简谐振动的运动学
简谐振动最基本最重要的运动
当θ角很小时,有: M mgh —— 谐振
单摆:I mL2 h = L I
I
g
L
2 g
L
T 2 L
g
复摆:
2 mgh
I
T 2 I
mgh
振动周期均取决于系统本身。
七.谐振的能量
Ek
1 mv2 2
1 m 2 A2 sin 2 (
2
t
)
1 kA2 sin 2 (
2
t
)
Ep
1k 2
02 2 A、φ由初始条件决定。
若:
2>
2 0
则为过阻尼振动,物体将缓慢逼近平衡位置。
2 02
称为临界阻尼,物体回到平衡位置,并静止。
应用:电表中的电磁阻尼。临界阻尼。 二. 受迫振动
1.受迫振动 : 振动系统在周期性外力的持续作用 下发生的振动。此外力称驱动力。若强迫力按简谐 振动规律变化,则受迫振动也是谐振,周期为外力 的周期,振幅保持不变。
阻尼越小,振幅越大。
定量分析:
dA d (
f
)0
d p
d p
(
2 0
2 p
)2
4
2
2 p
得: 02 2
A Amax
f
Amax
2
02 2
阻力越小,ωp越接近ω0。同时 Aτ也越大。
β
0
ωτ
ω0
Amax
∞
§6. 谐振的合成
一.两个同方向 同频率的合成
x1 A1 cos( t 1) x2 A2 cos( t 2 )
A = A1- A2 为最小 二.同方向不同频率的合成 拍
合振动的振幅、频率均随时间变化,不是简谐振动。
简谐运动的动力学和运动学
2 简谐振动
简谐运动 最简单、最基本的振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动的物体
第九章 振 动
5
物理学
第五版
9-1 简谐振动的动力学和运动学
二 简谐振动动力学特征
弹簧振子的振动
l0 k
m
A
o
x0 F 0
第九章 振 动
x
A
6
物理学
第五版
9-1 简谐振动的动力学和运动学
振动的成因
a 回复力 b 惯性
(2)简谐运动的动力学方程 d2 x 2 x
(3)简谐运动的运动学描述 dt 2
x A cos(t ) v A sin(t )
(4)加速度与位移成正比而方向相反
a 2 x
第九章 振 动
25
物理学
第五版
9-1 简谐振动的动力学和运动学
弹簧振子 k m
单摆 g l
复摆 mgl
16
物理学
第五版
9-1 简谐振动的动力学和运动学
2 周期、频率
x Acos(t ) Acos[(t T ) ]
周期 T 2π
x
注意
A
弹簧振子周期 o
A
T 2π m k
xt图
Tt
T 2
第九章 振 动
17
物理学
第五版
9-1 简谐振动的动力学和运动学
x Acos(t ) Acos[(t T ) ]
x Acos(t )
x x t图
A
T 2π 取 0
o
t
T
A
v A sin(t )
v
A
A cos(t π)
机械简谐振动的运动学与能量
机械简谐振动的运动学与能量引言机械简谐振动是物理学中重要的概念之一,它在很多领域都有广泛的应用。
本文将介绍机械简谐振动的运动学和能量方面的内容。
首先,我们将对机械简谐振动的定义进行说明,接着讨论它的运动学表达式,最后深入探讨与机械简谐振动相关的能量变化。
机械简谐振动的定义机械简谐振动是指在无外力作用的情况下,质点围绕平衡位置做线性回复的振动。
简谐振动的运动规律可以用如下的数学表达式表示:$$x(t) = A \\cdot \\sin(\\omega t +\\varphi)$$其中,x(t)表示质点在时间t时的位移,A是振幅,$\\omega$是角频率,$\\varphi$是相位常数。
机械简谐振动的运动学机械简谐振动的运动学研究主要关注质点的位移、速度和加速度随时间的变化规律。
1.位移:如前文所述,机械简谐振动的位移可以用上述的数学表达式表示。
位移随时间的变化是一个正弦曲线,振幅A决定了曲线的最大值,相位常数$\\varphi$则决定了曲线在时间轴上的平移。
2.速度:速度是位移对时间的导数,可以通过对位移函数求一阶导数得到:$$v(t) = A\\omega \\cdot \\cos(\\omega t + \\varphi)$$速度也是一个正弦曲线,它的幅值$A\\omega$是振幅和角频率的乘积,相位常数$\\varphi$则决定了曲线在时间轴上的平移。
3.加速度:加速度是速度对时间的导数,可以通过对速度函数求一阶导数得到:$$a(t) = -A\\omega^2 \\cdot \\sin(\\omega t + \\varphi)$$加速度也是一个正弦曲线,它的幅值$-A\\omega^2$是振幅和角频率的平方的乘积,相位常数$\\varphi$则决定了曲线在时间轴上的平移。
机械简谐振动的运动学分析可以帮助我们了解振动物体在不同时刻的位移、速度和加速度情况,从而更好地描述和预测振动过程。
机械简谐振动的能量在机械简谐振动中,质点的能量会随着时间的变化而发生变化。
简谐振动
1 1 2 2 2 2 m A sin (t 0 ) kA cos 2 (t 0 ) 2 2
简谐振动的能量
1 2 考虑到 k m ,系统总能量为 E kA ,表明 2 简谐振动的机械能守恒。
2
能量平均值
1 T1 1 2 2 2 2 EK m A sin (t 0 ) d t kA T 0 2 4
§15-1 简谐振动
简谐振动:物体运动时,离开平衡位置的位移(或 角位移)按余弦(或正弦)规律随时间变化。
1.简谐振动的特征及其表达式
O
X
F
X
O
F
O
X
简谐振动的特征及其表达式
位移 x 之解可写为: 或
x A cos(t 0 )
i(t 0 )
x Ae
简谐振动的运动学特征:物体的加速度与位移成正 比而方向相反,物体的位移按余弦规律变化。
1 T1 2 1 2 2 EP kA cos (t 0 ) d t kA T 0 2 4
EK EP E 2
上述结果对任一谐振系统均成立。
简谐振动的能量
谐振子的动能、势能和总能量随时间的变化曲线:
E
EP
1 2 E kA 2
O
Ek
t
x
O
x A cos t
t
简谐振动的振幅、周期、频率和相位
(3)相位和初相
相位 (t 0 ) :决定简谐运动状态的物理量。
初相位 0 :t=0 时的相位。 相位概念可用于比较两个谐振动之间在振动 步调上的差异。 设有两个同频率的谐振动,表达式分别为: x1 A1 cos(t 10 )
x2 A2 cos(t 20 )
简谐振动的方程
x Acos(t )
(4)
约定(4)式简谐振动的运动学方程
1 简谐振动速度 加速度
v dx A sin(t )
dt
a
d2x dt 2
A 2
cos(t
)
x
x t 图
A
t
x Acost
Hale Waihona Puke vt 图A vv A sint
t
A cos(t )
2
a t 图
a
A 2
t
a A2 cost
A2 cos(t )
2 描述简谐振动的特征量
(1)振幅 A
x Acos(t )
(2)周期、频率、圆频率
弹簧振子 k
m
单 摆 g
l
T 2 m
k
T 2 l
g
1 k 2 m
1 g 2 l
复 摆 mgh T 2 I 1 mgh
I
mgh
2 I
(3) 位相和初位相
x Acos(t 0 )
t 0 — 位相,决定谐振动物体的运动状态 0 是t =0时刻的位相—初位相
1 7
66
3.14s1
A vm 31.4 10cm
3.14
故振动方程为 x 10 cos( t )cm
6
方法2:用旋转矢量法辅助求解。
x Acos(t )
v
A
sin(t
)
vm
cos(t
2
)
vm A 31.4cms1
v的旋转矢量与v轴夹角表示t 时刻相位
t
(4)简谐振动的旋转矢量表示法
t t A
t
t 0
x
o
x
02简谐振动的运动学精品PPT课件
19
t t
o
A
t
x
x Acos(t )
点旋以转o矢为量原A
的端点在 x 轴
上的投影点的
运动为简谐运
动.
第4章 机械振动
4–2 简谐振动的运动学
20
y
vm t π
2
t an
A
0
a
v
x
x Acos(t )
vm A v A sin(t )
an A 2
a A 2 cos(t )
雌性蚊子 雄性蚊子 苍蝇 黄蜂
355~415 455~600 330 220
第4章 机械振动
4–2 简谐振动的运动学
例 如图所示系统(细线的质 量和伸长可忽略不计),细线 静止地处于铅直位置,重物位 于O 点时为平衡位置.
若把重物从平衡位置O 略 微移开后放手, 重物就在平衡 位置附近往复的运动.这一振 动系统叫做单摆. 求单摆小角 度振动时的周期.
12
x 简谐运动中, x和 v
间不存在一一对应的关系. A
x A cos(t 0 ) o
v A sin(t 0 ) A
v v
T 2
xt 图
v T t
3、位相和初位相 t 0
1) t 0 (x, v) 存在一一对应的关系;
2)相位在 0 ~ 2π 内变化,质点无相同的运动状态;
相差 2nπ (n为整数 )质点运动状态全同.(周期性)
4–2 简谐振动的运动学
1
一 简谐振动的运动学方程
d2x 2x 0
dt 2
x Acos(t 0 )
cos(t
0
)
sin(t
0
2
)
大学物理第七章习题及答案
第七章 振动学基础一、填空1.简谐振动的运动学方程是 。
简谐振动系统的机械能是 。
2.简谐振动的角频率由 决定,而振幅和初相位由 决定。
3.达到稳定时,受迫振动的频率等于 ,发生共振的条件 。
4.质量为10-2㎏的小球与轻质弹簧组成的系统,按20.1cos(8)3x t ππ=-+的规律做运动,式中t 以s 为单位,x 以m 为单位,则振动周期为 初相位 速度最大值 。
5.物体的简谐运动的方程为s ()x A in t ωα=-+,则其周期为 ,初相位6.一质点同时参与同方向的简谐振动,它们的振动方程分别为10.1cos()4x t πω=+,20.1cos()4x t πω=-,其合振动的振幅为 ,初相位为 。
7.一质点同时参与两个同方向的简谐振动,它们的振动方程分别为)4cos(06.01πω+=t x ,250.05cos()4x t πω=+,其合振动的振幅为 ,初相位为 。
8.相互垂直的同频率简谐振动,当两分振动相位差为0或π时,质点的轨迹是 当相位差为2π或32π时,质点轨迹是 。
二、简答1.简述弹簧振子模型的理想化条件。
2.简述什么是简谐振动,阻尼振动和受迫振动。
3.用矢量图示法表示振动0.02cos(10)6x t π=+,(各量均采用国际单位).三、计算题7.1 质量为10×10-3㎏的小球与轻质弹簧组成的系统,按X=0.1cos (8πt+2π/3)的规律做运动,式中t 以s 为单位,x 以m 为单位,试求:(1)振动的圆频率,周期,初相位及速度与加速度的最大值;(2)最大恢复力,振动能量;(3)t=1s ,2s ,5s ,10s 等时刻的相位是多少?(4)画出振动的旋转矢量图,并在图中指明t=1s ,2s ,5s ,10s 等时刻矢量的位置。
7.2 一个沿着X 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表示,如果在t=0时刻,质点的状态分别为:(1)X 0=-A ;(2)过平衡位置向正向运动;(3)过X=A/2处向负向运动;(4)过X=2A处向正向运动。
简谐振动的运动学特征
简谐振动的运动学特征
嘿,朋友们!今天咱来聊聊简谐振动这玩意儿。
你说啥是简谐振动呢?咱可以想象一下哈,就好像一个小球在那来回晃悠,晃过去再晃回来,有规律得很呢!它可不像有些东西乱动一气,那叫一个没头绪。
简谐振动啊,它有几个特别有意思的特点。
首先呢,它的位移随时间的变化就像是一条优美的曲线,起起伏伏的,多有节奏感呀!这就好比音乐里的旋律,高低起伏,让人听着就觉得特别带劲。
然后呢,它的加速度和位移之间还有着一种特别的关系。
就好像是一对好朋友,一个变了,另一个也跟着有反应。
你说神奇不神奇?
还有啊,它的周期和频率也是很重要的呢!周期就是它晃悠一圈所用的时间,频率呢就是单位时间里晃悠的次数。
这就跟咱跑步似的,有的人跑得快,频率高,有的人跑得慢,周期长。
你想想看,生活中其实也有很多类似简谐振动的东西呢!比如说钟摆,滴答滴答地晃悠,多有规律呀!还有琴弦的振动,弹出美妙的音乐。
简谐振动这东西,看似简单,实则蕴含着无穷的奥秘。
它让我们看到了自然界中那些有规律的美,让我们感受到了万物运行的奇妙。
咱再深入想想,这世界不也像是一个巨大的简谐振动吗?有起有落,有高有低。
我们在这其中经历着各种变化,就如同那小球一样来回晃悠。
但正是这种有规律的变化,才让生活变得丰富多彩呀!
所以啊,可别小瞧了这简谐振动,它可是自然界的一大奇妙之处呢!它让我们对世界有了更深的理解,也让我们更加敬畏大自然的神奇。
这不就是科学的魅力所在吗?让我们从这些看似普通的现象中发现无尽的宝藏!
原创不易,请尊重原创,谢谢!。
简谐振动运动方程
简谐振动运动方程简谐振动是物理学中一种重要的振动形式,它在自然界和工程领域中都有广泛应用。
简谐振动的运动方程描述了振动物体在平衡位置附近的周期性运动规律,可以用于解释弹簧振子、摆钟、电路中的振荡电流等现象。
简谐振动的运动方程可以表示为x = A*cos(ωt+φ),其中x表示振动物体距离平衡位置的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位差。
这个方程描述了振动物体随时间变化的位置情况。
简谐振动的周期是指振动物体完成一次完整振动所需要的时间。
周期T与角频率ω之间有关系T = 2π/ω。
振动的频率则是指单位时间内完成的振动次数,可以表示为 f = 1/T = ω/2π。
振动的频率与角频率是相互关联的,它们描述了振动物体的快慢程度。
简谐振动的振幅是指振动物体离开平衡位置的最大位移量。
振幅越大,振动物体的运动范围就越大。
振动物体的能量也与振幅有关,振幅越大,能量越高。
振幅与振动物体的势能和动能之间也存在着一定的关系。
简谐振动的初相位差是指振动物体在某一时刻与参考点的位移差。
初相位差决定了振动物体的起始位置,它与振动物体的初始条件有关。
初相位差的不同会导致振动物体的运动规律发生变化。
简谐振动的运动方程可以通过牛顿定律和胡克定律推导得到。
牛顿定律指出,物体的加速度与作用在物体上的合外力成正比,胡克定律则描述了弹簧的弹性特性。
将这两个定律结合起来,可以得到简谐振动的运动方程。
简谐振动在自然界和工程中都有广泛的应用。
在自然界中,摆钟的摆动、弹簧振子的弹动、声波的传播等都是简谐振动。
在工程领域中,简谐振动的原理被应用于建筑物的抗震设计、机械振动的控制、电路中的振荡电流等。
简谐振动还有一些特殊的性质。
例如,简谐振动的位移、速度和加速度之间存在着一定的相位关系。
位移和速度的相位差是π/2,位移和加速度的相位差是π。
这些相位关系可以通过简谐振动的运动方程进行推导得到。
简谐振动是物理学中一种重要的振动形式,它可以用运动方程来描述振动物体的运动规律。
简谐振动的规律和特点
简谐振动的规律和特点简谐振动是一种重要的物理现象,它在自然界和人类生活中都有广泛的应用。
本文将详细介绍简谐振动的规律和特点,并从多个角度进行描述。
一、简谐振动的规律和特点1. 定义:简谐振动是指物体在一个平衡位置附近做往复振动的运动。
它的运动方式具有周期性和对称性,是一种非常规律的振动。
2. 弹簧振子的例子:弹簧振子是最常见的简谐振动的例子之一。
当弹簧振子受到外力拉伸或压缩后,当外力移除时,它会以平衡位置为中心作往复振动。
3. 动力学规律:简谐振动的运动规律可以由胡克定律和牛顿第二定律得出。
根据胡克定律,当弹性体受力时,其恢复力与位移成正比。
牛顿第二定律则表明物体的加速度与作用力成正比,与质量成反比。
结合这两个定律,可以推导出简谐振动的运动方程。
4. 运动方程:简谐振动的运动方程可以表示为x = A * sin(ωt + φ),其中x是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。
这个运动方程描述了物体在平衡位置两侧往复振动的过程。
5. 特点一:周期性。
简谐振动的最基本特点是其运动是周期性的,即物体在一个周期内重复完成相同的运动。
周期T是指物体完成一个完整振动所需的时间,与角频率ω的倒数成正比。
6. 特点二:振幅和频率。
简谐振动的振幅A表示物体在振动过程中最大的位移,频率f表示单位时间内完成的振动次数。
振幅和频率都是简谐振动的重要参数,它们与物体的质量、劲度系数、外力等因素有关。
7. 特点三:相位差和初相位。
相位差是指两个简谐振动之间的时间差,初相位是指物体在某一时刻的位移相对于平衡位置的位置。
相位差和初相位对于描述简谐振动的运动状态和相互作用非常重要。
8. 特点四:能量转化。
简谐振动是一种能量在不同形式之间转化的过程。
在振动过程中,物体的动能和势能会不断相互转化,当物体通过平衡位置时,动能最大,而位移最大时,势能最大。
9. 特点五:应用广泛。
简谐振动的规律和特点在物理学、工程学、生物学等领域都有广泛的应用。
运动学中的圆周运动与简谐振动
运动学中的圆周运动与简谐振动运动学是物理学中研究物体运动状态、运动规律的分支学科。
在运动学中,圆周运动和简谐振动是两个常见的运动形式。
本文将探讨圆周运动和简谐振动在运动学中的特性和应用。
一、圆周运动在物理学中,圆周运动指物体在一个平面上沿着一条圆弧运动的情形。
而当物体在进行圆周运动时,它受到向心力的作用。
向心力的大小与物体的质量和速度的平方成正比,与运动的半径成反比。
圆周运动的速度可以用线速度或角速度来描述。
1.1 线速度和角速度线速度是指物体在圆周上运动的速度,可以表示为物体在圆周上运动的路程除以所花费的时间。
在圆周运动中,线速度的大小与物体沿圆周弧长所运动的距离和所花费的时间成正比。
如果用v表示线速度,l表示弧长,t表示所花费的时间,那么线速度v可以表示为v=l/t。
角速度是指物体在圆周运动中所占据的角度的变化速率。
通常用小写希腊字母ω来表示角速度,单位为弧度/秒。
角速度可以用角度或弧度来表示,其中1弧度=180°/π。
1.2 向心力和向心加速度在圆周运动中,物体受到向心力的作用。
向心力的大小与物体的质量和线速度的平方成正比,与圆周运动的半径成反比。
向心力的方向与物体运动方向垂直,指向圆心。
根据牛顿第二定律,向心力可以表示为F=mv²/r,其中F表示向心力,m表示物体的质量,v表示物体的线速度,r表示圆周运动的半径。
通过对向心力的分析,可以获得物体的向心加速度。
1.3 圆周运动的应用圆周运动在日常生活和工程领域中有广泛的应用。
例如,摩天轮、行星绕太阳的运动、地球的自转等都属于圆周运动。
工程上的一些设备,如离心机、离心泵等也利用了圆周运动的原理。
二、简谐振动简谐振动是指一个物体在受力驱动下沿着固定轨道来回振动的运动。
简谐振动具有周期性和重复性,其运动规律可以用正弦或余弦函数来描述。
简谐振动是一个重要的物理现象,广泛应用于科学领域和工程实践中。
2.1 简谐振动的特性简谐振动具有以下特性:- 振动物体在平衡位置附近往复振动;- 振幅是振动物体距离平衡位置最大偏离的距离;- 周期是振动物体完成一次往复振动所需要的时间;- 频率是振动物体完成一个周期所需要的次数。
简 谐 振 动
国际单位制中,周期的单位为秒(s);频率的单位为赫兹 (Hz);角频率的单位为弧度每秒(rad/s)。
对弹簧振子,由于
k
m
故有:
T 2π m k
1 k
2π m
由上式可以看出,弹簧振子的周期和频率都是由物体的质量 m和弹簧的劲度系数k所决定的,即只与振动系统本身的物理性 质有关。因此,我们将这种由振动系统本身的性质所决定的周期 和频率称为固有周期和固有频率。
v dx Asin(t )
dt
a
d2x dt 2
2 Acos(t
)
【例10-1】如下图所示,一质量为m、长度为l的均质细棒 悬挂在水平轴O点。开始时,棒在垂直位置OO′,处于平衡状态。 将棒拉开微小角度θ后放手,棒将在重力矩作用下,绕O点在竖 直平面内来回摆动。此装置是最简单的物理摆,又称为复摆。 若不计棒与轴的摩擦力和空气阻力,棒将摆动不止。试证明在 摆角很小的情况下,细棒的摆动为简谐振动。
由胡克定律可知,在弹性限度内,物体受到的弹力F的大小 与其相对平衡位置的位移x成正比,即F=-kx
上式中,负号表示弹力的方向与位移的方向相反,始终指向 平衡位置,因此,此力又称为回复力。
根据牛顿第二定律可知,物体的加速度为:
a F k x mm
因k和m都是正值,其比值可用一个常数ω的平方表示,即ω2 =k/m,故上式可写为:
物理学
简谐振动
物体运动时,如果离开平衡位置的位移(或角位移)按余 弦函数或正弦函数的规律随时间变化,则这种运动称为简谐振 动。在忽略阻力的情况下,弹簧振子的振动及单摆的小角度摆 动等都可视为简谐振动。
1.1 简谐振动的运动方程
如下图所示,一轻弹簧(质量可忽略不计)放置在光滑水平 面上,一端固定,另一端连一质量为m的物体。这样的系统称为 弹簧振子,它是物理学中的又一理想模型。
简谐振动方程
一、简谐振动的动力学方程
1.弹簧振子
l0 k
m
d2x m dt2
F
kx
A o
x
A
k 2
m
d2x k
dt 2
m
x0
d2 dt
x
2
2
x
0
(1)
2 单摆
sin
(ml
2
)
d2
dt 2
M mgl
d2
dt 2
g l
0
(2)
记 2 g x
l
d2x dt 2
2x
0
(1)
O
l
T
mg
mg k
1
1
(m
2kh M
)g
一、简谐振动的动力学方程
小
d2 dt
x
2
2
x
0
结
二、简谐振动的运动学方程
x Acos(t )
t t A
t
t 0 x
o
x
x Acos(t )
旋转矢量法
初始条件确定A 初位相
例:如图m=2×10-2kg,弹簧的静止形变为l=9.8 cm. t=0 时,x0=-9.8cm,v0=0
2 描述简谐振动的特征量
(1)振幅 A
x Acos(t )
(2)周期、频率、圆频率
弹簧振子 k
m
单 摆 g
l
T 2 m
k
T 2 l
g
1 k 2 m
1 g 2 l
复 摆 mgh T 2 I 1 mgh
I
mgh
2 I
(3) 位相和初位相
x A cos(t 0 )
简谐振动知识点精解
简谐振动·知识点精解1.简谐振动的特征(1)简谐振动的定义在跟对平衡位置的位移成正比而方向相反的回复力作用下的振动,叫简谐振动。
①做简谐振动的回复力是由物体所受的合外力或某个力的分力提供。
②简谐振动物体回复力的表达式为:F=-kx(2)简谐振动的动力学特征F=-kx式中的k为回复力与位移的比例常数(未必是弹簧的劲度系数),x是相对平衡位置的位移,负号表示回复力的方向始终与位移方向相反。
(3)简谐振动的运动学特征振动的位移随时间接正弦或余弦规律变化。
2.弹簧振子的振动过程具体情况见下表:3.单摆的周期公式(1)单摆做简谐振动①在物理学里,单摆是实际摆的理想化,是指在一根不能伸长,又没有质量的线的下端系一质点所形成的装置。
②单摆做简谐振动的条件:振动过程中的最大编角不超过5°。
③单摆做简谐振动的回复力是重力mg沿圆弧切线的分力F=mgsinα提供(不要误认为是摆球所受的合外力)。
当α很小时(5°以下),圆弧可以近似地看成直线,分力F可以近似地看作沿这条直线作用,OP就是摆锤偏离平衡位置的位移。
如图7-3所示。
设摆长是l,因为sin式中负号表示力F跟位移x的方向相反。
由于m、g、l都有一定的数值,mg/l可以用一个常数k来代替,所以上式可以写成F=-kx可见,在摆角很小情况下,单摆振动时回复力跟位移成正比而方向相反,是简谐振动。
(2)单摆的周期公式①在摆角很小情况下,单摆的周期跟摆长的平方根成正比,跟重力加速度的平方根成反比,而跟摆锤的质量和振幅无关。
②单摆周期的表达式③上式只适于小摆角(<5°)的情况。
根据周期公式算出的T值与实际测定值间的误差,随摆角增大而增大。
摆角为7°时,误差为0.1%;15°时,0.5%;23°时,1%。
单摆的最大摆角应小于5°。
④单摆的周期在振幅较小时,与单摆的振幅无关,单摆的这种性质叫单摆的等时性,是伽利略首先发现的。
大学物理111简谐振动课件
1. 平衡位置 2. 建立坐标 3.受力分析
弹性力 f kx
4.牛顿运动方程
kx
ma
m
d2 dt
x
2
令 k 2 整理得
m
d 2 x 2 x 0 简谐振动动力学方程
dt 2
解微分方程可得
x A cos(t 0 )
简谐振动运动学方程
二、简谐振动的三个特征量
1.振幅 物体离开平衡位置的最大位移的绝对值 A, 由初始条件决定,描述振动的空间范围。
2.周期 振动状态重复一次所需要的时间,描述振 动的快慢.
Acos[(t T ) 0] Acos(t 0)
T 2π T 2π
1
T
物体在单位时间内发生完全振动的次
数,称振动的频率.
2π 称圆频率(角频率).
k T 2 m 1 k
m
k
2 m
反映了系统的固有特性,分别称为谐振子系统 的固有圆频率、固有周期和固有频率.
圆频率 k 由系统决定,与初始条件无关
m
振幅 反映振动的强弱,由初始条件决定.
由
x Acos t 0 v A sin t 0
x0 Acos0
t=0时 v0 A sin0 可得
A
x02
v02
2
初相位 0 已知初始振动状态,用旋转矢量确定
x0<0 v0<0
x0=0 v0<0
x0>0 v0<0
例6 某简谐振动的振动曲线如图,写出振动方程。 x(cm)
O
t(s)
-1
1
-2
解: 设振动方程为 x A cos(t 0 )
则由振动曲线: A=2 cm
xA
振动学基础(复习)
第十五章振动学基础§15-1简谐振动【基本内容】一、简谐振动的动力学描述1、谐振动的受力特征谐振动的动力学定义:振动系统在与位移大小成正比,而方向相反的回复力作用下的运动称为简谐振动。
kxf-=, k为比例系数。
2、简谐振动的微分方程222=+xdtxdωmk=ω3、简谐振动的判据判据一kxf-=动力学判据判据二运动学判据判据三)cos(φω+=tAx运动方程4、简谐振动实例单摆小角度摆动、复摆、扭摆二、简谐振动的运动学描述1、谐振动的数学表达式——运动方程谐振动的运动学定义:位移按余弦规律移随时间变化的运动是谐振动。
)cos(φω+=tAx)cos()sin(2φωωφωω+-=+-=tAatAv2、简谐振动的三个特征量角频率、频率、周期——由振动系统的性质决定。
角频率:mk=ω周期:ωπ2=T频率:T1=ν振幅A ——表示振动物体离开平衡位置的最大距离。
振幅A 和初相ϕ由初始条件决定:⎪⎪⎩⎪⎪⎨⎧-=+=-)(0012202x v tg v x A ωϕω 度ω(1(2(3(4123、谐振动的机械能:2222121ωmA kA E E E p K ==+=弹簧振子的动能和势能按正弦或余弦的平方随时间作周期性变化,其周期为谐振周期的一半;当动能最大时,势能最小;当动能最小时,势能最大;但机械能保持恒定不变。
【典型例题】【例15-1】半径为R 的木球静止浮于水面上时,其体积的一半浸于水中,求: (1)木球振动的微分方程;22222)31(dtxd m g R x x R =--ρπ平衡位置时:ρπ33421R m ⋅=,故 0)31(232222=-+Rx x R g dt x d 此即木球的运动微分方程。
当R x <<时,0322→R x02322=+x R gdtx d 木球作简谐振动g R T R g 3222,23πωπω===【例15-2】 弹簧下挂g m 1000=的法码时,弹簧伸长cm 8。
简谐振动的运动学方程
简谐振动的运动学方程简谐振动的运动学方程简谐振动是物理学中非常重要的一种振动形式,它广泛应用于机械、电子、光学等领域。
简谐振动的运动学方程是描述其运动规律的数学公式,本文将从以下几个方面详细介绍简谐振动及其运动学方程。
一、简谐振动的定义和特点1.1 简谐振动的定义简谐振动是指一个物体在弹性力作用下沿某一轴向做周期性往复运动的现象。
其中,弹性力是指当物体发生形变时所产生的恢复力,该力与形变量成正比例关系。
1.2 简谐振动的特点(1)周期性:简谐振动具有周期性,即一个完整的往复运动所需时间相等。
(2)等加速度:在整个周期内,物体所受加速度大小相等。
(3)最大速度和最大位移:在整个周期内,物体达到最大速度和最大位移时刻相同。
二、简谐振动的数学表达式2.1 位移函数对于一个做简谐运动的物体,在任意时刻t时其位置可以用位移函数x(t)表示。
假设物体在t=0时刻位于平衡位置,则位移函数可以表示为:x(t) = A cos(ωt + φ)其中,A表示振幅,即最大位移;ω表示角频率,即单位时间内振动的圆周角度;φ表示初相位。
2.2 速度函数对于一个做简谐运动的物体,在任意时刻t时其速度可以用速度函数v(t)表示。
速度函数可以通过对位移函数求导得到,即:v(t) = -Aω sin(ωt + φ)其中,负号表示速度方向与位移方向相反。
2.3 加速度函数对于一个做简谐运动的物体,在任意时刻t时其加速度可以用加速度函数a(t)表示。
加速度函数可以通过对速度函数求导得到,即:a(t) = -Aω^2 cos(ωt + φ)三、简谐振动的运动学方程3.1 运动学方程的定义运动学方程是描述物体在某一轴向上做运动规律的数学公式。
对于简谐振动而言,其运动学方程包括了物体的位置、速度和加速度三个方面。
3.2 简谐振动的运动学方程根据以上所述,我们可以得到简谐振动的运动学方程:x(t) = A cos(ωt + φ)v(t) = -Aω sin(ωt + φ)a(t) = -Aω^2 cos(ωt + φ)其中,x(t)表示物体在任意时刻t时的位移;v(t)表示物体在任意时刻t 时的速度;a(t)表示物体在任意时刻t时的加速度。
简谐振动的运动学
第九章 振 动
ω v = − A ω sin( ω t + ϕ ) π = Aω cos(ωt + ϕ + ) 2 2 a = − A ω cos( ω t + ϕ )
= Aω cos(ωt + ϕ + π )
2
x = A cos(ωt + ϕ ) 2π T= 取ϕ = 0
A −A
下页 返回 结束
x = Acos(ω0t + α )
第九章 振 动
讨论
0 = A cos α
已知 t = 0, x = 0, v0 < 0 求
π α =± 2
r v
α
x
Q v0 = − Aω0 sin α < 0
o
x
∴ sin α
π > 0取 α = 2
x −t图
T
T 2
π x = A cos(ω0t + ) 2
上页
下页
返回
结束
第九章 振 动 [例题 某简谐振动规律为 x = A cos( 10 t + α ) 初始条件 例题3] 例题 求该振动的初相位. 为 t = 0, x0 = 1, v0 x = −10 3 ,求该振动的初相位 [解] 解
x = Acos(ω0t + α )
vx = − Aω0 sin(ω0t + α )
上页
下页
返回
结束
第九章 振 动
ω
t =t
ωt + ϕ
v A
x
o
x = A cos(ωt + ϕ )
以 o 为原 v 点旋转矢量 A 的端点在 x 轴 上的投影点的 运动为简谐运 动.
简谐振动的特点和动力学描述
简谐振动的特点和动力学描述简谐振动是物体在恢复力作用下沿着某个轴线上做往复振动的一种特殊运动形式。
它具有以下几个特点:1. 平衡位置稳定:简谐振动的平衡位置是物体的稳定位置,当物体偏离平衡位置时,会受到一个恢复力的作用,使得物体趋向于返回平衡位置。
2. 振幅固定:简谐振动的振幅是一个固定值,表示物体在振动过程中离开平衡位置的最大距离。
3. 频率恒定:简谐振动的频率与振动系统本身的性质有关,而与振幅无关。
频率是指单位时间内振动的完整周期数,单位为赫兹(Hz)。
4. 正弦函数描述:简谐振动的运动可用正弦函数来描述。
物体在简谐振动过程中,其位置、速度和加速度随时间的变化都可以用正弦函数表示。
根据简谐振动的特点,在动力学上可以进行如下的描述:1. 动力学方程:对于简谐振动,其动力学方程可以由胡克定律得到。
胡克定律指出,弹性力与物体偏离平衡位置的距离成正比,即恢复力F 与位移x的关系为F = -kx,其中k为弹性系数。
2. 牛顿第二定律:根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成反比。
对于简谐振动,可以将牛顿第二定律应用于沿轴线的振动,并根据动力学方程得到加速度与位移之间的关系。
3. 振动的能量:在简谐振动中,物体的能量在势能和动能之间不断转换。
当物体通过平衡位置时,其动能最大,而势能最小;当物体运动到最大位移时,其势能最大,而动能最小。
总能量保持不变。
4. 平衡位置的稳定性:简谐振动的平衡位置是稳定的,当物体偏离平衡位置时,会受到恢复力使其回到平衡位置。
这种稳定性是由弹簧的弹性恢复力所决定的。
综上所述,简谐振动具有稳定平衡位置、固定振幅、恒定频率等特点,并可以通过动力学方程和能量转换进行描述和分析。
研究简谐振动有助于理解振动现象的基本规律,对于很多领域如机械、电子、光学等都有重要的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简谐振动的运动学
本节主要讲解:根据简谐振动的动力学方程求其运动学方程,并讨论简谐运动的运动学特征。
一 . 简谐振动的运动学方程
方程的解为:⑴
⑴式就是简谐振动的运动学方程,该式又是周期函数,故简谐振动是围绕平衡位置的周期运动。
二 . 描述简谐振动的物理量
1 . 周期(T )
完成一次全振动所用的时间:
对弹簧振子:
2. 频率()
单位时间内完成的全振动的次数:
的含义:个单位时间内完成的全振动的次数,即圆频率。
3. 振幅
物体离开平衡位置的最大位移。
振幅可以由初始条件决定。
如:t=0 时刻,,
由⑴式可得:,
∴⑵
4. 位相和初位相
振动系统的状态指:任意瞬时的位移和速度。
但仅知振幅频率还不够,还须知道
才能完全决定系统的运动状态。
叫简谐振动的相位。
当时,叫初相位。
由:⑶
若:已知初始条件:,则⑶式有:
⑷
⑸
⑷,⑸式中的任意二个即可确定初位相。
相位差:两振动相位之差。
讨论:
⑴若 是 的整数倍,则振动同相位;
⑵若 是 奇数倍,则振动相位相反;
⑶若 ,则称 超前 ;
⑷若 ,则称 落后 。
相位差的不同,表明二振动有不同程度的参差错落,振动步调不同。
例 1 :一弹簧振子, 时, 求振动的初位相 。
解 :
∴ 在第一象限,
例 2 :讨论振动的位移,速度和加速度之间的关系。
解 :
设: ,
则:
所以:速度的位相比位移的位相超前
加速度的位相比速度的位相超前;
加速度的位相比位移的位相超前。
理解:加速度对时间的积累才获得速度,速度对时间的积累获得位移。
总结:
⑴简谐振动是周期性运动;
⑵简谐振动各瞬时的运动状态由振幅 A 频率及初相位决定,或者说,由振幅和相位决定。
⑶简谐振动的频率是由振动系统本身固有性质决定的,而振幅和初相位不仅决定于系统本身性质,而且取决于初始条件。
三 . 简谐振动的图象:图线
描述:质点在各个时刻的偏离平衡位置的位移。
中学里经常做正弦、余弦函数的图象,故不再多讲,请看书。
四 . 简谐振动的矢量表示法:
用旋转矢量的投影表示简谐振动。
如图示:
为一长度不变的矢量,的始点在坐标轴的原点处,记时起点t=0 时,矢量
与坐标轴的夹角为,矢量以角速度逆时针匀速转动。
由此可见:⑴匀速旋转矢量在坐标轴上的投影即表示一特定的简谐振动的运动学方程。
⑵矢端的速度大小为,在x 轴上的投影为:
⑶矢端沿圆周运动的加速度即向心加速度的大小为:,在x 轴上的投影:
总结:旋转矢量、旋转矢量端点沿圆周运动的速度和加速度在坐标轴上的投影等于特定的简谐振动的位移、速度和加速度。
因此,用旋转矢量在坐标轴上的投影描述简谐振动的方法叫简谐振动的矢量表示法。
练习题
1. (1 )一简谐振动的运动规律为,若计时起点提前0.5s ,其运动学方程如何表示?欲使其初相为零,计时起点应提前或推迟若干?
(2) 一简谐振动的运动学方程为若计时起点推迟1s ,它的初相是多少?欲使其初相为零,应怎样调整计时起点?
(3) 画出上面两中简谐震动在计时起点改变前后t=0 时的旋转矢量的位置。
2. 半径为R 的薄圆环静止于刀口O 上,令其在自身内作微小的摆动。
(1 )求其震动的周期;( 2 )求起振动周期相等的单摆的长度;( 3 )将圆环去
掉而刀口支于剩余圆弧的中央,求其周期与整圆环摆动周期之比。
∙9.1简谐振动的动力学特征〈〈〈上一节
∙top↑
∙下一节〉〉〉9.3简谐振动的能量转换
© 2008 韩山师院物电系力学精品课程All Rights Reserved.
20041212 庄跃南毕业设计。