数学建模模拟试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模模拟试题及答案
一、填空题(每题5分,共20分) 1. 若,,
x z z y ∝∝则y 与x 的函数关系是.
2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 .
3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了
4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型.
二、分析判断题(每小题15分,满分30分)
1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种.
2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是
),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司
机是否违反了酒精含量的规定(不超过80/100)ml /mg (.
(提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ∆+内酒精浓度的改变量为
t t kC t C t t C ∆-=-∆+)()()(
其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分)
1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答:
(1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况.
2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?
数学建模模拟试题(一)参考答案
一、填空题(每题5分,共20分) 1. k kx y ,=是比例常数; 2. )()(2211t n p m t n p m +<+; 3. 增长率是常数还是人口的递减函数; 4. 类比.
二、分析判断题(每小题15分,满分30分)
1. 问题涉及到时间、地点和人员三大因素,故应该考虑到的因素至少有以下几个: (1)教师:是否连续上课,对时间的要求,对多媒体的要求和课程种类的限制等; (2)学生:是否连续上课,专业课课时与公共基础课是否冲突,选修人数等; (3)教室:教室的数量,教室的容纳量,是否具备必要的多媒体等条件; (每个因素3分)
2. 设)(t C 为t 时刻血液中酒精的浓度,则浓度递减率的模型应为
,/kC C -=
其通解是,e
)0()(kt
C t C -=而)0(C 就是所求量.
由题设可知,40)5(,56)3(==C C 故有
56e )0(3=-k C 和 ,40e )0(5=-k C
由此解得
.94e 56)0(17.040/56e 32≈=⇒≈⇒=k k C k
可见在事故发生时,司机血液中酒精的浓度已经超出了规定. 三、计算题(每题25分,满分50分) 1. 设21,x x 表示甲、乙两种产品的产量,则有 原材料限制条件: ,902321≤+x x
,303221≤+x x ,805821≤+x x
目标函数满足 ,680580m ax 21x x z += 合在一起便是所求线性规划模型:
,680580m ax 21x x z +=
⎪⎪⎩
⎪⎪⎨
⎧=≥≤+≤+≤+.2,1,0,8058,3032,9023212
121j x x x x x x x j (1)使用图解法易得其最优生产方案只有一组(这是因为所有约束条件所在直线的斜率与目标函数直线的斜率均不相等),从而最优方案没有可选择余地.计算知:
最优解为,)740,745(
T
*
=X 目标值为7
53300
max =z (万元).
(2)利用图解法求解中只用到了后两个约束条件,故羊毛有剩余量,将解代入可检验而知羊毛有7
2
59
单位的剩余量. 2. 本问题是一个产销平衡的运输问题,可以利用表上作业法直接求解, 首先确定初始方案:
其次对方案进行最优性检验:
λ11 = 10-4+6-7=5 > 0, λ12 = 6-4+6-5=3 > 0, λ31 = 8-7+5-3=3 > 0,λ33 = 9-3+5-6=5 > 0,
故上述方案已是最优方案,即总运费最低的调运方案为:
2150
3310223021160231701,,,,B A B A B A B A B A −→−−→−−→−
−→−−→− 总费用为2460150310630516071704=⨯+⨯+⨯+⨯+⨯(百元).