材料力学课件:扭转
合集下载
材料力学第四版课件 第三章 扭转
2
例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD
例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD
材料力学-扭转1ppt课件
横截面上 —
max
T IP
max
IP
T
max
T WP
Ip—截面的极惯性矩,单位:m4 , mm 4
WP
Ip
max
WP —抗扭截面模量,单位:m3, mm3.
整个圆轴上——等直杆:
max
Tm a x WP
三、公式的使用条件: 1、等直的圆轴, 2、弹性范围内工作。
30
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
d
dx
d / dx-扭转角变化率
二)物理关系:
弹性范围内 max P
G → G
G
d
dx
方向垂直于半径。
28
三)静力关系:
T A dA
T A dA
G d 2dA dx A
I p
2dA
A
Ip
横截面对形心的极惯性矩
T
GI p
d
dxp
29
二、圆轴中τmax的确定
结论:
横截面上 0, 0 0 0
根据对称性可知剪应力沿圆周均匀分布;
t D, 可认为剪应力沿壁厚均匀分布,
且方向垂直于其半径方向。
t
D
20
3、剪应力的计算公式:
T
AdA.r0
2 0
r0
2td
r02t2
d
T
2r0 2t
薄壁圆筒横截面上的剪应力计算式
21
二、关于剪应力的若干重要性质
例题: 1、一传动轴作200r/min的匀速转动,轴上装有五个轮子。 主动轮2输入的功率为60kW,从动轮1、3、4、5依次输出的 功率为18kW、12kW、22kW和8kW。试作出该轴的扭矩图。
材料力学第3章扭转
试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学课件:扭转
B
D
C
12 3
A P
Page4
§3-6 热应力与预应力
扭转
§4-1 引言 §4-2 圆轴扭转应力
Page5
§3-6 热应力与预应力
lT=ll T
B
C
A A’
变形不受限制(静定结构),杆内未引起应力
Page6
B lT=ll T
CB
C
A’
A
A
变形受到限制(静不定结构),杆内引起应力
热应力:因温度的变化在杆件内部引起的应力 预应力:由于实际尺寸的误差在杆件内部引起的应力
各
截面的扭矩。
Page20
扭矩图:外扭力矩随杆轴线变化的情况。
M 3ml
m
x
A
B
C
D
l
l/2 l/2
T1 ( x)
x
T ml
x
2ml
例:(m:单位长度的扭力偶矩)
AB段: T1 x mx
BC段: T2 ml CD段: T3 2ml
Page21
思考:
M
M’
M’
M
(1)
M’
(2)
M’
(3)
FN3
FN1
FN2
Page9
3
1
2
3
1
2
协调方程:
l3+ l1/cos()=
l3
FN3
FN1
FN2
Page10
➢ 装配应力在工程结构中的应用
1 23
P
在准确加工、装配的情况下,2杆 的应力最大。
如果能使3根杆同时达到许用应力, 将对结构更有利。
FN1 [1 ]A FN 2 [ 2 ]A FN 3 [ 3 ]A
材料力学课件——扭转的强度与刚度计算
MMnMnⅢⅢMnMⅢMnDMⅢD DMD
351N· m
468N·
(+)m (-)
702N· m
解 (1)计算外力偶矩:
MA
9550 NA n
9550 36.75 300
1170N m
MB
MC
9550 NB n
9550 11 300
351N m
MD
9550 ND n
9550 14.7 300
P B mB
B
mB (a)
P
mB
B
(b)
本章主要内容
▪ 第一节 概述 ▪ 第二节 扭转时的内力 ▪ 第三节 纯剪切、剪应力互等定理、剪切胡
克定律 ▪ 第四节 圆轴扭转时的应力与变形 ▪ 第五节 圆轴扭转时的强度和刚度计算 ▪ 第六节 密圈螺旋弹簧应力及变形的计算 ▪ 第七节 非圆截面等直杆的纯扭转
扭矩
N(kW ) Me 9550 n(r / min ) (Nm)
•当N为马力 扭矩
N(Ps)
Me 7024 n(r / min )(N m)
二、扭矩 扭矩图
扭矩mn符号规定如下:按右手螺旋法则把mn 表示为矢量,当矢量方向与截面的外法线方向一
致时, mn为正;反之为负。
内力—扭矩
mn
j mn
t dy
nm
x 定理。(rocal
theorem of shear stresses )
dx
z
▪ 剪应力互等定理(Reciprocal theorem of shear stresses )
▪ 单元体上两个互垂面上剪应力的大小相等、方
向相反(共同指向交线或背离交线)
▪ 类似可证明 —— 每两个邻近边剪应力值相 等
材料力学-第4章 扭转 ppt课件
dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
材料力学扭转(共56张PPT)
例题: :空心轴和实心轴材料相同,面积相同, α= 0.5。试比较空心轴和实心轴的强度和刚度情况。
解: 1〕确定两轴尺寸关系
面积相同 (1)校核空心轴及实心轴的强度〔不考虑键槽的影响〕;
扭转角单位:弧度〔rad〕 在B、C轮处分别负载N2=75kW,N3=75kW。
D1 d1
D d 2 2可G、I见P扭—在矩—载计抗荷算扭相1、2刚同符度的号。条规件定下和,扭空矩2心图轴绘的制重量仅为实2心轴的31% 。
1、扭转杆件的内力〔截面法〕
m
m
左段:
mx 0, T m 0
T m
右段:
m x
0,
mT 0
T m
m
Tx
T
m
x
内力偶矩——扭矩 T
2、扭矩的符号规定:按右手螺旋法那么判断。
+
T
T
-
3、内力图〔扭矩图〕
扭矩图作法:同轴力图:
例题: 1、一传动轴作200r/min的匀速转动,轴上装有五个轮子。主动轮 2输入的功率为60kW,从动轮1、3、4、5依次输出的功率为18kW、 12kW、22kW和8kW。试作出该轴的扭矩图。
二、 扭转杆的变形计算
1、扭转变形:〔相对扭转角〕
d T
dx GI P
扭转变形与内力计算式
d T dx
GIP
T dx
L GIP
1) 扭矩不变的等直轴
Tl GI p
扭转角单位:弧度〔rad〕 GIP——抗扭刚度。
2)各段扭矩为不同值的阶梯轴
Tili GI pi
3)变截面轴
T (x) dx l GI p (x)
2)、设计截面尺寸:
T
Ip
材料力学——第三章 扭转
33
材 料 力 学
表明: 当薄壁圆筒扭转时,其横截面和包含轴线的纵向截
面上都没有正应力; 横截面上便只有切于截面的切应力;
34
材 料 力 学
4、切应力分布规律假设
因为筒壁的厚度很小,可以认为沿筒壁厚度切应力均匀分布;
35
材 料 力 学
5、薄壁圆筒的扭转切应力
T
rm
2 rm t T
m1
m4
15.9(kN m)
A
P2 m2 m3 9.549 4.78 (kN m) n P4 m4 9.549 6.37 (kN m) n
17
B
C
D
材 料 力 学
2、求扭矩
m2
T1 m2 0
T1 4.78kN m
T2 m2 m3 0
材 料 力 学
三、切应变
纯剪切单元体的相对两侧面 发生微小的相对错动, a
´
c
´
b
d
t
使原来互相垂直的两个棱边 的夹角改变了一个微量γ;
圆筒两端的相对扭转角为υ,圆筒 的长度为L,则切应变为
L r
r L
39
材 料 力 学
四、剪切虎克定律:
当剪应力不超过材料的剪切比例
齿轮轴
9
材 料 力 学
§3-2、外力偶矩的计算 扭矩和扭矩图
一.外力偶矩的计算 ——直接计算
M=Fd
10
材 料 力 学
按输入功率和转速计算
已知 轴转速-n 转/分钟 输出功率-P 千瓦 计算:力偶矩M
电机每秒输入功: 外力偶作功:
W P 1000(N.m)
材料力学扭转教学课件PPT
200 kW。试做轴力图。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
(a)
P2
P3
P1
n
P4
B
C
D
A
例题3-2图
m P2 2
m P3 3
P1
m1
m n
4 P4
B
C
D
A
m2
m3
m1
m4
(b)
B
C
A
D
解:1.计算外力偶矩
m1
m2
9.55 P1 15.9kN .m
m3
n
9.55
P2
n
4.78kN
.m
m4
9.55 P4 n
6.37kN .m
2.由计算简图用截面法计算各段轴内的扭矩,然后画扭矩图
§3.1 扭转的概念和实例
➢ 扭转变形 ——作用在垂直于杆件轴线的平面内 的力偶矩,使得杆件的任意两个 横截面都发生了绕轴线的相对转 动。
➢ 扭转变形杆件的内力 ——扭矩(T )
➢ 轴 ——主要承受扭矩的构件
m A'
g
A
m B j B'
扭转的受力特征 :在杆件的两端作用两个大小相等、
转向相反、且作用平面垂直于杆件轴线的力偶。
dA
O r
dA
dA
O
A
G 2
dj
dx
dA
G
dj
dx
A
2dA
T
GI p
dj
dx
令 Ip A 2dA
dj
dx
T GI p
代入物理关系式
G
dj
dx
得:
T
Ip
T
Ip
—横截面上距圆心为处任一点剪应力计算公式。
河海大学 , 材料力学 , 课件 , 第3章 , 扭转
又
Mx 2 2r0
(a)
l r0
r0 l
b
τ b τs a τp O
τp——剪切比例极限 τs——剪切屈服极限
γ
α
低碳钢τ-γ曲线
切变模量 G = τ/ γ= tanα
α——直线的倾角
各向同性材料:
E G 21
铸铁扭转破坏试验:
τ
τb——剪切强度极限
∴ 横截面上最大切应力发生在厚度δi 最大的狭 长矩形的长边中点处。
max
MX 1 3 max 3 hi i
例3-5:两薄壁钢管。(a)为闭口薄同,且δ / D0= 1 / 10,试求在相同的外力偶
矩作用下,哪种截面形式较好。
P(kW) T 9.55 (kN m) n(rpm)
§3-2 圆杆扭转时的应力
一、横截面上的应力
Mx
分析步骤?
变形分析→应变分布
应力应变关系→应力分布 静力学关系→应力值
周线 T
纵线 T υ 轴线
1、几何方面
a
b
c
γ
d
(1)变形现象
A、周线大小、形状和周线间距不变,只是绕
轴线作相对转动。
d dx
—单位长度相对扭转角
γρ——切应变
dυ
2、物理方面
γρ
e e`
弹性变形时: τ= Gγ
——剪切胡克定律。 G—材料的切变模量。
d G G ---(a) dx
τmax τ
O
3、静力学方面
A
dA M x
2
τ
r
ρ
dA
d (b )式代入, A G dA M x dx
Mx 2 2r0
(a)
l r0
r0 l
b
τ b τs a τp O
τp——剪切比例极限 τs——剪切屈服极限
γ
α
低碳钢τ-γ曲线
切变模量 G = τ/ γ= tanα
α——直线的倾角
各向同性材料:
E G 21
铸铁扭转破坏试验:
τ
τb——剪切强度极限
∴ 横截面上最大切应力发生在厚度δi 最大的狭 长矩形的长边中点处。
max
MX 1 3 max 3 hi i
例3-5:两薄壁钢管。(a)为闭口薄同,且δ / D0= 1 / 10,试求在相同的外力偶
矩作用下,哪种截面形式较好。
P(kW) T 9.55 (kN m) n(rpm)
§3-2 圆杆扭转时的应力
一、横截面上的应力
Mx
分析步骤?
变形分析→应变分布
应力应变关系→应力分布 静力学关系→应力值
周线 T
纵线 T υ 轴线
1、几何方面
a
b
c
γ
d
(1)变形现象
A、周线大小、形状和周线间距不变,只是绕
轴线作相对转动。
d dx
—单位长度相对扭转角
γρ——切应变
dυ
2、物理方面
γρ
e e`
弹性变形时: τ= Gγ
——剪切胡克定律。 G—材料的切变模量。
d G G ---(a) dx
τmax τ
O
3、静力学方面
A
dA M x
2
τ
r
ρ
dA
d (b )式代入, A G dA M x dx
材料力学课件 第四章扭转
4. 公式讨论: ① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
材料力学课件第三章 扭转
工程上采用空心截面构件:提高强度,节约材料,重量轻, 结构轻便,应用广泛。
3.4 圆轴扭转时横截面上的应力
3.4.2 最大扭转切应力和强度条件
第三章 扭转
1. 最大扭转切应力:
由
T
Ip
知:当
R , max
max
TR Ip
T Ip R
T Wp
(令 Wp I p R )
max
T Wp
Wp — 扭转截面系数,单位:mm3或m3。
对于实心圆截面: 对于空心圆截面:
Wp
d3
16
Wp
(D4
16
d4)
D3(1 4 )
16
3.4 圆轴扭转时横截面上的应力
2、强度条件
强度条件:
max
Tm a x Wp
[ ]
第三章 扭转
许用切应力 u
n
τ s---- 扭转屈服极限 ——塑性材料 τ b---- 扭转强度极限 ——脆性材料 τ u---- 扭转极限应力 ——τs和τb的统称
MB
MC
MA
MD
B
C
解:计算外力偶矩
A
D
MA
9549 PA n
1592N m
MB
MC
9549 PB n
477.5N m
MD
9549 PD n
637N m
3.2 外力偶矩的计算 扭矩和扭矩图
第三章 扭转
3.2.2 扭矩和扭矩图
1 扭矩:构件受扭时,横截面上的内力偶矩,记作“T”。
2 截面法求扭矩
剪应力在互相垂直的面上同时存在,数值相等,其方向都垂直于这 两个面的交线,且都指向或者都背离该交线。
材料力学课件-扭转
T
max
max
WP
即须使抗扭截面系数 Wp 相等
18
例 如图的轴的许用切应力为 60 MPa , 校核强度。若将实心 圆轴改为内外径之比为 0.7 的空心圆轴,在强度相等的条件下, 求空心圆轴外径,并求两者的重量比。
m1=1kNm
D = 60
m2 =3kNm
D1
2 kNm
T
1 kNm
[解] (1)内力扭矩图:
y
Fx x
水平方向和竖直方向分量为
T
x (r)sin
T r sin
IP
y
(r)cos
T r cos
IP
水平方向合力为
Fx
xdA
A
A
Tr sin
IP
rdr d
T IP
d2
π2
r 2dr sin d
0
0
Td 3 24 I P
27
竖直方向合力为
Fy
A
ydA
A
Tr IP
cos
TC tL
C max
TC WP C
tL [ ]
πd
3 2
16
d2
16 t L
π[ ]
13
22
t
C
例5.3 图中结构由两段等截面圆轴
d1 A
L1 B L2
d2 构成。圆轴总长度为 L ,全长上作 用着均布力偶矩 t 。材料许用切应
L
力为 [ ]。要使圆轴重量为最轻,确
tL1
tL
定两段轴的长度 L1 和 L2 ,以及直
A
T
GI P
d
dx
d T
dx GIP
材料力学课件(路桥)第4章扭转
计算过程中需要考虑材料的弹性模量、泊松比、剪切模量等参数,以及 结构的几何尺寸和边界条件。
强度条件的工程意义
满足强度条件是保证路桥工程安全性和 稳定性的基础。
通过满足强度条件,可以防止桥梁结构 在承受外力矩和扭矩时发生破坏或过度
变形。
在路桥工程的设计、施工和运营过程中 ,需要定期进行检测和维护,以确保结
扭矩的量纲
扭矩的量纲是力和长度(L)的乘积,表示为ML^2。
量纲是描述物理量本质属性的方式,通过量纲可以判断物理量的性质和相互关系 。
03
扭转的应力分析
切应力与剪切应变的关系
切应力与剪切应变的关系是线 性的,即剪切应变与切应力成 正比。
在剪切弹性范围内,切应力与 剪切应变之间的关系可以用剪 切弹性模量来描述。
扭转过程中,杆件上各点的角位移和 剪切变形程度不同,导致杆件横截面 绕其自身轴线发生转动。
扭转的物理现象
01
杆件在扭转时,横截面上的正应 力分布不均匀,呈现出剪切变形 的特点。
02
杆件上各点的剪切变形程度与该 点到轴线的距离成正比,导致横 截面上的切向力分布不均匀。
扭转的分类
根据杆件上所受外力矩的方向, 扭转可分为左旋和右旋两种类型
构的强度和稳定性。
05
扭转的刚度条件
刚度条件的定义
刚度条件是指在材料力学中,杆件在受到扭矩作用时,其横 截面上的剪切应力和剪切变形之间的关系。
刚度条件是材料力学中一个重要的基本概念,它描述了杆件 在扭矩作用下抵抗变形的能力。
刚度条件的计算方法
根据材料力学的基本理论,刚度条件可以通过杆件的剪切 弹性模量和剪切应变来计算。
材料力学课件(路桥)第4章 扭转
目录 CONTENTS
强度条件的工程意义
满足强度条件是保证路桥工程安全性和 稳定性的基础。
通过满足强度条件,可以防止桥梁结构 在承受外力矩和扭矩时发生破坏或过度
变形。
在路桥工程的设计、施工和运营过程中 ,需要定期进行检测和维护,以确保结
扭矩的量纲
扭矩的量纲是力和长度(L)的乘积,表示为ML^2。
量纲是描述物理量本质属性的方式,通过量纲可以判断物理量的性质和相互关系 。
03
扭转的应力分析
切应力与剪切应变的关系
切应力与剪切应变的关系是线 性的,即剪切应变与切应力成 正比。
在剪切弹性范围内,切应力与 剪切应变之间的关系可以用剪 切弹性模量来描述。
扭转过程中,杆件上各点的角位移和 剪切变形程度不同,导致杆件横截面 绕其自身轴线发生转动。
扭转的物理现象
01
杆件在扭转时,横截面上的正应 力分布不均匀,呈现出剪切变形 的特点。
02
杆件上各点的剪切变形程度与该 点到轴线的距离成正比,导致横 截面上的切向力分布不均匀。
扭转的分类
根据杆件上所受外力矩的方向, 扭转可分为左旋和右旋两种类型
构的强度和稳定性。
05
扭转的刚度条件
刚度条件的定义
刚度条件是指在材料力学中,杆件在受到扭矩作用时,其横 截面上的剪切应力和剪切变形之间的关系。
刚度条件是材料力学中一个重要的基本概念,它描述了杆件 在扭矩作用下抵抗变形的能力。
刚度条件的计算方法
根据材料力学的基本理论,刚度条件可以通过杆件的剪切 弹性模量和剪切应变来计算。
材料力学课件(路桥)第4章 扭转
目录 CONTENTS
材料力学课件-第四章 扭转-薄壁杆件的扭转
部分加厚由于最小壁厚不变,最大应力不变。部分加厚后甚至由于应力集中更危险。
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds
《材料力学》课件3-2薄壁圆筒的扭转
切应力计算
根据材料力学的基本原理,切应力的大小可以通过扭矩和横截面 面积的比值计算得到。
变形量计算
通过测量薄壁圆筒在扭转变形前后的长度变化,可以计算出其变 形量。
弹性模量
在一定条件下,切应力和变形量之间的关系可以用弹性模量来描 述。
薄壁圆筒的变形特性
变形方向
薄壁圆筒的扭转变形是沿着圆筒轴线的方向进行的。
04
根据实验结果,讨论薄壁圆筒在纯扭状态 下横截面上的应力分布规律。
实验结论与讨论
01
实验结果表明,薄壁圆筒在纯扭 状态下横截面上的应力分布符合 剪切应力与剪切应变线性关系;
02
与理论公式对比,实验结果与理 论公式基本一致,验证了理论公
式的正确性;
在实验过程中,应采取措施减小 误差,提高实验精度;
薄壁圆筒的扭转原理
当薄壁圆筒受到一对大小相等、 方向相反的力偶作用时,圆筒
就会发生扭转。
薄壁圆筒的剪切模量是衡量 其抗扭能力的物理量,剪切 模量越大,抗扭能力越强。
薄壁圆筒的弯曲应力与轴向应 力在剪切模量中得到体现,弯 曲应力与轴向应力的比值决定
了圆筒的形状变化。
薄壁圆筒的扭转应用
薄壁圆筒广泛应用于机械、化工、建筑等工程领域,如管道、压力容器、塔器等。
计算时应根据实际情况选择合适的 公式进行计算。
薄壁圆筒的应力特性
01
薄壁圆筒的应力特性主要表现为剪切应力和弯曲应力的共同作 用。
02
在扭转载荷作用下,圆筒的外侧受到较大的剪切应力和弯曲应
力,而内侧受到较小的剪切应力和弯曲应力。
圆筒的应力特性与圆筒的材料属性、几何形状以及扭转载荷的
03
大小有关。
03
《材料力学》课件3-2薄壁圆 筒的扭转
材料力学课件第3章扭转
扭转外力及变 形特点:
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
杆件受到大小相等,方向相反且作用平 面垂直于杆件轴线的力偶作用, 杆件的横截 面绕轴线产生相对转动。
受扭转变形杆件通常为轴类零件,其横 截面大都是圆形的。所以本章主要介绍圆轴 扭转。
第3章-扭 转
圆轴扭转的内力
3-2 圆轴扭转的内力
1.外力偶矩 直接计算
3-2 圆轴扭转的内力
dx
也发生在垂直于
半径的平面内。
3-3 圆轴扭转横截面上的切应力
2.物理关系
根据剪切胡克定律
G
距圆心为
处的切应力:
G
G
d
dx
垂直于半径
横截面上任意点的切应力 与该点到圆心的距离 成正比。
3-3 圆轴扭转横截面上的切应力
3.静力学关系
T A dA
T A dA
令
Wt
Ip R
抗扭截面系数
在圆截面边缘上,有最 大切应力
3-3 圆轴扭转横截面上的切应力
I
与
p
Wt
的计算
实心轴
T
Ip
max
T Wt
Wt I p / R 1 D3
16
3-3 圆轴扭转横截面上的切应力
空心轴
则
令
Wt I p /(D / 2)
3-3 圆轴扭转横截面上的切应力
实心轴与空心轴 I p 与 Wt 对比
m1=1000Nm,m2=600Nm,m3=200Nm,m4=200Nm,G=79GPa,试求:
(1)各段轴内的最大切应力 (2)若将外力偶m1和m2的位置互换一下,问轴的直径可否减小
3-4 圆轴扭转的强度条件和强度计算
4.强度条件及应用
B
C
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向一致的扭矩为正,反之为负。
扭矩与扭力矩的差异?
7
扭矩图:扭矩随杆轴线变化的图线。
例:画扭矩图。
在AB和BC段分别切开, 分别考察左与右段平衡
AB段: T1 2M BC段: T2 M
画扭矩图。 注意:扭矩图与受扭轴对 齐,标注正负号。
B
2M
A
3M
2M
A
T
T2 M
T1 2M
2M
M
C
M
C
M
x
8
4
➢ 基本概念
外载荷:外力矩的矢量沿轴线
变形:各横截面绕轴线作相对旋转 轴线保持直线
横截面间绕轴线的相对角位移
扭力矩 扭转 扭转角
外力矩的矢量沿轴线,以扭转变形为主要变 形形式的杆件—— 轴
5
轴的动力传递
已知传动构件的转速与所传递的 功率,计算轴所承受的扭力矩。
电机
联轴器
A
B
P M
角速度 2 n 60
dx GIp
扭转切应力公式:
T
Ip
最大扭转切应力:
max
T Wp
公式的适用范围: 圆截面轴; max p
24
例:画横截面扭转切应力分布示意图。
R1
R2
O
T
空心轴
R1
R2
G1
G2
T
组合轴 (G2 G1 )
O
O
25
组合轴扭转切应力分析
设平面假设成立
d
dx
0 R1
G
所以:
G2 G1
横截面
半径仍为直线 间距不变
13
轴内某点的变形规律
dx
(不同位置变形的协调关系)
截取微段
用相距dx的一对横截面 截取微楔
取夹角为d的一
对径向纵截面
R
a Ac
dx
O1
O2
d
b d
B
C
D
14
微楔的变形情况
O1
半径仍为直线
dx
O2
R
d
研究对象:微元体
a
b
dx
b’
d a
A
d
B B’
d’ d
c
b
b’ d
n : 转速 (r min)
功率:KW 力偶矩:N.m
P 103 M 2 n
60
P
M 9549 kW
Nm
n
r / min
6
§4-2 扭矩
1. 扭矩与扭矩图
m
M
A
M
m
B
A
mT
x
M
m
扭矩:矢量方向垂直于横截面 A
m
Tx
的内力偶矩,并用T 表示。 M
m
符号规定:矢量方向(按右手定则)与横截面外法线方
max
T WP
● 材料在比例极限范围内。 (在切应力公式推导时使用了剪切虎克定律)
● 只能用于圆截面轴(包括空心圆截面轴)。 (在非圆截面扭转时,平面假设不成立)
拉压杆应力推导问题也使用变形协调,由应变相等得到应 力相等,但没有使用虎克定律。该结论在应力超过弹性极 限下仍然成立。
22
4. 极惯性矩与抗扭截面系数
扭转
§4-1 引言 §4-2 圆轴扭转应力 §4-3 圆轴扭转强度与动力传递
1
§4-1 引言
工程中的扭转问题
F F
满足强度与刚度条件才 能保证构件正常工作
2
材料力学分析的基本思路
外力
结构
内力 应力
材料性能 强度准则
变形 应变
3
A
M
B
M M
归纳与比较: 1、受扭圆轴的外力与变形特征如何? 2、与拉压杆比较的异同?
d
C
D
d’
D’
15
变形几何方程
小变形
O1
tan
bb' ab
d
dx
a
c
d
dx
同一横截面内任一
径线偏转同一个角度
dx
O2
d
b b’
d
d’
d const.
dx
16
d
dx
几何协调关系
O1
O2
2. 物理方程
G
G d
dx
A
B
C
D
使用剪切胡克定律,线弹性范围
分布:与 成正比
公式中还有哪些量未被确定?
分布:与 成正比
方向:垂直于半径
19
总结
外部变形
平面假设
切应变
d
dx
物理方程(应力应变关系) 静力学条件(平衡方程)
横截面上切应力
T
IP
20
➢ 圆轴横截面上最大扭转切应力
T
IP
max
圆轴扭转最大切应力:
max
TR IP
T IP / R
抗扭截面系数
定义
WP
IP R
max
T WP
21
公式的适用范围
几何方面:实验观测
合理假设
连续体的变形协调条件(数学表达)
11
1. 试验与假设
观察外部变形
圆周线: 形状与大小不变
径向无变形
间距不变 纵向线 : 偏转同一个角度
轴向无变形 周向无变形
结论:相邻圆周线只绕轴线作相对刚性转动
12
内部变形规律(假设): 相邻横截面只绕轴线作相对 刚性转动
平面假设
保持平面,形状与大小不变
例:画扭矩图( m:单位长度的扭力偶矩)。
M 3ml
m
A
B
C
l
l/2 l/2
T1 ( x)
x
T ml
2ml
在AB、BC和CD段分别由三截面 x 切开,考察左(或右)段平衡
D
AB段: T1 x mx
BC段: T2 ml
CD段: T3 2ml
画扭矩图
x
与轴力图比较考察对应关系
9
2. 对应的轴力图与扭矩图
Ip
2dA
A
•空心圆截面
Dd
dA 2d
d
IP
D/ 2 2 2d D4 (1 4 )
d/2
32
WP
D3
16
(1 4 ),
d
D
•实心圆截面
设 0
D4
IP 32 ,
WP
D3
16
23
圆轴扭转应力小结
研究方法:从实验、假设入手,综合考虑几何、
物理与静力学三方面
扭转变形基本公式: d T
M 3ml
m
A
B
C
D
对应拉压问题 与轴力图
q
F 3ql
l
l/2 l/2
T ml
x
2ml
l
l/2 l/2
FN ql
2ql
x
10
§4-3 圆轴扭转应力
问题分析与研究思路
M
1
T M
2
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。
连续体的静不定问题 。
分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件
方向:垂直于半径
17
3.静力学方面
微剪力 dQ dA
微力矩 dT dQ
则有:
G
d
dx
dA
T
T
dT
A
A dA
G d 2dA T dx A
定义 A 2dA IP
极惯性矩
圆轴扭转角变化率 d T
dx GIP 18
G
d
dx
d T
dx GIP
圆轴扭转切应力一般公式
T
IP
27
§4-4 圆轴扭转强度条件与合理设计 一、扭转失效与扭转极限应力
塑性材料 扭断
脆性材料 扭断
扭转极限应力
u
s b
扭转屈服应力,塑性材料 扭转强度极限,脆性材料
28
二、圆轴扭转强度条件
许用切应力: u
n
安全因数
n
工作应力:Leabharlann maxTWP
max
强度条件:
max
T Wp
d
dx
d
dx
0 R2 R2 R1
R1 R2 G2 G1
组合轴 G2 G1
26
➢ 薄壁圆管的扭转切应力 1、精确计算
R1 R2
——按空心圆筒的计算办法
2、近似计算
管壁薄——假设切应力沿 管壁均匀分布
T= AR0 A2R0
T
2 R02
当R0/10时,足够精确
适用于弹性、非弹性、各向同性、各向异性的均质材料薄壁管