上,通过例题和练习使学生学会利用导数的几何意义解释实际生活问题,加深对导数内涵的理解。
在学习过程中感受逼近的思想方法,了解“以直代曲”的数学思想方法。
过程与方法目标:(1) 学生通过观察感知、动手探究,培养学生的动手和感知发现的能力。
(2) 学生通过对圆的切线和割线联系的认识,再类比探索一般曲线的情况,完善对切线的认知,感受逼近的思想,体会相切是种局部性质的本质,有助于数学思维能力的提高。
(3) 结合分层的探究问题和分层练习,期望各种层次的学生都可以凭借自己的能力尽力走在教师的前面,独立解决问题和发现新知、应用新知。
情感、态度、价值观:(1) 通过在探究过程中渗透逼近和以直代曲思想,使学生了解近似与精确间的辨证关系;通过有限来认识无限,体验数学中转化思想的意义和价值;(2) 在教学中向他们提供充分的从事数学活动的机会,如:探究活动,让学生自主探究新知,例题则采用练在讲之前,讲在关键处。
在活动中激发学生的学习潜能,促进他们真正理解和掌握基本的数学知识技能、数学思想方法,获得广泛的数学活动经验,提高综合能力,学会学习,进一步在意志力、自信心、理性精神等情感与态度方面得到良好的发展。
高中数学教学优秀教案(精选4篇)
高中数学教学优秀教案(精选4篇)高中数学教案篇一1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2、能根据几何结构特征对空间物体进行分类。
3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。
教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
教学难点:柱、锥、台、球的结构特征的概括。
1、情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。
2、展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。
(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。
4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?5、典型例题例1:判断下列语句是否正确。
⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。
高中数学教学设计案例
高中数学教学设计案例作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学获得成功、提高教学质量的基本条件。
那么大家知道正规的教案是怎么写的吗?下面是由作者给大家带来的高中数学教学设计案例7篇,让我们一起来看看!高中数学教学设计案例篇1教学目标:1。
通过生活中优化问题的学习,体会导数在解决实际问题中的作用,增进学生全面认识数学的科学价值、运用价值和文化价值。
2。
通过实际问题的研究,增进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:如何建立实际问题的目标函数是教学的重点与难点。
教学进程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的运用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。
几何方面的运用(面积和体积等的最值)。
2。
物理方面的运用(功和功率等最值)。
3。
经济学方面的运用(利润方面最值)。
三、知识建构例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解运用题一样有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一样的求法加以简化,其步骤为:S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而肯定为函数的最大(小)值,必要时作答。
高中数学教案(8篇)
高中数学教案(8篇)高中数学教案篇一1.课题填写课题名称(高中代数类课题)2.教学目标(1)知识与技能:通过本节课的学习,掌握。
.。
.。
.知识,提高学生解决实际问题的能力;(2)过程与方法:通过。
.。
.。
.(讨论、发现、探究),提高。
.。
.。
.(分析、归纳、比较和概括)的能力;(3)情感态度与价值观:通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点(1)教学重点:本节课的知识重点(2)教学难点:易错点、难以理解的知识点4、教学方法(一般从中选择3个就可以了)(1)讨论法(2)情景教学法(3)问答法(4)发现法(5)讲授法5、教学过程(1)导入简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)(2)新授课程(一般分为三个小步骤)①简单讲解本节课基础知识点(例:奇函数的定义)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。
可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。
设置定义域不关于原点对称的函数是否为奇函数的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。
(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。
)(3)课堂小结教师提问,学生回答本节课的收获。
(4)作业提高布置作业(尽量与实际生活相联系,有所创新)。
6、教学板书2.高中数学教案格式一.课题(说明本课名称)二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)三.课型(说明属新授课,还是复习课)四.课时(说明属第几课时)五.教学重点(说明本课所必须解决的关键性问题)六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)七.教学方法要根据学生实际,注重引导自学,注重启发思维八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)九.作业处理(说明如何布置书面或口头作业)十.板书设计(说明上课时准备写在黑板上的内容)十一.教具(或称教具准备,说明辅助教学手段使用的工具)十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)3.高中数学教案范文【教学目标】1、知识与技能(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:(2)账务等差数列的通项公式及其推导过程:(3)会应用等差数列通项公式解决简单问题。
高中数学优秀教案10篇
高中数学优秀教案10篇第一篇:《直线与圆的位置关系》这篇教案以直观的图形入手,通过动态演示软件展现直线与圆相交、相切、相离的不同情况,引导学生探究其中的几何条件。
教案设计了多个实际问题让学生动手操作,深化理解并巩固知识点。
第二篇:《三角函数的图像与性质》此教案巧妙地运用多媒体工具展示三角函数的图像变化规律,辅以板书推导关键性质。
学生通过观察、归纳、证明的过程,逐步建立起对三角函数性质的深刻印象。
第三篇:《概率的基本概念与计算》针对概率这一抽象概念,该教案采用生活实例作为引入,如抛硬币、掷骰子等,让学生在参与中感受随机事件的可能性。
随后,通过具体案例分析教授概率的计算方法,提高学生的实际应用能力。
第四篇:《立体几何的空间想象能力培养》考虑到立体几何对学生空间想象能力的要求较高,这篇教案设计了系列空间模型搭建活动,鼓励学生亲手制作模型,通过触摸和操作加深对空间图形的认识。
第五篇:《解析几何中的坐标方法》解析几何部分着重于坐标法的应用,该教案从简单的点线关系出发,逐渐过渡到复杂的曲线方程。
通过分层次练习题,训练学生运用坐标法解决问题的技巧。
第六篇:《数列的递推与通项公式》数列章节通常包含多个公式和解题技巧,这份教案以典型例题为主导,结合历史故事和现实情境,激发学生的学习兴趣,同时引导他们掌握数列递推关系的求解方法。
第七篇:《导数的概念及其运算规则》导数作为微积分的起点,其概念的理解至关重要。
这篇教案从速度、加速度的实际背景切入,逐步介绍导数的定义和运算法则,强调数学建模的思想。
第八篇:《不等式的解法与证明》不等式题型多变,该教案系统总结了一元二次不等式、分式不等式等多种类型的解题策略,并通过比较法、综合法等不同证明方法的训练,提升学生的逻辑推理能力。
第九篇:《复数与复平面》复数部分往往令学生感到困惑,此教案利用动画演示复平面内点的移动,形象地解释复数加法、乘法的几何意义。
还设计了基于复数应用的问题情景,如电路分析等,增强知识的实用性。
高中数学教案教学设计范文(7篇)
高中数学教案教学设计范文(7篇)高中数学教案教学设计范文(7篇)数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,更是现代社会学习和研究现代科学技术必不可少的基本工具。
以下是小编准备的高中数学教案教学设计范文,欢迎借鉴参考。
高中数学教案教学设计范文(精选篇1)教学目标1、明确等差数列的定义。
2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。
教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。
这两个公式从不同的角度反映数列的特点,下面看一些例子。
(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)对于数列②-2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。
具有这种特点的数列,我们把它叫做等差数。
一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2。
二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列的首项是,公差是d,则据其定义可得:若将这n-1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)-401是不是等差数列-5,-9,-13…的项如果是,是第几项解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
高中数学优秀教学设计【精选10篇】
高中数学优秀教学设计【精选10篇】高中数学优秀教学设计【篇1】【教学目的】(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义【重点难点】教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪【内容分析】1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明【教学过程】一、复习引入:1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N__或N+(3)整数集:全体整数的集合记作Z ,(4)有理数集:全体有理数的集合记作Q ,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集记作N__或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是 -2,0,24、由实数x,-x,|x|, 所组成的集合,最多含( A )(A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:(1) 当x∈N时, x∈G;(2) 若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0, 则x= x+0__ = a+b ∈G,即x∈G证明(2):∵x∈G,y∈G,∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)∴x+y=( a+b )+( c+d )=(a+c)+(b+d)∵a∈Z, b∈Z,c∈Z, d∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d) ∈G,又∵ =且不一定都是整数,∴ = 不一定属于集合G【小结】1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法高中数学优秀教学设计【篇2】学习目标明确排列与组合的联系与区别,能判断一个问题是排列问题还是组合问题;能运用所学的排列组合知识,正确地解决的实际问题.学习过程一、学前准备复习:1.(课本P28A13)填空:(1)有三张参观卷,要在5人中确定3人去参观,不同方法的种数是 ;(2)要从5件不同的礼物中选出3件分送3为同学,不同方法的种数是 ;(3)5名工人要在3天中各自选择1天休息,不同方法的`种数是 ;(4)集合A有个元素,集合B有个元素,从两个集合中各取1个元素,不同方法的种数是 ;二、新课导学探究新知(复习教材P14~P25,找出疑惑之处)问题1:判断下列问题哪个是排列问题,哪个是组合问题:(1)从4个风景点中选出2个安排游览,有多少种不同的方法?(2)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?应用示例例1.从10个不同的文艺节目中选6个编成一个节目单,如果某女演员的独唱节目一定不能排在第二个节目的位置上,则共有多少种不同的排法?例2.7位同学站成一排,分别求出符合下列要求的不同排法的种数.(1) 甲站在中间;(2)甲、乙必须相邻;(3)甲在乙的左边(但不一定相邻);(4)甲、乙必须相邻,且丙不能站在排头和排尾;(5)甲、乙、丙相邻;(6)甲、乙不相邻;(7)甲、乙、丙两两不相邻。
高中数学教案(优秀4篇)
高中数学教案(优秀4篇)高中数学教学设计篇一一、课程说明(一)教材分析:此次一对一家教所使用教材为北师大版高中数学必修5。
辅导内容为第一章第二节等差数列。
前一节的内容为数列,学生已初步了解到数列的概念,知道什么是首项,什么是通项等等。
以及了解到什么是递增数列,什么是递减数列。
通过第一节的学习的铺垫,可以让学生更自主的探究,学习等差数列。
而我也是在这些基础上为她讲解第二节等差数列。
(二)学生分析:此次所带学生是一名高二的学生。
聪明但是不踏实,做题浮躁。
基础知识掌握不够牢靠,知识的运用能力较差,分析能力较弱,解题思路不清。
每次她遇到会的题,就快快的草率做完,总会有因马虎而犯的错误。
遇到稍不会的,总是很浮躁,不能冷静下来慢慢思考。
就由略不会变成不会。
但她也是个虚心听教的孩子,给她讲课,她也会很认真地听讲。
(三)教学目标:1、通过教与学的配合,让她能够懂得什么是等差数列,以及等差数列的通项公式。
2、通过对公式的推导,让她加深对内容的理解,以及学会自己对公式的推导。
并且能够灵活运用。
3、在教学中让她通过对公式的推导来明白推理的艺术,并且培养她学习,做题条理清晰,思路缜密的好习惯。
4、让她在学习,做题中一步步抽丝剥茧,寻找解决问题的方法,培养她敢于面对数学学习中的困难,并培养她对克服困难和运用知识。
耐心地解决问题。
5、让她在学习中发现数学的独特的美,能够爱上数学这门课。
并且认真对待,自主学习。
(四)教学重点:1、让学生正确掌握等差数列及其通项公式,以及其性质。
并能独立的推导。
2、能够灵活运用公式并且能把相应公式与题相结合。
(五)教学难点:1、让学生掌握公式的推导及其意义。
2、如何把所学知识运用到相应的题中。
二、课前准备(一)教学器材对于一对一教教采用传统讲课。
一张挂历。
(二)教学方法通过对生活中的有规律数据的观察来提出问题,让学生结合前一节所学,思考有什么规律。
从生活中着手有利于激发学生的兴趣爱好,并能更积极地学习。
高中数学优秀教学案例10篇
高中数学优秀教学案例10篇引言本文将介绍十篇高中数学优秀教学案例,这些案例不仅能够激发学生对数学的兴趣,还能够提高他们的数学理解和解决问题的能力。
案例1:数列与函数的关系这个案例通过数列与函数的关系展示了数学的实际应用。
学生通过分析数列与函数之间的规律,掌握了数学模型的建立和使用方法。
案例2:应用题解决这个案例通过一系列应用题,让学生综合运用所学的知识来解决实际问题。
学生通过解决这些应用题,培养了数学思维和问题解决能力。
案例3:图形的变换这个案例通过图形变换来帮助学生理解几何知识。
学生通过观察图形的变换规律,加深了对几何知识的理解。
案例4:概率统计这个案例将概率与统计应用于实际生活中的问题中。
学生通过统计数据和计算概率,培养了数据分析和推理能力。
案例5:三角函数的应用这个案例通过三角函数的应用,让学生更好地理解三角函数的概念和用途。
学生通过解决实际问题,进一步巩固了三角函数的知识。
案例6:平面向量的运算这个案例通过平面向量的运算,让学生掌握向量的性质和运算规律。
学生通过解决向量运算的问题,提高了数学建模和计算能力。
案例7:解析几何的应用这个案例通过解析几何的应用,让学生熟练运用解析几何的方法解决几何问题。
学生通过解决实际问题,进一步加深了对解析几何的理解。
案例8:数学建模这个案例通过数学建模,让学生在实际问题中运用数学知识进行建模分析。
学生通过解决实际问题,培养了数学建模和分析能力。
案例9:数学思维训练这个案例通过数学思维训练,提供了一系列拓展性的数学问题和思考方法。
学生通过解决这些问题,培养了创新思维和数学思维能力。
案例10:数学竞赛解题这个案例通过数学竞赛解题,让学生在竞争中锻炼和提高自己的数学能力。
学生通过参与数学竞赛,培养了良好的数学竞赛素养。
总结这些高中数学优秀教学案例涵盖了数学的各个知识点和应用领域,能够帮助学生提高数学能力和解决问题的能力。
教师可以根据实际情况选择合适的案例来进行教学,激发学生对数学的兴趣和热爱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学教学设计大赛获奖作品汇编(上部)目 录1、集合与函数概念实习作业……………………………………2、指数函数的图象及其性质……………………………………3、对数的概念…………………………………………………4、对数函数及其性质(1)……………………………………5、对数函数及其性质(2)……………………………………6、函数图象及其应用……………………………………7、方程的根与函数的零点……………………………………8、用二分法求方程的近似解……………………………………9、用二分法求方程的近似解……………………………………10、直线与平面平行的判定……………………………………11、循环结构 …………………………………………………12、任意角的三角函数(1)…………………………………13、任意角的三角函数(2)……………………………………14、函数sin()y A x ωϕ=+的图象…………………………15、向量的加法及其几何意义………………………………………16、平面向量数量积的物理背景及其含义(1)………………17、平面向量数量积的物理背景及其含义(2)……………………18、正弦定理(1)……………………………………………………19、正弦定理(2)……………………………………………………20、正弦定理(3)……………………………………………………21、余弦定理………………………………………………22、等差数列………………………………………………23、等差数列的前n项和………………………………………24、等比数列的前n项和………………………………………25、简单的线性规划问题………………………………………26、拋物线及其标准方程………………………………………27、圆锥曲线定义的运用………………………………………前言为了更好地贯彻落实和科课程标准有关要求,促进广大教师学习现代教学理论,进一步激发广大教师课堂教学的创新意识,切实转变教学观念,积极探索新课程理念下的教与学,有效解决教学实践中存在的问题,促进课堂教学质量的全面提高,在2007年由福建省普通教育教学研究室组织,举办了一次教学设计大赛活动。
这次活动数学学科高中组共收到有49篇教学设计文章。
获奖文章推荐评审专家组本着公平、公正的原则,经过认真的评审,全部作品均评出了相应的奖项;专家组还为获得一、二等奖的作品撰写了点评。
本稿收录的作品全部是参加此次福建省教学设计竞赛获奖作者的文章。
按照征文的规则,我们对入选作品的格式作了一些修饰,并经过适当的整合,以飨读者。
在此还需要说明的是,为了方便阅读,获奖文章的排序原则,并非按照获奖名次的前后顺序,而是按照高中数学新课程必修1—5的内容顺序,进行编排的。
部分体现大纲教材内容的文章则排在后面。
不管你获得的是哪个级别的奖项,你们都可以有成就感,因为那是你们用心、用汗浇灌出的果实,它记录了你们奉献于数学教育事业的心路历程.书中每一篇的教学设计都耐人寻味,都能带给我们许多遐想和启迪.你们是优秀的,在你们未来悠远的职业里程中,只要努力,将有更多的辉煌在等待着大家。
谢谢你们!编者 2008-3-23 于福州1、集合与函数概念实习作业一、教学内容分析《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。
-----《实习作业》。
本节课程体现数学文化的特色,学生通过了解函数的发展历史进一步感受数学的魅力。
学生在自己动手收集、整理资料信息的过程中,对函数的概念有更深刻的理解;感受新的学习方式带给他们的学习数学的乐趣。
二、学生学习情况分析该内容在《普通高中课程标准实验教科书·数学(1)》(人教A版)第44页。
学生第一次完成《实习作业》,积极性高,有热情和新鲜感,但缺乏经验,所以需要教师精心设计,做好准备工作,充分体现教师的“导演”角色。
特别在分组时注意学生的合理搭配(成绩的好坏、家庭有无电脑、男女生比例、口头表达能力等),选题时,各组之间尽量不要重复,尽量多地选不同的题目,可以让所有的学生在学习共享的过程中受到更多的数学文化的熏陶。
三、设计思想《标准》强调数学文化的重要作用,体现数学的文化的价值。
数学教育不仅应该帮助学生学习和掌握数学知识和技能,还应该有助于学生了解数学的价值。
让学生逐步了解数学的思想方法、理性精神,体会数学家的创新精神,以及数学文明的深刻内涵。
四、教学目标1.了解函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物;2.体验合作学习的方式,通过合作学习品尝分享获得知识的快乐;3.在合作形式的小组学习活动中培养学生的领导意识、社会实践技能和民主价值观。
五、教学重点和难点重点:了解函数在数学中的核心地位,以及在生活里的广泛应用;难点:培养学生合作交流的能力以及收集和处理信息的能力。
六、教学过程设计【课堂准备】1.分组:4~6人为一个实习小组,确定一人为组长。
教师需要做好协调工作,确保每位学生都参加。
2.选题:根据个人兴趣初步确定实习作业的题目。
教师应该到各组中去了解选题情况,尽量多地选择不同的题目。
参考题目:(1)函数产生的社会背景;(2)函数概念发展的历史过程;(3)函数符号的故事;(4)数学家(如:开普勒、伽利略、笛卡儿、牛顿、莱布尼兹、贝努利、欧拉、柯西、狄里克雷、罗巴契夫斯基等)与函数;(5)也可自拟题目3.分配任务:根据个人情况和优势,经小组共同商议,由组长确定每人的具体任务。
4.搜集资料:针对所选题目,通过各种方式(相关书籍----《函数在你身边》、《世界函数通史》、《世界著名科学家传记》等;相关网页、/cz/tbjak/qnj/bsdb8njsxxc/200605/43459.html等)搜集素材,包括文字、图片、数据以及音像资料等,并记录相关资料,写出实习报告。
5.投影仪、多媒体;6.把各组的实习报告,贴在班级的学习栏内,让学生学习交流。
【教学过程】1.出示课题:交流、分享实习报告2.交流、分享:(由数学科代表主持。
小组推荐中心发言人;以下记录均为发言概述)(1)学生1:函数小史数学史表明,重要的数学概念的产生和发展,对数学发展起着不可估量的作用。
有些重要的数学概念对数学分支的产生起着奠定性的作用。
我们刚学过的函数就是这样的重要概念。
在笛卡尔引入变量以后,变量和函数等概念日益渗透到科学技术的各个领域。
最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨。
最初莱布尼茨用“函数”一词表示幂。
1755年,瑞士数学家欧拉把给出了不同的函数定义。
中文数学书上使用的“函数”一词是转译词。
是我国清代数学家李善兰在翻译《代数学》(1895年)一书时,把“function”译成“函数”的。
我们可以预计到,关于函数的争论、研究、发展、拓广将不会完结,也正是这些影响着数学及其相邻学科的发展。
(2)教师带头鼓掌并简单评价(3)学生2:函数概念的纵向发展:该同学从早期函数概念——几何观念下的函数到十八世纪函数概念——代数观念下的函数讲述了函数概念的发展。
其中包括18世纪中叶著名的数学家欧拉对函数概念发展的贡献。
接着又讲述了十九世纪函数概念——对应关系下的函数。
以及现代函数概念——集合论下的函数。
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式。
(4)教师带头鼓掌并简单评价(5)学生3:我国数学家李国平与函数学生3描述了数学家中国科学院数学物理学部委员.李国平(1910—1996),的身世和他的成长历程。
李国平1933年毕业于中山大学数学天文系。
后历任中国科学院数学计算技术研究所所长,中国科学院武汉数学物理研究所所长,中国数学会理事,中国科学院学部委员等职务。
学生还通俗地讲述了李国平先生在微分方程复变函数论领域的卓越贡献。
(6)教师带头鼓掌并简单评价(7)学生4:函数概念对数学发展的影响该学生从历史上重要数学概念对数学发展的作用是不可估量的事实出发,讲述了函数概念对数学发展的深刻影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.该学生说道,早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.(8)教师带头鼓掌并简单评价(9)学生5:函数概念的历史演变过程该学生说,数学的抽象完全舍弃了事物的质的内容,而仅仅保留了它们的量的属性,即数学抽象的目的只是数量关系和空间形式.这就决定了数学与其它自然科学的区别,也决定了数学的特殊性.如果在两个集合元素之间存在有确定的对应关系,就称为是一个映射.上述函数概念的历史演变过程,就是一系列弱抽象的过程.学生展示了下表:3.课堂小结:4.实习作业的评定:七、教学反思实习作业是新课程的一个亮点。
是培养学生的团队精神,体验合作学习的方式的重要途径。
但事实上,实习作业很容易被教师所忽视,所以想通过该教学设计引起教师们的重视。
在高一刚开始的时候,如何做好第一次实习作业,是很关键的。
就我们学校条件和学生情况,完全可以做好实习作业的,事实证明学生做得很好。
可以通过这次实习作业,让学生体验合作学习的方式,通过合作学习品尝分享获得知识的快乐。
再者,通过对数学家的了解,感受数学家的精神,增加学好数学的信心,为今后的学习打下好的基础。
福鼎市第一中学曹齐平点评该教学设计具有一定的创新性,在教师的引导下,以学生合作学习的模式,探讨函数概念的形成、发展的历史以及在这个过程中起重大作用的历史事件和人物。
通过学生的自主学习、探究活动,学生经历收集信息,整理资料,并从中提取有用信息的过程,让学生体验数学知识发现和创造的历程,对于提高学生的数学表达和交流的能力具有一定意义。
但该设计中教师的主导地位体现得不够,教师对学生的评价不够具体(只有鼓掌)。
2、指数函数的图象及其性质一、教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。
根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为两节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。