2015年天津中考数学试卷及答案
2015年天津市中考数学试卷
一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个 选项中,只有一项是符合题目要求的) 1. (3 分)计算(﹣18)÷6 的结果等于( A.﹣3 B.3 ) )
1 3
C.﹣
D.
1 3
2. (3 分)cos45°的值等于( A.
1
√2 √3 C. D . √3 2 2 2 3. (3 分)在一些美术字中,有的汉字是轴对称图形.下面 4 个汉字中,可以看
第3页(共23页)
三、解答题(本大题共 7 小题,共 66 分.解答应写出文字说明、演算算步骤或 推理过程) 19. (8 分)解不等式组{ ������ + 3 ≥ 6,① 2������ − 1 ≤ 9,②
请结合题意填空,完成本题的解答. (Ⅰ)不等式①,得 (Ⅱ)不等式②,得 ; ;
(Ⅲ)把不等式①和②的解集在数轴上表示出来
第4页(共23页)
21. (10 分)已知 A、B、C 是⊙O 上的三个点.四边形 OABC 是平行四边形,过 点 C 作⊙O 的切线,交 AB 的延长线于点 D. (Ⅰ)如图①,求∠ADC 的大小.
̂ 交于点 F,连 (Ⅱ)如图②,经过点 O 作 CD 的平行线,与 AB 交于点 E,与������������
16. (3 分)如图,在△ABC 中,DE∥BC,分别交 AB,AC 于点 D、E.若 AD=3, DB=2,BC=6,则 DE 的长为 .
17. (3 分)如图,在正六边形 ABCDEF 中,连接对角线 AC,CE,DF,EA,FB, 可以得到一个六角星.记这些对角线的交点分别为 H,I,J,K,L、M,则图 中等边三角形共有 个.
B.
作是轴对称图形的是(
2015年天津市中考数学试卷
绝密★启用前------------- 天津市 2015 年初中毕业生学业考试在----------------数 学本试卷满分 120 分 , 考试时间100 分钟 ._第Ⅰ卷( 选择题 共36分)_--------------------__此___一、选择题 ( 本大题共 12小题,每题 3分 , 共 36 分 . 在每题给出的四个选项中, 只有___一项为哪一项切合题目要求的 )____1.计算 ( 18) 6的结果等于__ ()号 _--------------------生 _ 卷11考 _A . 3B . 3C. _D._ 33___2. cos45 的值等于____ _()_ __ __ 1 2 3__--------------------B .C.D. 3A .__ 上222_____3. 在一些美术字中 , 有的汉字是轴对称图形 . 下边4 个汉字中 , 能够看作是轴对称图形的___ ___是____名 _ ()_姓 ____--------------------祥如 意___ 答吉_______ABCD___4. 据 2015 年 5 月 4 日《天津日报》报导 , “五一”三天假期 , 全市共招待国内外旅客约__ -------------------- 人次 . 将 2 270 000 用科学记数法表示应为 校 题 2 270000 学 ( )业A . 107B . 106 C. 105 D. 227 104 毕 5. 如图是一个由 4 , 它的主视图是个同样的正方体构成的立体图形( )--------------------无ABCD6. 预计 11 的值在-------------------- 数学试卷第 1 页(共 8 页)效()和 2之间和3之间 和 4之间 和5之间7. 在平面直角坐标系中 , 把点 P( 3,2) 绕原点 O 顺时针旋转 180 , 所获得的对应点 P 的坐标为 ()A . (3,2)B. (2, 3)C.(3,2)D. (3, 2)8. 分式方程23的解为 x 3 x()A . x 0B . x 3 C. x 5D . x 99. 已知反比率函数 y 6 , 当 1< x <3 时 , y 的取值范围是x( )A . 0< y <1B . 1< y <2 C. 2<y <6 D . y >610. 已知一个表面积为 12 dm 2 的正方体 , 则这个正方体的棱长为 ()A . 1dmB . 2 dmC. 6 dm D . 3 dm11. 如图 , 已知在 □ ABCD 中 , AEBC 于点 E , 以点 B 为中心 , 取旋转角等于ABC ,把 △ BAE 顺时针旋转 , 获得 △BA E , 连结 DA .若 ADC 60 , ADA50 ,则DA E 的大小为DCA'E E'AB( )A. 130B. 150C. 160D. 17012. 已知抛物线 y1 x23 x 6 与 x 轴交于点 A , 点 B , 与 y 轴交于点 C , 若 D 为 AB6 2的中点 , 则 CD 的长为( )A.15B .9C.13D.154222第Ⅱ卷( 非选择题 共84分)二、填空题 ( 本大题共 6 小题 , 每题 3, 共 18 分 . 把答案填写在题中的横线上 )数学试卷第 2页(共 8页)13. 计算 x2 x5 的结果等于.14. 若一次函数y 2x b ( b 为常数)的图象经过点(1,5) ,则 b 的值为.15.不透明的袋子中装有 9 个球 , 此中有 2 个红球、 3 个绿球和 4 个蓝球 , 这些球除颜色外无其余差异 . 从袋子中随机拿出 1 个球 , 则它是红球的概率是.16. 如图 , 在△ABC中, DE∥BC , 分别交AB,AC于点 D, E .若AD3,DB2,BC 6,则DE的长为.17. 如图 , 在正六边形ABCDEF 中,连结对角线 AC ,BD, CE , ADF , EA, FB ,能够获得一个六角星.记这些对角线的交点分 BL F别为 H , I , J, K ,L,M ,则图中等边三角形共有个 . MH K1 的网格中 , 点A, B,C,D均在格点18. 在每个小正方形的边长为I JE 上 , 点E,F分别为线段BC,DB上的动点 , 且BE DF . C(1)如图 1,当BE 5; D 时, 计算AE AF的值等于2(2)当AE AF 获得最小值时,请在如图2所示的网格中,用无刻度的直尺,画出线段AE, AF , 并简要说明点E 和点 F 的地点是怎样找到的( 不要求证明 ).图 1 图 2三、解答题 ( 本大题共7小题,共66 分. 解答应写出文字说明、证明过程或演算步骤)19.( 本小题满分 8 分)x 3≥ 6,①解不等式组2x 1≤9.②请联合题意填空, 达成此题的解答.( 1) 解不等式①得;( 2) 解不等式②得;( 3) 把不等式①和②的解集在数轴上表示出来:012345 6( 4) 原不等式组的解集为.20.( 本小题满分 8 分)某商场服饰部为认识服饰的销售状况, 统计了每位营业员在某月的销售额( 单位:万元 ), 并依据统计的这组销售额数据, 绘制出以下的统计图 1 和图 2. 请依据有关信息 , 解答以下问题:人数8万元1815万元8 7m%20% 6512万元21万元 48% 2 332% 万元24212%121518 2124 销售额 /万元图 1图 2( 1) 该商场服饰部营业员人数为, 图 1 中m的值为;( 2) 求统计的这组销售额数据的均匀数、众数和中位数.21.( 本小题满分10 分)已知 A,B,C 是O 上的三个点,四边形OABC是平行四边形, 过点C作O 的切线, 交 AB 的延伸线于点 D .数学试卷第3页(共 8页)数学试卷第4页(共8页)DD------------- BCBCF在E---------------- AOAO___--------------------图 1图 2__此__( 1) 如图 1, 求∠ ADC 的大小;___(2)如图 2,经过点 O 作CD 的平行线 ,与 AB 交于点 E ,与AB 交于点 F ,连结 AF ,求____FAB 的大小 .__号 _ --------------------生_考_卷___________ ___22.( 本小题满分 10 分)__如图 , 某建筑物顶部有一旗杆, 且点在同向来线上 . 小红在处观察旗_BC AB A, B,C D __--------------------_ 上_ _ 杆顶部A的仰角为47 , 观察旗杆底部B的仰角为42. 已知点D到地面的距离DE为__ ______1.56 m , EC21m , 求旗杆 AB 的高度和建筑物BC 的高度 ( 结果保存小数点后一___ _名 _ 位 )._姓__( 参照数据: tan47 ≈, tan42 ≈).___--------------------__答___ ___ _ __ ___校--------------------学题业 毕-------------------- 无23.( 本小题满分 10 分 )1 号探测气球从海拔5 m 处出发 , 以 1m/min 的速度上涨 . 与此同时 , 2 号探测气球从海拔 15 m 处出发 , 以 0.5 m/min 的速度上涨 . 两个气球都匀速上涨了 50 min . 设气球上涨时间为 x min ( 0≤x ≤50 ).-------------------- 数学试卷第 5页(共 8页)效( 1) 依据题意 , 填写下表上涨时间 / min1030x1 号探测气球所在地点的海拔/ m 152 号探测气球所在地点的海拔 / m30( 2) 在某时辰两个气球可否位于同一高度?假如能 , 这时气球上涨了多长时间?位于什么高度?假如不可以 , 请说明原因;( 3) 当 30≤x ≤50 时 , 两个气球所在地点的海拔最多相差多少米?.24.( 本小题满分 10)将一个直角三角形纸片 ABO 搁置在平面直角坐标系中 , 点 A( 3,0 ) , 点 B( 0,1) , 点O(0,0). 过边 OA 上的动点 M (点 M 不与点 O , A 重合 )作 MN AB 于点 N ,沿着MN 折叠该纸片 , 得极点 A 的对应点 A . 设 OM m , 折叠后的 △ A MN 与四边形OMNB 重叠部分的面积为 S .图 1图 2( 1) 如图 1, 当点 A 与极点 B 重合时 , 求点 M 的坐标;( 2) 如图 2, 当点 A 落在第二象限时 , A M 与 OB 订交于点 C , 试用含 m 的式子表示 S ; ( 3) 当 S3时 , 求点 M 的坐标 ( 直接写出结果即可 ).24数学试卷 第 6页(共 8页)25.( 本小题满分10 分)已知二次函数y x2 bx c (b,c为常数).( 1) 当b 2,c 3 时 , 求二次函数的最小值;x 的值与其对应,求此时( 2) 当c 5 时,若在函数值 y 1 的状况下,只有一个自变量二次函数的分析式;( 3) 当c b2时,若在自变量 x 的值知足b≤x≤b 3的状况下,与其对应的函数值y 的最小值为21, 求此时二次函数的分析式 .数学试卷第7页(共 8页)数学试卷第8页(共8页)。
天津市2015年中考数学试题(word版)
2015年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-18)÷6的结果等于(A)-3 (B)3(C)13-(D)13(2)cos45︒的值等于(A)12(B)22(C)32(D)3(3)在一些美术字中,有的汉字是轴对称图形. 下面4个汉字中,可以看作是轴对称图形的是吉 祥 如意(A ) (B ) (C ) (D )(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为 (A )70.22710⨯ (B )62.2710⨯(C )522.710⨯(D )422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6)估计11的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点第(5)题E'A'EBDC AP ′的坐标为 (A )(3,2) (B )(2,-3)(C )(-3,-2) (D )(3,-2)(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3 (C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm (B )2dm (C )6dm (D )3dm (11)如图,已知在 ABCD 中, AE ⊥BC 于点E ,以点B为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,则∠DA ′E ′的大小为(A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为第(11)题(A )154(B )92(C )132 (D )152机密★启用前2015年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2015年天津市中考数学试卷
2015年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣ D.2.(3分)cos45°的值等于()A.B.C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×1045.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)8.(3分)分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=99.(3分)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.(3分)己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.2015年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣ D.【分析】根据有理数的除法,即可解答.【解答】解:(﹣18)÷6=﹣3.故选:A.2.(3分)cos45°的值等于()A.B.C.D.【分析】将特殊角的三角函数值代入求解.【解答】解:cos45°=.故选B.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2270000用科学记数法表示为2.27×106.故选B.5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选A.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】由于9<11<16,于是<<,从而有3<<4.【解答】解:∵9<11<16,∴<<,∴3<<4.7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.8.(3分)分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选D.9.(3分)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>6【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选C.10.(3分)己知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°【分析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.【分析】令y=0,则﹣x2+x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.【解答】解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD==.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于x7.【分析】根据同底数幂的乘法,可得答案.【解答】解:x2•x5=x2+5=x7,故答案为:x7.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为3.【分析】把点(1,5)代入函数解析式,利用方程来求b的值.【解答】解:把点(1,5)代入y=2x+b,得5=2×1+b,解得b=3.故答案是:3.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为 3.6.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有8个.【分析】在正六边形ABCDEF的六个顶点是圆的六等分点,即可求得图中每个角的度数,即可判断等边三角形的个数.【解答】解:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF共有8个.故答案是:8.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF 即为所求..【分析】(1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE=,再解答即可;(2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.【解答】解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.故答案分别为:x≥3,x≤5,3≤x≤5.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.【分析】(Ⅰ)由CD是⊙O的切线,C为切点,得到OC⊥CD,即∠OCD=90°由于四边形OABC是平行四边形,得到AB∥OC,即AD∥OC,根据平行四边形的性质即可得到结果.(Ⅱ)如图,连接OB,则OB=OA=OC,由四边形OABC是平行四边形,得到OC=AB,△AOB是等边三角形,证得∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,根据垂径定理即可得到结果.【解答】解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,∵四边形OABC是平行四边形,∴OC=AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,∴OF⊥AB,∴,∴∠FOB=∠FOA=∠AOB=30°,∴.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【分析】(Ⅰ)根据“1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(Ⅱ)两个气球能位于同一高度,根据题意列出方程,即可解答;(Ⅲ)由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,根据x的取值范围,利用一次函数的性质,即可解答.【解答】解:(Ⅰ)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20,故答案为:35,x+5,20,0.5x+15.(Ⅱ)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度.(Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,∵0.5>0,∴y随x的增大而增大,∴当x=50时,y取得最大值15,答:两个气球所在位置海拔最多相差15m.24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,由MN⊥AB,可得:∠MNA=90°,∴在Rt△AMN中,MN=AM•sin∠OAB=,AN=AN•cos∠OAB=,∴,由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM中,可得CO=OM•tan∠A'MO=m,∴,∵,∴,即;(Ⅲ)①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S=代入,可得点M的坐标为(,0).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.【分析】(Ⅰ)把b=2,c=﹣3代入函数解析式,求二次函数的最小值;(Ⅱ)根据当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等是实数根,求此时二次函数的解析式;(Ⅲ)当c=b2时,写出解析式,分三种情况减小讨论即可.【解答】解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.。
2015年天津市中考数学试卷
C. 6 dm
D. 3 dm
11.如图,已知在□ ABCD 中, AE BC 于点 E ,以点 B 为中心,取旋转角等于 ABC ,把
△BAE 顺 时 针 旋 转 , 得 到 △BA E , 连接 DA .若 ADC 60 , ADA 50 ,则
DAE 的大小为
()
D
A. x 0
B. x 3
C. x 5
9.已知反比例函数 y 6 ,当1<x<3 时, y 的取值范围是 x
A. 0<y<1
B.1<y<2
C. 2<y<6
10.已知一个表面积为12 dm2 的正方体,则这个正方体的棱长为
()
D. x 9 ()
D. y>6 ()
A.1 dm
B. 2 dm
(3)当 30≤x≤50 时,两个气球所在位置的海拔最多相差多少米?.
无
效
数学试卷 第 5 页(共 6 页)
24.(本小题满分 10)
将一个直角三角形纸片 ABO 放置在平面直角坐标系中,点 A( 3,0) ,点 B(0,1) ,点 O(0,0) .过边 OA 上的动点 M (点 M 不与点 O , A 重合)作 MN AB 于点 N ,沿着 MN 折叠该纸片,得顶点 A 的对应点 A .设 OM m ,折叠后的 △AMN 与四边形 OMNB重叠部分的面积为 S .
C.3 和 4 之间
D.4 和 5 之间
7.在平面直角坐标系中,把点 P(3, 2) 绕原点 O 顺时针旋转 180 ,所得到的对应 点 P 的
坐标为
()
A. (3, 2)
B. (2, 3)
C. (3, 2)
D. (3, 2)
效
数学试卷 ห้องสมุดไป่ตู้ 1 页(共 6 页)
2015学年天津中考数学年试题
--------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------------
数学试卷 第 4 页(共 6 页)
数学试卷 第 5 页(共 6 页)
数学试卷 第 6 页(共 6 页)
列.
(Ⅰ)求数列{an} 的通项公式;
1
1
(Ⅱ)记数列{ } 的前 n 项和为 Tn ,求使得 |Tn 1|
成立的 n 的最小值.
an
1 000
17.(本小题满分 12 分) 某市 A,B 两所中学的学生组队参加辩论赛,A 中学推荐了 3 名男生、2 名女生,B 中 学推荐了 3 名男生、4 名女生,两校所推荐的学生一起参加集训.由于集训后队员水平 相当,从参加集训的男生中随机抽取 3 人,女生中随机抽取 3 人组成代表队.
;
2 sin A
( Ⅱ ) 若 A C 180 , AB 6 , BC 3 , CD 4 , AD 5 , 求 tan A tan B 22
CD
tan tan 的值.
2
2
20.(本小题满分 13 分)
x2 y2
2
如图,椭圆 E : + 1(a b 0) 的离心率是 ,过点 P (0,1) 的动直线 l 与椭圆相
a2 b2
2
交于 A,B 两点.当直线 l 平行于 x 轴时,直线 l 被椭圆 E 截得的线段长为 2 2 .
2015天津市中考数学试卷
机密★启用前2015年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)计算(-18) ÷6的结果等于(A )-3(B )3(C )13-(D )13(2)cos45︒的值等于(A )12(B )2(C (D(3)在一些美术字中,有的汉字是轴对称图形. 下面4个汉字中,可以看作是轴对称图形的是吉 祥 如意(A ) (B ) (C ) (D )(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为 (A )70.22710⨯ (B )62.2710⨯(C )522.710⨯(D )422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点第(5)题E'P ′的坐标为 (A )(3,2) (B )(2,-3) (C )(-3,-2) (D )(3,-2)(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3 (C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm(B dm(C dm (D )3dm (11)如图,已知在中, AE ⊥BC 于点E ,以点B为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,则∠DA ′E ′的大小为(A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为第(11)题(A )154(B )92(C )132 (D )152机密★启用前2015年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2015年天津市中考数学试卷-答案
【提示】解决本题的关键是根据题意,列出函数解析式.
【考点】一次函数的应用
24.【答案】(Ⅰ)在 中,点 ,∴ ,由 ,可得: ,根据题意,由折叠可知 ,∴ ,在 中,由勾股定理, ,可得: ,解得 ,∴点 的坐标为 .
∴当 时, .故选C.
【提示】当 时,在每一个象限内, 随 的增大而减小;当 时,在每一个象限, 随 的增大而增大.
【考点】反比例函数的性质
10.【答案】B
【解析】因为正方体的表面积公式: ,可得: ,解得: .故选B.
【提示】关键是根据公式进行计算.
【考点】算术平方根
11.【答案】C
【解析】∵四边形 是平行四边形, ,∴ ,∵ ,
∵四边形 是平行四边形,∴ ,即 ,有 ,
∴ ;
(Ⅱ)如图②,连接 ,则 ,∵四边形 是平行四边形,∴ ,∴ ,即 是等边三角形,∴ ,由 ,又 ,得 ,
∴ ,∴ ,∴ ,∴ .
【提示】熟练掌握定理是解题的关键.
【考点】切线的性质,平行四边形的性质
22.【答案】旗杆 的高度约是 ,建筑物 的高度约是20.5米
(2)取格点 ,连接 ,相交于点 ,连接 ,与 相交,得点 ,取格点 连接 ,相交于点 ,连接 ,与 相交,得点 ,线段 即为所求.
【解析】(1)根据勾股定理可得: ,因为 ,所以可得 ,根据勾股定理可得: ,所以 ,故答案为: .
(2)如图,
首先确定 点,要使 最小,根据三角形两边之和大于第三边可知,需要将 移到 的延长线上,因此可以构造全等三角形,首先选择格点 使 ,其次需要构造长度 使 ,
2015天津市中考数学试卷
机密★启用前2015年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-18) ÷6的结果等于(A )-3(B )3(C )13-(D )13(2)cos45︒的值等于(A )12(B )2(C (D(3)在一些美术字中,有的汉字是轴对称图形. 下面4个汉字中,可以看作是轴对称图形的是吉 祥 如 意(A ) (B ) (C ) (D )(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为 (A )70.22710⨯ (B )62.2710⨯(C )522.710⨯(D )422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为(A )(3,2) (B )(2,-3) (C )(-3,-2) (D )(3,-2)(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3第(5)题(C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm(B dm(C dm (D )3dm (11)如图,已知在中, AE ⊥BC 于点E ,以点B为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,则∠DA ′E ′的大小为(A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为(A )154(B )92(C )132 (D )152机密★启用前2015年天津市初中毕业生学业考试试卷数 学第(11)题第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2015年天津市中考数学试卷-含答案详解
2015年天津市中考数学试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算(−18)÷6的结果等于( )A. −3B. 3C. −13D. 132. cos45°的值等于( )A. 12B. √22C. √32D. √33. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A. B. C. D.4. 据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为( )A. 0.227×lO7B. 2.27×106C. 22.7×l05D. 227×1045. 如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.6. 估计√11的值在( )A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间7. 在平面直角坐标系中,把点P(−3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为( )A. (3,2)B. (2,−3)C. (−3,−2)D. (3,−2)8. 分式方程2x−3=3x的解为( )A. x=0B. x=3C. x=5D. x=99. 已知反比例函数y=6x,当1<x<3时,y的取值范围是( )A. 0<y<1B. 1<y<2C. 2<y<6D. y>610. 己知一个表面积为12dm2的正方体,则这个正方体的棱长为( )A. 1dmB. √2dmC. √6dmD. 3dm11. 如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A. 130°B. 150°C. 160°D. 170°12. 已知抛物线y=−16x2+32x+6与x轴交于点A,B,与y轴交于点C,若点D是AB的中点,则CD的长是( )A. 154B. 92C. 132D. 152二、填空题(本大题共6小题,共18.0分)13. 计算:x2⋅x5的结果等于______.14. 若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为______.15. 不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是______.16. 如图,在△ABC中,DE//BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为______.17. 如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有______个.18. 在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=52时,计算AE+AF的值等于______(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)______.三、解答题(本大题共7小题,共66.0分。
2015年天津市中考数学试卷
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前天津市2015年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算(18)6-÷的结果等于( )A .3-B .3C .13-D .132.cos45o 的值等于( )A .12BCD3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )吉 祥 如 意A B C D4.据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为 ( ) A .70.22710⨯B .62.2710⨯C .522.710⨯D .422710⨯5.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )AB C D6.( )A .1和2之间B .2和3之间 C .3和4之间 D .4和5之间7.在平面直角坐标系中,把点(3,2)P -绕原点O 顺时针旋转180o ,所得到的对应点P '的坐标为( )A .(3,2)B .(2,3)-C .(3,2)--D .(3,2)-8.分式方程233x x=-的解为 ( )A .0x =B .3x =C .5x =D .9x = 9.已知反比例函数6y x=,当13x <<时,y 的取值范围是( )A .01y <<B .12y <<C .26y <<D .6y > 10.已知一个表面积为212dm 的正方体,则这个正方体的棱长为( )A .1dmBCD .3dm11.如图,已知在□ABCD 中,AE BC ⊥于点E ,以点B 为中心,取旋转角等于ABC ∠,把BAE △顺时针旋转,得到BA E ''△,连接DA '.若60ADC ∠=o ,50ADA '∠=o ,则DA E ''∠的大小为( ) A .130oB .150oC .160oD .170o12.已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为( )A .154B .92C .132D .152第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3,共18分.把答案填写在题中的横线上) 13.计算25x x g 的结果等于 .14.若一次函数2y x b =+(b 为常数)的图象经过点(1,5),则b 的值为 .15.不透明的袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.如图,在ABC △中,DE BC ∥,分别交,AB AC 于点D ,E .若3AD =,2DB =,6BC =,则DE 的长为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页)数学试卷 第4页(共6页)17.如图,在正六边形ABCDEF 中,连接对角线AC ,BD ,CE ,DF ,EA ,FB ,可以得到一个六角星.记这些对角线的交点分别为,,,,,H I J K L M ,则图中等边三角形共有 个.18.在每个小正方形的边长为1的网格中,点,,,A B C D 均在格点上,点,E F 分别为线段,BC DB 上的动点,且BE DF =. (1)如图1,当52BE =时,计算AE AF +的值等于 ; (2)当AE AF +取得最小值时,请在如图2所示的网格中,用无刻度的直尺,画出线段,AE AF ,并简要说明点E 和点F 的位置是如何找到的(不要求证明).图1 图2三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分8分) 解不等式组36219.x x +⎧⎨-⎩≥, ①≤②请结合题意填空,完成本题的解答. (1)解不等式①得 ; (2)解不等式②得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为 .20.(本小题满分8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图1和图2.请根据相关信息,解答下列问题:(1)该商场服装部营业员人数为 ,图1中m 的值为 ; (2)求统计的这组销售额数据的平均数、众数和中位数.21.(本小题满分10分)已知,,A B C 是O e 上的三个点,四边形OABC 是平行四边形,过点C 作O e 的切线,交AB 的延长线于点D .(1)如图1,求∠ADC 的大小;(2)如图2,经过点O 作CD 的平行线,与AB 交于点E ,与»AB 交于点F ,连接AF ,求 FAB ∠的大小.21万元 32%18万元 m %24万元 12%12万元 8%15万元 20%DCBOAF EDCB OALKJIH MF EDCBA345621257 83人数/万元1224 6 8 图1图1图2图2数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分10分)如图,某建筑物BC 顶部有一旗杆AB ,且点,,A B C 在同一直线上.小红在D 处观测旗杆顶部A 的仰角为47o ,观测旗杆底部B 的仰角为42o .已知点D 到地面的距离DE 为1.56m ,21m EC =,求旗杆AB 的高度和建筑物BC 的高度(结果保留小数点后一位).(参考数据:tan47 1.07o ≈,tan420.90o ≈).23.(本小题满分10分)1号探测气球从海拔5m 处出发,以1m/min 的速度上升.与此同时,2号探测气球从海拔15m 处出发,以0.5m/min 的速度上升.两个气球都匀速上升了50min . 设气球上升时间为min x (050x ≤≤). (1)(2)什么高度?如果不能,请说明理由;(3)当3050x ≤≤时,两个气球所在位置的海拔最多相差多少米?.24.(本小题满分10)将一个直角三角形纸片ABO 放置在平面直角坐标系中,点)A ,点()0,1B ,点()0,0O .过边OA 上的动点M (点M 不与点O ,A 重合)作MN AB ⊥于点N ,沿着MN 折叠该纸片,得顶点A 的对应点A '.设OM m =,折叠后的A MN '△与四边形OMNB 重叠部分的面积为S .(1)如图1,当点A '与顶点B 重合时,求点M 的坐标;(2)如图2,当点A '落在第二象限时,A M '与OB 相交于点C ,试用含m 的式子表示S ; (3)当S =,求点M 的坐标(直接写出结果即可).25.(本小题满分10分)已知二次函数2y x bx c =++(,c b 为常数). (1)当2,3b c ==-时,求二次函数的最小值;(2)当5c =时,若在函数值1y =的情况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(3)当2c b =时,若在自变量x 的值满足3b x b +≤≤的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.图2 图1 -------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
2015年天津市中考数学试题及参考答案(word解析版)
2015年天津市中考数学试题及参考答案一、选择题(本大题共12小题,每小题3分,共36分)1.计算(﹣18)÷6的结果等于( )A .﹣3B .3C .13-D .132.cos45°的值等于( )A .12B .2C .2D 3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .4.据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为( )A .0.227×l07B .2.27×106C .22.7×l05D .227×1045.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )A .B .C .D .6 )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7.在平面直角坐标系中,把点P (﹣3,2)绕原点O 顺时针旋转180°,所得到的对应点P′的坐标为( )A .(3,2)B .(2,﹣3)C .(﹣3,﹣2)D .(3,﹣2)8.分式方程233x x=-的解为( ) A .x=0 B .x=5 C .x=3 D .x=9 9.己知反比例函数6y x =,当1<x <3时,y 的取值范围是( ) A .0<y <l B .1<y <2 C .2<y <6 D .y >610.己知一个表面积为12dm 2的正方体,则这个正方体的棱长为( )A .1dmB dmCD .3dm11.如图,已知▱ABCD 中,AE ⊥BC 于点E ,以点B 为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为( )A .130°B .150°C .160°D .170°12.已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C .若D 为AB 的中点,则CD 的长为( )A .154B .92C .132D .152二、填空题(本大题共6小题,每小题3分,共18分)13.计算;x 2•x 5的结果等于 .14.若一次函数y=2x+b (b 为常数)的图象经过点(1,5),则b 的值为 .15.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 .16.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D 、E .若AD=3,DB=2,BC=6,则DE 的长为 .17.如图,在正六边形ABCDEF 中,连接对角线AC ,CE ,DF ,EA ,FB ,可以得到一个六角星.记这些对角线的交点分别为H ,I ,J ,K ,L 、M ,则图中等边三角形共有 个.18.在每个小正方形的边长为1的网格中.点A ,B ,D 均在格点上,点E 、F 分别为线段BC 、DB 上的动点,且BE=DF .(Ⅰ)如图①,当BE=52时,计算AE+AF 的值等于 . (Ⅱ)当AE+AF 取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE ,AF ,并简要说明点E 和点F 的位置如何找到的(不要求证明) .三、解答题(本大题共7小题,共66分)19.(8分)解不等式组36219xx+⎧⎨-⎩≥①≤②.请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为.(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与AB交于点F,连接AF,求∠FAB 的大小.22.(10分)如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D 处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:上升时间/min 10 30 (x)1号探测气球所在位置的海拔/m 15 …2号探测气球所在位置的海拔/m 30 …(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x 2+bx+c (b ,c 为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l 的怙况下,只有一个自变量x 的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b 2时,若在自变量x 的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.参考答案与解析一、选择题(本大题共12小题,每小题3分,共36分)1.计算(﹣18)÷6的结果等于( )A .﹣3B .3C .13D .13【知识考点】有理数的除法.【思路分析】根据有理数的除法,即可解答.【解答过程】解:(﹣18)÷6=﹣3.故选:A .【总结归纳】本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.2.cos45°的值等于( )A .12B C D 【知识考点】特殊角的三角函数值.【思路分析】将特殊角的三角函数值代入求解.【解答过程】解:cos45°. 故选B .【总结归纳】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( )A .B .C .D .【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念求解.【解答过程】解:A 、是轴对称图形,故本选项正确;。
2015年天津市中考数学试卷
2015年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣ D.2.(3分)cos45°的值等于()A.B.C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×1045.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)8.(3分)分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=99.(3分)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>610.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.2015年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3 B.3 C.﹣ D.【分析】根据有理数的除法,即可解答.【解答】解:(﹣18)÷6=﹣3.故选:A.【点评】本题考查了有理数的除法,解决本题的关键是熟记有理数除法的法则.2.(3分)cos45°的值等于()A.B.C.D.【分析】将特殊角的三角函数值代入求解.【解答】解:cos45°=.故选B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将2270000用科学记数法表示为2.27×106.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】由于9<11<16,于是<<,从而有3<<4.【解答】解:∵9<11<16,∴<<,∴3<<4.故选C.【点评】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.【点评】本题考查了坐标与图形的变换﹣旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.8.(3分)分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)己知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2 C.2<y<6 D.y>6【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选C.【点评】本题主要考查反比例函数的性质,当k>0时,在每一个象限内,y随x 的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.10.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【分析】根据正方体的表面积公式:s=6a2,解答即可.【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选B.【点评】此题主要考查正方体的表面积公式的灵活运用,关键是根据公式进行计算.11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160° D.170°【分析】根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=∠BAE=30°,从而得到答案.【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.【点评】本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出∠DA′B和∠BA′E′.12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.【分析】令y=0,则﹣x2+x+6=0,由此得到A、B两点坐标,由D为AB的中点,知OD的长,x=0时,y=6,所以OC=6,根据勾股定理求出CD即可.【解答】解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD==.故选:D.【点评】本题主要考查了二次函数与一元二次方程的关系和抛物线的对称性,求出AB中点D的坐标是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于x7.【分析】根据同底数幂的乘法,可得答案.【解答】解:x2•x5=x2+5=x7,故答案为:x7.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为3.【分析】把点(1,5)代入函数解析式,利用方程来求b的值.【解答】解:把点(1,5)代入y=2x+b,得5=2×1+b,解得b=3.故答案是:3.【点评】本题考查了反比例函数图象上点的坐标特征,经过函数的某点一定在函数的图象上.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为 3.6.【分析】根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有8个.【分析】在正六边形ABCDEF的六个顶点是圆的六等分点,即可求得图中每个角的度数,即可判断等边三角形的个数.【解答】解:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF共有8个.故答案是:8.【点评】本题考查了正六边形的性质,正确理解正六边形ABCDEF的六个顶点是圆的六等分点是关键.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF 即为所求..【分析】(1)根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE=,再解答即可;(2)首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.【解答】解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.【点评】此题考查最短路径问题,关键是根据轴对称的性质进行分析解答.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.故答案分别为:x≥3,x≤5,3≤x≤5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【分析】(1)根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;(2)利用平均数、中位数、众数的定义分别求出即可;【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.【点评】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.【分析】(Ⅰ)由CD是⊙O的切线,C为切点,得到OC⊥CD,即∠OCD=90°由于四边形OABC是平行四边形,得到AB∥OC,即AD∥OC,根据平行四边形的性质即可得到结果.(Ⅱ)如图,连接OB,则OB=OA=OC,由四边形OABC是平行四边形,得到OC=AB,△AOB是等边三角形,证得∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,根据垂径定理即可得到结果.【解答】解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,∵四边形OABC是平行四边形,∴OC=AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,∴OF⊥AB,∴,∴∠FOB=∠FOA=∠AOB=30°,∴.【点评】本题考查了切线的性质,平行四边形的性质,垂径定理,等边三角形的判定,熟练掌握定理是解题的关键.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【分析】(Ⅰ)根据“1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升”,得出1号探测气球、2号探测气球的函数关系式;(Ⅱ)两个气球能位于同一高度,根据题意列出方程,即可解答;(Ⅲ)由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,根据x的取值范围,利用一次函数的性质,即可解答.【解答】解:(Ⅰ)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20,故答案为:35,x+5,20,0.5x+15.(Ⅱ)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度.(Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,∵0.5>0,∴y随x的增大而增大,∴当x=50时,y取得最大值15,答:两个气球所在位置海拔最多相差15m.【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数解析式.24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,由MN⊥AB,可得:∠MNA=90°,∴在Rt△AMN中,MN=AM•sin∠OAB=,AN=AN•cos∠OAB=,∴,由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM中,可得CO=OM•tan∠A'MO=m,∴,∵,∴,即;(Ⅲ)①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S=代入,可得点M的坐标为(,0).【点评】此题考查了一次函数的综合问题,关键是利用勾股定理、三角形的面积,三角函数的运用进行分析.25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.【分析】(Ⅰ)把b=2,c=﹣3代入函数解析式,求二次函数的最小值;(Ⅱ)根据当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,得到x2+bx+5=1有两个相等是实数根,求此时二次函数的解析式;(Ⅲ)当c=b2时,写出解析式,分三种情况减小讨论即可.【解答】解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x 的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣时,y=;当a<0时,抛物线在对称轴左侧,y 随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣时,y=;确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.。
2015天津市中考数学试卷
机密★启用前2015年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的) (1)计算(-18) ÷6的结果等于(A )-3(B )3(C )13-(D )13(2)cos45︒的值等于(A )12(B )2(C (D(3)在一些美术字中,有的汉字是轴对称图形. 下面4个汉字中,可以看作是轴对称图形的是吉 祥 如意(A ) (B ) (C ) (D )(4)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为 (A )70.22710⨯ (B )62.2710⨯(C )522.710⨯(D )422710⨯(5)右图是一个由4个相同的正方体组成的立体图形,它的主视图是(A ) (B )(C ) (D ) (6的值在(A )1和2之间 (B )2和3之间 (C )3和4之间(D )4和5之间(7)在平面直角坐标系中,把点P (-3,2)绕原点O 顺时针旋转180°,所得到的对应点第(5)题E'P ′的坐标为 (A )(3,2) (B )(2,-3) (C )(-3,-2) (D )(3,-2)(8)分式方程233x x=-的解为 (A )x = 0 (B )x = 3 (C )x = 5(D )x = 9(9)已知反比例函数6y x=,当13x <<时,y 的取值范围是 (A )01y << (B )12y << (C )26y << (D )6y > (10)已知一个表面积为12dm 2的正方体,则这个正方体的棱长为(A )1dm(B dm(C dm (D )3dm (11)如图,已知在中, AE ⊥BC 于点E ,以点B为中心,取旋转角等于∠ABC ,把△BAE 顺时针旋转,得到△BA ′E ′,连接DA ′. 若∠ADC =60°,∠ADA ′=50°,则∠DA ′E ′的大小为(A )130° (B )150° (C )160° (D )170° (12)已知抛物线213662y x x =-++与x 轴交于点A ,点B ,与y 轴交于点C ,若D 为AB 的中点,则CD 的长为第(11)题(A )154(B )92(C )132 (D )152机密★启用前2015年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔)。
2015年天津市中考数学试卷
2015年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3B.3C.﹣D.2.(3分)cos45°的值等于()A.B.C.D.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104 5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)8.(3分)分式方程=的解为()A.x=0B.x=3C.x=5D.x=99.(3分)已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2C.2<y<6D.y>610.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有个.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组,,请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得;(Ⅱ)不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为,图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC 的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.2015年天津市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算(﹣18)÷6的结果等于()A.﹣3B.3C.﹣D.【解答】解:(﹣18)÷6=﹣3.故选:A.2.(3分)cos45°的值等于()A.B.C.D.【解答】解:cos45°=.故选:B.3.(3分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.4.(3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为()A.0.227×lO7B.2.27×106C.22.7×l05D.227×104【解答】解:将2270000用科学记数法表示为2.27×106.故选:B.5.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解答】解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选:A.6.(3分)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【解答】解:∵9<11<16,∴<<,∴3<<4.故选:C.7.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.8.(3分)分式方程=的解为()A.x=0B.x=3C.x=5D.x=9【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选:D.9.(3分)已知反比例函数y=,当1<x<3时,y的取值范围是()A.0<y<l B.1<y<2C.2<y<6D.y>6【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=1时,y=6,当x=3时,y=2,∴当1<x<3时,2<y<6.故选:C.10.(3分)已知一个表面积为12dm2的正方体,则这个正方体的棱长为()A.1dm B.dm C.dm D.3dm【解答】解:因为正方体的表面积公式:s=6a2,可得:6a2=12,解得:a=.故选:B.11.(3分)如图,已知▱ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=50°,则∠DA′E′的大小为()A.130°B.150°C.160°D.170°【解答】解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.故选:C.12.(3分)已知抛物线y=﹣x2+x+6与x轴交于点A,点B,与y轴交于点C.若D为AB的中点,则CD的长为()A.B.C.D.【解答】解:令y=0,则﹣x2+x+6=0,解得:x1=12,x2=﹣3∴A、B两点坐标分别为(12,0)(﹣3,0)∵D为AB的中点,∴D(4.5,0),∴OD=4.5,当x=0时,y=6,∴OC=6,∴CD=.=.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:x2•x5的结果等于x7.【解答】解:x2•x5=x2+5=x7,故答案为:x7.14.(3分)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为3.【解答】解:把点(1,5)代入y=2x+b,得5=2×1+b,解得b=3.故答案是:3.15.(3分)不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【解答】解:∵共4+3+2=9个球,有2个红球,∴从袋子中随机摸出一个球,它是红球的概率为,故答案为:.16.(3分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为 3.6.【解答】解:∵AD=3,DB=2,∴AB=AD+DB=5,∵DE∥BC,∴△ADE∽△ABC,∴,∵AD=3,AB=5,BC=6,∴,∴DE=3.6.故答案为:3.6.17.(3分)如图,在正六边形ABCDEF中,连接对角线AC,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L、M,则图中等边三角形共有8个.【解答】解:等边三角形有△AML、△BHM、△CHI、△DIJ、△EKJ、△FLK、△ACE、△BDF共有8个.故答案是:8.18.(3分)在每个小正方形的边长为1的网格中.点A,B,C,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明)取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求..【解答】解:(1)根据勾股定理可得:DB=,因为BE=DF=,所以可得AF==2.5,根据勾股定理可得:AE=.,所以AE+AF=,故答案为:;(2)如图,首先确定E点,要使AE+AF最小,根据三角形两边之和大于第三边可知,需要将AF移到AE的延长线上,因此可以构造全等三角形,首先选择格点H使∠HBC=∠ADB,其次需要构造长度BP使BP=AD=4,根据勾股定理可知BH==5,结合相似三角形选出格点K,根据,得BP=BH==4=DA,易证△ADF≌△PBE,因此可得到PE=AF,线段AP即为所求的AE+AF的最小值;同理可确定F点,因为AB⊥BC,因此首先确定格点M使DM⊥DB,其次确定格点G使DG=AB=3,此时需要先确定格点N,同样根据相似三角形性质得到,得DG=DM=×5=3,易证△DFG≌△BEA,因此可得到AE=GF,故线段AG即为所求的AE+AF的最小值.故答案为:取格点H,K,连接BH,CK,相交于点P,连接AP,与BC相交,得点E,取格点M,N连接DM,CN,相交于点G,连接AG,与BD相交,得点F,线段AE,AF即为所求.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算算步骤或推理过程)19.(8分)解不等式组,,请结合题意填空,完成本题的解答.(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.【解答】解:(Ⅰ)不等式①,得x≥3;(Ⅱ)不等式②,得x≤5;(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式组的解集为3≤x≤5.故答案分别为:x≥3,x≤5,3≤x≤5.20.(8分)某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.(Ⅰ)该商场服装部营业员的人数为25,图①中m的值为28(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.【解答】解:(1)根据条形图2+5+7+8+3=25(人),m=100﹣20﹣32﹣12﹣8=28;故答案为:25,28.(2)观察条形统计图,∵=18.6,∴这组数据的平均数是18.6,∵在这组数据中,21出现了8次,出现的次数最多,∴这组数据的众数是21,∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.21.(10分)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.【解答】解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,∵四边形OABC是平行四边形,∴OC=AB,∴OA=OB=AB,即△AOB是等边三角形,∴∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,∴OF⊥AB,∴,∴∠FOB=∠FOA=∠AOB=30°,∴.22.(10分)如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC 的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.23.(10分)1号探测气球从海拔5m处出发,以lm/min的速度上升.与此同时,2号探测气球从海拔15m处出发,以0.5m/min的速度上升,两个气球都匀速上升了50min.设气球球上升时间为xmin (0≤x≤50)(Ⅰ)根据题意,填写下表:(Ⅱ)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(Ⅲ)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?【解答】解:(Ⅰ)根据题意得:1号探测气球所在位置的海拔:m1=x+5,2号探测气球所在位置的海拔:m2=0.5x+15;当x=30时,m1=30+5=35;当x=10时,m2=5+15=20,故答案为:35,x+5,20,0.5x+15.(Ⅱ)两个气球能位于同一高度,根据题意得:x+5=0.5x+15,解得:x=20,有x+5=25,答:此时,气球上升了20分钟,都位于海拔25米的高度.(Ⅲ)当30≤x≤50时,由题意,可知1号气球所在的位置的海拔始终高于2号气球,设两个气球在同一时刻所在位置的海拔相差ym,则y=(x+5)﹣(0.5x+15)=0.5x﹣10,∵0.5>0,∴y随x的增大而增大,∴当x=50时,y取得最大值15,答:两个气球所在位置海拔最多相差15m.24.(10分)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,由MN⊥AB,可得:∠MNA=90°,∴在Rt△AMN中,MN=AM•sin∠OAB=,AN=AN•cos∠OAB=,∴,由折叠可知△A'MN≌△AMN,则∠A'=∠OAB=30°,∴∠A'MO=∠A'+∠OAB=60°,∴在Rt△COM中,可得CO=OM•tan∠A'MO=m,∴,∵,∴,即<<;(Ⅲ)①当点A′落在第二象限时,把S的值代入(2)中的函数关系式中,解方程求得m,根据m的取值范围判断取舍,两个根都舍去了;②当点A′落在第一象限时,则S=SRt△AMN,根据(2)中Rt△AMN的面积列方程求解,根据此时m的取值范围,把S=代入,可得点M的坐标为(,0).25.(10分)已知二次函数y=x2+bx+c(b,c为常数).(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;(Ⅱ)当c=5时,若在函数值y=l的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.【解答】解:(Ⅰ)当b=2,c=﹣3时,二次函数的解析式为y=x2+2x﹣3=(x+1)2﹣4,∴当x=﹣1时,二次函数取得最小值﹣4;(Ⅱ)当c=5时,二次函数的解析式为y=x2+bx+5,由题意得,x2+bx+5=1有两个相等是实数根,∴△=b2﹣16=0,解得,b1=4,b2=﹣4,∴二次函数的解析式y=x2+4x+5,y=x2﹣4x+5;(Ⅲ)当c=b2时,二次函数解析式为y═x2+bx+b2,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+b2=3b2为最小值,∴3b2=21,解得,b1=﹣(舍去),b2=;②当b≤﹣≤b+3时,即﹣2≤b≤0,∴x=﹣,y=b2为最小值,∴b2=21,解得,b1=﹣2(舍去),b2=2(舍去);③当﹣>b+3,即b<﹣2,在自变量x的值满足b≤x≤b+3的情况下,y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值,∴3b2+9b+9=21.解得,b1=1(舍去),b2=﹣4;∴b=时,解析式为:y=x2+x+7b=﹣4时,解析式为:y=x2﹣4x+16.综上可得,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年天津中考数学试卷及答案2015年天津中考数学一、选择题(共12小题;共36.0分)1. 计算(-18)÷6的结果等于 ( )A. -3B. 3C. -13D. 132. cos45°的值等于 ( )A. 12B. √22C. √32D. √33. 在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是 ( )A.B.C.D.4. 据2015 年 5 月 4 日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2270000人次.将2270000用科学记数法表示应为 ( )A.0.227×107B.2.27×106C.22.7×105D.227×1045. 右图是一个由4个相同的正方体组成的立体图形,它的主视图是A.B.C.D.6. 估计√11的值在 ( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间7. 在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P?的坐标为 ( )A. (3,2)B. (2,-3)C. (-3,-2)D. (3,-2)8. 分式方程2x-3=3x的解为 ( )A. x=0B. x=3C. x=5D. x=99. 已知反比例函数y=6x,当1<x<3时,y 的取值范围是 ( )A. 0<y<1B. 1<y<2C. 2<y<6D. y>610. 已知一个表面积为12 dm2的正方体,则这个正方体的棱长为 ( )A. 1 dmB.√2 dm C.√6 dmD. 3 dm11. 如图,已知在平行四边形ABCD中,AE⊥BC 于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA?E?,连接DA?.若∠ADC=60°,∠ADA?=50°,则∠DA?E?的大小为A. 130°B. 150°C. 160°D. 170°12. 已知抛物线y=-16x2+32x+6与x轴交于点A,点B,与y轴交于点C,若D为AB的中点,则CD的长为 ( )A. 154B. 92C. 132D. 152二、填空题(共6小题;共18.0分)13. 计算x2?x5的结果等于.14. 若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为.15. 不透明的袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率为.16. 如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=3,DB=2,BC=6,则DE的长为.17. 如图,在正六边形ABCDEF中,连接对角线AC,BD,CE,DF,EA,FB,可以得到一个六角星.记这些对角线的交点分别为H,I,J,K,L,M,则图中等边三角形共有个.18. 如图,在每个小正方形的边长为1的网格中,点A,B,C,D均在格点上,点E,F分别为线段BC,DB上的动点,且BE=DF.(I)如图①,当BE=5时,计算AE+AF的2值等于;(II)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置是如何找到的(不要求证明).三、解答题(共7小题;共66.0分)19. 解不等式组{x+3≥6,???①2x-1≤9.???②请结合题意填空,完成本题的解答.(1)解不等式①,得;(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.20. 某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该商场服装部营业员人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.21. 已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(1)如图①,求∠ADC的大小;(2)如图②,经过点O作CD的平行线,与AB 交于点E,与⊙O交于点F,连接AF,求∠FAB 的大小.22. 如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一直线上.小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°.已知点D到地面的距离DE为 1.56 m,EC=21 m,求旗杆AB的高度和建筑物BC的高度(结果保留小数点后一位).参考数据:tan47°≈1.07,tan42°≈0.90.23. 1号探测气球从海拔 5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1)根据题意,填写下表:上升时间/min1030?x15?1号探测气球所在位置的海拔/m30?2号探测气球所在位置的海拔/m(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?24. 将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(√3,0),点B(0,1),点O(0,0).过边OA上的动点M(点M不与点O,A重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A?.设OM=m,折叠后的△A?MN与四边形OMNB重叠部分的面积为S.(1)如图①,当点A?与顶点B重合时,求点M的坐标;(2)如图②,当点A?落在第二象限时,A?M与OB相交于点C,试用含m的式子表示S;时,求点M的坐标(直接写出结 (3)当S=√324果即可).25. 已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=-3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.答案第一部分1. A2. B3. A4. B5. A6. C7. D8. D9. C 10. B11. C 12. D第二部分13. x714. 315. 2916. 18517. 8;18. (I)5+√612(II)如图,取格点H,K,连接BH,CK,相交于点P.连接AP,与BC相交,得点E.取格点M,N,连接DM,CN,相交于点G,连接AG,与BD相交,得点F.线段AE,AF即为所求.第三部分19. (1) x≥319. (2) x≤519. (3) 如图所示:19. (4) 3≤x≤520. (1) 25;2820. (2) 观察条形统计图.=18.6,∵x=12×2+15×5+18×7+21×8+24×325∴这组数据的平均数是18.6.∵在这组数据中,21出现了8次,出现次数最多,∴这组数据的众数是21.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是18,∴这组数据的中位数是18.21. (1) ∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°.∵四边形OABC是平行四边形,∴AB ∥OC ,即AD ∥OC .∴∠ADC +∠OCD =180°.∴∠ADC =180°-∠OCD =90°.21. (2)如图,连接OB ,则OB =OA =OC .∵四边形OABC 是平行四边形,∴OC =AB .∴OA =OB =AB .即△AOB 是等边三角形.于是,∠AOB =60°.由OF ∥CD ,∠ADC =90°,得∠AEO =∠ADC =90°,∴OF ⊥AB ,∴BF?=AF ?.∴∠FOB =∠FOA =12∠AOB =30°.∴∠FAB =12∠FOB =15°.22. (1) 如图,根据题意,DE =1.56,EC=21,∠ACE =90°,∠DEC=90°.过点D 作DF ⊥AC ,垂足为F ,则∠DFC=90°,∠ADF=47°,∠BDF=42°.可得四边形DECF为矩形.∴DF=EC=21,FC=DE=1.56.在Rt△DFA中,tan∠ADF=AFDF,∴AF=DF?tan47°≈21×1.07=22.47.在Rt△DFB中,tan∠BDF=BFDF,∴BF=DF?tan42°≈21×0.90=18.90.于是,AB=AF-BF=22.47-18.90=3.57≈3.6,BC=BF+FC=18.90+1.56=20.46≈20.5.答:旗杆AB的高度约为 3.6 m,建筑物BC的高度约为20.5 m.23. (1) 填表如下:上升时间/min1030?x1号探测气球所在位置的海拔/m 1535?x+52号探测气球所在位置的海拔/m 2030?0.5x+1523. (2) 两个气球能位于同一高度,根据题意x+5=0.5x+15,解得x=20.有x+20=25.答:此时,气球上升了20 min,都位于海拔25 m 的高度.23. (3) 当30≤x≤50时,由题意,可知1号气球所在位置的海拔始终高于2号气球.设两个气球在同一时刻所在位置的海拔相差y m,则y=(x+5)-(0.5x+15)=0.5x-10.∵0.5>0,∴y随x的增大而增大.∴当x=50时,y取得最大值15.答:两个气球所在位置的海拔最多相差15 m.24. (1) 在Rt△ABO中,点A(√3,0),点B(0,1),点O(0,0),∴OA=√3,OB=1.由OM=m,得AM=OA-OM=√3-m.根据题意,由折叠可知△BMN?△AMN,∴BM=AM=√3-m.在Rt△MOB中,由勾股定理,BM2=OB2+OM2,得(√3-m)2=1+m2,解得m=√33.∴点M的坐标为(√33,0).24. (2) 在Rt△ABO中,tan∠OAB=OBOA =1√3=√33,∴∠OAB=30°.由MN⊥AB,得∠MNA=90°.∴在Rt△AMN中,得MN=AM?sin∠OAB=12(√3-m),AN=AM?cos∠OAB=√32(√3-m).∴S△AMN=12MN?AN=√38(√3-m)2.由折叠可知△A?MN?△AMN,有∠A?=∠OAB= 30°,∴∠A?MO=∠A?+∠OAB=60°.∴在Rt△COM中,得CO=OM?tan∠A?MO=√3m.∴S△COM=12OM?CO=√32m2.又S△ABO=12OA?OB=√32,于是,S=S△ABO-S△AMN-S△COM=√32-√3 8(√3-m)2-√32m2,即S=-5√38m2+34m+√38(0<m<√33).,0).24. (3) (2√3325. (1) 当b=2,c=-3时,二次函数的解析式为y=x2+2x-3,即y=(x+1)2-4.∴当x=-1时,二次函数取得最小值-4.25. (2) 当c=5时,二次函数的解析式为y=x2+bx+5.由题意,得方程x2+bx+5=1有两个相等的实数根.有Δ=b2-16=0,解得b1=4,b2=-4.∴此时二次函数的解析式为y=x2+4x+5或y=x2-4x+5.25. (3) 当c=b2时,二次函数的解析式为y= x2+bx+b2.它的图象是开口向上,对称轴为x=-b的抛物2线.①若-b<b,即b>0,2在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而增大,故当x=b时,y=b2+b?b+b2=3b2为最小值.∴3b2=21,解得b1=-√7(舍),b2=√7.②若b≤-b≤b+3,即-2≤b≤0,2当x=-b2时,y=(-b2)2+b?(-b2)+b2=34b2为最小值.∴34b2=21,解得b1=-2√7(舍),b2=2√7(舍).③若-b2>b+3,即b<-2,在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y随x的增大而减小,故当x=b+3时,y=(b+3)2+b(b+3)+b2=3b2+9b+9为最小值.∴3b2+9b+9=21,即b2+3b-4=0.解得b1=1(舍),b2=-4.综上所述,b=√7或b=-4.∴此时二次函数的解析式为y=x2+√7x+7或y=x2-4x+16.。