光电效应讲义
《光电效应的理论解释》 讲义
《光电效应的理论解释》讲义在物理学的众多奇妙现象中,光电效应无疑是一颗璀璨的明珠。
它不仅揭示了光的粒子性,还为现代物理学的发展奠定了重要基础。
那么,什么是光电效应?简单来说,光电效应就是当光照射到金属表面时,金属中的电子会吸收光子的能量而逸出金属表面的现象。
要深入理解光电效应,我们得先了解几个关键概念。
首先是光子,光具有波粒二象性,光子就是光的粒子性体现,它具有一定的能量和动量。
其次是逸出功,这是指电子从金属表面逸出时克服原子核引力所做的功。
光电效应有着一些独特的实验规律。
比如,存在一个截止频率,只有当入射光的频率高于这个截止频率时,才会产生光电效应。
而且,光电子的最大初动能与入射光的频率成线性关系,而与入射光的强度无关。
另外,在一定频率的光照射下,光电流的强度与入射光的强度成正比。
那么,如何从理论上解释这些实验规律呢?经典物理学在这个问题上遭遇了困境。
按照经典电磁理论,光的能量是连续分布的,电子吸收能量需要一定的时间积累,而且光的强度越大,电子获得的能量应该越多,从而初动能也应该越大。
但光电效应的实验结果却并非如此。
这时,爱因斯坦站了出来,他提出了光量子假说。
他认为,光是由一个个不连续的光子组成的,每个光子的能量只与光的频率有关,即E =hν,其中 E 是光子的能量,h 是普朗克常量,ν 是光的频率。
当光子照射到金属表面时,如果光子的能量大于逸出功,电子就能立即吸收光子的能量并逸出金属表面,无需时间积累。
这就很好地解释了为什么存在截止频率,因为当光子频率低于截止频率时,其能量不足以使电子逸出。
同时,由于光电子的最大初动能只与光子的频率有关,而与光的强度无关。
光的强度只是决定了单位时间内入射的光子数,从而决定了光电流的强度。
我们再进一步思考,光电效应的理论解释有着极其重要的意义。
它推动了量子力学的发展,让人们对微观世界的认识发生了深刻的变革。
在实际应用方面,光电效应也有着广泛的用途。
比如,光电倍增管就是利用光电效应将光信号转化为电信号的一种器件,在天文学、核物理学等领域有着重要的应用。
光电效应讲义
光电效应的研究【实验目的】1. 研究光电流与极间电压的关系。
2. 研究光电流与光通量之间的关系。
3. 掌握光电管的一些主要特性,学会正确使用光电管。
【实验仪器】光电效应实验仪。
仪器包括以下部分:-12V~24V稳压电源,光源用可调电源0~15V,数字电压表(-12V~24V),数字电流表(实验时为180~600mA),光电管电压调节电位器,光源(小灯泡)电流调节电位器,分档的高灵敏度电流计(0~20µA, 0~200µA)。
暗箱,内包括光电管,小灯泡及光源距离调节刻度尺。
【预习要求】1. 参考数据记录表,拟定测量步骤。
2. 初步了解光电管的主要特性以及实验装置的结构特点。
【研究内容与方法】1. 测伏安特性:(1) 打开仪器电源开关,将微电流量程转换开关旋到“200µA”(如实验数据较小可选择“20µA”量程),检查确认仪器工作正常(电流调节应调至最小值)。
根据原理图3,接好线路(即仪器微电流输入连接线“Q9端”连接到仪器主机,微电流输入连接线“+”“-”分别接暗箱光电流输出“+”“-”;仪器光源电源“+”“-”分别接暗箱光源电源“+”“-”);调节输出电流调节电位器使小灯电流为规定值I L,建议参考值为250mA,在实验过程中小灯泡电流要始终保持I L不变;顺时针调节电压调节电位器,电压表显示值为正,此时在光电管上加正电压,逆时针调节电压调节电位器,电压表显示值为负,此时在光电管上加负电压。
(2) 使光源与光电管阴极的距离保持一定,调节“光电管电压调节”电位器,使光电管电压由零开始逐渐升高,同时测出若干个电压下的光电流IΦ。
(3) 调节(逆时针)“光电管电压调节电位器”,在光电管两端加上反向电压(即负电压),调节光电管电压由零开始逐渐减小(即负的增加),测出若干个电压下的光电流IΦ。
(4) 光电流IΦ为0时的电压即为反向截止电压Va。
(5) 改变光源与光电管阴极的距离,重复(1)-(4)步骤,绘制两条伏安特性曲线。
第72讲光电效应波粒二象性(讲义)
第72讲光电效应波粒二象性目录复习目标网络构建考点一光电效应【夯基·必备基础知识梳理】知识点1 与光电效应有关的五组概念对比知识点2 光电效应的研究思路知识点3 三个定量关系式知识点4 光电管问题【提升·必考题型归纳】考向1 光电效应方程的应用考向2 光电管问题考点二光电效应的四类图像【夯基·必备基础知识梳理】知识点光电效应的四类图像【提升·必考题型归纳】考向1 E Kν图像考向2 U cν图像考向3 IU图像考点三对波粒二象性、物质波的理解【夯基·必备基础知识梳理】知识点1 波粒二象性知识点2 物质波知识点3 对光的波粒二象性的进一步理解【提升·必考题型归纳】考向1 德布罗意波长考向2 波粒二象性真题感悟1、理解和掌握光电效应的规律及光电效应方程。
2、理解和掌握光的波粒二象性。
光电效应波粒二象性光电效应1.光电效应规律2.光电效应方向3.光电管光电效应的图像1.E k -ν图像2.Uc-ν图像3.I-U 图像波粒二象性1.波粒二象性2.物质波考点一光电效应知识点1 与光电效应有关的五组概念对比(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。
光子是因,光电子是果。
(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。
(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。
(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量,而光子能量E=hν。
(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系。
实验一光电效应讲义
实验一光电效应1887年,赫兹在研究电磁辐射时意外发现,光照射金属表面时,在一定的条件下,有电子从金属的表面溢出,这种物理现象被称作光电效应,所溢出的电子称光电子。
由此光电子的定向运动形成的电流称光电流。
1888年以后,W.哈尔瓦克斯、A.Γ.斯托列托夫、P.勒纳德等人对光电效应进行了长时间的研究,并总结出了光电效应的基本实验事实:1.光强一定时,光电管两端电压增大时,光电流趋向一饱和值。
对于同一频率不同光强时,光电发射率(光电流强度或逸出电子数)与光强P成正比,见图1(a)、(b)。
2.对于不同频率的光,其截止电压不同,光电效应存在一个阈频率(截止频率、极限频率或红限频率),当入射光频率 低于某一阈值时,不论光的强度如何,都没有光电子产生,见图1(c)、(d)。
3.光电子的动能与入射光强无关,但与入射光的频率成线性关系。
4.光电效应是瞬时效应,一经光束照射立即产生光电子。
图1 光电效应规律上述实验事实用麦克斯韦的经典电磁理论无法作出圆满的解释。
1905年,爱因斯坦用光量子理论圆满解释了光电效应,并得出爱因斯坦光电效应方程。
后来密立根对光电效应展开全面的实验研究,证明了爱因斯坦光电效应方程的正确性,并精确测出普朗克常数h。
因为在光电效应等方面的杰出贡献,爱因斯坦和密立根分别于1921年和1923年获得诺贝尔物理学奖。
光电效应和光量子理论在物理学的发展史上具有划时代的意义,量子论是近代物理的理论基础之一。
而光电效应则可以给量子论以直观鲜明的物理图像。
随着科学技术的发展,利用光电效应制成的光电元件在许多科技领域得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。
本实验利用“减速电势法”测量光电子的动能,从而验证爱因斯坦方程,并测得普朗克常数。
经过本实验有助于进一步理解量子理论。
【实验目的】1.通过实验了解光的量子性。
2.测量光电管的弱电流特性,找出不同光频率下的截止电压。
3.验证爱因斯坦方程,并由此求出普朗克常数。
实验一光电效应讲义
实验一光电效应1887年,赫兹在研究电磁辐射时意外发现,光照射金属表面时,在一定的条件下,有电子从金属的表面溢出,这种物理现象被称作光电效应,所溢出的电子称光电子。
由此光电子的定向运动形成的电流称光电流。
1888年以后,W.哈尔瓦克斯、A.Γ.斯托列托夫、P.勒纳德等人对光电效应进行了长时间的研究,并总结出了光电效应的基本实验事实:1.光强一定时,光电管两端电压增大时,光电流趋向一饱和值。
对于同一频率不同光强时,光电发射率(光电流强度或逸出电子数)与光强P成正比,见图1(a)、(b)。
2.对于不同频率的光,其截止电压不同,光电效应存在一个阈频率(截止频率、极限频率或红限频率),当入射光频率 低于某一阈值时,不论光的强度如何,都没有光电子产生,见图1(c)、(d)。
3.光电子的动能与入射光强无关,但与入射光的频率成线性关系。
4.光电效应是瞬时效应,一经光束照射立即产生光电子。
图1 光电效应规律上述实验事实用麦克斯韦的经典电磁理论无法作出圆满的解释。
1905年,爱因斯坦用光量子理论圆满解释了光电效应,并得出爱因斯坦光电效应方程。
后来密立根对光电效应展开全面的实验研究,证明了爱因斯坦光电效应方程的正确性,并精确测出普朗克常数h。
因为在光电效应等方面的杰出贡献,爱因斯坦和密立根分别于1921年和1923年获得诺贝尔物理学奖。
光电效应和光量子理论在物理学的发展史上具有划时代的意义,量子论是近代物理的理论基础之一。
而光电效应则可以给量子论以直观鲜明的物理图像。
随着科学技术的发展,利用光电效应制成的光电元件在许多科技领域得到广泛的应用,并且至今还在不断开辟新的应用领域,具有广阔的应用前景。
本实验利用“减速电势法”测量光电子的动能,从而验证爱因斯坦方程,并测得普朗克常数。
经过本实验有助于进一步理解量子理论。
【实验目的】1.通过实验了解光的量子性。
2.测量光电管的弱电流特性,找出不同光频率下的截止电压。
3.验证爱因斯坦方程,并由此求出普朗克常数。
《光电效应的理论解释》 讲义
《光电效应的理论解释》讲义在我们探索光与物质相互作用的奇妙世界时,光电效应是一个极为重要的现象。
它不仅为我们揭示了光的粒子性,还为现代物理学的发展奠定了基础。
接下来,让我们一起深入理解光电效应,并探究其背后的理论解释。
一、什么是光电效应光电效应指的是当一束光照射在金属表面时,金属中的电子会吸收光子的能量而逸出表面的现象。
这可不是一个简单的过程,其中蕴含着深刻的物理原理。
例如,当用紫外线照射锌板时,锌板会迅速失去电子,产生电流。
但这里有个有趣的现象,光的强度和电子逸出的数量有关,而光的频率则决定了能否让电子逸出。
二、光电效应的实验规律1、饱和电流当光的强度增加时,单位时间内逸出的光电子数也会增加,从而导致饱和电流增大。
这就好像给一个容器注水,水流越大,注满的速度就越快。
2、遏止电压无论光的强度如何,只要光的频率高于某个阈值,就会存在一个遏止电压,使得光电子无法到达阳极。
这个遏止电压与光的频率成线性关系。
3、截止频率每种金属都存在一个特定的截止频率,只有当入射光的频率高于该截止频率时,才会发生光电效应。
低于这个频率,无论光的强度多大,都不会有电子逸出。
三、经典物理学的困惑按照经典物理学的理论,光是一种连续的电磁波,其能量是均匀分布在波阵面上的。
当光照射到金属表面时,电子会逐渐积累能量,直到足够大时才会逸出。
然而,这样的理论无法解释光电效应的一些实验规律。
比如,按照经典理论,光的强度越大,电子积累能量的速度就应该越快,电子逸出的时间就应该越短。
但实际情况是,光的频率低于截止频率时,无论照射多久都不会有电子逸出。
四、爱因斯坦的光量子假说为了解释光电效应,爱因斯坦提出了光量子假说。
他认为光不是连续的波,而是由一个个离散的能量子组成,这些能量子被称为光子。
每个光子的能量与光的频率成正比,即 E =hν ,其中 E 是光子的能量,h 是普朗克常数,ν 是光的频率。
当光子照射到金属表面时,其能量被电子瞬间吸收。
第1讲光电效应讲义
第1讲光电效应板块一主干梳理夯实基础【知识点1】光电效应I1. 定义照射到金属表面的光,能使金属中的电子从表面逸出的现象。
2. 光电子光电效应中发射出来的电子。
3. 光电效应规律(1) 每种金属都有一个极限频率,入射光的频率必须大于等于这个极限频率才能产生光电效应。
低于这个频率的光不能产生光电效应。
(2) 光电子的最大初动能与入射光的强度无关,只随入射光频率的增大而增大。
_-9(3) 光电效应的发生几乎是瞬时的,一般不超过10 S。
⑷当入射光的频率大于极限频率时,饱和光电流的强度与入射光的强度成正比。
_____【知识点2] 爱因斯坦光电效应方程I1. 光子说在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光的能量子,简称光子,光子的能量尸h v 其中h= 6.63x 10-34 Js(称为普朗克常量)。
2. 逸出功W o使电子脱离某种金属所做功的最/」—3. 最大初动能发生光电效应时,金属表面上的电子吸收光子后克服金属的逸出功后所具有的动能。
4. 爱因斯坦光电效应方程(1) 表达式:E k = h v- W o。
(2) 物理意义:金属表面的电子吸收一个光子获得的能量是h v,这些能量的一部分用来克服金属的逸出功W o,剩下的表现为逸出后光电子的最大初动能E k= ;m e v $。
5. 对光电效应规律的解释【知识点3】光的波粒二象性物质波1. 光的波粒二象性(1) 光的干涉、衍射、偏振现象说明光具有波动性。
(2) 光电效应和康普顿效应说明光具有粒子性。
(3) 光既具有波动性,又具有粒子性,即光具有波粒二象性。
2. 物质波(1) 1924年,法国物理学家德布罗意提出:实物粒子也具有波动性,每一个运动着的粒子都有一个波和它对应, 这种波叫做物质波,也叫德布罗意波。
(2) 物质波的波长:x= p=mh v,其中h是普朗克常量。
物质波也是一种概率波。
板块二考点细研悟法培优考点1光电效应规律的理解 [深化理解][考点解读】1. 光子与光电子光子是指组成光本身的一个个不可分割的能量子,光子不带电;光电子是指金属表面受到光照射时发射出来 的电子。
光电效应电子讲义-薛老师
光电效应实验实验简介量子论是近代物理的基础之一,而光电效应可以给量子论以直观、鲜明的物理图像,随着科学技术的发展,光电效应已广泛用于许多科技领域。
普朗克常数是自然科学中一个很重要的参数,它可以用光电效应法简单而又准确地求出,所以,进行光电效应实验并通过实验求取普朗克常熟有助于理解量子理论和更好地认识普朗克常数。
实验目的通过对实验现象的观测和分析,了解光电效应的规律和光的量子性。
观测光电管的弱电流特性,找出不同光频率下的截止电压。
了解光的量子性理论与波动理论,并验证爱因斯坦方程进而求出普朗克常数。
实验仪器THQPC-1型普朗克常数测定仪微电流测试仪及测试台 实验原理当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应,所产生的电子称为光电子。
光线照在光电管阴极K 上(如下图所示),便有电子逸出----光电子,光电子在电场作用下形成光电流,并且光照越强,光电流越大。
在阴极K 与阳极A 之间加反向电场,则光电子离开阴极后将受反向电场阻碍作用。
光电效应实验原理图 光电管的伏安特性 爱因斯坦光量子理论:光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。
也就是说,频率为ν 的光是由大量能量为 ε =h ν 光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。
在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功A ,另一部分变为光电子的动能 E k 0 。
由能量守恒可得出:W 为电子逸出金属表面所需作的功,称为逸出功,其大小与材料有关。
2021m K mv E =为光电子的最大初动能。
截止频率 :根据爱因斯坦方程,只有当h ν≥W 才会有光电子发射,即截止频率为 =W/h ( 值随金属种类不同而不同)。
当 K 、A 间加反向电压,光电子克服电场力作功,当电压达到某一值 U s 时,光电流恰W mv h m+=221ν0v 0v 0v为0。
光电效应讲义(同名647)
光电效应实验光电效应是指一定频率的光照射在金属外表时会有电子从金属外表逸出的现象。
光电效应实验对于认识光的本质及早期量子理论的发展,具有里程碑式的意义。
自古以来,人们就试图解释光是什么,到17世纪,牛顿等人在研究几何光学现象的同时,根据光的直线传播性,提出光的微粒流学说。
惠更斯等人在17世纪提出了光的波动学说,19世纪初,托马斯•杨发展了惠更斯的波动理论,成功地解释了干预现象,并提出了著名的杨氏双缝干预实验,为波动学说提供了很好的证据。
1818年,年仅30岁的菲涅耳从光是横波的观点出发,圆满的解释了光的偏振和衍射。
1856-1865年,麦克斯韦建立了电磁场理论,指出光是一种电磁波,光的波动理论得到确立。
1887年赫兹在用两套电极做电磁波的发射与接收的实验中,发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,赫兹的发现吸引许多人去做这方面的研究工作。
斯托列托夫发现负电极在光的照射下会放出带负电的粒子,形成光电流,光电流的大小与入射光强度成正比,光电流实际是在照射开始时立即产生,无需时间上的积累。
1899年,汤姆逊测定了光电流的荷质比,证明光电流是阴极在光照射下发射出的电子流。
赫兹的助手勒纳德从1889年就从事光电效应的研究工作,1900年,他用在阴阳极间加反向电压的方法研究电子逸出金属外表的最大速度,发现光源和阴极材料都对截止电压有影响,但光的强度对截止电压无影响,电子逸出金属外表的最大速度与光强无关,这是勒纳德的新发现,勒纳德因在这方面的工作获得1905年的诺贝尔物理奖。
光电效应的实验规律与经典的电磁理论是矛盾的,按经典理论,电磁波的能量是连续的,电子接受光的能量获得动能,应该是光越强,能量越大,电子的初速度越大;实验结果是电子的初速与光强无关;按经典理论,只要有足够的光强和照射时间,电子就应该获得足够的能量逸出金属外表,与光波频率无关;实验事实是对于一定的金属,当光波频率高于某一值时,金属一经照射,立即有光电子产生;当光波频率低于该值时,无论光强多强,照射时间多长,都不会有光电子产生。
2023年新教材高中物理光电效应讲义新人教版选择性必修第三册
2.光电效应1.知道光电效应现象,了解光电效应的实验规律。
2.知道爱因斯坦的光子说及对光电效应的解释,会用光电效应方程解决一些简单问题。
3.了光的波粒二象性。
知识点 1 光电效应现象和实验规律1.光电效应定义照射到金属表面的光,能使金属中的__电子__从表面逸出的现象。
2.光电子光电效应中发射出来的__电子__。
3.光电效应的实验规律(1)截止频率:当入射光的频率__减小__到某一数值νc时,光电流消失,表面已经没有光电子了,νc称为截止频率。
(2)存在着__饱和__电流。
入射光强度一定,单位时间内阴极K发射的光电子数__一定__。
入射光越强,饱和电流__越大__,表明入射光越强,单位时间内发射的光电子数__越多__。
(3)遏止电压:施加反向电压,使光电流减小到0的__反向电压__U c称为遏止电压。
(4)光电效应具有瞬时性:当频率超过截止频率νc时,光电效应几乎是__瞬时__发生的。
4.逸出功使电子__脱离__某种金属所做功的__最小值__,叫作这种金属的逸出功,用W0表示,不同金属的逸出功__不同__。
知识点 2 爱因斯坦的光电效应理论1.光子说(1)内容光不仅在发射和吸收时能量是一份一份的,而且__光本身__就是由一个个不可分割的__能量子__组成的,频率为ν的光的能量子为__hν__,这些能量子称为光子。
(2)光子能量公式为ε=hν,其中ν指光的__频率__。
2.光电效应方程(1)对光电效应的说明在光电效应中,金属中的电子吸收__一个光子__获得的能量是__hν__,其中一部分用来克服金属的__逸出功W0__,另一部分为光电子的__初动能E k__。
(2)光电效应方程E k=__hν-W0__。
3.对光电效应规律的解释(1)光电子的最大初动能与入射光__频率__有关,与光的__强弱__无关。
只有当hν__>W0__时,才有光电子逸出。
(2)电子__一次性__吸收光子的全部能量,__不需要__积累能量的时间。
光电效应讲课文档
现在一页,总共二十四页。
一、光电效应现象
用弧光灯照射擦得很亮 的锌板,(注意用导线与
不带电的验电器相连), 则发现验电 器张角增大, 再用与丝绸磨擦过的玻璃 棒去靠近锌板,则验电器 的指针张角会变大。说明
锌板带正电。
表明锌板在射线照射下失去电子而带正电
现在二页,总共二十四页。
一.光电效应的实验规律
随着入射光的频率增大而增大; ④入射光照到金属上时,光电子的发射几乎是瞬
时的,一般不超过10-9秒.
现在五页,总共二十四页。
一.光电效应的实验规律
光电效应实验规律的解释
(1)存在饱和光电流
光照不变,增大UAK,G表中电流达 到某一值后不再增大,即达到饱和 值。
因为光照条件一定时,K发射的电子
数目一定。
三.爱因斯坦的光量子假设
3.光子说对光电效应的解释
①爱因斯坦方程表明,光电子的初动能Ek与入
射光的频率成线性关系,与光强无关。只有当
hν>W0时,才有光电子逸出,
的截止频率。
就是c 光 W电h0 效应
②电子一次性吸收光子的全部能量,不需要积累 能量的时间,光电流自然几乎是瞬时发生的。
③光强较大时,包含的光子数较多,照射金属时产
现在十七页,总共二十四页。
四.光电效应在近代技术中的应用
1.光控继电器
可以用于自动控制,
自动计数、自动报警、
自动跟踪等。
放大器
2.光电倍增管
可对微弱光线进行放大 ,可使光电流放大
105~108 倍,灵敏度高 ,用在工程、天文、 科研、军事等方面。
控制机构
现在十八页,总共二十四页。
K
K2
K1
高考物理二轮复习原子物理专题光电效应讲义
光电效应1.光电效应现象。
光照使物体发射电子的现象叫光电效应现象;所发射的电子叫光电子;光电子定向移动所形成的电流叫光电流。
2. 光电效应现象的实验规律:(1)对于任何一种金属,入射光的频率必须大于某一极限频率才能产生光电效应,低于这个极限频率,无论强度如何,无论照射时间多长,也不能产生光电效应;(2)在单位时间里从金属极板中发射出的光电子数跟入射光的强度成正比;(3)发射出的光电子的最大初动能与入射光强度无关,只随入射光频率的增大而增大;(4)只要入射光的频率高于金属极板的极限频率,无论其强度如何,光电子的产生都几乎是瞬时的,不超过10—9s.3.光子说光子说的主要内容为:沿空间传播的光是不连续的,而是一份一份的,每一份叫做一个光量子,简称光子;光子的能量E与光的频率ν成正比,比例系数即为普朗克常量E=hν h=6.63×10 – 34 J.s——普朗克恒量4. 爱因斯坦光电效应方程爱因斯坦光电效应方程的图象爱因斯坦光电效应方程是能量守恒定律在光电效应现象中的表现形式逸出功和极限频率的关系:极限波长和极限频率的关系: 由得5. 光的波粒二象性光的干涉,衍射等现象充分表明光是波,而光电效应现象和康普顿效应又无可辩驳地证明了光是粒子。
事实上,光具有波动和粒子二重特性。
俗称光的波粒二象性。
光在传播时更多地表现为波动特性,在与物质微粒发生作用时更多地表现为粒子特征;波长越长的光波动性越显著,频率越高的光粒子性越显著;大量光子的整体行为表现为波动性,少量光子的个别行为表现为粒子性。
光是一种概率波,一切微观粒子都有波粒二象性15.(4分)如图所示,用导线将验电器与洁净鋅板连接,触摸鋅板使验电器指示归零,用紫外线照射鋅板,验电器指针发生明显偏转,接着用毛皮摩擦过的橡胶棒接触鋅板,发现验电器指针张角减小,此现象说明鋅板带_________电(选填“正”或“负”);若改用红外线重复以上实验,结果发现验电器指针根本不会偏转,说明金属鋅的极限频率_________红外线的频率(选填“大于”或“小于”)。
《光电效应》 讲义
《光电效应》讲义在物理学的众多奇妙现象中,光电效应无疑是一颗璀璨的明珠。
它不仅为我们揭示了光的粒子性,还为现代科技的发展奠定了坚实的基础。
让我们先来了解一下什么是光电效应。
简单来说,光电效应指的是当光照射到金属表面时,金属中的电子会吸收光子的能量而逸出金属表面的现象。
这一现象具有一些显著的特点。
首先,存在一个截止频率。
也就是说,只有当入射光的频率高于某个特定值时,才会产生光电效应。
低于这个频率,无论光的强度有多大,都不会有电子逸出。
其次,光电子的初动能与入射光的频率成正比,而与光的强度无关。
再者,光电效应是瞬间发生的,几乎没有任何延迟。
那么,为什么会出现这些奇特的现象呢?为了解释光电效应,爱因斯坦提出了光子学说。
他认为光是由一个个光子组成的,每个光子的能量与其频率成正比,即 E =hν ,其中 E 表示光子的能量,h 是普朗克常量,ν 是光的频率。
当光子照射到金属表面时,如果光子的能量大于金属的逸出功(使电子从金属表面逸出所需的最小能量),电子就会吸收光子的能量并逸出金属表面。
由于光子的能量取决于频率,所以只有当频率足够高时,光子的能量才能满足逸出功的要求,这就解释了截止频率的存在。
而光电子的初动能取决于吸收的光子能量与逸出功的差值。
因为光子能量由频率决定,所以光电子的初动能与频率成正比。
光电效应在实际生活中有广泛的应用。
例如,光电管就是基于光电效应制成的。
光电管能够将光信号转化为电信号,被广泛应用于自动化控制、光通信等领域。
在太阳能电池中,光电效应同样发挥着关键作用。
太阳能电池通过吸收太阳光,使电子逸出产生电流,从而实现光能到电能的转换。
此外,光电效应还在图像传感器、光电探测器等方面有着重要的应用。
总之,光电效应是物理学中一个非常重要的概念,它不仅让我们对光的本质有了更深入的理解,还推动了现代科技的快速发展。
随着科学技术的不断进步,相信光电效应在未来还会有更多令人惊喜的应用和发展。
然而,对于光电效应的研究并没有停止。
8讲义(光电效应)
实验十八用光电效应测普朗克常数【实验简介】量子理论是近代物理的基础之一,而光电效应对人时光的本质及早期量子理论的发展,具有里程碑的意义。
随着科学技术的发展,光电效应已广泛应用于工农业生产、国防和许多科技领域。
利用光电效应制成的光电器件,如光电管、光电池、光电倍增管等,已成为生产和科研不可缺少的器件.普朗克常数是自然科学中一个横重要的常数,它可以用光电效应法简单而又准确地求出。
1905年爱因斯坦大胆地把1900年普朗在进行黑体辐射研究过程提出的辐射能量不连续(量子化)观点应用于光辐射,提出“光量子”概念,成功地解释了光电效应现象。
对于图爱因斯坦的假设,许多学者都企图通过自己的工作来验证爱因斯坦方程的正确性。
然而卓有成效的工作属于美国芝加哥大学莱尔逊实验室的密立根,他经过10年左右的时间,对光电效应开展全面的实验研究,对了普朗克常数-346.6261910h J s=⨯⋅,推动了量子理论的发展,树立了一个实验验证科学理论的良好典范。
爱因斯坦和密立根都因光电效应等方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。
【实验目的】1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;2、掌握用光电管进行光电效应研究的方法;3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。
【实验仪器】GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成)光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。
实验主机为:GD-4型光电效应(普朗克常数)实验仪,该仪器包含有微电流放大器和扫描电压源发生器两部分组成的整体仪器。
【实验原理】1、普朗克常数的测定根据爱因斯坦的光电效应方程:光电检测装置实验主机图18-3 GD-4型智能光电效应(普朗克常数)实验仪P s E hv W =- (18-1)(其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。
光电效应 课堂讲解
谢谢观赏
Vmax
½mvmax² =Ek max=hv-W
光电子的最大初动能与入射光的强度无 关,只随入射光的频率的增大而增大。
调节 R, KA间电压 U增大,I怎样变 化?使I=0能求 光电子的 最大 动能Ekm=?
K
V
v
A G R
I变小 I=0时Ekm=eU
改用紫光照射 使I=0,KA间 电压U增大, 说明什么?
K V
A G
Ekm=eU
光的频率越大光 电子Ekm越大
(保持入射光不变) 调节R,使KA 电压 为U=0,电流计有电 流,说明什么?电 K v 压U逐渐增不 变
V
饱和电流与光强关系
• 在入射光一定时,增大光电管两极的正向电压, 提高光电子的动能,光电流会随之增大。但光电 流不会无限增大,要受到光电子数量的约束,有 一个最大值,这个值就是饱和电流。 • 所以,当入射光强度增大时,根据光子假设,入 射光的强度(即单位时间内通过单位垂直面积的 光能)决定于单位时间里通过单位垂直面积的光 子数,单位时间里通过金属表面的光子数也就增 多,于是,光子与金属中的电子碰撞次数也增多, 因而单位时间里从金属表面逸出的光电子也增多, 饱和电流也随之增大
增大紫光强度(光子数增多)电流计 指针偏角增大,说明了什么问题?
光的强度越大, 单位时间 内产生的光电 子数越多。
K V
A G
规律2、当入射光的频率大于极限频率 时,在单位时间发射的光电子数跟入 射光的强度成正比。
注意:如果某种光照射没有发生 光电效应,增强光强,电流表仍 然不偏转
• 规律3、无论入射光的强度如何,只要其频 率大于截止频率,则当光照射到金属表面 上时,几乎立即就有光电子逸出。这就是 光电效应的“瞬时性”。 按照经典理论,电子逸出金属需要的能量, 需要一定的时间来积累,一直积累到足以 使电子逸出金属表面为止。这与上述规律 相悖。
高中物理一轮复习 专题:近代物理 第1讲 光电效应 讲义
第1讲光电效应[学生用书P229]【基础梳理】一、光电效应1.定义:在光的照射下从物体发射出电子的现象(发射出的电子称为光电子).2.产生条件:入射光的频率大于极限频率.3.光电效应规律(1)存在着饱和电流:对于一定颜色的光,入射光越强,单位时间内发射的光电子数越多.(2)存在着遏止电压和截止频率:光电子的能量只与入射光的频率有关,而与入射光的强弱无关.当入射光的频率低于截止频率时不发生光电效应.(3)光电效应具有瞬时性:当频率超过截止频率时,无论入射光怎样微弱,几乎在照到金属时立即产生光电流,时间不超过10-9 s.二、光电效应方程1.基本物理量(1)光子的能量ε=hν,其中h=6.626×10-34 J·s(称为普朗克常量).(2)逸出功:使电子脱离某种金属所做功的最小值.(3)最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有动能的最大值.2.光电效应方程:E k=hν-W0.三、光的波粒二象性与物质波1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明光具有波动性.(2)光电效应说明光具有粒子性.(3)光既具有波动性,又具有粒子性,称为光的波粒二象性.2.物质波(1)概率波:光的干涉现象是大量光子的运动遵守波动规律的表现,亮条纹是光子到达概率大的地方,暗条纹是光子到达概率小的地方,因此光波又叫概率波.(2)物质波:任何一个运动着的物体,小到微观粒子大到宏观物体都有一种波与它对应,其波长λ=h p,p为运动物体的动量,h为普朗克常量.【自我诊断】(1)只要光照射的时间足够长,任何金属都能发生光电效应.()(2)光电子就是光子.()(3)极限频率越大的金属材料逸出功越大.()(4)从金属表面出来的光电子的最大初动能越大,这种金属的逸出功越小.()(5)入射光的频率越大,逸出功越大.()提示:(1)×(2)×(3)√(4)×(5)×(多选)(高考广东卷)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是()A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能变大提示:选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误.用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W逸=12m v2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确.对光电效应现象的理解[学生用书P230]【知识提炼】1.与光电效应有关的五组概念对比(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子.光子是光电效应的因,光电子是果.(2)光电子的初动能与光电子的最大初动能:光照射到金属表面时,电子吸收光子的全部能量,可能向各个方向运动,需克服原子核和其他原子的阻碍而损失一部分能量,剩余部分为光电子的初动能;只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能.光电子的初动能小于等于光电子的最大初动能.(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关.(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量.(5)光的强度与饱和光电流:饱和光电流与入射光强度成正比的规律是对频率相同的光照射金属产生光电效应而言的,对于不同频率的光,由于每个光子的能量不同,饱和光电流与入射光强度之间没有简单的正比关系.2.光电效应的研究思路(1)两条线索:(2)两条对应关系:光强大→光子数目多→发射光电子多→光电流大;光子频率高→光子能量大→光电子的最大初动能大.【典题例析】(多选)(2016·高考全国卷Ⅰ改编)现用一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生.下列说法正确的是()A.保持入射光的频率不变,入射光的光强变大,饱和光电流变大B.入射光的频率变高,饱和光电流变大C.入射光的频率变高,光电子的最大初动能变大D.保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生[解析]根据光电效应规律,保持入射光的频率不变,入射光的光强变大,则饱和光电流变大,选项A正确.由爱因斯坦光电效应方程知,入射光的频率变高,产生的光电子最大初动能变大,而饱和光电流与入射光的频率和光强都有关,选项B错误,C正确.保持入射光的光强不变,不断减小入射光的频率,当入射光的频率小于极限频率时,就不能发生光电效应,没有光电流产生,选项D错误.[答案]AC(多选)1905年是爱因斯坦的“奇迹”之年,这一年他先后发表了三篇具有划时代意义的论文,其中关于光量子的理论成功的解释了光电效应现象.关于光电效应,下列说法正确的是() A.当入射光的频率低于极限频率时,不能发生光电效应B.光电子的最大初动能与入射光的频率成正比C.光电子的最大初动能与入射光的强度成正比D.某单色光照射一金属时不发生光电效应,改用波长较短的光照射该金属可能发生光电效应解析:选AD.根据光电效应现象的实验规律,只有入射光频率大于极限频率才能发生光电效应,故A、D 正确.根据光电效应方程,最大初动能与入射光频率为线性关系,但非正比关系,B错误;根据光电效应现象的实验规律,光电子的最大初动能与入射光强度无关,C错误.光电效应方程[学生用书P230]【知识提炼】1.三个关系(1)爱因斯坦光电效应方程E k=hν-W0.(2)光电子的最大初动能E k可以利用光电管用实验的方法测得,即E k=eU c,其中U c是遏止电压.(3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc.2.四类图象(多选)(2017·高考全国卷Ⅲ)在光电效应实验中,分别用频率为νa 、νb 的单色光a 、b 照射到同种金属上,测得相应的遏止电压分别为U a 和U b 、光电子的最大初动能分别为E k a 和E k b .h 为普朗克常量.下列说法正确的是( )A .若νa >νb ,则一定有U a <U bB .若νa >νb ,则一定有E k a >E k bC .若U a <U b ,则一定有E k a <E k bD .若νa >νb ,则一定有hνa -E k a >hνb -E k b[解析] 设该金属的逸出功为W ,根据爱因斯坦光电效应方程有E k =hν-W ,同种金属的W 不变,则逸出光电子的最大初动能随ν的增大而增大,B 项正确;又E k =eU ,则最大初动能与遏止电压成正比,C 项正确;根据上述有eU =hν-W ,遏止电压U 随ν增大而增大,A 项错误;又有hν-E k =W ,W 相同,则D 项错误.[答案] BC1.应用光电效应方程时的注意事项(1)每种金属都有一个截止频率,光频率大于这个截止频率才能发生光电效应.(2)截止频率是发生光电效应的最小频率,对应着光的极限波长和金属的逸出功,即hν0=h cλ0=W 0.(3)应用光电效应方程E k =hν-W 0时,注意能量单位电子伏和焦耳的换算(1 eV =1.6×10-19J).(4)作为能量守恒的一种表达式可以定性理解方程hν=W 0+12m v 2的意义:即入射光子的能量一部分相当于转换在金属的逸出功上,剩余部分转化为光电子的动能.对某种金属来说W 0为定值,因而光子频率ν决定了能否发生光电效应及光电子的初动能大小.每个光子的一份能量hν与一个光电子的动能12m v 2对应.2.光电效应中有关图象问题的解题方法 (1)明确图象中纵坐标和横坐标所表示的物理量.(2)明确图象所表示的物理意义及所对应的函数关系,同时还要知道截距、交点等特殊点的意义.例如, ①E km -ν图象,表示了光电子的最大初动能E km 随入射光频率ν的变化曲线,图甲中横轴上的截距是阴极金属的极限频率,纵轴上的截距表示了阴极金属的逸出功负值,直线的斜率为普朗克常量,图象的函数式:E k =hν-W 0.②光电效应中的I -U 图象,是光电流强度I 随两极板间电压U 的变化曲线,图乙中的I m 是饱和光电流,U c 为遏止电压.【迁移题组】1 对E k -ν图象的理解1.(多选)如图所示是用光照射某种金属时逸出的光电子的最大初动能随入射光频率的变化图线(直线与横轴的交点坐标4.27,与纵轴交点坐标0.5).由图可知( )A .该金属的截止频率为4.27×1014 HzB .该金属的截止频率为5.5×1014 HzC .该图线的斜率表示普朗克常量D .该金属的逸出功为0.5 eV解析:选AC .图线在横轴上的截距为截止频率,A 正确、B 错误;由光电效应方程E k =hν-W 0,可知图线的斜率为普朗克常量,C 正确;金属的逸出功为:W 0=hν0=6.63×10-34×4.27×10141.6×10-19eV ≈1.77 eV ,D 错误.2 对I -U 图象的理解2.在光电效应实验中,某同学用同一光电管在不同实验条件下得到三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示.则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光对应的光电子最大初动能解析:选B .由图象知,甲、乙光对应的遏止电压相等,由eU c =E k 和hν=W 0+E k 得甲、乙光频率相等,A 错误;丙光的频率大于乙光的频率,则丙光的波长小于乙光的波长,B 正确;由hνc =W 0得甲、乙、丙光对应的截止频率相同,C 错误;由光电效应方程知,甲光对应的光电子最大初动能小于丙光对应的光电子最大初动能,D 错误.3 对U c -ν图象的理解3.(2015·高考全国卷Ⅰ)在某次光电效应实验中,得到的遏止电压U c 与入射光的频率ν的关系如图所示.若该直线的斜率和截距分别为k 和b ,电子电荷量的绝对值为e ,则普朗克常量可表示为________,所用材料的逸出功可表示为________.解析:根据光电效应方程E km =hν-W 0及E km =eU c 得U c =hνe -W 0e ,故h e =k ,b =-W 0e ,得h =ek ,W 0=-eb .答案:ek -eb光的波粒二象性 物质波[学生用书P232]【知识提炼】光既具有波动性,又具有粒子性,两者不是孤立的,而是有机的统一体,其表现规律为:1.从数量上看:个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性. 2.从频率上看:频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,贯穿本领越强.3.从传播与作用上看:光在传播过程中往往表现为波动性;在与物质发生作用时往往表现为粒子性. 4.波动性与粒子性的统一:由光子的能量E =hν,光子的动量p =hλ表达式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ.5.理解光的波粒二象性时不可把光当成宏观概念中的波,也不可把光当成宏观概念中的粒子.【跟进题组】1.(多选)(2015·高考全国卷Ⅱ改编)实物粒子和光都具有波粒二象性.下列事实中突出体现波动性的是( )A .电子束通过双缝实验装置后可以形成干涉图样B .β射线在云室中穿过会留下清晰的径迹C .人们利用慢中子衍射来研究晶体的结构D .光电效应实验中,光电子的最大初动能与入射光的频率有关,与入射光的强度无关解析:选AC .电子束具有波动性,通过双缝实验装置后可以形成干涉图样,选项A 正确;β射线在云室中高速运动时,径迹又细又直,表现出粒子性,选项B 错误;人们利用慢中子衍射来研究晶体的结构,体现出波动性,选项C 正确;光电效应实验,体现的是波的粒子性,选项D 错误.2.德布罗意认为,任何一个运动着的物体,都有一种波与它对应,波长是λ=hp ,式中p 是运动物体的动量,h 是普朗克常量.已知某种紫光的波长是440 nm ,若将电子加速,使它的德布罗意波长是这种紫光波长的1×10-4倍.求:(1)电子的动量大小.(2)试推导加速电压跟德布罗意波长的关系,并计算加速电压的大小.(电子质量m =9.1×10-31kg ,电子电荷量e =1.6×10-19C ,普朗克常量h =6.6×10-34J ·s ,加速电压的计算结果取一位有效数字)解析:(1)由λ=h p 得p =hλ=6.6×10-341×10-4×440×10-9 kg ·m/s=1.5×10-23kg ·m/s .(2)eU =E k =p 22m ,又λ=hp联立解得U =h 22em λ2,代入数据解得U =8×102V . 答案:(1)1.5×10-23kg ·m/s (2)U =h 22em λ2 8×102V[学生用书P232]1.(2017·高考北京卷)2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100 nm(1 nm =10-9 m)附近连续可调的世界上最强的极紫外激光脉冲.大连光源因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用.一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎.据此判断,能够电离一个分子的能量约为(取普朗克常量h =6.6×10-34J ·s ,真空光速c =3×108 m/s) ( )A .10-21J B .10-18J C .10-15J D .10-12J解析:选B .由题意知,电离一个分子的能量等于照射分子的光子能量,E =hν=h c λ≈2×10-18 J ,故选项B 正确.2.(高考江苏卷)已知钙和钾的截止频率分别为 7.73 ×1014 Hz 和5.44×1014 Hz ,在某种单色光的照射下两种金属均发生光电效应,比较它们表面逸出的具有最大初动能的光电子,钙逸出的光电子具有较大的( )A .波长B .频率C .能量D .动量解析:选A .根据爱因斯坦光电效应方程12m v 2m=hν-W .由题知W 钙>W 钾,所以钙逸出的光电子的最大初动能较小.根据p =2mE k 及p =hλ和c =λν知,钙逸出的光电子的特点是:动量较小、波长较长、频率较小.选项A 正确,选项B 、C 、D 错误.3.(多选)(2018·河北保定模拟)如图所示,这是一个研究光电效应的电路图,下列叙述中正确的是( ) A .只调换电源的极性,移动滑片P ,当电流表示数为零时,电压表示数为遏止电压U 0的数值 B .保持光照条件不变,滑片P 向右滑动的过程中,电流表示数将一直增大 C .不改变光束颜色和电路,增大入射光束强度,电流表示数会增大 D .阴极K 需要预热,光束照射后需要一定的时间才会有光电流解析:选AC .只调换电源的极性,移动滑片P ,电场力对电子做负功,当电流表示数为零时,则有eU =12m v 2m ,那么电压表示数为遏止电压U 0的数值,故A 项正确;当其他条件不变,P 向右滑动,加在光电管两端的电压增加,光电子运动更快,由I =qt 得电流表读数变大,若电流达到饱和电流,则电流表示数不会增大,B项错误;只增大入射光束强度时,单位时间内光电子数变多,电流表示数变大,C 项正确;因为光电效应的发生是瞬间的,阴极K 不需要预热,所以D 项错误.4.小明用金属铷为阴极的光电管,观测光电效应现象,实验装置示意图如图甲所示.已知普朗克常量h =6.63×10-34J ·s .(1)图甲中电极A 为光电管的________(选填“阴极”或“阳极”);(2)实验中测得铷的遏止电压U c 与入射光频率ν之间的关系如图乙所示,则铷的截止频率νc =________Hz ,逸出功W 0=________J ;(3)如果实验中入射光的频率ν=7.00×1014Hz ,则产生的光电子的最大初动能E k =________J . 解析:(1)在光电效应中,电子向A 极运动,故电极A 为光电管的阳极.(2)由题图可知,铷的截止频率νc为5.15×1014 Hz,逸出功W0=hνc=6.63×10-34×5.15×1014 J≈3.41×10-19 J.(3)当入射光的频率为ν=7.00×1014Hz时,由E k=hν-hνc得,光电子的最大初动能为E k=6.63×10-34×(7.00-5.15)×1014 J≈1.23×10-19 J.答案:(1)阳极(2)5.15×1014[(5.12~5.18)×1014均视为正确]3.41×10-19[(3.39~3.43)×10-19均视为正确](3)1.23×10-19[(1.21~1.25)×10-19均视为正确][学生用书P353(单独成册)](建议用时:60分钟)一、单项选择题1.入射光照到某金属表面发生光电效应,若入射光的强度减弱,而频率保持不变,则下列说法中正确的是()A.从光照射到金属表面上到金属发射出光电子之间的时间间隔将明显增加B.逸出的光电子的最大初动能减小C.单位时间内从金属表面逸出的光电子数目将减少D.有可能不发生光电效应解析:选C.光电效应瞬时(10-9 s)发生,与光强无关,A错误;光电子的最大初动能只与入射光的频率有关,入射光的频率越大,最大初动能越大,B错误;光电子数目多少与入射光的强度有关,光强减弱,单位时间内从金属表面逸出的光电子数目减少,C正确;能否发生光电效应,只取决于入射光的频率是否大于极限频率,与光强无关,D错误.2.(2018·太原质检)关于物质的波粒二象性,下列说法中不正确的是()A.不仅光子具有波粒二象性,一切运动的微粒都具有波粒二象性B.运动的微观粒子与光子一样,当它们通过一个小孔时,都没有特定的运动轨道C.波动性和粒子性,在宏观现象中是矛盾的、对立的,但在微观高速运动的现象中是统一的D.实物的运动有特定的轨道,所以实物不具有波粒二象性解析:选D.光具有波粒二象性是微观世界具有的特殊规律,大量光子运动的规律表现出光的波动性,而单个光子的运动表现出光的粒子性.光的波长越长,波动性越明显,光的频率越高,粒子性越明显.而宏观物体的德布罗意波的波长太小,实际很难观察到波动性,不是不具有波粒二象性,D项错误.3.在光电效应的实验结果中,与光的波动理论不矛盾的是()A.光电效应是瞬时发生的B.所有金属都存在极限频率C.光电流随着入射光增强而变大D.入射光频率越大,光电子最大初动能越大解析:选C.按照光的波动理论,电子吸收光子的能量需要时间,因此光电效应不可能瞬时发生,这与光电效应具有瞬时性矛盾;按照光的波动理论,只要有足够长的时间,电子会吸收足够的能量,克服原子的束缚成为光电子,因此所有金属均可以发生光电效应,这与光电效应有极限频率矛盾;按照光的波动理论,照射光越强,电子获得的能量越大,打出的光电子的最大初动能越大,这与光电效应中打出的光子的最大初动能与光强无关,而与照射光的频率有关矛盾;按照光的波动理论也可以得到光越强打出的光电子越多,光电流越大,因此C 项正确.4.研究光电效应电路如图所示,用频率相同、强度不同的光分别照射密封真空管的钠极板(阴极K ),钠极板发射出的光电子被阳极A 吸收,在电路中形成光电流.下列光电流I 与A 、K 之间的电压U AK 的关系图象中,正确的是( )解析:选C .由于是强度不同的光照射同种钠极板,则遏止电压相同,强度不同,饱和光电流不同.选项C 正确.5.(2017·高考上海卷)光子的能量与其( ) A .频率成正比 B .波长成正比 C .速度成正比D .速度平方成正比解析:选A .由E =hν=h cλ,可见光子的能量与其频率成正比、与其波长成反比,A 正确,B 错误;由于任意能量的光子在真空中传播的速度都是相同的,故C 、D 皆错误.6.以往我们认识的光电效应是单光子光电效应,即一个电子在极短时间内只能吸收到一个光子而从金属表面逸出.强激光的出现丰富了人们对于光电效应的认识,用强激光照射金属,由于其光子密度极大,一个电子在极短时间内吸收多个光子成为可能,从而形成多光子光电效应,这已被实验证实.光电效应实验装置示意图如图所示.用频率为ν的普通光源照射阴极K ,没有发生光电效应,换用同样频率为ν的强激光照射阴极K ,则发生了光电效应;此时,若加上反向电压U ,即将阴极K 接电源正极,阳极A 接电源负极,在KA 之间就形成了使光电子减速的电场.逐渐增大U ,光电流会逐渐减小;当光电流恰好减小到零时,所加反向电压U 可能是下列的(其中W 为逸出功,h 为普朗克常量,e 为电子电量)( )A .U =hνe -WeB .U =2hνe -WeC .U =2hν-WD .U =5hν2e -We解析:选B .以从阴极K 逸出的且具有最大初动能的光电子为研究对象,由动能定理得: -Ue =0-12m v 2m①由光电效应方程得:nh ν=12m v 2m+W (n =2,3,4,…)② 由①②式解得:U =nhνe -We (n =2,3,4,…),故选项B 正确. 二、多项选择题7.如图所示,电路中所有元件完好,但光照射到光电管上,灵敏电流计中没有电流通过,其原因可能是( )A .入射光太弱B .入射光波长太长C .光照时间短D .电源正、负极接反解析:选BD .入射光波长太长,入射光的频率低于截止频率时,不能发生光电效应,故选项B 正确;电路中电源反接,对光电管加了反向电压,若该电压超过了遏止电压,也没有光电流产生,故选项D 正确.8.1927年戴维逊和革末完成了电子衍射实验,该实验是荣获诺贝尔奖的重大近代物理实验之一.如图所示的是该实验装置的简化图,下列说法正确的是( )A .亮条纹是电子到达概率大的地方B .该实验说明物质波理论是正确的C .该实验再次说明光子具有波动性D .该实验说明实物粒子具有波动性解析:选ABD .电子属于实物粒子,电子衍射实验说明电子具有波动性,说明物质波理论是正确的,与光的波动性无关,B 、D 正确,C 错误;物质波也是概率波,亮条纹是电子到达概率大的地方,A 正确.9.用极微弱的可见光做双缝干涉实验,随着时间的增加,在照相底片上先后出现如图甲、乙、丙所示的图象,则( )A .图象甲表明光具有粒子性B .图象乙表明光具有波动性C .用紫外线观察不到类似的图象D .实验表明光是一种概率波解析:选ABD .图象甲曝光时间短,通过光子数很少,呈现粒子性.图象乙曝光时间长,通过了大量光子,呈现波动性,故A 、B 正确;同时也表明光波是一种概率波,故D 也正确;紫外线本质和可见光本质相同,也可以发生上述现象,故C 错误.10.(2015·高考江苏卷)波粒二象性是微观世界的基本特征,以下说法正确的有( ) A .光电效应现象揭示了光的粒子性B .热中子束射到晶体上产生衍射图样说明中子具有波动性C .黑体辐射的实验规律可用光的波动性解释D .动能相等的质子和电子,它们的德布罗意波长也相等解析:选AB .光电效应现象、黑体辐射的实验规律都可以用光的粒子性解释,选项A 正确,选项C 错误;热中子束射到晶体上产生衍射图样说明中子具有波动性,选项B 正确;由德布罗意波长公式λ=hp 和p 2=2mE k知动能相等的质子和电子动量不同,德布罗意波长不相等,选项D 错误.11.(2018·北京朝阳模拟)用绿光照射一个光电管,能产生光电效应.欲使光电子从阴极逸出时最大初动能增大,可以( )A .改用红光照射B .改用紫光照射C .改用蓝光照射D .增加绿光照射时间解析:选BC .光电子的最大初动能与照射时间或照射强度无关,而与入射光子的能量有关,入射光子的能量越大,光电子从阴极逸出时最大初动能越大,所以本题中可以改用比绿光光子能量更大的紫光、蓝光照射,以增大光电子从阴极逸出时的最大初动能.12.(2018·济南模拟)如图是某金属在光的照射下产生的光电子的最大初动能E k 与入射光频率ν的关系图象.由。
实验讲义-光电效应-2013.9
实验4.3光电效应和普朗克常数的测量1887年德国物理学家H.R.赫兹发现电火花间隙受到紫外线照射时会产生更强的电火花。
赫兹的论文《紫外光对放电的影响》发表在1887 年《物理学年鉴》上。
论文详细描述了他的发现。
赫兹的论文发表后,立即引起了广泛的反响,许多物理学家纷纷对此现象进行了研究,用紫外光或波长更短的X 光照射一些金属,都观察到金属表面有电子逸出的现象,称之为光电效应。
对光电效应现象的研究,使人们进一步认识到光的波粒二象性的本质,促进了光量子理论的建立和近代物理学的发展,现在光电效应以及根据光电效应制成的各种光电器件已被广泛地应用于工农业生产、科研和国防等各领域。
【实验目的】① 通过实验加深对光的量子性的认识;② 验证爱因斯坦方程,并测量普朗克常数以及阴极材料的“红限”频率。
【实验原理】一、光电效应及其实验规律当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应,所产生的电子称为光电子。
研究光电效应的实验装置如图4.3.1所示,入射光照射到阴极K 时,由光电效应产生的光电子以某一初动能飞出,光电子受电场力的作用向阳极A 迁移而构成光电流。
一定频率的光照射阴极K 所得到的光电流I 和两极间的电压U 的实验曲线如图4.3.2所示。
随着光电管两端电压的增大,光电流趋于一个饱和值m I ,当U ≤S U 时,光电流为零,S U 称为反向遏止电压。
总结所有的实验结果,光电效应的实验规律可归纳为:(1) 对于一种阴极材料,当照射光的频率确定时,饱和光电流m I 的大小与入射光的强度成正比。
图4.3.1光电效应实验装置示意图 0US U图4.3.2 U ——I 特性曲线(2) 反向遏止电压S U 的物理含义是:当在光电管两端所加的反向电压为S U 时,则逸出金属电极K 后具有最大动能的电子也不能到达阳极A ,此时2max 21mV eU S =(4.3.1) 实验得出光电子的初动能与入射光的强度无关,而只与入射光的频率有关。
《光电效应现象》 讲义
《光电效应现象》讲义在物理学的众多奇妙现象中,光电效应无疑是一颗璀璨的明珠。
它不仅为我们揭示了光与物质相互作用的奥秘,还为现代科技的发展奠定了坚实的基础。
接下来,让我们一同走进光电效应的奇妙世界。
一、什么是光电效应光电效应,简单来说,就是当光照射到金属表面时,金属中的电子会吸收光子的能量,从而逸出金属表面的现象。
想象一下,光就像一个个小小的能量包,当它们撞击到金属表面时,有足够能量的光子就能把金属中的电子“踢”出来,让它们成为自由电子。
这个过程并不是光的强度越大就越容易发生。
实际上,光电效应的发生取决于光的频率。
只有当光的频率达到一定值时,才会有电子逸出。
二、光电效应的实验发现早期的科学家们通过一系列精心设计的实验,逐渐揭示了光电效应的神秘面纱。
例如,在实验中发现,无论光的强度如何,如果光的频率低于某个阈值,无论照射多久,都不会有电子逸出。
而一旦光的频率超过这个阈值,即使光很微弱,也会在瞬间有电子逸出。
而且,逸出的电子的动能与光的频率成正比,而与光的强度无关。
这些实验结果与当时经典物理学的理论产生了巨大的冲突。
三、经典物理学的解释困境按照经典物理学的观点,光被认为是一种连续的电磁波,能量是均匀分布的。
那么,当光照射到金属表面时,电子应该逐渐积累能量,直到能量足够大时才会逸出。
而且,光的强度越大,电子获得的能量应该越多,越容易逸出。
但光电效应的实验结果却完全不符合这些预期。
这让当时的物理学家们陷入了深深的困惑。
四、爱因斯坦的光量子假说就在大家对光电效应感到困惑不解的时候,爱因斯坦站了出来,提出了光量子假说。
他认为,光不是连续的波,而是由一个个离散的能量子——光子组成的。
每个光子的能量与光的频率成正比,即 E =hν,其中 E 是光子的能量,h 是普朗克常量,ν 是光的频率。
当光子照射到金属表面时,电子会一次性吸收一个光子的能量。
如果这个能量大于电子逸出金属表面所需的能量(称为逸出功),电子就会逸出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电效应讲义
实验三 光电效应
【实验目的】
1. 加深对光的量子性的认识。
2. 验证爱因斯坦方程,测定普朗克常数。
3. 测定光电管的伏安特性曲线。
【实验原理】
当一定频率的光照射到某些金属表面上时,可以使电子从金属表面逸出,这种现象称为光电效应.所产生的电子,称为光电子。
光电效应是光的经典电磁理论所不能解释的。
1905年爱因斯坦依照普朗克的量子假设,提出了光子的概念。
他认为光是一种微粒 — 光子;频率为ν 的光子具有能量h ν,h 为普朗克常数,目前国际公认值为h =(6.6260755±0.0000040)×10-34
J ·s 。
当金属中的电子吸收一个频率为ν 的光子时,便获得这光子的全部能量h ν,如果这能量大于电子摆脱金属表面的约束所需要的逸出功W ,电子就会从金属中逸出.按照能量守恒原理有:
W v m h m +=
2
2
1ν (3.1)
上式称为爱因斯坦方程,其中m 和v m 是光电子的质量和最大速
度,22
1m
v m 是光电子逸出表面后所具有的最大动
能.它说明光子能量hν小于W时,电子不能逸出金属表面,因而没有光电效应产生;产生光电效应的入射光最低频率ν0=W/h,称为光电效应的极限频率(又称红限)。
不同的金属材料有不同的逸出功,因而ν0也是不同的。
用光电管进行光电效应实验,测量普朗克常数的实验原理如图3.1所示。
图中K为
图3.1光电效应实验原理图
光电管的阴极,A为阳极,微安表用于测量微小的光电流,电压表用于测量光电管两极间的电压,E为电源,R提供的分压可以改变光电管两极间的电势差。
当单色光入射到光电管的阴极K上时,如有光电子逸出,则当阳极A加正电势,K加负电势时,光电子就被加速;而当K加正电势,A 加负电势时,光电子就被减速。
当A、K之间所加电压U足够大时,光电流达到饱和值I m ,当U ≤-U
,并满足方程
eU
0 =2
2
1
m
v
m (3.
2)
称为截止电压。
式时,光电流将为零,此时的U
中e为电子电量。
光电管的伏安特性曲线(光电流与所加电压的I—U关系)如图3.2所示。
当用一定强度的光照射在光电管阴极K上时,光电流I随两极间的加速电压改变而改变,开始光电流I随两极间的加速电压增加而增加,当加速电压增加到一定值后,光电流不再增加.这是因为在一定照度下,单位时间
图3.2光电管的伏安特性曲线图3.3截止电压U0 是入射光频率 的线性关系图线
内所产生的光电子数目一定,而且这些电子在电
场的作用下已全都跑向阳极A ,从而达到饱和。
我们称此时的电流为饱和电流I m 。
由于光电子从阴极表面逸出时具有一定的初速度,所以当两极间电势差为零时,仍有光电流I 存在。
若在两极间施加一反向电压,光电流随之减小;当反向电压达到截止电压U 0时,光电流为零。
将式(3.2)代人式(3.1)可得
eU 0 = h ν - W
即
U 0 =()0
ννν-=-e
h e W e h (3.3) 上式表明,截止电压U 0 是入射光频率ν 的线性函数,其直线的斜率等于h /e 。
可见,只要用实验方法,测量不同频率光的截止电压,作出U 0 —
ν 图线,如图3.3所示。
从图中求得直线的斜率e
h ,即可求出普朗克常数h 。
另外,从直线和横坐标的交点还可求出极限频率ν0。
因此,由光电效应测定普朗克常数h 的关键是正确地测定截止电压U 0 。
需要指出的是,实际的光电管由于制作工艺等原因,给测定截止电压带来一些困难。
对测量产生影响的主要因素如下: (1) 暗电流和本底电流
光电管在没有受到光照时,也会产生电流,称为暗电流。
它是由阴极在常温下的热电子发射形成的热电流和封闭在暗盒里的光电管在外加电压下因管子阴极和阳极间绝缘电阻漏电而产生的漏电流两部分组成。
本底电流是周围杂散光射入光电管所致。
(2)反向电流
由于制作光电管时阳极上往往溅有阴极材料,所以当光照到阳极上或杂散光漫射到阳极上时,阳极上也往往有光电子发射;此外,阴极发射的光电子也可能被阳极的表面所反射。
当阳极A加负电势,阴极K加正电势时,对阴极K上发射的光电子而言起减速作用,而对阳极A发射或反射的光电子而言却起了加速作用,使阳极A发出的光电子也到达阴极K,形成反向电流。
由于上述种种原因,实测的光电管伏安特性(I—U)曲线与理想曲线是有区别的。
图3.4中实线表示实测曲线,虚线表示理想曲线即阴极光电流曲线,点划线代表影响较大的反向电流及暗电流曲线。
实测曲线上每一点的电流值是以上三个电流值的代数和。
显然,实测曲线上光电流I为零的点所对应的电压值
并不是截止电压。
从图
3.4可看出,阳极光电
流(即反向电流和暗电
流)的存在,使阴极光
电流曲线下移,实测曲
线的拐点(或称抬头点)
处的电压值与截止电压
图3.4对光电流曲线的分析
近似相等,
可代替截止电压。
因此,光电效应实验是通过找
出实验伏安特性曲线的拐点来确定截止电压U
0的。
【仪器介绍】
1.G DH—Ⅰ型光电管:阳极为镍圈,阴极为银—
氧-钾(Ag-O-K),光谱范围34O.0—700.0nm 光窗口为无铅多硼硅玻璃,最高灵敏波长是410.0±10.0nm,阴极光灵敏度为1 μA/Lm,暗电流为10-12A。
为了避免杂散光和外界电磁场对微弱光电流的干扰,光电管安装在可升降的铝质暗盒中,暗盒窗口可以安放光阑孔和滤色片。
2.光源:高压汞灯,谱线范围在302.3—872.0 nm。
3.N G型滤色片:一组有色玻璃滤色片。
滤通的谱
线波长分别为365 nm,404 nm,436 nm,546 nm,577 nm。
4.G P-Ⅱ型微电流测量放大器:电流测量范围为10-6~ 10-13 A,分六档十进变换;工作电源为-3 ~+3V连续可调,电压量程分0V~±1V~±2V~±3V六段读数,读数精度0.02V。
测量放大器可以连续地工作8小时以上。
图3.5光电效应实验装置示意图
【实验内容】
1.测试前的准备
(1)将光源、光电管暗盒、微电流测量放大器安放在适当位置,连接好光电管暗盒与测量放
大器之间的屏蔽电缆、地线和阳极电源线。
参见图3.5和图3.6。
将微电流测量放大器面板上各开关、旋钮置于下列位置:
“倍率”开关置“ZERO”;“电流极性”置“-”;“工作选择”置“DC”;“扫描平移”任意;“电压极性”置“-”;“电压量程”置“-3”;“电压调节”反时针调到头。
(2)打开微电流测量放大器电源开关让其预热20-30分钟。
在光电管暗盒的光窗上装
光阑;并盖上遮光罩,打开光源开关,让汞灯预热。
2.测量光电管的I —U特性
(1)使暗盒离开光源30 ~ 50cm,基本等高,
暗盒窗口正对光源出射孔。
(2)取去暗盒窗口上的遮光罩,换上波长λ
=365 nm的滤色片。
将倍率旋钮置于“10-7”
档,此时光电流大小应在此量程范围内(注
意,光电管暗盒正对汞灯时,电流最小)。
(3)选择合适的电流和电压量程,测出-3 ~
3V时不同电压下的光电流。
测量时,-3 ~ 0V时每0.1V测一个点,0V以上可加大间隔。
3.测量光电管拐点和本底电流。
(1)依次调换不同波长的滤色片,重复上面的
测量,只测-3 ~ 0V时的光电流,每0.1V
测一个点。
(2)挡住汞灯出光口,测量0V时光电管的本
底电流(每个滤色片都测)。
4.测量光电管的暗电流。
用遮光罩罩住光电管暗盒,测量0V时光电管的暗电流。
5.求普朗克常数h
把不同频率下的截止电压描绘在方格纸上,
=f (ν)关系曲线是一直如果实验结果准确,则U
线,求出直线的斜率,从而可算出普朗克常数h,并将结果与公认值比较,求出百分误差。
【注意事项】
1.在数据表格后加拐点及本底电流数据表
(365nm的本底电流记在I—V表中)。
2.微电流测量放大器必须充分预热。
3.为避免强光直射阴极缩短光电管寿命,更换滤
色片时以及实验完毕后用遮光罩盖住光电管暗盒进光窗。
4.保持滤色片表面光洁,小心使用防止损坏。
更
换滤色片时务必平整套架,以免除不必要的折光带来实验误差。
5.实验中应减少杂散光的干扰。
6.作图的毫米方格纸大小要合适,以保证测量数
据的精度不受损害。