小学奥数第1讲--最值问题(含解题思路)

合集下载

四年级奥数之最值问题

四年级奥数之最值问题
最值问题
【课前小练习】
本讲主线 1. 最值中的三个常用方法 2. 两数和一定,差小积大
数字和是6的无重复数字 的多位数中,最大的是 多少?
1. 整体思想:比如,比较大小先看位数,再由高到底比较位置. 2. 局部调整思想 3. 平均分配思想 【例1】(★★) 电视台要播放一部30集的电视连续剧,如果要求每天播放的集数互不 相等 该电视剧最多可以播放几天? 相等,该电视剧最多可以播放几天?
1
4. 两数和一定,差越小乘积越大. 例如,a+b=10,那么,a×b最大等于____. 例如,一根绳子长度是20米,那么这根绳子围城的 , ,那 长方形,长和宽分别是多少的时候,长方形的面积 最大?
知识要点屋
a b
【例5】(★★★★) 如图,一个长方形被分成 4 个小长方形,其中长方形A、B、大 是___平方厘米.
【例4】(★★★) 牧羊人用15段,每段长2米的篱笆,一面靠墙围成一个长方形羊圈,则 羊圈 最 羊圈的最大面积是多少平方米? 多少平 米
最值问题 1. 整体方法,局部调整方法,平均数方法. 2. 两数和一定,差越小乘积越大. (1) 固定长度的绳子,围成正方形面积最大; (2) ( ) 当和不确定时,凑算式,使和变为一个定值. 和 确 时, 算式,使和变 个 值 【今日讲题】 例2 例3 例4 例2,例3,例4 【讲题心得】
知识大总结
a b
答案

【课前小练习】①531, 47 ② 222 【例1】 7 【例2】 19, 517 【例3】 55, 15, 1, 5 【例4】 112 【例5】16
_____________________________________________________________。

五年级奥数最值问题

五年级奥数最值问题

五年级奥数最值问题一、最值问题题目及解析。

(一)题目1。

1. 题目。

用1、2、3、4、5、6这六个数字组成两个三位数,使这两个三位数的乘积最大,这两个三位数分别是多少?2. 解析。

要想让乘积最大,较大的数应在高位。

所以百位分别为6和5;十位分别为4和3;个位分别为2和1。

根据“和一定,差小积大”的原则,两个数为631和542时乘积最大。

(二)题目2。

1. 题目。

将1 - 9这九个数字填入下面的九个方格中,使得三个三位数的乘积最大,该怎么填?□□□×□□□×□□□.2. 解析。

要使得乘积最大,就要让每个因数都尽可能大。

首先百位分别为9、8、7;十位分别为6、5、4;个位分别为3、2、1。

按照“和一定,差小积大”的原则,最大的组合是941×852×763。

(三)题目3。

1. 题目。

一个长方形的周长是20厘米,它的长和宽都是整数厘米,那么这个长方形面积的最大值是多少平方厘米?2. 解析。

长方形周长 = 2×(长 + 宽),已知周长为20厘米,则长+宽=10厘米。

长和宽是整数,当长 = 5厘米,宽 = 5厘米(此时为正方形,正方形是特殊的长方形)时面积最大,面积为5×5 = 25平方厘米。

(四)题目4。

1. 题目。

有10个互不相同的自然数,它们的和是55,其中最大的数最大可能是多少?2. 解析。

要使最大的数最大,那么其他的数就要尽可能的小。

最小的9个自然数为0、1、2、3、4、5、6、7、8,它们的和为0 +1+2+3+4+5+6+7+8 = 36。

那么最大的数为55 - 36=19。

(五)题目5。

1. 题目。

若干个连续自然数的和是1994,这些自然数中最小的一个数是多少?2. 解析。

设这些连续自然数中最小的数为n,共有m个连续自然数。

根据等差数列求和公式S=((n + n + m - 1)m)/(2)=1994,即(2n+m - 1)m = 3988。

小学数学人教新版六年级上册奥数系列讲座:最值问题(含答案解析)

小学数学人教新版六年级上册奥数系列讲座:最值问题(含答案解析)

小学数学人教新版六年级上册实用资料最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,F GH×IJ 尽可能的小.则ABC×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(moda+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9t a=15+17t ⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学奥数 最值的数字谜(一) 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  最值的数字谜(一) 精选练习例题 含答案解析(附知识点拨及考点)

1. 掌握最值中的数字谜的技巧2. 能够综合运用数论相关知识解决数字谜问题数字谜中的最值问题常用分析方法1. 数字谜一般分为横式数字谜和竖式数字谜.横式数字谜经常和数论里面的知识结合考察,有些时候也可以转化为竖式数字谜;2. 竖式数字谜通常有如下突破口:末位和首位、进位和借位、个位数字、位数的差别等.3. 数字谜的常用分析方法有:个位数字分析法、高位数字分析法、数字大小估算分析法、进位错位分析法、分解质因数法、奇偶分析法等.4. 除了数字谜问题常用的分析方法外,还会经常采用比较法,通过比较算式计算过程的各步骤,得到所求的最值的可能值,再验证能否取到这个最值.5. 数字谜问题往往综合了数字的整除特征、质数与合数、分解质因数、个位数字、余数、分数与小数互化、方程、估算、找规律等题型。

【例 1】 有四个不同的数字,用它们组成最大的四位数和最小的四位数,这两个四位数之和是11469,那么其中最小的四位数是多少?【考点】加减法的进位与借位 【难度】3星 【题型】填空【解析】 设这四个数字是a b c d >>>,如果0d ≠,用它们组成的最大数与最小数的和式是11469a b c dd c b a +,由个位知9a d +=,由于百位最多向千位进1,所以此时千位的和最多为10,例题精讲知识点拨教学目标5-1-2-4.最值中的数字谜(一)与题意不符.所以0d =,最大数与最小数的和式为0011469a b c c b a +,由此可得9a =,百位没有向千位进位,所以11a c +=,2c =;64b c =-=.所以最小的四位数cdba 是2049.【答案】2049【例 2】 将一个四位数的数字顺序颠倒过来,得到一个新的四位数,如果新数比原数大7902,那么所有符合这样条件的四位数中原数最大的是 .7902D C B AA B C D -【考点】加减法的进位与借位 【难度】4星 【题型】填空【解析】 用A 、B 、C 、D 分别表示原数的千位、百位、十位、个位数字,按题意列减法算式如上式.从首位来看A 只能是1或2,D 是8或9;从末位来看,102A D +-=,得8D A =+,所以只能是1A =,9D =.被减数的十位数B ,要被个位借去1,就有1B C -=.B 最大能取9,此时C 为8,因此,符合条件的原数中,最大的是1989.【答案】1989【例 3】 在下面的算式中,A 、B 、C 、D 、E 、F 、G 分别代表1~9中的数字,不同的字母代表不同的数字,恰使得加法算式成立.则三位数EFG 的最大可能值是 .2006A B C DE F G +【考点】加减法的进位与借位 【难度】4星 【题型】填空【解析】 可以看出,1A =,6D G +=或16.若6D G +=,则D 、G 分别为2和4,此时10C F +=,只能是C 、F 分别为3或7,此时9B E +=,B 、E 只能分别取()1,8、()2,7、()3,6、()4,5,但此时1、2、3、4均已取过,不能再取,所以D G +不能为6,16D G +=.这时D 、G 分别为9和7;且9C F +=,9B E +=,所以它们可以取()3,6、()4,5两组.要使EFG 最大,百位、十位、个位都要尽可能大,因此EFG 的最大可能值为659.事实上134********+=,所以EFG 最大为659.【答案】659【巩固】 如图,相同的汉字代表相同的数字,不同的汉字代表不同的数字,那么四位数“奥林匹克”最大是奥林匹克+奥数网2008【考点】加减法的进位与借位 【难度】4星 【题型】填空【关键词】学而思杯,6年级,1试,第2题【解析】 显然“2≤奥”,所以“1=奥或2”,如果“2=奥”,则四位数与三位数的和超过2200,显然不符合条件,所以“1=奥”,所以“9≤林”,如果“9=林”那么“200819001008+=--=匹克数网”,“0=匹=数”,不符合条件,所以“林”最大只能是8,所以“20081800100108+=--=匹克数网”,为了保证不同的汉字代表不同的数字,“匹克”最大是76,所以“奥林匹克”最大是1876。

小学奥数——最值问题

小学奥数——最值问题

最值问题一、例题讲解例题1.把1、2、3……16分别填进图中16个三角形里,使每边上的7个小三角形里的数之和相等,问:这个和的最大值是多少?例题2.一把钥匙只能开一把锁,现在有9把钥匙和9把锁,但不知道哪把钥匙开哪把锁,那么最多要试开多少次才能配对好全部的钥匙和锁?例题3.一种购物券的面值只有1元、3元、5元、7元和9元五种,为了直接付清1元、2元、3元……98元、99元、100元各种整数元的物品,至少要准备多少张什么样的购物券?例题4.猴妈妈摘来一筐桃,将它们三等分之后还剩2个桃;取出2份,将它们三等分之后还剩2个桃;再取出2份,将它们三等分之后还剩2个桃 .猴妈妈至少摘了几个桃?例题5.a 和b 是小于100的两个不同的自然数(非0),那么, 的最大值是多少?例题6.把14拆成几个自然数相加的形式,再把拆成的这些自然数乘起来,如果想让所乘的积最大,应该怎么拆?例题7.10、9、8、7、6、5、4、3、2、1这十个数,在每相邻的两个数之间添上一个加号或一个减号,组成一个算式,使它符合下面两个要求:① 算式的结果等于37,② 这个算式中所有的减数(前面添了减号的数)的乘积尽可能的大,那么这些减数的最大乘积是多少?例题8.三个连续的自然数,后面两个数的积与前面两个数的积之差是114,这三个数中,最小的数是多少?例题9.有三个数字,能组成6个不同的三位数,这6个数的和是2886,那么所组成的6个三位数中,最小的三位数是几?a -b a + b二、举一反三① 如果四个人的平均年龄是30岁,并且在这四个人中没有小于21岁的,那么年龄最大的人是几岁?② 将5、6、7、8、9、10六个数分别填入下面的圆圈内,使三角形每边上三个数的和相等,这个和最大是多少?③ 现在有1元、2元、5元和10元的人民币若干张,如果要付清1元、2元、3元……98元、99元、100元各种整数元,至少需要准备多少张什么样的人民币?④ x 和y 是小于50的两个不同的自然数(非0),并且x >y ,那么, 的最小值是多少?⑤ 把50拆成几个自然数的和,要使这些自然数的乘积最大,应该怎么拆?⑥ a 、b 、c 是从大到小排列的三个数,且a – b = b – c ,前两个数的积与后两个数的积之差是280,如果b = 35,那么c 是多少?⑦ 把135个苹果分成若干份,使任意两份的苹果数都不相同,最多可以分成多少份?⑧ 育才小学六(1)班51名学生一共植树251棵,已知植树最少的同学植树3棵,又知最多有11名同学植树的棵树相同,植树最多的同学可能植树多少棵?⑨ 有一架天平,只有5克和30克的砝码各一个,现在要把300克的盐分成3等份,那么最少需要称几次?⑩ 一个布袋里有大小相同、颜色不同的一些小球,其中红的10个、白的9个、黄的8个、蓝的2个,一次最少取多少个球,才能保证有4个球颜色相同?x - yx + y三、拓展提高① 把2~9分别填入下面的圆圈内,使每个大圆的五个数之和相等,并且使和最大,应该怎么填?② 把2001拆成几个自然数的和,要使这些自然数的乘积最大,应该怎么拆?如果是2000呢?③ a 和b 是选自前200个自然数的两个不同的数(非0),并且a >b, 求 的最大值和最小值 .④ 一个分数,被 , , 除得的结果都是整数,这个分数最小是多少?⑤ 某次数学、英语测试,所有参加测试者的得分都是自然数,最高得数198,最低得分169,没有得193分、185分和177分的,并且至少有6人得同一分数,参加测试的至少有多少人?⑥ 一个盒子里装有红、黄、白三种颜色的球,若白球至多是黄球的一半,且至少是红球的 ,黄球与白球合起来是55个 .盒中至多有红球多少个?⑦ 两辆样的汽车从同一地点同时出发,沿同一方向同速直线前进,出发前每辆车各加了一桶的油,每辆车除油箱内的油外最多能带20桶汽油,每桶汽油可以使一辆汽车前进60千米,两车都必须返回出发地点,两辆车均可以借对方的油,为了使一辆车尽可能地远离出发点,那么这辆车最远可达离出发点多少千米远的地方?⑧ 小王用10元钱正好可买6角、8角、2元的邮票各若干张,那么他最多可以买多少张2元的邮票?⑨ 已知三个不同的数字(其中没有零),把由它们组合而成的所有三位数都相加,得到的结果为2664.这些三位数中最大的与最小的两个数之差为495,则这三个数字分别是多少?a -b a + b 10 21 6 7 514 1 3。

五年级数学上册奥数《最值问题》课件

五年级数学上册奥数《最值问题》课件
分析:枚举法
112435、122435、124435、124335、124355
最大的六位数是124435
【练习1】在五位数41729的某一位数字 前面插入一个同样的数字(例如:在7的 前面插入7得到417729),能得到的最大 六位数是多少? 分析:枚举法
441729、411729、417729、417229、417229、417299
答:当长为7米,8米,长、宽最接近,长、宽乘积最大, 最大面积为56平方米。
【例题4】请将1、2、3、4、5、6这六个数分别填入 下面的方格中,使得乘法算式的结果最大?
□□□×□□□
分析:要使得乘积最大,那么就要百位上的数字最大,个 位上的数字最小;所以百位填5、6,十位填3、4,个位填1、 2;两个三位数的乘积最大,就是让两个三位数差最小。
最值问题
如何组成最大的一个数
13
0 2
4
43210
在一定范围内求最大值或最小值的问题,我们 称之为“最大最小问题”。
解决这类问题的方法有枚举法、综合法、分析法、 公式法、图表法等。
【例题1】在五位数12435的某一位数字后面插入一个同 样的数字,可以得到一个六位数(例如:在2的后面插入2 可以得到122435)。请问:能得到的最大六位数是多少?
答:最多有12场比赛。
【例题3】墨爷爷要用长20米的篱笆围成一个长方形养鸡 场,已知长和宽均为整数米。那么怎样围所得的养鸡场面 积最大?(正方形是特殊的长方形)
分析:周长是20米,长、宽之和为10,是固定不变 的;长方形面积为长、宽之积,根据“和同近积大”, 可知长、宽越接近,面积越大;
即篱笆为正方形时,面积最大,最大面积为 5×5=25(平方米)
答:边长为5米时,面积最大。

小学奥数趣味学习《最值问题》典型例题及解答

小学奥数趣味学习《最值问题》典型例题及解答

小学奥数趣味学习《最值问题》典型例题及解答在日常生活中,人们常常会遇到“路程最近”“费用最省”“面积最大”“损耗最小”等问题,这些寻求极端结果或讨论怎样实现这些极端情形的问题,最终都归结为:在一定范围内求最大值或最小值的问题,我们称这些问题为最值问题。

数量关系:一般是求最大值或最小值。

解题思路和方法:枚举法,综合法,分析法,公式法,图表法例题1:七个小朋友共折纸花100朵,每个小朋友折的朵数都不相同,其中折的最多的小朋友折了18朵,则折的最少的小朋友至少折了多少朵?解:1、要想最少的尽可能少,那么其他人就要尽可能多。

2、因为求折的最少的小朋友至少折了多少朵,那么其他六位小朋友应折的尽可能多,折的朵数应分别为18、17、16、15、14、13,则折的最少的小朋友至少折了100-18-17-16-15-14-13=7(朵)。

例题2:有22根长都是1厘米的小棒,乐乐用这些小棒围成长方形,围成的长方形面积最大是多少平方厘米,最小是多少方厘米?解:1、题目已知的是周长求面积,可以利用列表的方法解决。

2、周长是22厘米,则长与宽的和是22÷2=11(厘米),我们将可能的情况列表呈现出来。

3、所以围成的长方形面积最大是30平方厘米,最小是10平方厘米。

例题3:有一个73人的旅游团,其中男47人,女26人,住到一个旅馆里。

旅馆里有可住11人,7人,4人的三种房间,经过服务员的安排,这个旅游团的男、女分别住在不同的房间里,而且每个房间都按原定人数住满了旅游团的成员。

服务员最少用了多少个房间?解:1、要使房间用的少,则尽量先用11人间,但是也要考虑每个房间都要住满和性别差异,所以男女分开计算。

2、因为3×11+7×2=47(人),所以男的住了3个11人的房间,2个7人的房间。

又因为11×2+4=26(人),所以女的住了2个11人的房间,1个4人的房间,则服务员最少用了3+2+2+1=8(个)房间。

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案11最值问题(一)

小学奥数全国推荐四年级奥数通用学案附带练习题解析答案11最值问题(一)

年级四年级学科奥数版本通用版课程标题最值问题(一)在日常生活中,我们常常考虑“最”字,如走路尽可能使所行的路程最短,用时最少或车费最省;做一件工作,尽可能使效率最高,工时最短;学习则尽可能使所用的时间最短而收获最大……,一句话,都是考虑一个“最”字的问题,即最值问题。

最值问题涉及的知识面较为广泛,但在国内外的历届数学竞赛中,一般都带有某种限制条件,因而解决问题的方法和策略常常因题而异,归纳起来有以下几种常用的方法:(1)从极端情况入手我们在分析某些数学问题时,不妨考虑一下把问题推向“极端”。

因为当某一问题被推向“极端”后,往往能排除许多枝节问题的干扰,使问题的“本来面目”清楚地显露出来,从而使问题迅速获解。

(2)枚举比较根据题目的要求,把可能得出的答案一一枚举出来,使题目的条件范围逐步缩小,进而筛选比较出答案。

(3)分析推理根据两个事物在某些属性上相同,猜测它们在其他属性上也有可能相同的推理方法。

(4)构造在寻求解题途径时,构造出新的式子或图形,往往可以取得出奇制胜的效果。

(5)应用求最大值和最小值的结论和一定的两个数,差越小,积越大。

积一定的两个数,差越小,和越小。

两点之间线段最短。

例1一把钥匙只能打开一个房间的门,现有20把钥匙和20个房间,但不知哪把钥匙能开哪个房间的门,如要打开所有房间的门,最多要开几次?分析与解:考虑极端情况,开第一个房间的门最多需20次。

开第二个房间的门最多需19次,……,开最后一个房间的门需1次,共需20+19+18+…+1=210(次)。

例2小明去听报告,发现报告厅只有最后一排没坐满,但他无论坐在哪个位子,都会和另一听众相邻,已知每排均有19个位子,问最后一排最少坐了多少个人?分析与解:将最后一排座位编号,由题意可知,没有连续3个的空位,而最后一排最少坐了的人数也就是已经坐下的每一个人两旁尽可能都是空位,即极端情形:2,5,8,11,14,17,19这几个编号的座位上坐着人,其余座位空着,故最少坐7人。

(小学奥数)容斥原理之最值问题

(小学奥数)容斥原理之最值问题

1. 瞭解容斥原理二量重疊和三量重疊的內容;2. 掌握容斥原理的在組合計數等各個方面的應用.一、兩量重疊問題 在一些計數問題中,經常遇到有關集合元素個數的計算.求兩個集合並集的元素的個數,不能簡單地把兩個集合的元素個數相加,而要從兩個集合個數之和中減去重複計算的元素個數,即減去交集的元素個數,用式子可表示成:A B A B A B =+-(其中符號“”讀作“並”,相當於中文“和”或者“或”的意思;符號“”讀作“交”,相當於中文“且”的意思.)則稱這一公式為包含與排除原理,簡稱容斥原理.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.圖示如下:A 表示小圓部分,B 表示大圓部分,C 表示大圓與小圓的公共部分,記為:A B ,即陰影面積.包含與排除原理告訴我們,要計算兩個集合A B 、的並集AB 的元素的個數,可分以下兩步進行:第一步:分別計算集合A B 、的元素個數,然後加起來,即先求A B +(意思是把A B 、的一切元素都“包含”進來,加在一起);第二步:從上面的和中減去交集的元素個數,即減去C AB =(意思是“排除”了重複計算的元素個數). 二、三量重疊問題A 類、B 類與C 類元素個數的總和A =類元素的個數B +類元素個數C +類元素個數-既是A 類又是B 類的元素個數-既是B 類又是C 類的元素個數-既是A 類又是C 類的元素個數+同時是A 類、B 類、C 類的元素個數.用符號表示為:A B C A B C A B B C A C A B C =++---+.圖示如下:教學目標知識要點7-7-5.容斥原理之最值問題1.先包含——A B +重疊部分A B 計算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重疊部分A B 減去.在解答有關包含排除問題時,我們常常利用圓圈圖(韋恩圖)來幫助分析思考.【例 1】 “走美”主試委員會為三~八年級準備決賽試題。

2020年部编版小学奥数容斥原理之最值问题

2020年部编版小学奥数容斥原理之最值问题

小学奥数容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.知识要点教学目标7-7-5.容斥原理之最值问题1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】 “走美”主试委员会为三~八年级准备决赛试题。

创新思维·小学奥数寒假专项突破之最值问题(第一讲和第二讲)

创新思维·小学奥数寒假专项突破之最值问题(第一讲和第二讲)

第一讲:最值问题(最大值和最小值专项)一、最小值问题专项突破:例题1:贵宾由甲地经乙地、丙地去丁地参观。

甲、乙、丙、丁四地和甲乙、乙丙、丙丁的中点,原来就各有一位民警值勤。

为了保证安全,上级决定在沿途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都相等。

现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少要增加______位民警。

(《中华电力杯》少年数学竞赛决赛第一试试题)答案解析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有一位民警,共有7位民警。

他们将上面的线段分为了2个2500米,2个4000米,2个2000米。

现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。

由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民警数是(5000+8000+4000)÷500+1=35(名)。

(知识点:公约数)例题2:在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图5.92所示,它们爬行的速度相等。

若要求它们同时出发会面,那么,应选择哪点会面最省时?(湖南怀化地区小学数学奥林匹克预赛试题)答案解析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须三者同时到达,即各自行的路程相等。

我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。

这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出AO=OC=OB;故,O点即为三只蚂蚁会面之处。

(知识点:立体思维,画线)二、最大值问题专项突破:例1:有三条线段a、b、c,并且a<b<c。

判断:图5.94的三个梯形中,第几个图形面积最大?(全国第二届“华杯赛”初赛试题)答案解析:三个图的面积分别是:三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。

最值问题(小学奥数)

最值问题(小学奥数)

最值问题(小学奥数)在小学奥数中,最值问题是一个常见的题型。

最值问题主要考察学生对数值的理解和比较能力。

本文将从解题思路、答题技巧以及相关例题来进行详细讨论。

解题思路:在解决最值问题时,首先需要明确题目要求求解的最大值或最小值是什么,然后根据题目给出的条件和限制条件进行分析。

常见的解题思路有以下几种:1. 穷举法:逐个尝试所有可能的情况,将每种情况计算出来的结果进行比较,找出最大值或最小值。

2. 推理法:通过观察已知条件和限制条件,进行逻辑推理,找到最值的可能位置,并进行比较。

3. 抽象问题:将问题进行数学建模,通过建立数学模型,利用数学方法求解最值问题。

答题技巧:在解决最值问题时,以下几点技巧可以帮助学生提高解题效率和准确性:1. 变量转化:对于涉及多个变量的最值问题,可以通过变量的转化,将问题简化为只涉及一个变量的问题。

2. 条件整理:对于给定的条件和限制条件,可以进行整理和分类,找到与最值问题相关的条件,有针对性地分析和求解。

3. 符号表示:在解题过程中,合理地使用符号表示,可以简化计算过程,提高解题效率。

例如,用代数式表示最值问题,通过求导等数学方法求解。

例题一:某次数学竞赛的“200米冲刺”项目中,小明和小红两位选手进行了比赛。

根据记录,小明在前半程跑得较快,但在后半程稍有掉队。

已知小明最终耗时为30秒,小红的总用时比小明多1秒。

求小明和小红的前后半程用时各为多少?解析:设小明的前半程用时为x秒,则后半程用时为30 - x 秒。

根据题目所给条件,可以列出方程:x + (30 - x) + 1 = 30。

解方程可得小明前半程用时29秒,后半程用时1秒。

小红的前半程用时为30 - 1 = 29秒,后半程用时为1秒。

因此,小明的前半程用时为29秒,后半程用时为1秒;小红的前半程用时为29秒,后半程用时为1秒。

例题二:甲乙两个国家的人口分别是1000万和2000万。

假设甲国每年的人口增长率是2%,乙国每年的人口增长率是3%。

(完整版)小学奥数最值问题

(完整版)小学奥数最值问题

最值问题内容概述均值不等式,即和为定值的两数的乘积随着两数之差的增大而减小.各种求最大值或最小值的问题,解题时宜首先考虑起主要作用的量,如较高数位上的数值,有时局部调整和枚举各种可能情形也是必要的.典型问题2.有4袋糖块,其中任意3袋的总和都超过60块.那么这4袋糖块的总和最少有多少块?【分析与解】方法一:设这4袋为A、B、C、D,为使4袋糖块的总和最少,则每袋糖应尽量平均,有A、B、C袋糖有20、20、21块糖.则当A、B、D三袋糖在一起时,为了满足条件,D袋糖不少于21块,验证A、B、C、D 这4袋糖依次有20,20,2l,2l时满足条件,且总和最少.这4袋糖的总和为20+20+21+21=82块.方法二:设这4袋糖依次有a、b、c、d块糖,有61616161a b ca b da c db c d++≥⎧⎪++≥⎪⎨++≥⎪⎪++≥⎩①②③④,①+②+③+④得:3(a+b+c+d)≥244,所以a+b+c+d≥8113,因为a+b+c+d均是整数,所以a+b+c+d的和最小是82.评注:不能把不等式列为a b c60a+b+d60a+c+d60b+c+d60++〉⎧⎪〉⎪⎨〉⎪⎪〉⎩①②③④,如果这样将①+②+③+④得到3(a+b+c+d)>240,a+b+c+d>80,因为a、b、c、d均是整数,所以a+b+c+d的和最小是81.至于为什么会出现这种情况.如何避免,希望大家自己解决.4.用1,3,5,7,9这5个数字组成一个三位数ABC和一个两位数DE,再用O,2,4,6,8这5个数字组成一个三位数FGH和一个两位数IJ.求算式ABC×DE-FGH×IJ的计算结果的最大值.【分析与解】为了使ABC×DE-FGH×IJ尽可能的大,ABC×DE尽可能的大,FGH×IJ 尽可能的小.则AB C×DE最大时,两位数和三位数的最高位都最大,所以为7、9,然后为3、5,最后三位数的个位为1,并且还需这两个数尽可能的接近,所以这两个数为751,93.则FGH×IJ最小时,最高位应尽可能的小,并且两个数的差要尽可能的大,应为468×20.所以AB C×DE-FG H×IJ的最大值为751×93-468×20=60483.评注:类似的还可以算出FGH×IJ-ABC×DE的最大值为640×82-379×15=46795.6.将6,7,8,9,10按任意次序写在一圆周上,每相邻两数相乘,并将所得5个乘积相加,那么所得和数的最小值是多少?【分析与解】我们从对结果影响最大的数上人手,然后考虑次大的,所以我们首先考虑10,为了让和数最小,10两边的数必须为6和7.然后考虑9,9显然只能放到图中的位置,最后是8,8的位置有两个位置可放,而且也不能立即得到哪个位置的乘积和最小,所以我们两种情况都计算.8×7+7×10+10×6+6×9+9×8=312;9×7+7×10+10×6+6×8+8×9=313.所以,最小值为312.8.一个两位数被它的各位数字之和去除,问余数最大是多少?【分析与解】设这个两位数为ab=lOa+b,它们的数字和为a+b,因为lOa+b=(a+b)+9a,所以lOa+b≡9a(mod a+b),设最大的余数为k,有9a≡k(mod a+b).特殊的当a+b为18时,有9a=k+18m,因为9a、18m均是9的倍数,那么k也应是9的倍数且小于除数18,即0,9,也就是说余数最大为9;所以当除数a+b不为18,即最大为17时,:余数最大为16,除数a+b只能是17,此时有9a=15+17m,有m=7+9ta=15+17t⎧⎨⎩(t为可取0的自然数),而a是一位数,显然不满足;:余数其次为15,除数a+b只能是17或16,除数a+b=17时,有9a=15+17m,有m=6+9ta=13+17t⎧⎨⎩,(t为可取0的自然数),a是一位数,显然也不满足;除数a+b=16时,有9a=15+16m,有m=3+9ta=7+16t⎧⎨⎩(t为可取0的自然数),因为a是一位数,所以a只能取7,对应b为16-7=9,满足;所以最大的余数为15,此时有两位数79÷(7+9)=4……15.10.用1,2,3,4,5,6,7,8,9这9个数字各一次,组成一个被减数、减数、差都是三位数的正确的减法算式,那么这个算式的差最大是多少?【分析与解】考虑到对差的影响大小,我们先考虑百位数,为了让差最大,被减数的百位为9,减数的百位为1,如果差的百位为8,那算式就是如下形式:剩下的6个数字为2、3、4、5、6、7,因为百位数字为8,所以我们可以肯定被减数的十位数字比减数要大,而且至少大2,因为1已经出现在算式中了,算式的可能的形式如下:得数的十位只可能是减数和被减数的十位数字之差,或者小1,可能的算式形式如下:但这时剩下的数都无法使算式成立.再考虑差的百位数字为7的情况,这时我们可以肯定减数的十位数比被减数要大,为了使差更大,我们希望差值的十位为8,因此,算式可能的形式为:再考虑剩下的三个数字,可以找到如下几个算式:,所以差最大为784.12. 4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【分析与解】设这四个分数为上12m、12n、12a+1、12b+1(其中m、n、a、b均为非零自然数)有12m+12n=12a+1+12b+1,则有12m-12b+1=12a+1-12n,我们从m=1,b=1开始试验:1 2=16+13=14+14,13=112+14=16+16,1 4=120+15=18+18,15=130+16=110+110,1 6=15+110=112+112,﹍我们发现,15和16分解后具有相同的一项110,而且另外两项的分母是满足一奇一偶,满足题中条件:1 5+115=16+110,所以最小的两个偶数和为6+10=16.14.有13个不同的自然数,它们的和是100.问其中偶数最多有多少个?最少有多少个?【分析与解】 13个整数的和为100,即偶数,那么奇数个数一定为偶数个,则奇数最少为2个,最多为12个;对应的偶数最多有11个,最少有1个.但是我们必须验证看是否有实例符合.当有11个不同的偶数,2个不同的奇数时,11个不同的偶数和最小为2+4+6+8+10+12+14+16+18+20+22=132,而2个不同的奇数和最小为1+3=4.它们的和最小为132+4=136,显然不满足:当有9个不同的偶数,4个不同的奇数时,9个不同的偶数和最小为2+4+6+8+10+12+14+16+18=90,而4个不同的奇数和最小为1+3+5+7=16,还是大于100,仍然不满足;当有7个不同的偶数,6个不同的奇数时,7个不同的偶数和最小为2+4+6+8+10+12+14=56,6个不同的奇数和为1+3+5+7+9+11:36,满足,如2,4,6,8,10,12,22,1,3,5,7,9,11的和即为100.类似的可知,最少有5个不同的偶数,8个不同的奇数,有2,4,8,10,16,1.3.5,7,9,11,13,15满足.所以,满足题意的13个数中,偶数最多有7个,最少有5个.。

小学奥数容斥原理之最值问题

小学奥数容斥原理之最值问题

小学奥数容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-U I (其中符号“U ”读作“并”,相当于中文“和”或者“或”的意思;符号“I ”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B I ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B U 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起);第二步:从上面的和中减去交集的元素个数,即减去C A B =I (意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+U U I I I I I .图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-5.容斥原理之最值问题教学目标知识要点1.先包含——A B +重叠部分A B I 计算了2次,多加了1次;2.再排除——A B A B +-I把多加了1次的重叠部分A B I 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B I 、B C I 、C A I 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++---I I I 重叠部分A B C I I 重叠了3次,但是在进行A B C ++- A B B C A C --I I I 计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+I I I I I .【例 1】 “走美”主试委员会为三~八年级准备决赛试题。

小学五年级奥数关于最值问题的讲解

小学五年级奥数关于最值问题的讲解

小学五年级奥数关于最值问题的讲解【篇一】最值问题【含义】科学的进展观认为,国民经济的进展既要讲求效率,又要节省能源,要少花钱多办事,办好事,以最小的代价取得的效益。

这类应用题叫做最值问题。

【数量关系】一般是求值或最小值。

【解题思路和方法】根据题目的要求,求出值或最小值。

例1在火炉上烤饼,饼的两面都要烤,每烤一面需要3分钟,炉上只能同时放两块饼,现在需要烤三块饼,最少需要多少分钟?解先将两块饼同时放上烤,3分钟后都熟了一面,这时将第一块饼取出,放入第三块饼,翻过其次块饼。

再过3分钟取出熟了的其次块饼,翻过第三块饼,又放入第一块饼烤另一面,再烤3分钟即可。

这样做,用的时间最少,为9分钟。

答:最少需要9分钟。

例2在一条大路上有五个卸煤场,每相邻两个之间的距离都是10千米,已知1号煤场存煤100吨,2号煤场存煤200吨,5号煤场存煤400吨,其余两个煤场是空的。

现在要把全部的煤集中到一个煤场里,每吨煤运1千米花费1元,集中到几号煤场花费最少?解我们采纳尝试比拟的方法来解答。

集中到1号场总费用为1×200×10+1×400×40=18000(元)集中到2号场总费用为1×100×10+1×400×30=13000(元)集中到3号场总费用为1×100×20+1×200×10+1×400×10=12000(元)集中到4号场总费用为1×100×30+1×200×20+1×400×10=11000(元)集中到5号场总费用为1×100×40+1×200×30=10000(元)经过比拟,明显,集中到5号煤场费用最少。

答:集中到5号煤场费用最少。

重庆武汉北京800400上海500300例3北京和上海同时制成计算机若干台,北京可调运外地10台,上海可调运外地4台。

小学奥数容斥原理之最值问题(完整版)

小学奥数容斥原理之最值问题(完整版)

小学奥数容斥原理之最值问题1. 了解容斥原理二量重叠和三量重叠的内容;2. 掌握容斥原理的在组合计数等各个方面的应用.一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行: 第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进来,加在一起); 第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数). 二、三量重叠问题A 类、B 类与C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.7-7-5.容斥原理之最值问题教学目标知识要点1.先包含——A B +重叠部分A B 计算了2次,多加了1次;2.再排除——A B A B +-把多加了1次的重叠部分A B 减去. 图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,大圆表示C 的元素的个数.1.先包含:A B C ++ 重叠部分A B 、B C 、C A 重叠了2次,多加了1次. 2.再排除:A B C A B B C A C ++--- 重叠部分A B C 重叠了3次,但是在进行A B C ++- A B B C A C --计算时都被减掉了. 3.再包含:A B C A B B C A C A B C ++---+.【例 1】“走美”主试委员会为三~八年级准备决赛试题。

(完整)四年级奥数之最值问题

(完整)四年级奥数之最值问题

四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。

“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。

但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。

同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。

这样最多要试的次数为:3+2+1=6(次)。

二、综合法例2x3=84A(x、A均为自然数)。

A的最小值是______。

(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。

即A的最小值为(2×3×3×7×7=)882。

三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少?(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。

由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。

根据上面式子,考虑到a不能超过23。

(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。

当a=22时,43×22+42=988,此时b最大值为42。

显然,当a=22,b=42时,a+b的值最大,最值为22+42=64。

四年级奥数之最值问题

四年级奥数之最值问题

四年级奥数之最值问题知识点睛:在一定范围内求最大值或最小值的问题,我们称之为“最大最小问题”。

“最大”、“最小”是我们所熟悉的两个概念,多年来各级数学竞赛中经常会出现求最值问题,解决办法有:一、枚举法例1一把钥匙只能开一把锁,现在有4把钥匙4把锁。

但不知哪把钥匙开哪把锁,最多要试多少次就能配好全部的钥匙和锁?(北京市第三届“迎春杯”数学竞赛试题)分析与解开第一把锁,按最坏情况考虑试了3把还未成功,则第4把不用试了,它一定能打开这把锁,因此需要3次。

同样的道理开第二把锁最多试2次,开第三把锁最多试1次,最后一把锁则不用再试了。

这样最多要试的次数为:3+2+1=6(次)。

二、综合法例2x3=84A(x、A均为自然数)。

A的最小值是______。

(1997年南通市数学通讯赛试题)分析与解根据题意,84A开立方的结果应为自然数,于是我们可以把84分解质因数,得84=2×2×3×7,因此x3=2×2×3×7×A,其中A的质因数至少含有一个2、两个3、两个7,才能满足上述要求。

即A的最小值为(2×3×3×7×7=)882。

三、分析法例3一个三位数除以43,商是a,余数是b,(a、b均为自然数),a+b 的最大值是多少?(广州市五年级数学竞赛试题)分析与解若要求a+b的最大值,我们只要保证在符合题意之下,a、b尽可能大。

由乘除法关系得43a+b=一个三位数因为b是余数,它必须比除数小,即b<43b的最大值可取42。

根据上面式子,考虑到a不能超过23。

(因为24×43>1000,并不是一个三位数)当a=23时,43×23+10=999,此时b最大值为10。

当a=22时,43×22+42=988,此时b最大值为42。

显然,当a=22,b=42时,a+b的值最大,最值为22+42=64。

最值问题解题思路奥数

最值问题解题思路奥数

马到成功奥数专题:离散最值引言:在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题;解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手:1.着眼于极端情形;2.分析推理——确定最值;3.枚举比较——确定最值;4.估计并构造;离散最值问题渗透到小升初的各个奥数专题中,学好它可为解决数论,计数,应用问题等打下扎实的基础;一、从极端情形入手从极端情形入手,着眼于极端情形,是求解最值问题的有效手段;题目1.一个布袋中有红、黄、绿三种颜色的小球各10个,这些小球的大小均相同,红色小球上标有数字“4”,黄色小球上标有数字“5”,绿色小球上标有数字“6”;小明从袋中摸出8个球,它们的数字和是39,其中最多可能有多少个球是红色的解:假设摸出的8个球全是红球,则数字之和为4×8=32,与实际的和39相差7,这是因为将摸出的黄球、绿球都当成是红球的缘故;用一个绿球换一个红球,数字和可增加6-4=2,用一个黄球换一个红球,数字和可增加5-4=1;为了使红球尽可能地多,应该多用绿球换红球,现在7÷2=3……1,因此可用3个绿球换红球,再用一个黄球换红球,这样8个球的数字之和正好等于39;所以要使8个球的数字之和为39,其中最多可能有8-3-1=4个是红球;题目2.有13个不同正整数,它们的和是100;问其中偶数最多有多少个最少有多少个解:①2+4+6+8+10+12+14+16=72还要有5个奇数,但和是奇数,100是偶数,所以只能少一个偶数,2+4+6+8+10+12+14=56100-56=4242=1+3+5+7+9+17,最多有7个偶数;②1+3+5+7+9+11+13+15=64还要5个偶数,100-64=3636=2+4+6+8+16 最少有5个偶数;题目3.一种小型天平称备有1克、3克、5克、7克、9克5种砝码;为了能称出1克到91克的任意一种整数克重量,如果只允许在天平的一端放砝码,那么最少需要准备砝码多少个; 解:要能称出1克到91克的任意一种整数克重量,要有9个9克、1个5克、1个3克、2个1克,它们的和是91,这样即可;需要9+1+1+2=13个;题目4.一台计算器大部分按键失灵,只有数字“7”和“0”以及加法键尚能使用,因此可以输入77,707这样只含数字7和0的数,并且进行加法运算;为了显示出222222,最少要按“7”键多少次222222-700003=12222按下了3个7 12222-70001=5222按下了1个75222-7007=322 按下了7个7 322-704=42按下了4个7 42-76=0 按下了6个7;3+1+7+4+6=21次二、枚举法与逐步调整当我们在有限数中求最大或最小值时,枚举法是常用基本方法之一;这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论;题目5.将6,7,8,9,10按任意次序写在一个圆周上,每相邻两数相乘,并将所得得5个乘积相加,那么所得和数的最小值是多少解:要使乘积最小,就要每个数尽可能小;对于10,旁边添6和7,这样积小一些;于是有两种添法:----------------------------------------------题目6.某公共汽车从起点开往终点站,中途共有13个停车站;如果这辆公共汽车从起点站开出,除终点站外,每一站上车的乘客中,正好各有一位乘客从这一站到以后的每一站,那么为了使每位乘客都有座位,这辆公共汽车至少应有多少个座位解法1:只需求车上最多有多少人;依题意列表如下:由上表可见,车上最多有56人,这就是说至少应有56个座位;说明:本题问句出现了“至少”二字是就座位而言的,座位最少有多少,取决于什么时候车上人数最多,要保证乘客中每人都有座位,应准备的座位至少应当等于乘客最多时的人数;所以,我们不能只看表面现象,误认为有了“至少”就是求最小数,而应该把题意分析清楚后再作判断;解法2:因为车从某一站开出时,以前各站都有同样多的人数到以后各站每站1人,这一人数也和本站上车的人数一样多,因此车开出时人数=以前的站数+1×以后站数=站号×15-站号;因此只要比较下列数的大小:1×14, 2×13, 3×12, 4×11, 5×10,6×9, 7×8, 8×7, 9×6, 10×5,11×4, 12×3, 13×2, 14×1;由这些数,得知7×8和8×7是最大值,也就是车上乘客最多时的人数是56人,所以它应有56个座位;说明:此题的两种解法都是采用的枚举法,枚举法是求解离散最值问题的基本方法;这种方法的大意是:将问题所涉及的对象一一列出,逐一比较从中找出最值;或者将与问题相关的各种情况逐一考察,最后归纳出需要的结论;题目7.在如图18-2所示得28方格表中,第一行得8个方格内依次写着1、2、3、4、5、6、7、8;如果再把1、2、3、4、5、6、7、8按适当得顺序分别填入第二行的8个方格内,使得每列两数的8个差数两两不同,那么第二行所显示的八位数最大可能值是多少三、从简单情形入手解决复杂问题可以从简单问题入手,经过分析得出规律,也就找到了解决复杂问题的方法;题目8.分析与解题目9.将1,2,3,…,49,50任意分成10组,每组5个数;在每一组中,数值居中的那个数称为“中位数”;求这10个中位数之和的最大值与最小值;解:{1,2,3,49,50} {4,5,6,47,48} …… {28,29,30,31,32}3+6+……+30=165最小值{1,2,48,49,50} {3,4,45,46,47} …… {19,20,21,22,23}48+45+……+21=345最大值四、和一定问题为10的自然数共有5对,每对自然数乘积后又得到5个不同的数,如下表:由此我们得到,当这两个自然数都取5时积有最大值 25;成立;也就是和一定时差最小乘积越大;题目10.有3条线段a,b,c,线段a长米,线段b场米,线段c长米;如图18-1,以它们作为上底、下底和高,可以作出3个相同的梯形;问第几号梯形的面积最大解:由于梯形体积=上底+下底高/2在和一定的情况下,要使乘积最大,让两个数越接近;可见a+b与c十分接近,所以③的面积最大;题目11.如果将进货单价为40元的商品按50元售出,那么每个的利润是10元,但只能卖出500个;当这种商品每个涨价1元时,其销售量就减少10个;为了赚得最多的利润,售价应定为多少解:设每个商品售价为50+x元,则销量为500-10X个;总共可以获利50+x-40×500-10x=10×10+X×50-X元;因10+x+50-x=60为一定值,故当10+X=50-X即X=20时,它们的积最大;此时,每个的销售价为50+20=70元题目12.用3,4,5,6,7,8六个数字排成三个两位数相乘,要求它们的乘积最大;应该怎样排列分析与解十位数字分别是8、7、6,8>7>6,个位数字分别是5,4,3,5>4>3,依据“接近原则”,大小搭配可得83×74×65,三个数最接近因而它们的乘积最大;综上数例,可以归纳出这样的规律: 较大数后配较小的数,较小的数后配较大的数,这样才能使数之间更为接近,从而保证乘积最大;简单地说就是:数越接近..,.乘积越大....;.综上数例,可以归纳出这样的规律: 较大数后配较小的数,较小的数后配较大的数,这样才能使数之间更为接近,从而保证乘积最大;简单地说就是:数越接近..,乘积越大;五、积一定的问题两个变化着的量,如果在变化的过程中,它们的乘积始终保持不变,那么它们的差与和之间有什么关系呢观察下面的表:我们不难得出如下的规律:两个变化着的量,如果在变化的过程中,乘积始终保持不变,那么它们的差越小,和就越小;若它们能够相等,则当它们相等时,和最小;题目13. 长方形的面积为 144 cm2,当它的长和宽分别为多少时,它的周长最短解:设长方形的长和宽分别为 xcm和 ycm,则有xy=144;故当x=y=12时,x+y有最小值,从而长方形周长2x+y也有最小值;题目14.农场计划挖一个面积为432 m2的长方形养鱼池,鱼池周围两侧分别有3m和4m的堤堰如下图所示,要想占地总面积最小,水池的长和宽应为多少解:如图所示,设水池的长和宽分别为xm和ym,则有xy=432;占地总面积为 S=x+6y+8cm2;于是S=Xy+6y+8X+48=6y+8X+480;我们知道6y ×8X=48×432为一定值,故当6y=8X时,S最小,此时有6y=8X=144,故y=24,x=18;六、从整体入手从整体抓住数据的本质特征进行分析,较易突破难点;题目15.在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式;要求:1算式的结果等于37;2这个算式中的所有减数前面添了减号的数的乘积尽可能地大;那么,这些减数的最大乘积是多少题目16.在10,9,8,7,6,5,4,3,2,1这10个数的每相邻两个数之间都添上一个加号或一个减号,组成一个算式;要求:1算式的结果等于37;2这个算式中的所有减数前面添了减号的数的乘积尽可能地大;那么,这些减数的最大乘积是多少解:把10个数都添上加号,它们的和是55,如果把其中一个数的前面的加号换成减号,使这个数成为减数,那么和数将要减少这个数的2倍;因为55-37=18,所以我们变成减数的这些数之和是18÷2=9;对于大于2的数来说,两数之和总是比两数乘积小,为了使这些减数的乘积尽可能大,减数越多越好不包括1;9最多可拆成三数之和2+3+4=9,因此这些减数的最大乘积是2×3×4=24,添上加、减号的算式是10 + 9+ 8+ 7 + 6+ 5- 4- 3- 2 +1=37;七、抓不等关系题目17.某校决定出版“作文集”,费用是30册以内为80元,超过30册的每册增加元;当印刷多少册以上时,每册费用在元以内解:显然印刷的册数应该大于30;设印刷了30+x册,于是总用费为80+元;故有80+≤ ×30+x,答案:117+30= 147以内;题目18.有4袋糖块,其中任意3袋的总和都超过60块;那么这4袋糖块的总和最少有多少块解:要使其中任意3袋的总和都超过60块,那么至少也是61,先在每袋中放20个糖块,但任意3袋中至少一个21,否则就无法超过60;要使任意3袋中至少一个21,这4个袋子的糖块分别是20,20,21,21;和为20+20+21+21=82八、抓相等关系题目19.10位小学生的平均身高是米;其中有一些低于米的,他们的平均身高是米;另一些高于米的平均身高是米;那么最多有多少位同学的身高恰好是米解:要最多有多少位同学的身高恰好是米,就要使低于和高于米的人越少,设高于和低于的人分别为a,b;可得:+=a+b 2b=3a至少是5人那么最多有10-5=5位同学的身高恰好是米; ----------------------------------------------题目20.4个不同的真分数的分子都是1,它们的分母只有2个奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等;这样的奇数和偶数很多,小明希望这样的偶数尽量地小,那么这个和的最小可能值是多少解:1/奇+1/奇=1/偶+1/偶偶/奇=偶+偶/偶×偶奇偶+偶=偶偶偶;因为偶偶偶是8的倍数所以偶+偶是8的倍数若是8,只能为2和6则1/2+1/6=1/3+1/3不符合题意,因为奇相等;若是16,有1/6+1/10=1/5+1/15因此本题答案是16;九、位值展开式题目21.一个两位数被它的各位数字之和去除,问余数最大是多少解:设两位数位aba表示十位数字,b表示个位数字ab=10a+b/a+b=9a/a+b+1a+b最大是18,此时余数为9当a+b=17,若a=9 余数为13若b=9余数为4题目22.当a+b=16,若a=9 余数为1 若b=9余数为15 此时余数最大;由3个非零数字组成的三位数与这3个数字之和的商记为K;如果K是整数,那么K的最大值是多少解:设这个数为abca表示百位数字,b表示十位数字,c表示个位数字那么abc/a+b+c=K 100a+10b+c/a+b+c=K 要使这个算式最大,就要让a尽可能大,b,c尽可能的小;试一下:911/9+1+1=82……9,811/8+1+1=81……1,711/7+1+1=79,所以K最大是79; 题目23.用1,3,5,7,9这5个数组成一个三位数ABC和一个两位数DE,再用0,2,4,6,8这5个数组成一个三位数FGH和一个两位数IJ;求算式ABC×DE—FGH×IJ的计算结果的最大值; 解:要使ABCDE-FGHIJ这个算式最大就要使ABCDE最大,FGHIJ最小;那么前面最大是75193;后面最小是46820;那么算式的最小值是75193-46820=60483十、“估计+构造”“估计+构造”是解离散最值问题的一种常用方法,要求某个离散最值,先估计该量的上界或下界,然后构造出一个实例说明此上界或下界能够达到,这样便求出了这个量的最大值或最小值;题目24.把1,2,3,…,12填在左下图的12个圆圈里,然后将任意两个相邻的数相加,得到一些和,要使这些和都不超过整数n,n至少是多少为什么并请你设计一种填法,满足你的结论;解:因为1+2+3+…+12=78, 78×2÷12=13,所以n≥13;又考虑到与12相邻的数最小是1和2,所以n至少是14;右上图是一种满足要求的填法;十一、转化与对称思想转化思想是数学思想之一,把复杂问题转化成简单问题,从而达到解决问题的目的.在平面上有两个点A、B,把A、B用线连结起来有许多种方法,可用线段、弧线、折线等.在这无穷多种连结方法中,线段最短,因而我们也称线段AB的长叫A、B两点间的距离;我们可以做一个有趣的实验:在一个长方体的上面N点放上食品,在长方体侧面ABCD上M点放一只蚂蚁如图3,蚂蚁从侧面经过棱AD到N有无穷多种走法如图4,我们关心的问题是蚂蚁怎样走路程最短在这个立体图形中找出答案是很困难的,直接连结MN则不经过棱AD,与条件不符.为了使问题简化,我们将长方体展成平面图形,连结MN交AD于P.由公理,两点之间线段最短,可知蚂蚁从M点沿直线MP爬到P后,再由P点沿直线PN爬到N时走过的路程最短;题目25.如图11某次划船比赛规定从A点出发,先到左岸然后到右岸然后再到B点,时间少者取胜.请你设计一条航线,使船走的路程最短.由于两点间的距离线段最短,我们想办法把问题转化为求两点距离问题;如图,找到A点关于左岸的轴对称点,B点关于右岸的轴对称点,连结A′B′,与左岸、右岸分别有交点C、D,沿折线ACDB航行就是最短航线;十二、学写说理题题目26.23个不同的自然数的和是4845;问:这23个数的最大公约数可能达到的最大的值是多少写出你的结论,并说明理由;.17;解:设这23个彼此不同的自然数为a1,a2,…,a22,a23,并且它们的最大公约数是d,则a1=db1,a2=db2,…,a22=db22,a23=db23;依题意,有4845=a1+a2+…+a22+a23=db1+b2+…+b22+b23;因为b1,b2,…,b22,b23也是彼此不等的自然数,所以b1+b2+…+b23≥1+2+…+23=276;因为4845=db1+b2+…+b22+b23≥276×d,所以又因为4845=19×17×15,因此d的最大值可能是17;当a1=17,a2=17×2,a3=17×3,…,a21=17×21,a22=17×22,a23=17×32时,得a1+a2+…+a22+a23=17×1+2+…+22+17×32=17×253+17×32=17×285=4845;而a1,a2,…,a22,a23=17;所以d的最大值等于17;解题在于实践:题目27.设a1,a2,a3,a4,a5,a6是1到9中任意6个不同的正整数,并且a1<a2<a3<a4<a5<a6;试用这6个数分别组成2个三位数,使它们的乘积最大;分析与解:由于a1,…,a6具体大小不清楚,因此先取特殊数1,2,3,4,5,6这6个不同的数考虑;要使2个三位数的乘积最大,必须使这2个数的百位数最大,应分别是6,5;而十位数次大,应分别为4,3,个位数最小,应分别为2,1;因为当2个数之和一定时,这2个数之差越小,它们的乘积越大,所以这2个数是631和542;题目28.8个互不相同的正整数的总和是56,如果去掉最大的数及最小的数,那么剩下的数的总和是44;问:剩下的数中,最小的数是多少解:因为最大数与最小数的和是56-44=12,所以最大数不会超过11;去掉最大和最小数后剩下的6个互不相同的自然数在2~10之间,且总和为44,这6个数只能是4,6,7,8,9,10;题目29.采石场采出了200块花岗石料,其中有120块各重7吨,其余的每块各重9吨,每节火车车皮至多载重40吨,为了运出这批石料,至少需要多少节车皮解:每节车皮所装石料不能超出5块,故车皮数不能少于200÷5=40节,而40节车皮可按如下办法分装石料:每节装运3块7吨的和两块9吨的石料,故知40节可以满足要求;题目30.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管,当打开4个进水管时需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在需要在2小时内将水池注满,那么至少要打开多少个进水管分析本题没给出排水管的排水速度,因此必须找出排水管与进水管之间的数量关系,才能确定至少要打开多少个进水管.解:本题是具有实际意义的工程问题,因没给出注水速度和排水速度,故需引入参数.设每个进水管1小时注水量为a,排水管1小时排水量为b,根据水池的容量不变,我们得方程4a-b×5=2a-b×15,化简,得:4a-b=6a-3b,即a=b.这就是说,每个进水管1小时的注水量等于排水管1小时的排水量.再设2小时注满水池需要打开x个进水管,根据水池的容量列方程,得xa-a×2=2a-a×15,化简,得 2ax-2a=15a,即2xa=17a.a≠0所以x=因此至少要打开9个进水管,才能在2小时内将水池注满.注意:x=,这里若开8个水管达不到2小时内将水池注满的要求;开个水管不切实际.因此至少开9个进水管才行.题目31.用1,2,3,4,5,6,7,8,9这九个数字各一次,组成一个被减数,减数,差都是三位数的正确的减法算式,那么这个减法算式的差最大是多少解:要想差最大必须考虑被减数取最大,那么先考虑百位为9,同样考虑减数最小,百位为1,再通过试算得出936-152=784,此时差为最大既784;题目32.有一个正整数的平方,它的最后三位数字相同但不为零,试求满足上述条件的最小正整数;1444;解:平方数末位只能为0,1,4,5,6,9;因为111,444,555,666,999均非平方数,而1000,1111也不是平方数,但1444=382,故满足题设条件的最小正整数是1444;题目33.从1、2、3、4、5、6、7、8、9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积;13. 从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55从极端考虑分成最小和最大的两组为1+2+3+4+5+6+7+8+9+10=15+40=55最接近的两组为27+28所以共有27-15+1=13个不同的积;另从15到27的任意一数是可以组合的;自我评价:还成不错得意酷日积月累:______________________________________________________________________________ ____________________________________________________________________________________________________________________________________________________________ _________________________________________________________________精神快餐:遇到难题题要尽力思考 ,一时答不上来绝不要灰心、沮丧,也不要急于翻看答案,因为反复思考的过程比得到正确的答案更重要;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、最值问题
【最小值问题】
例1 外宾由甲地经乙地、丙地去丁地参观。

甲、乙、丙、丁四地和甲乙、
乙丙、丙丁的中点,原来就各有一位民警值勤。

为了保证安全,上级决定在沿
途增加值勤民警,并规定每相邻的两位民警(包括原有的民警)之间的距离都
相等。

现知甲乙相距5000米,乙丙相距8000米,丙丁相距4000米,那么至少
要增加______位民警。

(《中华电力杯》少年数学竞赛决赛第一试试题)
讲析:如图5.91,现在甲、乙、丙、丁和甲乙、乙丙、丙丁各处中点各有
一位民警,共有7位民警。

他们将上面的线段分为了2个2500米,2个4000米,2个2000米。

现要在他们各自的中间插入若干名民警,要求每两人之间距离相等,这实际上是要求将2500、4000、2000分成尽可能长的同样长的小路。

由于2500、4000、2000的最大公约数是500,所以,整段路最少需要的民
警数是(5000+8000+4000)÷500+1=35(名)。

例2 在一个正方体表面上,三只蚂蚁分别处在A、B、C的位置上,如图
5.92所示,它们爬行的速度相等。

若要求它们同时出发会面,那么,应选择哪
点会面最省时?
(湖南怀化地区小学数学奥林匹克预赛试题)
讲析:因为三只蚂蚁速度相等,要想从各自的地点出发会面最省时,必须
三者同时到达,即各自行的路程相等。

我们可将正方体表面展开,如图5.93,则A、B、C三点在同一平面上。

这样,便将问题转化为在同一平面内找出一点O,使O到这三点的距离相等且最短。

所以,连接A和C,它与正方体的一条棱交于O;再连接OB,不难得出
AO=OC=OB。

故,O点即为三只蚂蚁会面之处。

【最大值问题】
例1 有三条线段a、b、c,并且a<b<c。

判断:图5.94的三个梯形中,第
几个图形面积最大?
(全国第二届“华杯赛”初赛试题)
讲析:三个图的面积分别是:
三个面积数变化的部分是两数和与另一数的乘积,不变量是(a+b+c)的和一定。

其问题实质上是把这个定值拆成两个数,求这两个数为何值时,乘积最大。

由等周长的长方形面积最大原理可知,(a+b)×c这组数的值最接近。

故图(3)的面积最大。

例2 某商店有一天,估计将进货单价为90元的某商品按100元售出后,能卖出500个。

已知这种商品每个涨价1元,其销售量就减少10个。

为了使这一天能赚得更多利润,售价应定为每个______元。

(台北市数学竞赛试题)
讲析:因为按每个100元出售,能卖出500个,每个涨价1元,其销量减少10个,所以,这种商品按单价90元进货,共进了600个。

现把600个商品按每份10个,可分成60份。

因每个涨价1元,销量就减少1份(即10个);相反,每个减价1元,销量就增加1份。

所以,每个涨价的钱数与销售的份数之和是不变的(为60),根据等周长长方形面积最大原理可知,当把60分为两个30时,即每个涨价30元,卖出30份,此时有最大的利润。

因此,每个售价应定为90+30=120(元)时,这一天能获得最大利润。

相关文档
最新文档