数学建模 四大常考全等模型复习练习题

合集下载

初中数学《全等三角形》基本模型训练含解析

初中数学《全等三角形》基本模型训练含解析

全等三角形基本模型专项训练一、单选题1如图,在Rt△ABC中,AB=AC,∠BAC=90°,点D,E分别在边BC及其延长线上,BD2+CE2=DE2,F为△ABC外一点,且FB⊥BC,FA⊥AE,则结论:①FA=AE;②∠DAE=45°;③S△ADE=14AD⋅EF;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.①②【答案】A【分析】根据全等三角形的性质,证明△ABF和△ACE全等,即可得到FA=AE;连接DF如图见解析,证明△ADE和△ADF全等,即可得到∠DAE=45°;延长AD交EF于H如图见解析,利用等腰直角△AFE三线合一的性质,∠FAE=90°,∠DAE=45°∠DAE=45°,可知AH⊥EF,S△ADE=12AD⋅EH,HE=HF=12EF,即可判断③;在Rt△EBF和Rt△EAF中,利用勾股定理以及等式的性质,即可判断④.【详解】解:∵AB=AC,∠BAC=90°∴∠ABC=∠ACB=45°∴∠ACE=180°-∠ACB=135°∵FB⊥BC∴∠FBE=90°∴∠ABF=∠ABC+∠FBE=135°∴∠ABF=∠ACE∵FA⊥AE∴∠FAE=90°=∠BAC∴∠FAE-∠FAC=∠BAC-∠FAC即∠CAE=∠BAF在△ABF和△ACE中,∠ACE=∠ABF AC=AB∠CAE=∠BAF∴△ACE≌△ABF ASA∴FA=EA,故①正确;连接DF,如图:∵△ACE≌△ABF∴BF=CE在Rt△BDF中,BD2+BF2=DF2∴BD2+CE2=DF2∵BD2+CE2=DE2∴DE=DF∵AE=AF,AD=AD∴△ADE≌△ADF SSS∴∠DAE=∠DAF∴∠DAE=12∠EAF=45°,故②正确;延长AD交EF于H,如图:∵AE=AF,∠EAD=∠FAD∴AH⊥EF,HE=HF=12EF∴S△ADE=12AD⋅EH=12AD⋅12EF=14AD⋅EF,故③正确;在Rt△EBF中,BE2+BF2=EF2∵CE=BF∴BE2+CE2=EF2∵AE=AF,∠FAE=90°∴EF2=AE2+AF2=2AE2∴BE2+CE2=2AE2,故④正确,综上所述,正确的有①②③④,故选:A.【点睛】本题考查了全等三角形的判定与性质、勾股定理、等腰直角三角形性质等知识,解题的关键是灵活运用所学知识.2如图所示,△ABC中,AC=BC,M、N分别为BC、AC上动点,且BM=CN,连AM、CN,当AM +BN最小时,CMCN=( ).A.2B.32C.54D.1【答案】D 【分析】过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,先证明△BCN ≌△HBM ,即有BN =HM ,则AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,再证明△ACM ≌△HBM ,问题随之得解.【详解】如图,过B 点在BC 下方作BH ∥AC ,且BH =AC ,链接BH ,AH ,∵BH ∥AC ,∴∠C =∠CBH ,∵BH =AC ,BM =CN ,∴△BCN ≌△HBM ,∴BN =HM ,∴AM +BN =AM +MH ,当A 、M 、H 三点共线时,AM +MH 值最小,如图,此时∵BH ∥AC ,∴∠C =∠CBH ,∠CAM =∠BHM ,∵AC =BC ,∴△ACM ≌△HBM ,∴CM =BM ,∵BM =CN ,∴CM CN=CM BM =1,故选:D .【点睛】本题主要考查了全等三角形的判定与性质,作出辅助线,构造全等三角形是解答本题的关键.3如图,正五边形ABCDE 中,点F 是边CD 的中点,AF ,BC 的延长线交于点N ,点P 是AN 上一个动点,点M 是BN 上一个动点,当PB +PM 的值最小时,∠BPN =()A.72°B.90°C.108°D.120°【答案】C【分析】本题考查了正多边形的定义,全等三角形的判定与性质等知识.连接BF ,EF ,PE ,EM ,根据全等三角形的判定与性质可得EP =BP ,则当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,分别求出∠BAP 和∠ABP 的度数,然后利用三角形外角的性质求解即可.【详解】解:连接BF ,EF ,PE ,EM ,∵正五边形ABCDE ,∴AE =AB =BC =ED ,∠BAE =∠AED =∠BCD =∠EDC =5-2 ×180°5=108°,∵点F 是边CD 的中点,∴CF =DF ,∴△BCF ≌△EDF SAS ,∴BF =EF ,又AE =AB ,AF =AF ,∴△AEF ≌△ABF SSS ,∴∠EAF =∠BAF =12∠BAE =54°,∴△AEP ≌△ABP SAS∴EP =BP ,∴PB +PM =EP +PM ≥EM ,∴当E 、P 、M 三点共线,且EM ⊥BC 时,PB +PM 的值最小,过点E 作EH ⊥BC 于H ,交AF 于P ,同理可求∠ABP =∠AEP =12∠AED =54°,∴∠BP N =∠BAP +∠ABP =108°,即当PB +PM 的值最小时,∠BPN =108°.故选:C .4如图,在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:①AB =MG ;②S △ABC =S △AFN ;③过点B 作BI ⊥EH 于点I ,延长B 交AC 于点J ,则AJ =CJ .④若AB =1,则EH 2+FN 2=5.其中正确的结论个数是()A.1个B.2个C.3个D.4个【答案】D 【分析】本题考查勾股定理,全等三角形的性质和判定,解题的关键是正确作出辅助线.首先根据题意证明出△ACB ≌△MCG SAS ,进而得到AB =MG ,即可判断①;过点F 作FO ⊥NA 交NA 延长线于点O ,证明出△AFO ≌△ABC AAS ,得到OF =BC ,然后利用三角形面积公式即可得到S △ABC =S △AFN ,即可判断②;过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ ,证明出△ABP ≌△BEI AAS ,得到AP =BI ,同理得到CQ =BI ,得到CQ =AP ,然后证明出△AJP ≌△CJQ AAS ,得到AJ =CJ ,即可判断③;根据全等三角形的性质得到EH =2BJ ,然后利用勾股定理证明出EH 2=AC 2+4BC 2,同理得到NF 2=4AC 2+BC 2,然后得到EH 2+NF 2=5AB 2=5,即可判断④.【详解】∵在Rt △ABC 中,∠ACB =90°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC =MC ,BC =GC ,∠MCA =∠GCB =90°∵∠ACB =90°∴∠MCG =∠ACB =90°∴△ACB ≌△MCG SAS∴AB =MG ,故①正确;如图所示,过点F 作FO ⊥NA 交NA 延长线于点O ,∵∠FAO +∠BAO =∠CAB +∠BAO =90°∴∠FAO =∠CAB又∵∠O =∠ACB =90°,AF =AB∴△AFO ≌△ABC AAS∴OF =BC∵AN =AC∵S △ANB =12AN ⋅OF ,S △ACB =12AC ⋅BC ∴S △ABC =S △AFN ,故②正确;如图所示,过点A 作AP ⊥BJ 交BJ 的延长线于点P ,过点C 作CQ ⊥BJ∵∠ABP +∠BEI =90°,∠EBI +∠BEI =90°∴∠ABP =∠BEI又∵∠P =∠BIE =90°,AB =BE∴△ABP ≌△BEI AAS∴AP =BI同理可证,△BCQ ≌△HBI AAS ∴CQ =BI∴CQ =AP∵∠P=∠CQJ=90°,∠AJP=∠CJQ∴△AJP≌△CJQ AAS∴AJ=CJ,故③正确;∵△ABP≌△BEI AAS∴BP=EI∵△BCQ≌△HBI AAS∴BQ=HI∵△AJP≌△CJQ AAS∴PJ=QJ∵EH=EI+HI=PB+BQ=PJ+QJ+BQ+BQ=2BJ ∵AJ=CJ∴BJ2=CJ2+BC2=14AC2+BC2∴EH2=2BJ2=4BJ2=414AC2+BC2=AC2+4BC2同理可证,NF2=4AC2+BC2∴EH2+NF2=AC2+4BC2+4AC2+BC2=5AC2+BC2=5AB2=5×12=5,故④正确.综上所述,正确的结论个数是4.故选:D.5如图,在Rt△AEB和Rt△AFC中,BE与AC相交于点M,与CF相交于点D,AB与CF相交于点N,∠E=∠F=90 °,∠EAC=∠FAB,AE=AF.给出下列结论:①∠B=∠C;②CD=DN;③BE= CF;④△ACN≅△ABM.其中正确的结论是()A.①③④B.①②③④C.①②③D.①②④【答案】A【分析】本题考查了两个全等三角形的判定及性质,根据已知条件判定两个三角形全等,可得到对应边及对应角相等,据此可判断①③,再结合条件证明两个三角形全等,可得到④,即可求得结果,灵活运用两个全等三角形的条件及性质是解题的关键.【详解】解:∵∠EAC=∠FAB,∴∠EAB=∠FAC,在△EAB 和△FAC 中,∠E =∠F =90 °AE =AF ∠EAB =∠FAC,∴△EAB ≌△FAC ASA ,∴∠B =∠C ,BE =CF ,AB =AC ,∴①③都正确,在△ACN 和△ABM 中,∠B =∠CAB =AC ∠CAN =∠BAM,∴△ACN ≌△ABM ASA ,故④正确,根据已知条件无法证明②是否正确,故①③④正确,故选:A .二、填空题6如图,在△ABC 中,AH 是高,AE ⎳BC ,AB =AE ,在AB 边上取点D ,连接DE ,DE =AC ,若S △ABC =5S △ADE ,BH =1,则BC =.【答案】2.5【分析】过点E 作EF ⊥AB ,交BA 的延长线于点F ,先分别证明△ABH ≌△EAF ,Rt △ACH ≌Rt △EDF ,由此可得S △ABH =S △EAF ,S △ACH =S △EDF =S △EAF +S △ADE ,再结合S △ABC =S △ABH +S △ACH =5S △ADE 可得S △ACH S △ABH =32,由此可得CH BH=32,进而即可求得答案.【详解】解:如图,过点E 作EF ⊥AB ,交BA 的延长线于点F ,∵EF ⊥AB ,AH ⊥BC ,∴∠EFA =∠AHB =∠AHC =90°,∵AE⎳BC ,∴∠EAF =∠B ,在△ABH 与△EAF 中,∠AHB =∠EFA∠B =∠EAFAB =EA∴△ABH ≌△EAF (AAS ),∴AH =EF ,S △ABH =S △EAF ,在Rt△ACH与Rt△EDF中,AH=EF AC=DE∴Rt△ACH≌Rt△EDF(HL),∴S△ACH=S△EDF=S△EAF+S△ADE,∵S△ABC=S△ABH+S△ACH=5S△ADE,∴S△ABH+S△EAF+S△ADE=5S△ADE,∴2S△ABH+S△ADE=5S△ADE,解得:S△ABH=2S△ADE,∴S△ACH=5S△ADE-S△ABH=3S△ADE,∴S△ACHS△ABH=3S△ADE2S△ADE=32,∴12CH⋅AH12BH⋅AH=32,即CHBH=32,又∵BH=1,∴CH=1.5,∴BC=BH+CH=2.5,故答案为:2.5.【点睛】本题考查了全等三角形的判定与性质以及三角形的面积公式,作出正确的辅助线并能灵活运用全等三角形的判定与性质是解决本题的关键.7如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是.【答案】3【分析】过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG,同理Rt△ADF≌Rt△ABH,得S四边形DGBA=6,进而得到FG的长.【详解】解:过点A作AH⊥BC于H,如图所示:在△ABC 和△ADE 中,BC =DE∠C =∠E CA =EA,∴△ABC ≌△AED SAS∴AD =AB ,S △ABC =S △AED ,又∵AF ⊥DE ,∴12×DE ×AF =12×BC ×AH ,∴AF =AH ,∵AF ⊥DE ,AH ⊥BC ,∴∠AFG =∠AHG =90°,在Rt △AFG 和Rt △AHG 中,AG =AG AF =AH ,∴Rt △AFG ≌Rt △AHG HL ,同理:Rt △ADF ≌Rt △ABH HL ,∴S 四边形DGBA =S 四边形AFGH =12,∵Rt △AFG ≌Rt △AHG ,∴S Rt △AFG =6,∵AF =4,∴12×FG ×4=6,解得:FG =3;故答案为:3.【点睛】本题考查了全等三角形的判定与性质以及三角形面积等知识,解决问题的关键是作辅助线构造全等三角形,解题时注意:全等三角形的面积相等.8如图,动点C 与线段AB 构成△ABC ,其边长满足AB =9,CA=2a +2,CB =2a -3.点D 在∠ACB 的平分线上,且∠ADC =90°,则a 的取值范围是,△ABD 的面积的最大值为.【答案】a >52454【分析】在△ABC 中,由三角形三边关系“在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边”可知AC +BC >AB ,代入数值即可确定a 的取值范围;延长AD 、CB交于点E ,首先利用“ASA ”证明△ACD ≌△ECD ,由全等三角形的性质可得AC =EC =2a +2,AD =ED ,进而可求得BE =5,结合三角形中线的性质易知S △ABD :S △ABE =1:2,确定△ABE 面积的最大值,即可获得答案.【详解】解:∵在△ABC 中,AC +BC >AB ,∴2a +2+2a -3>9,解得a >52;如下图,延长AD 、CB 交于点E ,∵CD 为∠ACB 的平分线,∴∠ACD =∠ECD ,在△ACD 和△ECD 中,∠ACD =∠ECDCD =CD ∠ADC =∠EDC =90°,∴△ACD ≌△ECD (ASA ),∴AC =EC =2a +2,AD =ED ,∵CB =2a -3,∴BE =2a +2-(2a -3)=5,∵AD =ED ,∴S △ABD :S △ABE =1:2,当BE ⊥AB 时,△ABE 的面积取最大值,即S △ABE max =12×9×5=452,∴S △ABD max =454.故答案为:a >52,454.【点睛】本题主要考查了三角形三边关系、解一元一次不等式、角平分线、全等三角形的判定与性质、三角形中线的性质等知识,熟练掌握相关知识,正确作出辅助线是解题关键.9如图,AB =AC ,AD=AE ,∠BAC =∠DAE =40°,BD 与CE 交于点F ,连接AF ,则∠AFB 的度数为.【答案】70°/70度【分析】本题考查了全等三角形的判定与性质,三角形内角和定理,构造全等三角形是解答本题的关键.过点A作AM⊥BD于点M,AN⊥CE于点N,根据手拉手模型证明△BAD≌△CAE,得到∠ADM=∠AEN,然后证明△AMD≌△ANE,得到∠DAM=∠EAN,AM=AN,进一步推得∠MAN=∠DAE= 40°,再证明△AMF≌△ANF,可得∠FAM=20°,最后根据三角形内角和定理即得答案.【详解】过点A作AM⊥BD于点M,AN⊥CE于点N,∵∠BAC=∠DAE=40°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE SAS,∴∠ADM=∠AEN,∵∠AMD=∠ANE=90°,AD=AE,∴△AMD≌△ANE AAS,∴∠DAM=∠EAN,AM=AN,∴∠DAM+∠DAN=∠EAN+∠DAN,即∠MAN=∠DAE=40°,∵∠AMF=∠ANF=90°,AM=AN,AF=AF,∴△AMF≌△ANF HL,∴∠FAM=∠FAN=1∠MAN=20°,2∴∠AFB=180°-90°-∠FAM=70°.故答案为:70°.10如图所示,已知△ABC,∠BAC=90°,AB=AC,点D和点E分别是AB和AC边上的动点,满足AD=CE,连接DE,点F是DE的中点,则CDAF的最大值为.【答案】5+1/1+5【分析】作EM⊥ED,且EM=ED,连DM,MC,取ME中点N,连ND、NC、NF,可根据“SAS”证明△ADE≌△CEM,可得∠ECM=90°,再设AF=1,并表示DE,EM,及CN,然后根据勾股定理求出DN,最后根据三角形的三边关系ND+NC≥DC,求出CD最大值,可得答案.【详解】解:过E作EM⊥ED,且EM=ED,连DM,MC.取ME中点N,连ND、NC、NF.∵∠ADE+∠AED=90°,∠AED+∠MEC=90°,∴∠ADE=∠MEC.∵AD=CE,DE=EM,∴△ADE≌△CEM,∴∠ECM=∠DAE=90°.设AF=1,∵F为DE中点,∴DE=2AF=2,∴EM=2.∵N为EM中点,∴CN=EN=1.∴DN=DE2+EN2= 5.∵ND+NC≥DC,∴CD最大值5+1,=5+1.∴CDAF故答案为:5+1.【点睛】本题主要考查了全等三角形的性质和判定,勾股定理,根据三角形的三边关系求最大值,作出辅助线是解题的关键.三、解答题11数学兴趣小组在活动时,老师提出了这样,一个问题:如图1:在△ABC中,AB=3,AC=5,D是BC的中点,求BC边上的中线AD的取值范围.【问题初探】:第一小组经过合作交流,得到如下解决方法:如图2延长AD至E.使得DE=AD,连接BE.利用三角形全等将线段AC转移到线段BE,这样就把线段AB,AC,2AD集中到△ABE中.利用三角形三边的关系即可得到中线AD的取值范围,第二小组经过合作交流,得到另一种解决方法:如图3过点B作AC的平行线交AD的延长线于点F,利用三角形全等将线段AC转移到BF,同样就把线段AB,AC,2AD集中到△ABF中,利用三角形三边的关系即可得到中线AD的取值范围.(1)请你选择一个小组的解题思路.写出证明过程【方法感悟】当条件中出现“中点”“中线”等条件时,可考虑将中线延长一倍或者作一条边的平行线.构造出“平行八字型”全等三角形;这样就把分散的已知条件和所证的结论集中到一个三角形中,顺利解决问题【类比分析】(2)如图4:在△ABC中,∠B=90°,AB=6,AD是△ABC的中线,CE⊥BC,CE=10且∠ADE=90°.求AE的长度.【思维拓展】(3)如图5:在△ABC中,AF⊥BC于点F在AB右侧作AD⊥AB,且AD=AB,在AC的左侧作AE⊥AC,且AE=AC,连接DE,延长AF交DE于点O,证明O为DE中点.【答案】(1)见解析(2)16(3)见解析【分析】(1)选择第一个小组的解题思路:延长AD到点E,使DE=AD,证明△ADC≌△EDB(SAS),得到BE=AC=10,再根据在△ABE中,5-3<AE<5+3,即2<2AD<8,求解即可;选择第二个小组的解题思路:过点B作AC的平行线交AD的延长线于点F,先证明△BDF≌△CDA (AAS),得到DF=AD,BF=AC=5,则2AD=AF,再根据在△ABF中,5-3<AF<5+3,即2<2AD<8,求解即可;(2)延长AD到点F,使DF=AD,连接CF,先证明△ABD≌△FCD SAS,得到∠FCD=∠ABD=90°,CF=AB=6,再证明E、C、F三点共线,得到EF=EC+CF=10+6=16,然后证明△ADE≌△FDE SAS,得到AE=EF=16解决问题;(3)过点E作EM∥AD交AD延长线于M,先证明△AEM≌△CAB AAS,得到EM=AB,再证明△AOD≌△MOE AAS,得到OD=OE,即可得出结论.【详解】解:(1)选择第一个小组的解题思路:如图2,延长AD到点E,使DE=AD,∵D是BC的中点,∴BD=CD,∵∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=10,△ABE中,5-3<AE<5+3,∴2<2AD<8,∴1<AD<4;选择第二个小组的解题思路:如图3,过点B作AC的平行线交AD的延长线于点F,∵D是BC的中点,∴BD=CD,∵BF∥AC,∴∠FBD=∠C,∠F=∠CAD,∴△BDF≌△CDA(AAS),∴DF=AD,BF=AC=5,∴2AD=AF,在△ABF中,5-3<AF<5+3,∴2<2AD<8,(2)延长AD到点F,使DF=AD,连接CF,如图4,∵D是BC的中点,∴BD=CD,∵∠ADB=∠FDC,DF=AD,∴△ABD≌△FCD SAS,∴∠FCD=∠ABD=90°,CF=AB=6,∵CE⊥BC,∴∠BCD=90°,∴∠FCD+∠ECD=180°,∴E、C、F三点共线,∴EF=EC+CF=10+6=16,∵∠ADE=90°,∴∠FDE=∠ADE=90°,∵DE=DE,AD=DF,∴△ADE≌△FDE SAS,∴AE=EF=16;(3)证明:过点E作EM∥AD交AD延长线于M,如图4,∵AD⊥AB,AE⊥AC,∴∠3+∠2+∠CAD=∠3+∠2+∠BAE=90°,∴∠CAD=∠BAE,又∵AF⊥BC,∴∠3+∠2+∠CAD=∠3+∠BAE+∠B=90°,∴∠2=∠B,∵EM∥AD,∴∠2=∠M,∴∠B=∠M,∵AE⊥AC,AF⊥BC,∴∠3+∠CAM=∠C+∠CAM=90°,∴∠3=∠C,∵AE=AC,∴△AEM≌△CAB AAS,∵AB =AD ,∴EM =AD ,∵∠2=∠M ,∠AOD =∠EOM ,∴△AOD ≌△MOE AAS ,∴OD =OE ,∴O 为DE 中点.【点睛】本题考查三角形三边的关系,全等三角形的判定与性质,余角的性质,平行线的性质,熟练掌握倍长中线,构造出“平行八字型”全等三角形是解题的关键.12已知,在等腰直角三角形ABC 中,AB =AC ,∠BAC =90°,∠ABC =∠ACB =45°,点D 是线段BC 上一点,点D 不与点B ,点C 重合,连接AD ,以AD 为一边作△ADE ,AD =AE ,∠DAE =90°,且点E 与点D 在直线AC 两侧,DE 与AC 交于点H ,连接CE .(1)如图1,求证:△ABD ≌△ACE .(2)如图2,在CE 的延长线上取一点F ,当∠AEF =∠AFE 时,求证:CD =CF .(3)过点A 作直线CE 的垂线,垂足为G ,当CD =6EG 时,直接写出△CDH 与△CEH 的面积比.【答案】(1)见详解(2)见详解(3)32或34【分析】本题主要考查了全等三角形的判定与性质,涉及SAS 、AAS 以及HL 等判定方法,(1)利用“SAS ”证明△ABD ≌△ACE 即可作答;(2)结合(1)的结论,再利用“AAS ”证明△ACD ≌△ACF 即可作答;(3)分类讨论,第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,先证明△AOC ≌△AGC ,即有AO =AG ,CO =CG ,同理可证明:MH =NH ,再证明Rt △AOD ≌Rt △AGE HL ,可得OD =GE ,问题即可作答;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,按照第一种情况作答即可.【详解】(1)∵∠DAE =90°,∠BAC =90°,∴∠DAE -∠DAH =∠BAC -∠DAH ,∴∠CAE =∠BAD ,又∵AB =AC ,AD =AE ,∴△ABD ≌△ACE SAS ;(2)∵△ABD ≌△ACE SAS ,∴∠ADB =∠AEC ,∠ABD =∠ACE =45°,∴180°-∠ADB =180°-∠AEC ,∠ACB =∠ACE =45°,∴∠ADC =∠AEF ,∵∠AEF =∠AFE ,∴∠ADC =∠AFE ,在△ACD 和△ACF 中,∴∠ACD =∠ACF∠ADC =∠AFC AC =AC,∴△ACD ≌△ACF AAS ,∴CD =CF ;(3)分类讨论:第一种情况:点G 在点E 的下方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,∵AO ⊥BC ,AG ⊥CE∴∠AOC =∠AGC =90°,又∵∠ACB =∠ACE =45°,AC =AC ,∴△AOC ≌△AGC ,∴AO =AG ,CO =CG ,同理可证明:MH =NH ,又∵AD =AE ,∴Rt △AOD ≌Rt △AGE HL ,∴OD =GE ,∵CD =6EG ,∴CO =CD -OD =5EG ,∴CG =CO =5EG ,∴CE =CG -EG =4EG ,∵S △CHD =12×CD ×MH ,S△CHE =12×CE ×NH ,MH =NH ,∴S △CHD S △CHE =12×CD ×MH 12×CE ×NH =CD ×MH CE ×NH ,∵CD =6EG ,CE =4EG ,MH =NH ,∴S △CHD S △CHE =CD ×MH CE ×NH=32;第二种情况:点G 在点E 的上方,过点A 作AO ⊥BC 于点O ,点H 作HM ⊥BC 于点M ,点H 作HN ⊥CG 于点N ,如图,同理可得:OD =GE ,OC =CG ,MH =NH ,∵CD =6EG ,∴CO =CD +OD =7EG ,∴CG =CO =7EG ,∴CE =CG +EG =8EG ,∴S △CHD S △CHE =CD ×MH CE ×NH=34;综上:△CDH 与△CEH 的面积比为32或者34.13如图,在平面直角坐标系中,O 为坐标原点,△ABC 的边BC 在x 轴上,A 、C 两点的坐标分别为A (0,m ),C (n ,0),B (-5,0),且m ,n 满足方程组m +2n =103m -n =9 ,点P 从点B 出发,以每秒2个单位长度的速度沿射线BO 匀速运动,设点P 运动时间为t 秒.(1)求A 、C 两点的坐标;(2)连接P A ,用含t 的代数式表示△AOP 的面积,并直接写出t 的取值范围;(3)当点P 在线段BO 上运动时,在y 轴上是否存在点Q ,使△POQ 与△AOC 全等?若存在,请求出t 的值并直接写出Q 点标;若不存在,请说明理由.【答案】(1)A (0,4),C (3,0);(2)0≤t <52,S △AOP =10-4t ;t >52,S △AOP =4t -10.(3)存在,Q (0,3)或(0,-3)或Q (0,4)或(0,-4).【分析】本题考查了全等三角形的性质和判定,二元一次方程组的解法,坐标与图形性质等知识点的综合运用,关键是利用分类讨论求出符合条件的所有情况.(1)解二元一次方程组求出m ,n 的值即可;(2)分为两种情况:当0≤t <52时,P 在线段OB 上,②当t >52时,P 在射线OC 上,求出OP 和OA ,根据三角形的面积公式求出即可;(3)分为四种情况:①当BP =1,OQ =3时,②当BP =2,OQ =4时,③④利用图形的对称性直接写出其余的点的坐标即可.【详解】(1)解方程组m +2n =103m -n =9 得m =4n =3 ,∴ A 的坐标是0,4 ,C 的坐标是3,0 ;(2)由已知,BP =2t ,OB =5.①0≤t <52,P 在线段OB 上.OP =OB -BP =5-2tS △AOP =12×OP ×OA 2=12×(5-2t )×4=10-4t .②t >52,P 在射线OC 上,OP =BP -OP =2t -5S △AOP =12×OA ×OP =12×4×(2t -5)=4t -10(3)在y 轴上存在点Q ,使△AOC 与△POQ 全等.①△POQ ≌△AOC 时,OQ =OC =3.OP =OA =4.t =5-42=12,Q (0,3)或Q (0,-3)②△POQ ≌△COA 时,OQ =OA =4,OP =OC =3.t =5-32=1 Q (0,4)或(0,-4)t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4);综上所述,t =12,Q (0,3)或(0,-3);t =1,Q (0,4)或(0,-4).14某校课后延时兴趣小组尝试用尺规来“作一条线段的三等分点”,请认真阅读下面的操作过程并完成相应的学习任务.如图1,①分别以点A ,B 为圆心,大于12AB 的长为半径在AB 两侧画弧,四段弧分别交于点C ,点D ;②连接AC ,BC ,AD ,作射线BD ;③以D 为圆心,BD 的长为半径画弧,交射线BD 于点E ;④连接CE ,交于AB 点F .点F 即为AB 的一个三等分点(即AF =13AB ).学习任务:(1)填空:四边形ADBC的形状是,你的依据是;(2)证明:AF=13AB;(3)如图2,若CE交AD于点H,∠CAD=60°,AC=6,将CH绕着点C旋转,当点H的对应点H 落在直线FD上时,求DH 的长.【答案】(1)菱形;四条边相等的四边形为菱形(2)见解析(3)DH′的长为33+32或33-32【分析】本题考查了菱形的判定与性质、相似三角形的判定与性质、等边三角形的判定与性质、全等三角形的判定与性质、勾股定理,善于利用特殊叫以及直角三角形中的关系是解题的关键.(1)根据菱形的性质判定即可.(2)证明△AFC∽△BFE,得出AFFB =ACBE,再根据线段关系即可求出.(3)利用菱形及已知条件推出相关信息,证明△ACD为等边三角形,再根据AAS证明△AHC≌△DHE,求得CH ;然后证明△AKF∽△BDF,根据相似三角形的性质得出AK、CK;最后用勾股定理解三角形即可.CH绕着点C旋转,点H的对应点H 需要分情况讨论.【详解】(1)解:由图的作法可知:AC=AD=BC=BD,∴四边形ADBC的形状是菱形,依据是:四条边相等的四边形为菱形.故答案为:菱形;四条边相等的四边形为菱形;(2)证明:∵四边形ADBC的形状是菱形,∴AC∥BE,∴△AFC∽△BFE,∴AF FB =ACBE.∵AC=BD,BD=DE,∴BE=2AC,∴AF FB =12,∴FB=2AF,∴AB=3AF.∴AF=13AB.(3)解:①当点H 在线段FD上时,连接CD,如图,∵AC=AD,∠CAD=60°,∴△ACD为等边三角形,∴CD=AD=6,∠ADC=60°.∵AC∥BE∴∠ACF =∠DEC .在△AHC 和△DHE 中,∠AHC =∠DHE∠ACE =∠DEC AC =DE,∴△AHC ≌△DHE AAS ,∴AH =HD =3,∵△ACD 为等边三角形,∴CH ⊥AD ,∠ACH =∠DCH =30°,∴CH =33.∴CH =CH =33.设FD 与AC 交于点K ,∵AC ∥BE ,∴△AKF ∽△BDF ,∴AK BD =AF FB=12.同理:CK ED =AF FB=12,∴AK BD =CK ED.∵BD =ED ,∴AK =CK =3,∴HK ⊥AC ,∠CDK =12∠ADC =30°.∴H K =CH 2-CK 2=32,DK =33.∴DH =DK -H K =33-32.②当点H 在射线FD 上时,连接CD ,如图,由①知CH =CH =33,HK ⊥AC ,AK =KC =3,∴DK =AD 2-AK 2=33,∴H K =CH 2-CK 2=32.∴DH =H K +DK =33+32.综上,DH 的长为33+32或33-32.15(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线l 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG ,AH 是BC 边上的高,延长HA 交EG 于点I ,求证:I 是EG 的中点.【答案】(1)见解析;(2)DE =BD +CE ,见解析;(3)见解析【分析】本题主要考查全等三角形的判定和性质,由条件证明三角形全等得到BD =AE 、CE =AD 是解题的关键.(1)由条件可证明△ABD ≌△CAE ,可得DA =CE ,AE =BD ,可得DE =BD +CE ;(2)由条件可知∠BAD +∠CAE =180°-α,且∠DBA +∠BAD =180°-α,可得∠DBA =∠CAE ,结合条件可证明△ABD ≌△CAE ,可得出结论;(3)由条件可知EM =AH =GN ,可得EM =GN ,结合条件可证明△EMI ≌△GNI ,可得出结论I 是EG 的中点.【详解】解:(1)如图1,∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,∴∠CAE =∠ABD ,在△ABD 和△CAE 中,∠ABD =∠CAE∠BDA =∠CEA AB =AC,∴△ABD ≌△CAE AAS ,∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(2)成立,理由如下:如图,证明如下:∵∠BDA =∠BAC =α,∴∠DBA +∠BAD =∠BAD +∠CAE =180°-α,∴∠DBA =∠CAE ,在△ABD 和△CAE 中.∠BDA =∠AEC∠DBA =∠CAE AB =AC.∴△ABD ≌△CAE AAS∴AE =BD ,AD =CE ,∴DE =AE +AD =BD +CE ;(3)如图3,过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N .∴∠EMI =∠EMA =∠GNA =90°,∠BAE =90°,∴∠EAM +BAH =90°,∵AH 是BC 边上的高,∴∠AHB =90°,∴∠BAH +∠ABH =90°,∴∠ABH =EAM ,∵AE =AB ,∴△ABH ≌△EAM ,∴EM =AH ,同理△ACH ≌△GAN ,∴AH =GN ,∴EM =GN ,在△EMI 和△GNI 中,∠EIM =∠GIN∠EMI =∠GNI EM =GN,∴△EMI ≌△GNI AAS ,∴EI =GI ,∴I 是EG 的中点.16如图,在△ABC 中,BC =5,高AD 、BE 相交于点O ,BD =2,且AE =BE.(1)请说明△AOE ≌△BCE 的理由;(2)动点P 从点O 出发,沿线段OA 以每秒1个单位长度的速度向终点A 运动,动点Q 从点B 出发沿射线BC 以每秒4个单位长度的速度运动,P 、Q 两点同时出发,当点P 到达A 点时,P 、Q 两点同时停止运动.设点P 的运动时间为t 秒,求当t 为何值时,△AOQ 的面积为3.(3)在(2)的条件下,点F 是直线AC 上的一点且CF =BO .当t 为何值时,以点B 、O 、P 为顶点的三角形与以点F 、C 、Q 为顶点的三角形全等?(请直接写出符合条件的t 值).【答案】(1)见解析(2)当t 为15或45时,△AOQ 的面积为3(3)t =1或53s 时,△BOP 与△FCQ 全等【分析】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,(1)首先推导出∠EAO =∠EBC ,通过ASA 即可证明△AOE ≌△BCE ;(2)分两种情形讨论求解即可①当点Q 在线段BD 上时,QD =2-4t ,②当点Q 在射线DC 上时,DQ =4t -2时;依据三角形面积计算公式解答即可;(3)分两种情形求解即可①如图2中,当OP =CQ 时,BOP ≌△FCQ .②如图3中,当OP =CQ 时,△BOP ≌△FCQ .【详解】(1)如图1中,∵AD 是高,∴∠ADC =90°,∵BE 是高,∴∠AEB =∠BEC =90°,∴∠EAO +∠ACD =90°,∠EBC +∠ECB =90°,∴∠EAO =∠EBC ,在△AOE 和△BCE 中,∠EAO =∠EBCAE =BE ∠AEO=∠BEC,∴△AOE ≌△BCE ASA ,(2)解:由(1)知△AOE ≌△BCE ,∴OA =BC =5,∵BD =2,∴CD =3,由题意OP =t ,BQ =4t ,①当点Q 在线段BD 上时,QD =2-4t ,∴S △AOQ =12OA ⋅QD =12×5×2-4t =3,解得:t =15;②当点Q 在BD 延长线上时,DQ =4t -2,∴S △AOQ =12OA ⋅DQ =12×5×4t -2 =3,解得:t =45,综上,当t 为15或45时,△AOQ 的面积为3;(3)存在.①如图2中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴5-4t =t ,解得t =1,②如图3中,当OP =CQ 时,∵OB =CF ,∠POB =∠FCQ ,∴△BOP ≌△FCQ .∴CQ =OP ,∴4t -5=t ,解得t =53.综上所述,t =1或53s 时,△BOP 与△FCQ 全等.17如图1,在△ABC 中,BD 为AC 边上的高,BF 是∠ABD 的角平分线,点E 为AF 上一点,连接AE ,∠AEF =45°.(1)求证:AE平分∠BAF(2)如图2,连接CE交BD于点G,若△BAE与△CAE的面积相等,求证:BG=CF【答案】(1)见解析;(2)见解析【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF是∠ABD的角平分线和,BD为AC边上的高,可得12∠BAD=45°-12∠ABD,由∠AEF=45°得∠BAE=45°-∠ABE=45°-12∠ABD,即可证明∠BAE=12∠BAD;(2)过点E作EM⊥AB于点M,EN⊥AC于点N,由角平分线性质可以得EM=EN,由△BAE与△CAE的面积相等可得AB=AC,证明△ABE≌△ACE(SAS),得出∠AEB=∠CEB=135°,BE=EC,即可得出∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,再根据垂直模型证明△BEG≌△CEF(ASA),即可得出结论.【详解】(1)证明:∵BD为AC边上的高,即∠ADB=90°,∴∠ABD+∠BAD=90°,∴12(∠ABD+∠BAD)=45°,∴1 2∠BAD=45°-12∠ABD∵∠AEF=∠ABF+∠BAE=45°,∴∠BAE=45°-∠ABF,∵∠ABF=12∠ABD,∴∠BAE=45°-12∠ABD,∴∠BAE=12∠BAF,即:AE平分∠BAF.(2)过点E作EM⊥AB于点M,EN⊥AC于点N,∵AE平分∠BAC,且EM⊥AB,EN⊥AC,∴EM=EN.∵S△ABE=S△ACE,∴AB=AC,∵AE平分∠BAC,∴∠BAE=∠CAE,在△ABE和△ACE中,AB=BC∠BAE=∠CAE AE=AE∴△ABE≌△ACE(SAS),∴∠AEB=∠CEB,BE=EC,∵∠AEF=45°,∴∠AEB=∠AEC=135°,∴∠BEG=∠CEF=360°-∠AEB-∠AEC=90°,∵BD为AC边上的高,∴∠ADB=90°,∴∠FBD+∠BFC=∠BFC+∠FCE,∴∠EBG=∠ECF.在△BEG和△CEF中,∠BEG=∠CEF BE=CE∠EBG=∠ECF∴△BEG≌△CEF(ASA).∴BG=CF .18如图,已知A a,0,B0,b,AB=AC且AB⊥AC,AC交y轴于E点.(1)如图1,若a2+b2-4a-8b+20=0,求C点坐标;(2)如图2,A,B两点分别在x轴,y轴正半轴上,E为AC的中点,BC交x轴于G点,连EG,若a=3,求G点的坐标;(3)如图3,A在x轴的负半轴上,以BC为边在BC的右侧作等边△BCD,连OD,当∠BOD=60°时,请探究线段OA、OB、OD之间的数量关系,并证明.【答案】(1)(-2,-2)(2)(-2,0)(3)OD=OB+2OA【分析】(1)利用完全平方公式将等式变形为两个数平方和的形式,即可求出a=2,b=4,如图1中,过点C作CH ⊥x轴于点H,证明△AHC≌△BOA,可得CH=OA=2,AH=OB=4,即可得到点C坐标.(2)根据(1)可得CH=OA=a,AH=OB=b,再由a=3,E为AC的中点,可得点C(-3,-3),AH=OB=6,再利用面积法求出AG =5,即可解题;(3)过点C 作CH ⊥x 轴于点H ,在OD 上取一点M ,使得OM =OB ,证明△OBM 是等边三角形,进而证明△MBD ≌△OBC ,得∠BMD =∠BOC =120°,MD =OC ,再证明∠COH =30°,得OC =2CH =2OA ,即可得出OD =OB +2OA .【详解】(1)解:∵a 2+b 2-4a -8b +20=0,∴(a 2-4a +4)+(b 2-8b +16)=0,即(a -2)2+(b -4)2=0,∴a =2,b =4,∴A 2,0 ,B 0,4如图1中,过点C 作CH ⊥x 轴于点H ,∵∠AHC =∠BOA =∠BAC =90°,∴∠CAH +∠BAO =90°,∠BAO +∠ABO =90°,∴∠CAH =∠ABO ,在△AHC 和△BOA 中,∠AHC =∠BOA∠CAH =∠ABO AC =BA,∴△AHC ≌△BOA (AAS ),∴CH =OA =2,AH =OB =4,∴OH =AH -OA =4-2=2∴点C 坐标为(-2,-2);(2)如图2,同理(1)可证明:CH =OA =a ,AH =OB =b ,∵a =3,E 为AC 的中点,OE 平行于CH ,∴OA =OH =3,CH =3,∴点C (-3,-3),AH =OB =6,AB =AC =OA 2+OB 2=62+32=35,∵S △ABC =S △AGC +S △AGB ,即12×35×35=12×3⋅AG +12×6⋅AG ,∴AG =5,∴GO =AG -OA =5-3=2,∴点G 坐标为(-2,0);(3)结论:OD =OB +2OA ,如图3,过点C 作CH⊥x轴于点H ,同理可得:CH =OA ,AH =OB ,在OD 上取一点M ,使得OM =OB ,∵OM =OB ,∠BOD =60°,∴△OBM 是等边三角形,∴BO =BM ,∠OMB =60°,∴∠BMD =120°,∵△BCD 是等边三角形,∴BC =BD ,∠CBD =∠OBM =60°,∴∠DBM =∠CBO ,在△MBD 和△OBC 中,BM =OB∠DBM =∠CBO BD =BC,∴△MBD ≌△OBC (SAS ),∴∠BMD =∠BOC =120°,MD =OC ,∴∠COH =120°-90°=30°,∵CH ⊥x 轴,∴OC =2CH =2OA ,∵OD =OM +MD ,∴OD =OB +OC =OB +2OA【点睛】本题考查了等腰直角三角形的性质,等边三角形的判定和性质,全等三角形的判定和性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.19已知△ABC 为等边三角形,D 是边AC 上的一点,连接BD ,E 为BD 上的一点,连接CE.(1)如图1,延长CE 交AB 于点G .若∠DCG =15°,BG =2,求BC 的长;(2)如图2,将△BEC 绕点B 逆时针旋转60°至△BFA ,延长CB 至点M ,使得BM =DC ,连接AM 交BF 于点N ,探究线段FN ,DE ,BE 之间的数量关系,并说明理由;(3)如图3,在(2)问的条件下,过点A 作AH ⊥BC 于点H ,过点B 作BK ∥AH 且BK =AH ,连接HK ,NK ,NH ,NC .若BC =4,当12BD +NK 的值最小时,请直接写出CD NH的值.【答案】(1)1+3(2)2FN +DE =BE .理由见解析(3)277【分析】(1)作CF⊥BC,解直角三角形BFG求得BF和FG,进而解直角三角形CFG求得CF,从而得出结果;(2)延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,证明△ABG≌△CBD,进而证明△ANG≌ΔMNB,△AFN≌△MHN,△BMH≌△DCE,进一步得出结论;BD+NK最小,此时BG⊥AG,即BD⊥AC,进一步得出(3)可得出当K、N、G共线且与AG垂直时,12结果.【详解】(1)解:如图1,作CF⊥BC于F,∴∠CFG=∠BFG=90°,∵△ABC是等边三角形,∴∠ACB=∠ABC=60°,在Rt△BFG中,BG=2,∠ABC=60°,=1,∴BF=2cos60°=2×12=3,FG=2⋅sin60°=2×32在Rt△CFG中,FG=3,∠FCG=∠ACB-∠ACG=60°-15°=45°,∴CF=FG=3,tan∠FCG∴BC=BF+FC=1+3;(2)证明:如图2,延长BF至G,使FG=DE,连接AG,作BH∥AF,交BF于H,∴∠MHN=∠AFN,∠NMH=∠FAN,∴∠MHB=∠AFG∵△BEC绕点B逆时针旋转60°至△BFA,∴BF=BE,∠ABF=∠CBE,AB=BC,∴BG=BD,∴△ABG≌△CBD,∴AG=CD=BM,∠G=∠BDC=180°-∠CBE-∠ACB=120°-∠CBE,∵∠MBN=180°-∠ABC-∠ABF=120°-∠CBE,∴∠G=∠MBN,∴△ANG≌△MNB,∴AN=MN,∴△AFN≌△MHN,∴FN=NH,∵△ANG ≌△MNB ,∴NG =BN ,∵FN =NH ,∴BH =FG ,∵FG =DE∴BH =DE ,∵旋转,∴CE =AF ,∵△AFN ≌△MHN ,∴AF =MH ,∴MH =CE ,∵CD =BM ,∴△BMH ≌△DCE ,∴BH =DE ,∵FN +NH +BH =BF ,∴2FN +DE =BE ;(3)解:如图3,由(2)知:BD =BG =2BN ,∴12BD +NK =GN +NK ,∴当K 、N 、G 共线且与AG 垂直时,12BD +NK 最小,此时BG ⊥AG ,即BD ⊥AC ,如图4,连接NH ,∵AC =BC =4,∴CD =BH =2,BD =32BC =23,BN =GN =12BG =12BD =3,∵NH =BH 2+BN 2=2+(3)2=7,∴CD NH=277.【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.。

人教版中考数学总复习微专题一 常考的四大全等模型 模型一 平移模型

人教版中考数学总复习微专题一 常考的四大全等模型 模型一  平移模型
第二部分 微专题拓展
微专题一 常考的四大全等模型
目录
01 基本模型 02 针对训练 03 有一组边共线或部分重合,另两组边分别平行,常要在移
模型总结 动方向上加(减)公共线段,构造线段相等,或利用平行线 性质找到对应角相等
返回目录
针对训练 例1(2021·大连)如图W-1-1,点A,D,B,E在一条直线 上,AD=BE,AC=DF,AC∥DF.求证:BC=EF.
证明:∵AC∥DF,∴∠CAB=∠FDE. 又∵BC∥EF,∴∠CBA=∠FED.
∠CAB=∠FDE, 在△ABC和△DEF中,ቐAB=DE,
∠CBA=∠FED,
∴△ABC≌△DEF(ASA).
返回目录
谢谢
返回目录
证明:∵AD=BE,∴AD+BD=BE+BD,即AB= DE. ∵AC∥DF,∴∠A=∠EDF.
AB=DE, 在△ABC与△DEF中,ቐ ∠A=∠EDF,
AC=DF,
返回目录
针对巩固
1. (2021·衡阳)如图W-1-2,点A,B,D,E在同一条直 线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.

2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。

模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。

【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

数学模型试题及答案解析

数学模型试题及答案解析

数学模型试题及答案解析一、单项选择题(每题3分,共30分)1. 以下哪个不是数学模型的特征?A. 抽象性B. 精确性C. 可验证性D. 复杂性答案:D2. 数学模型的建立通常不包括以下哪个步骤?A. 定义问题B. 收集数据C. 建立假设D. 验证结果答案:D3. 在数学建模中,以下哪个不是模型分析的方法?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:D4. 数学模型的验证不包括以下哪项?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:D5. 在数学建模中,以下哪个不是模型的类型?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:D6. 以下哪个是数学模型的典型应用领域?A. 经济学B. 物理学C. 生物学D. 所有以上答案:D7. 数学模型的建立过程中,以下哪个步骤是不必要的?A. 问题定义B. 假设建立C. 模型求解D. 模型展示答案:D8. 数学模型的分析中,以下哪个不是常用的工具?A. 微分方程B. 线性代数C. 概率论D. 量子力学答案:D9. 在数学建模中,以下哪个不是模型的评估标准?A. 准确性B. 可解释性C. 简洁性D. 复杂性答案:D10. 数学模型的建立过程中,以下哪个步骤是至关重要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:A二、多项选择题(每题5分,共20分)11. 数学模型的建立过程中,以下哪些步骤是必要的?A. 问题定义B. 数据收集C. 模型求解D. 模型验证答案:ABCD12. 数学模型的类型包括以下哪些?A. 确定性模型B. 随机模型C. 动态模型D. 静态模型答案:ABCD13. 数学模型的分析方法包括以下哪些?A. 定性分析B. 数值分析C. 图形分析D. 统计分析答案:ABCD14. 数学模型的验证包括以下哪些?A. 内部一致性检验B. 与已知结果比较C. 与实验数据比较D. 模型的优化答案:ABC三、填空题(每题4分,共20分)15. 数学模型的建立通常包括定义问题、______、建立假设和模型求解四个步骤。

2023学年八年级数学上册高分突破必练专题(人教版)全等三角形基本模型(4大模型)(解析版)

2023学年八年级数学上册高分突破必练专题(人教版)全等三角形基本模型(4大模型)(解析版)

全等三角形基本模型(4大模型)模型一:平移型模型二:翻折型模型三:旋转型模型四:一线三垂直型【类型一:平移型】【典例1】如图已知点E、C在线段BF上BE=CF AB∥DE∠ACB=∠F.求证:.【解答】证明:∵AB∥DE∴∠B=∠DEF∵BE=CF∴BE+EC=CF+EC即BC=EF.∴在△ABC和△DEF中{∠B=∠DEF BC=EF ∠ACB=∠F∴△ABC≅△DEF(ASA).【变式1-1】如图已知Rt△ABC与Rt△DEF中△A=△D=90° 点B、F、C、E在同一直线上且AB=DE BF=CE 求证:△B=△E.【解答】证明:∵BF=CE BF+FC=BC CE+CF=EF∴BC=EF在Rt△ABC和Rt△DEF中∵{BC=EFAB=DE∴Rt△ABC≌Rt△DEF(HL)∴∠B=∠E.【变式1-2】如图点A、B、C、D在一条直线上EA//FB EC//FD EA=FB.求证:AB=CD.【解答】证明:∵EA∥FB∴∠A=∠FBD∵EC∥FD∴∠D=∠ECA 在△EAC和△FBD中{∠ECA=∠D∠A=∠FBDAE=BF∴△EAC≌△FBD(AAS)∴AC=BD∴AB+BC=BC+CD∴AB=CD.【变式1-3】如图点B C E F在同一直线上BE=CF AC⊥BC DF⊥EF垂足分别为C F AB=DE.求证:AC=DF.【解答】证明:∵BE=CF∴BE−CE=CF−CE即BC=EF在Rt△ABC和Rt△DEF中{BC=EFAB=DE∴Rt△ABC△Rt△DEF(HL)∴AC=DF.【类型二:翻折型】【典例2】已知△A=△D BC平分△ABD 求证:AC=DC.【解答】解:∵BC平分△ABD ∴△ABC=△DBC在△BAC和△BDC中{∠A=∠D ∠ABC=∠DBC BC=BC∴△BAC△△BDC∴AC=DC.【变式2-1】如图已知BD是∠ABC的角平分线AB=CB.求证:△ABD≌△CBD.【解答】证明:∵BD是∠ABC的角平分线(已知)∴∠ABD=∠CBD(角平分线定义)在△ABC与△CBD中∵{AB=CB(已知)∠ABD=∠CBD(已证)BD=BD(公共边)∴△ABD≌△CBD(SAS).【变式2-2】已知:如图线段BE、DC交于点O 点D在线段AB上点E在线段AC 上AB=AC AD=AE.求证:△B=△C.【解答】解:在△AEB和△ADC中{AB=AC ∠A=∠A AE=AD∴△AEB△△ADC(SAS)∴△B=△C.【变式2-3】已知:如图△ABC=△DCB △1=△2.求证AB=DC.【解答】证明:如图记AC BD的交点为O∵△ABC=△DCB △1=△2又∵△OBC=△ABC−△1 △OCB=△DCB−△2∴△OBC=△OCB∴OB=OC在△ABO和△DCO中{∠1=∠2OB=OC∠AOB=∠DOC∴△ABO△△DCO(ASA)∴AB=DC.【类型三:旋转型】【典例3】已知:如图AD BE相交于点O AB△BE DE△AD 垂足分别为B D OA=OE.求证:△ABO△△EDO.【解答】证明:∵AB△BE DE△AD∴△B=△D=90°.在△ABO和△EDO中{∠B=∠D ∠AOB=∠EOD OA=OE∴△ABO△△EDO.【变式3】如图已知线段AC BD相交于点E AE=DE BE=CE求证:△ABE△△DCE.【解答】证明:在△ABE和△DCE中{AE=DE ∠AEB=∠DEC BE=CE∴△ABE△△DCE(SAS)【典例4】如图CA=CD ∠1=∠2 BC=EC求证:∠B=∠E.【解答】证明:∵△1=△2∴△1+△ECA=△2+△ECA 即△ACB=△DCE 在△ABC和△DEC中{CA=CD∠ACB=∠DCEBC=EC∴△ABC△△DEC(SAS)∴∠B=∠E.【变式4】如图△ABC中点E在BC边上AE=AB 将线段AC绕A点旋转到AF 的位置使得△CAF=△BAE 连接EF EF与AC交于点G.(1)求证:EF=BC;(2)若△ABC=65° △ACB=28° 求△FGC的度数.【解答】(1)证明:∵△CAF=△BAE∴△CAF+△CAE=△BAE+△CAE 即△EAF=△BAC∵AE=AB AC=AF∴△EAF△△BAC∴EF=BC;(2)解:∵△EAF△△BAC∴△AEF=△ABC=65°∵AB=AE∴△AEB=△ABC=65°∴△FEC=180°-△AEB-△AEF=50°∴△FGC=△FEC+△ACB=78°.【类型四:一线三垂直型】【典例5】如图AB=AC直线l经过点A BM△l CN△l垂足分别为M、N BM=AN.(1)求证:MN=BM+CN;(2)求证:△BAC=90°.【解答】(1)证明:∵BM△直线l CN△直线l ∴△AMB=△CNA=90°在Rt△AMB和Rt△CNA中{AB=CABM=AN∴Rt△AMB△Rt△CNA(HL)∴BM=AN CN=AM∴MN=AM+AN=BM+CN;(2)由(1)得:Rt△AMB△Rt△CNA∴△BAM=△ACN∵△CAN+△ACN=90°∴△CAN+△BAM=90°∴△BAC=180°﹣90°=90°.【变式5-1】课间小明拿着老师的等腰三角板玩不小心掉在两墙之间如图所示:(1)求证:△ADC△△CEB;(2)已知DE=35cm 请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相同)【解答】(1)证明:由题意得:AC=BC △ACB=90° AD△DE BE△DE∴△ADC=△CEB=90°∴△ACD+△BCE=90° △ACD+△DAC=90°∴△BCE=△DAC在△ADC和△CEB中{∠ADC=∠CEB ∠DAC=∠BCE AC=BC∴△ADC△△CEB(AAS);(2)解:由题意得:∵一块墙砖的厚度为a∴AD=4a BE=3a由(1)得:△ADC△△CEB∴DC=BE=3a AD=CE=4a∴DC+CE=BE+AD=7a=35∴a=5答:砌墙砖块的厚度a为5cm.【变式5-2】在△ABC中∠ACB=90°AC=BC直线MN经过点C且AD⊥MN于D BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时①求证:△ADC△ △CEB;②求证:DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时(1)中的结论②还成立吗?若成立请给出证明;若不成立说明理由.【解答】(1)证明:①∵AD△MN BE△MN∴△ADC=△BEC=90°∵△ACB=90°∴△ACD+△BCE=90° △DAC+△ACD=90°∴△DAC=△BCE又∵AC=BC∴△ADC△ △CEB;②∵△ADC△ △CEB∴CD=BE AD=CE∵DE=CE+CD∴DE=AD+BE;(2)解:DE=AD+BE不成立此时应有DE=AD-BE 理由如下:∵BE△MN AD△MN∴△ADC=△BEC=90°∴△EBC+△ECB=90°∵△ACB=90°∴△ECB+△ACE=90°∴△ACD=△EBC又∵AC=BC∴△ADC△ △CEB∴AD=CE CD=BE∵DE=CE-CD∴DE=AD-BE.1.如图在△ABC和△CDE中点B、D、C在同一直线上已知△ACB=△E AC=CE AB∥DE 求证:△ABC△△CDE.【解答】证明:∵AB∥DE ∴∠B=∠EDC在△ABC和△CDE中{∠B=∠EDC ∠ACB=∠E AC=CE∴△ABC≌△CDE(AAS).2.如图AC和BD相交于点O OA=OC DC△AB.求证DC=AB.【解答】证明:∵DC△AB∴△D=△B在△COD与△AOB中{∠D=∠B ∠DOC=∠BOA OC=OA∴△COD△△AOB(AAS)∴DC=AB.3.如图点B、F、C、E在同一条直线上△B=△E AB=DE BF=CE.求证:AC =DF.【解答】证明:∵BF=CE∴BF+FC=CE+FC 即BC=EF在△ABC和△DEF中{AB=DE ∠B=∠E BC=EF∴△ABC△△DEF(SAS)∴AC=DF.4.如图等边△ABC的内部有一点D 连接BD 以BD为边作等边△BDE连接AD CE 求证:AD=CE.【解答】证明:∵△ABC和△DBE为等边三角形∴△ABC =△DBE=60°AB=BC DB=EB∴△ABC−△DBC=△DBE−△DBC即△ABD=△CBE在△ABD和△CBE中{AB=BC∠ABD=∠CBE BD=EB∴△ABD≌△CBE(SAS)∴AD=CE5.如图点E F在BC上BE=CF △A=△D △B=△C 求证:AB=DC.【解答】证明:∵点E F在BC上BE=CF ∴BE+EF=CF+EF 即BF=CE;在△ABF和△DCE中{∠A=∠D ∠B=∠C BF=CE∴△ABF△△DCE(AAS)∴AB=CD(全等三角形的对应边相等).6.如图点B、C、E、F在一条直线上AB=CD AE=DF BF=CE求证:∠A=∠D.【解答】证明:∵BF=CE∴BF+EF=CE+EF即BE=CF在△ABE和△DCF中{AB=DCBE=CFAE=DF∴△ABE△△DCF.∴∠A=∠D7.如图已知AB、CD相交于点O 且AD=CB AB=CD.求证:△A=△C.【解答】证明:连接BD 如图在△ABD和△CDB中∵AD=CB AB=CD BD=DB∴△ABD△△CDB(SSS)∴△A=△C.8.已知:如图A、C、F、D在同一条直线上且AB//DE AF=DC AB=DE求证:△ABC△△DEF.【解答】证明:∵AB△DE∴△A=△D∵AF=CD∴AD+CF=CF+DF∴AC=DF在△ABC和△DEF中{AC=DF ∠A=∠D AB=DE∴△ABC△△DEF(SAS).9.如图:点E、F在BC上BE=CF AB=DC∠B=∠C AF与DE交于点G.过点G作GH⊥BC垂足为H.(1)求证:△ABF≌△DCE(2)求证:∠EGH=∠FGH【解答】(1)证明:∵BE=CF∴BF=CE在△ABF和△DCE中{AB=DC ∠B=∠C BF=CE∴△ABF△△DCE(SAS).(2)证明:∵△ABF△△DCE∴△AFE=△DEC∴EG=GF∵GH△BC∴△EGH=△FGH.10.如图AD平分∠BAC ∠ADB=∠ADC.(1)求证:△ABD⊆△ACD:(2)若∠B=25° ∠BAC=40°求∠BDC的度数.【解答】(1)证明:∵AD平分∠BAC ∴∠BAD=∠CAD.又∵AD=DA ∠ADB=∠ADC ∴△ABD≅△ACD(ASA)(2)解:∵∠BAD=∠CAD ∠BAC=40°∴∠BAD=∠CAD=12∠BAC=20°.又∵∠B=25°∴∠ADB=180°−∠B−∠BAD=135°.又∵△ABD≅△ACD ∴∠ADC=∠ADB=135°.又∵∠ADB+∠ADC+∠BDC=360°∴∠BDC=90°.11.如图在四边形ABCD中E是CB上一点分别延长AE DC相交于点F AB= CF ∠CEA=∠B+∠F.(1)求证:∠EAB=∠F;(2)若BC=10求BE的长.【解答】(1)证明:∵∠CEA是△ABE的外角∴∠CEA=∠B+∠EAB.又∵∠CEA=∠B+∠F∴∠EAB=∠F.(2)解:在△ABE和△FCE中{AB=FC ∠EAB=∠F ∠AEB=∠FEC∴△ABE△△FCE.∴BE=CE.∵BC=10∴BE=5.12.如图AB⊥BE DE⊥BE垂足分别为点B E且AB=DE BF=CE点B F C E在同一条直线上AC DF相交于点G.求证:(1)ΔABC≌ΔDEF;(2)AG=DG.【解答】(1)解:∵AB⊥BE DE⊥BE∴∠B=∠E=90°∵BF=CE∴BF+FC=CE+FC即BC=EF在ΔABC和ΔDEF中{AB=DE∠B=∠EBC=EF∴ΔABC≌ΔDEF(SAS)(2)解:由(1)全等可知:AC=DF ∠ACB=∠DFE∴CG=FG13.如图已知△A=△D AB=DB 点E在AC边上△AED=△CBE AB和DE相交于点F.(1)求证:△ABC△△DBE.(2)若△CBE=50° 求△BED的度数.【解答】(1)证明:∵△A=△D △AFE=△BFD∴△ABD=△AED又∵△AED=△CBE∴∠ABD=∠CBE∴△ABD+△ABE=△CBE+△ABE即△ABC=△DBE在△ABC和△DBE中{∠A=∠DAB=DB ∠ABC=∠DBE∴△ABC△△DBE(ASA);(2)解:∵△ABC△△DBE∴BE=BC∴△BEC=△C∵△CBE=50°∴△BEC=△C=65°.∴AG=DG14.已知:如图点A D C B在同一条直线上AD=BC AE=BF CE=DF求证:(1)AE△FB(1)DE=CF.【解答】(1)证明:在△ADE和△BCF中{AE=BF∠A=∠BAD=BC∴△ADE△△BCF(SAS)∴DE=CF.15.如图在△ABC中AB=BC BE平分△ABC AD为BC边上的高且AD=BD.(1)求证:△ABE=△CAD(2)试判断线段AB与BD DH之间有何数量关系并说明理由.【解答】(1)证明:∵AB=BC BE平分△ABC∴BE△AC∴△BEA=90°=△ADB∵△CAD+△BEA+△AHE=180° △HBD+△ADB+△BHD=180° △AHE=△BHD∴△HBD=△CAD∵△HBD=△ABE∴△ABE=△CAD(2)解:AB=BD+DH理由是:∵在△BDH和△ADC中{∠2=∠3 BD=AD∠BDH=∠ADC=90°∴△BDH△△ADC(ASA)∴DH=DC∴BC=BD+DC=BD+DH∵AB=BC∴AB=BD+DH.16.如图1 AC=BC CD=CE △ACB=△DCE=α AD、BE相交于点M.(1)求证:BE=AD;(2)直接用含α的式子表示△AMB的度数为(3)当α=90°时取AD BE的中点分别为点P、Q 连接CP CQ PQ 如图2 判断△CPQ的形状并加以证明.【解答】(1)证明:如图1∵△ACB=△DCE=α∴△ACD=△BCE在△ACD和△BCE中{CA=CB ∠ACD=∠BCE CD=CE∴△ACD△△BCE(SAS)∴BE=AD;(2)α(3)解:△CPQ为等腰直角三角形证明:如图2 由(1)可得BE=AD∵AD BE的中点分别为点P、Q∴AP=BQ∵△ACD△△BCE∴△CAP=△CBQ在△ACP和△BCQ中{CA=CB ∠CAP=∠CBQ AP=BQ∴△ACP△△BCQ(SAS)∴CP=CQ 且△ACP=△BCQ 又∵△ACP+△PCB=90°∴△BCQ+△PCB=90°∴△PCQ=90°∴△CPQ为等腰直角三角形.。

常考全等模型初中数学模型

常考全等模型初中数学模型
∴∠BOD= ∠AOC.∴△BOD≌△AOC.
∴∠OBD=∠OAC.
又∵∠AKM=∠BKO,∴∠AMK=∠BOK=90°.
故答案为90°.
(2)如解图2,设OA交BD于点K.
∵OA=OB,OC=OD,∠AOB=∠COD=60°,
∴∠BOD=∠AOC.∴△BOD≌△AOC.
∴∠OBD= ∠OAC.
又∵∠AKM=∠BKO,∴∠AMK=∠BOK=60°.
上,AC与DE相交于点O,AB=DE,AB∥DE,AC∥DF.
(1)求证:△ABC≌△DEF.
(2)若∠B=55°,∠EOC=80°,求∠F的度数.
(1)证明:∵AB∥DE,∴∠B=∠DEF.
∵AC∥DF,∴∠ACB=∠DFE.
∠ = ∠,
在△ABC和△DEF中, ∠ = ∠,
= ,
∴△ABC≌△DCB(SAS).
∴AC=DB.∵AC=5,∴DB=5.∴BD的长是5.
类型3三垂直型全等
已知三个直角、相等的线段.证明过程中多数用到
“同(等)角的余角相等”,从而可证得相等的角.
图示
基本图形2
基本图形1
已知
已知:AB⊥BC,DE⊥CE,
:AB⊥BC,AE⊥BD,
AC⊥CD,AB=CE
顶点
图示
结论
考虑:
△ABC≌
△EDC.
结论:对应角相
等,对应边相等;
△ADF≌△EBF
考虑:
△ABC≌
△ADE.
结论:对应角
相等,对应边
相等
考虑:
△ABC≌
△EBD.
结论:对应角
相等,对应边
相等
3.(2023·广州南沙一模)如图,AB=AD,∠B=∠D,

数学建模 四大常考相似模型复习练习题

数学建模 四大常考相似模型复习练习题

返回
2021年-2022年最新
证明:(1)∵AB=AC,
∴∠B=∠C.
∵∠APD=∠B,
∴∠APD=∠B=∠C.
∵∠APC=∠BAP+∠B,
∠APC=∠APD+∠DPC,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,
(2)∵△ABP∽△PCD,
∴BP = AB,∴AB·CD=CP·BP.
CD CP
返回
返回
2021年-2022年最新
(2)
一线三等角型 已知:∠B=∠ACE=∠D=α 结论:(1)△ABC∽△CDE (2) AB·DE=BC·CD (3)当C为BD中点时,△ABC∽△CDE∽△ACE
返回
2021年-2022年最新
模型训练
7.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且 ∠APD=∠B. (1)求证:△ABP∽△PCD; (2)求证:AB·CD=CP·BP.
(2)
反 A 字型 已知:∠AED=∠C 结论:AD = AE = DE
AB AC BC
(3)
反 A 字型(共边共角)
已知:∠ABD=∠C
结论:①AD = AB = DB
AB AC BC
②AB2=AD·AC
返回
2021年-2022年最新
(4)
双垂直型 已知:△ABC是直角三角形,AD⊥BC 结论:①AB2=BD·BC ②AC2=CD·BC ③AD2=BD·CD
CO DO CD
返回
2021年-2022年最新
(2)
反 8 字型 已知: ∠A=∠D 结论:AO = BO = AB
DO CO DC
返回
2021年-2022年最新

全等模型练习题

全等模型练习题

全等模型练习题全等模型是几何学中的重要概念,它用于描述两个或多个几何图形在形状和大小上完全相同的情况。

全等模型的研究对于深入理解几何学的基本原理以及解决实际问题具有重要意义。

为了帮助读者更好地掌握全等模型的相关知识和应用,本文将提供一系列全等模型实践练习题,并对其解题过程进行详细阐述。

练习题一:等腰三角形全等模型已知△ABC和△DEF,其中∠ABC=∠DEF,AB=DE,AC=DF。

证明△ABC≌△DEF。

解析:根据已知条件,我们可以得知△ABC和△DEF分别为等腰三角形,并且已知它们的底边相等,顶角相等。

根据全等模型的定义,我们需要证明△ABC的所有边和角都与△DEF对应相等。

解题步骤:1. 通过等腰三角形的性质,我们可以得知∠ABC=∠DEF,∠BAC=∠FDE。

2. 根据等腰三角形的性质,我们还可以得到AC=FD。

3. 根据已知条件AB=DE,我们可以得到△ABC和△DEF的底边AB和DE相等。

4. 综上所述,我们可以得出△ABC≌△DEF。

练习题二:正方形全等模型已知ABCD和EFGH是两个正方形,AB=EF,∠BAD=∠FEA。

证明□ABCD≌□EFGH。

解析:根据已知条件,我们可以得知ABCD和EFGH是两个正方形,并且已知它们的一条边相等,对应角相等。

要证明两个正方形全等,我们需要证明它们的四条边和四个角都对应相等。

解题步骤:1. 根据正方形的性质,我们可以得到∠BAD=∠FEA=90°。

2. 正方形的所有内角都是直角,所以∠ABC=∠EFG=∠BCD=∠FGH=90°。

3. 根据已知条件AB=EF,我们可以得到□ABCD和□EFGH的一条边AB和EF相等。

4. 正方形的四边长度相等,所以BC=FG=CD=GH。

5. 综上所述,我们可以得出□ABCD≌□EFGH。

练习题三:直角三角形全等模型已知△ABC和△DEF,其中∠ABC=∠DEF=90°,AB=DE,BC=EF。

全等的相关模型总结

全等的相关模型总结

全等的相关模型总结一、角平分线模型应用1.角平分性质模型: 辅助线:过点G 作GE 射线AC例题1,如图1,在,那么点D 到直线AB 的距离是 cm.例2.已知如图,四边形ABCD 中,⊥中ABC ∆,cm 4,6,900==∠=∠BD cm BC CAB AD C 平分,..,1800BAD AC CD BC D B ∠==∠+∠平分求证:模型巩固:练习一:如图3,在四边形ABCD 中,BC>AB ,AD=CD ,BD 平分..求证:︒=∠+∠180C A练习二:如图7,90A AD BC =︒,∠∥,P 是AB 的中点,PD 平分∠ADC . 求证:CP 平分∠DCB.2.角平分线+垂线,等腰三角形比呈现辅助线:延长ED 交射线OB 于F 辅助线:过点E 作EF ∥射线OBBAC∠A DE C B P 2 14 3例题一、 如图3,ΔABC 是等腰直角三角形,∠BAC=90°,BD 平分∠ABC 交AC于点D ,CE 垂直于BD ,交BD 的延长线于点E 。

求证:BD=2CE 。

例题2 如图,在△ODC 中,, 过点E 作例题3如图,AD ⊥DC ,BC ⊥DC ,E 是DC 上一点,AE 平分∠DAB ,BE 平分∠ABC ,求证:点E 是DC 中点。

巩固 1 如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.,090=∠D CE OE DCO EC ⊥∠的角平分线,且是..之间的关系,并证明与猜想:线段于点交OD EF F OC OC EF⊥21ECBA A BC DE巩固2如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.3.等腰直角三角形模型1.在斜边上任取一点的旋转全等:操作过程:(1).将△ABD 逆时针旋转,使△ACM ≌△ABD ,从而推出△ADM 为等腰直角三角形.(但是写辅助线时不能这样写)(2).过点C 作,连AM 导出上述结论.2.定点是斜边中点,动点在两直角边上滚动的旋转全等:90BC MC⊥AB COMN 操作过程:连AD.(1). 使BF=AE (AF=CE ),导出△BDF ≌△ADE.(2).使∠EDF+∠BAC=,导出△BDF ≌△ADE.例题1 ① 已知:如图所示,Rt △ABC 中,AB=AC ,,O 为BC 中点,若M 、N 分别在线段AC 、AB 上移动,且在移动中保持AN=CM. ①、 是判断△OMN 的形状,并证明你的结论.②、 当M 、N 分别在线段AC 、AB 上移动时,四边形AMON 的面积如何变化?例题2 已知:如图所示,Rt △ABC 中,AB =AC ,90BAC ∠=°,O 为BC 的中点,⑴写出点O 到△ABC 的三个顶点A 、B 、C 的距离的关系(不要求证明)⑵如果点M 、N 分别在线段AC 、AB 上移动,且在移动中保持 AN =CM .试判断△OMN 的形状,并证明你的结论. ⑶如果点M 、N 分别在线段CA 、AB 的延长线上移动,且在移动中保持AN =CM ,试判断⑵中结论是否依然成立,如果是请给出证明.180ο90=∠BACNME FACBA例题 3 D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

全等三角形模型总结及经典练习题

全等三角形模型总结及经典练习题

全等三角形模型总结及经典练习题从全等三角形的角度入手,找到可以构成全等三角形的条件。

观察图形可知,△ACE和△BCD是直角三角形,且AC=BC,因此可以得到∠XXX∠CBD和△ACE≌△BCD。

接下来,需要证明AE=BD+DE,可以将BD+DE表示为BC-CE+DE,再利用全等三角形的性质证明△ACE≌△XXX,从而得到AE=BD+DE。

具体证明过程如下:ACE≌△BCDCAE=∠CBDCAE+∠EAD=∠CBD+∠XXXCAE+∠XXX∠CBD+∠EDCCAD=∠XXXXXX≌△CDEAE=CD=BD+DE(因为BD=BC-CD,CE=AE-AC,所以BD+DE=BC-CE)。

因此,得证AE=BD+DE。

角度:观察图形,可以猜测△ACE与△CBD全等。

由此可以得出XXX,以及BD=CE。

因此,可以得出AC=BC(已知),∠1=∠3(已证),∠XXX∠CDB(已证)。

根据AAS准则,可以得出△ACE≌△CBD。

因此,BD=CE,AE=CD(全等三角形的对应边相等)。

又因为AE=CE=CE+DE,所以可以进行等量代换,得出AE=BD+DE。

例3:定对象为△ABC,定角度为三角形全等。

观察图形,可以发现BE、CF、EF条件分散,不在一个三角形中。

因此,需要将三者集中在一个三角形中,可以利用角的平分线这一线索,将△BDE沿角平分线翻转180°,使B点落在AD的点B'上,连结EB'和B'F。

此时,△BDE与△B'DE完全重合,因此可以得出BE=B'E(全等三角形的对应边相等)。

在△EFB'中,可以得出EF<B'E+B'F,进行等量代换,得出EF<BE+CF。

例4:定对象为如图所示,定角度为三角形全等。

可以分解出四组基本图形:有公共角的Rt△ACD和Rt△ABE,△ABE≌△ACD,可以得出△XXX的外角∠XXX或△ABE的邻补角∠XXX。

2023初中数学数学建模复习 题集附答案

2023初中数学数学建模复习 题集附答案

2023初中数学数学建模复习题集附答案2023初中数学数学建模复习题集附答案现如今,数学建模已成为初中学生备战数学竞赛的重要环节。

为了帮助同学们有效复习数学建模知识,本文准备了一套综合性的数学建模题集,附有详细答案供参考。

通过对不同类型问题的解答,同学们可以提高对数学建模的理解与掌握,以应对未来的数学建模挑战。

题1:某机场每分钟可起降飞机16架。

假设该机场连续运营8小时,共有60%的起降航班采用大型飞机,40%的起降航班采用小型飞机。

求这8小时内,起降的大型和小型飞机各有多少架?解答1:首先,我们需要先确定这8小时的分钟数,即8小时=8 * 60 = 480分钟。

根据题目要求,每分钟可起降飞机16架,因此总的起降飞机数量为16 * 480 = 7680架。

接下来,我们计算大型飞机的数量。

由题意可知,60%的航班采用大型飞机,所以大型飞机的数量为0.6 * 7680 = 4608架。

最后,我们计算小型飞机的数量。

40%的航班采用小型飞机,所以小型飞机的数量为0.4 * 7680 = 3072架。

综上所述,8小时内起降的大型飞机数量为4608架,小型飞机数量为3072架。

题2:某城市的公交车票价为每张2元。

假设某天该城市发行了30000张公交车票,此时票价突然降价为每张1.5元。

请计算这一天的总票款增加了多少?解答2:首先,我们需要计算改变票价之前一天的票款总额。

根据题意可知,票价为每张2元,发行了30000张公交车票,所以原票款总额为2元/张 * 30000张 = 60000元。

接下来,我们计算改变票价之后一天的票款总额。

票价降价为每张1.5元,发行了30000张公交车票,所以新的票款总额为1.5元/张 * 30000张 = 45000元。

最后,我们计算票款总额的增加量。

增加量为新的票款总额减去原票款总额,即45000元 - 60000元 = -15000元。

综上所述,这一天的总票款减少了15000元。

专题02 全等三角形常见七大必考模型专训(原卷版)

专题02 全等三角形常见七大必考模型专训(原卷版)

专题02全等三角形常见七大必考模型专训【模型目录】模型一 平移模型模型二 轴对称模型模型三 旋转模型模型四 一线三等角模型模型五 垂直模型模型六 手拉手模型模型七 半角模型【经典模型一 平移模型】【模型解读】把△ABC 沿着某一条直线l 平行移动,所得到△DEF 与△ABC 称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【例1】(2023春·全国·八年级期中)如图所示的是重叠的两个直角三角形,将其中一个直角三角形沿BC 方向平移得到△DEF .若10AB =cm ,6BE =cm ,4DH =cm ,则图中阴影部分面积为( )A .47cm 2B .48 cm 2C .49 cm 2D .50 cm 2【变式训练】1.(2021春·陕西咸阳·八年级统考期末)如图,将ABC V 沿BC 方向平移得到DEF V ,使点B 的对应点E 恰好落在边BC 的中点上,点C 的对应点F 在BC 的延长线上,连接AD ,AC 、DE 交于点O .下列结论一定正确的是( )A .B F Ð=ÐB .AC DE ^C .BC DF =D .AC 、DE 互相平分2.(2023·浙江·八年级假期作业)如图,点A ,E ,F ,C 在一条直线上,若将DEC V 的边EC 沿AC 方向平移,平移过程中始终满足下列条件:AE CF =,DE AC ^于点E ,BF AC ^于点F ,且AB CD =.则当点E ,F 不重合时,BD 与EF 的关系是______.3.(2023秋·山东聊城·八年级校考期末)如图(1),AB BD ^,DE BD ^,点C 是BD 上一点,且BC DE =,AC CE =.(1)试判断AC 与CE 的位置关系,并说明理由.(2)如图(2),若把CDE V 沿直线BD 向左平移,使CDE V 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?说明理由.(注意字母的变化).【经典模型二 轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【例2】(2023秋·八年级单元测试)如图,已知C D Ð=Ð,AC AD =,增加下列条件:①AB AE =;②BC ED =;③12Ð=Ð;④B E Ð=Ð.其中能使ABC AED V V ≌的条件有( )A .4个B .3个C .2个D .1个【变式训练】1.(2022秋·安徽滁州·八年级校考阶段练习)如图,已知ABC ADE △≌△,BC 与DE 交于点O ,AC ,AE 分别与DE ,BC 交于点H ,G ,连接OA ,则下列结论中错误的是( )A .AG AH=B .OAE DAH Ð=ÐC .EG CH =D .OAB OADÐ=Ð2.(2023秋·八年级课时练习)在①AD AE =,②ABE ACD Ð=Ð,③FB FC =这三个条件中选择一个,补充在下面的问题中,并完成问题的解答.问题:如图,在ABC V 中,AB AC =,点D 在AB 边上,点E 在AC 边上,连接BE ,CD ,BE 与CD 相交于点F .若________________,求证:BE CD =.3.(2023春·广东佛山·七年级校联考阶段练习)如图所示,BD 、CE 分别为ABC Ð,ACB Ð的角平分线,两线交于点O .(1)若60ABC Ð=°,40ACB Ð=°,则BOC Ð=______°;(2)若70A Ð=°,则BOC Ð=______°;(3)若A a Ð=,用a 表示的BOC Ð,写出详细的步骤(不用写理论依据);(4)60A Ð=°,BE ,CD ,BC 三条线段之间有怎样的数量关系?写出结果,并说明理由(不用写理论依据).【经典模型三 旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【例3】(2023·浙江·八年级假期作业)如图,在Rt ABC V 中,AB AC =,45ABC ACB Ð=Ð=°,D 、E 是斜边BC 上两点,且45DAE =°∠,若3BD =,4CE =,15ADE S =V ,则ABD △与AEC △的面积之和为( )A .36B .21C .30D .22【变式训练】1.(2023·浙江·八年级假期作业)如图,在Rt ABC V 中,AB AC =,D 、E 是斜边BC 上两点,且45DAE =°∠,将ADC △绕点A 顺时针旋转90°后,得到AFB △,连接EF .以下结论:①ADC AFB △△≌;②ABE ACD △△≌;③AED AEF △△≌;④+BE DC DE =.其中正确的是( )如图3,在四边形ABCD 中,AB AD =,90B D Ð=Ð=°,120BAD Ð=°,以A 为顶点的60EAF Ð=°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.请参照阅读材料中的解题方法,你认为结论EF BE DF =+是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.【经典模型四 一线三等角模型】【模型解读】基本图形如下:此类图形通常告诉BD ⊥DE ,AB ⊥AC ,CE ⊥DE ,那么一定有∠B =∠CAE .【常见模型】【例4】(2023·江苏·八年级假期作业)如图,AC =CE ,∠ACE =90°,AB ⊥BD ,ED ⊥BD ,AB =6cm ,DE =2cm ,则BD 等于( )A .6cmB .8cmC .10cmD .4cm【变式训练】A .3B .22.(2023·江苏·八年级假期作业)如图所示,BE l ^于点E ,过点C 作CF3.(2023·江苏·八年级假期作业)如图E .(1)若 2.5cm 1.7cm AD DE ==,,求BE 的长.(2)在其它条件不变的前提下,将CE 所在直线变换到ABC V 的外部(如图之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在ABC V 中,AC BC =,D ,C ,E 三点在同一条直线上,并且有BEC ADC BCA a Ð=Ð=Ð=,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明【经典模型五 垂直模型】【模型解读】模型主体为两个直角三角形,且两条斜边互相垂直.【常见模型】【例5】(2023·浙江·八年级假期作业)如下图所示,在△ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D .DE=6cm ,AD=9cm ,则BE 的长是( )A .6cmB .1.5cmC .3cmD .4.5cm【变式训练】1.(2023·全国·八年级假期作业)如图,90ACB Ð=°,AC BC =,AE CE ^于点E ,BD CD ^于点D ,5cm AE =,2cm BD =,则DE 的长是( )A .8cmB .4cmC .3cmD .2cm2.(2023春·全国·七年级专题练习)如图,在ABC V 中,以AB AC 、为腰作等腰直角三角形ABE 和等腰直角三角形ACF .连接EF AD ,为BC 边上的高线,延长DA 交EF 于点N ,下列结论:(1)FAN ACD Ð=Ð;(2)FNA ADC ≌V V ;(3)EN FN =;(4)AEF ABC S S =V V ,其中正确的结论有____________(填序号).3.(2023·全国·八年级假期作业)已知,ABC V 中,90BAC Ð=°,AB AC =,直线m 过点A ,且BD m ^于D ,CE m ^于E ,当直线m 绕点A 旋转至图1位置时,我们可以发现DE BD CE =+.(1)当直线m 绕点A 旋转至图2位置时,问:BD 与DE 、CE 的关系如何?请予证明;(2)直线m 在绕点A 旋转一周的过程中,BD 、DE 、CE 存在哪几种不同的数量关系?(直接写出,不必证明)【经典模型六 手拉手模型】【模型分析】将两个三角形绕着公共顶点(即头)旋转某一角度后能完全重合,则这两个三角形构成手拉手全等,也叫旋转型全等,常用“边角边”判定定理证明全等.【模型图示】公共顶点A记为“头”,每个三角形另两个顶点逆时针顺序数的第一个顶点记为“左手”,第二个顶点记为“右手”.对应操作:左手拉左手(即连结BD),右手拉右手(即连结CE),得ABD ACED@D.【常见模型】(等腰)(等边)(等腰直角)【例6】(2023春·上海·七年级专题练习)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下结论错误的是()A.∠AOB=60°B.AP=BQC .PQ ∥AED .DE =DP【变式训练】1.(2023春·全国·七年级专题练习)如图,在△OAB 和△OCD 中,OA =OB ,OC =OD ,OA >OC ,∠AOB =∠COD =40°,连接AC ,BD 交于点M ,连接OM ,下列结论:①△AOC ≌△BOD ;②AC =BD ;③∠AMB =40°;④MO 平分∠BMC .其中正确的个数为( )A .4B .3C .2D .12.(2023·浙江·八年级假期作业)如图,ABC V 是边长为5的等边三角形,BD CD =,120BDC Ð=°.E 、F 分别在AB 、AC 上,且60EDF Ð=°,则三角形AEF 的周长为______.3.(2023·江苏·八年级假期作业)如图,ABC V 是一个锐角三角形,分别以AB 、AC 为边向外作等边三角形ABD △、ACE △,连接BE 、CD 交于点F ,连接AF .(1)求证:ABE V ≌ADC △;(2)求EFC Ð的度数;【经典模型七【模型分析】过等腰三角形顶点角模型.常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系.半角模型(题中出现角度之间的半角关系)利用旋转——证全等【变式训练】1.(2023思路分析:(1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,∠E'AF= 度,……根据定理,可证:△AEF≌△AE'F.∴EF=BE+DF.【重难点训练】1.(2023·江苏·八年级假期作业)如图,在ABC V(1)按要求作图:延长AD 到点(2)求证:ACD EBD △△≌.小明在组内经过合作交流,得到了如下的解决方法(如图①延长AD到M,使得DM②连接BM,通过三角形全等把③利用三角形的三边关系可得是 ;方法总结:上述方法我们称为Ð+Ð(1)当直线MN绕点A旋转到图1的位置时,EAB DAC(2)求证:DE=CD+BE;(3)当直线MN绕点A旋转到图2的位置时,试问DE、CD、并加以证明.__________.(请用含a 的式子表示)6.(2023·全国·八年级假期作业)(1)如图1,已知ABC V 中,BAC Ð=90°,AB AC =,直线m 经过点,A BD ^直线m ,CE ^直线m ,垂足分别为点,D E .求证:DE BD CE =+.(2)如图2,将(1)中的条件改为:在ABC V 中,,,,AB AC D A E =三点都在直线m 上,并且有BDA AEC BAC Ð=Ð=Ð.请写出,,DE BD CE 三条线段的数量关系,并说明理由.7.(2023春·全国·七年级专题练习)如图1,已知ABC V 中,90BAC Ð=o ,AB AC =,DE 是过A 的一条直线,且B ,C 在D ,E 的同侧,BD AE ^于D ,CE AE ^于()E BD CE <.(1)证明:ABD CAE @V V ;(2)试说明:BD DE CE =-;11.(2020秋·贵州遵义·八年级统考期末)过正方形ABCD (四边都相等,四个角都是直角)的顶点A 作一条直线MN .(1)当MN 不与正方形任何一边相交时,过点B 作BE MN ^于点E ,过点D 作DF MN ^于点F 如图(1),请写出EF ,BE ,DF 之间的数量关系,并证明你的结论.(2)若改变直线MN 的位置,使MN 与CD 边相交如图(2),其它条件不变,EF ,BE ,DF 的关系会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明;(3)若继续改变直线MN 的位置,使MN 与BC 边相交如图(3),其它条件不变,EF ,BE ,DF 的关系又会发生变化,请直接写出EF ,BE ,DF 的数量关系,不必证明.12.(2023·江苏·八年级假期作业)探究:如图①,在ABC V 中,90BAC Ð=°,AB AC =,直线m 经过点A ,BD m ^于点D ,CE m ^于点E ,求证:ABD CAE ≌V V .应用:如图②,在ABC V 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC Ð=Ð=Ð.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.13.(2023春·上海·七年级专题练习)通过对数学模型“K 字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,90BAD Ð=°,AB AD =,过点B 作BC AC ^于点C ,过点D 作DE AC ^于点E .求证:BC AE =.[模型应用]如图2,AE AB ^且AE AB =,BC CD ^且BC CD =,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,90BAD CAE Ð=Ð=°,AB AD =,AC AE =,连接BC ,DE ,且BC AF ^于点F ,DE 与直线AF 交于点G .若21BC =,12AF =,则ADG △的面积为_____________.14.(2023·浙江·八年级假期作业)(1)如图1,已知:在ABC V 中,90BAC AB AC Ð=°=,,直线m 经过点A ,BD ^直线m ,CE ^直线m ,垂足分别为点D 、E .证明:DE BD CE =+.(2)如图2,将(1)中的条件改为:在△ABC 中,AB AC =,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC a Ð=Ð=Ð=,其中a 为任意钝角,请问结论DE BD CE =+是否成立?如成立,请你给出证明;若不成立,请说明理由.。

全等模型练习

全等模型练习

打造最具专业性的教育集团全等三角形模型练习模型一:平移模型例1 如图,已知BC∥EF,∠B=∠DGC,点D、C在AF上,且AB=DE.求证:AD=CF针对性练习1.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∥AED=∥B.(1)求证:∥AED∥∥EBC(2)当AB=6时,求CD的长.模型二:对称模型例2 如图,在△ABC中,AB=AC,点D是三角形内一点连接DA,DB,DC,若∠1=∠2,则△ABD与△ACD 全等吗?请说明理由针对性练习:2.如图,点E、F在BC上,AB=DC,∥B=∥C,请补充一个条件使∥ABF∥∥DCE.3.如图,E是∠AOB的平分线上点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD交OE于点F.求证:(1)OC=OD(2)△ECF≌△EDF模型三:三垂直模型例3 如图,△ABC中,∠ABC=∠BAC=45°,点P在AB上,AD⊥CP交CP于点D,BE⊥CE交CP的延长线于点E,垂足分别为D,E,已知DC=2,求BE的长.针对性练习4.在∥ABC中,∥ACB=90°,AC=BC,直线MN经过点C,且AD∥MN于点D,BE∥MN于点E.求证:DE=AD+BE模型四:不共点旋转模型例4如图,点A、B、C、D在一条直线上,AE∥DF,CE∥BF,AB=CD.求证:△EAC≌△FDB打造最具专业性的教育集团模型五:共点旋转模型(包括手拉手模型)例5 如图,四边形ABCD中,E点在AD上,∥BAE=∥BCE=90°,且BC=CE,AB=DE.求证:∥ABC∥∥DEC.针对性练习5.如图,△ACB≌△A′C′B′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°6.如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF.求证:△ADE≌△CFE模型六:半角模型针对性练习7.在△ABC中,∠BAC=90°,AB=AC,点D和点E均在边BC上,且∠DAE=45°,试猜想BD,DE,EC应满足的数量关系,并写出推理过程例6 如图,已知:正方形ABCD,点E,F分别是BC,DC上的点,连接AE,AF,EF,且∠EAF=45°,求证:BE+DF=EF模型七:一线三等角模型例7.如图,点D是等边ABC∆的边BC的中点,60=∠EDF,求证:BDE∆≌CFD∆模型八:对角互补模型例8.在四边形ABDC中,AD平分∠BAC,并且∠B+∠C=180°.(1)如图1,当∠C=90°时,求证:BD=CD;(2)如图2,当∠C是钝角时,(1)中的结论是否仍然成立?请证明你的判断;(3)如图3,在(2)的条件下,过点D作DE⊥AB于点E,若AC=2,BE=3,△ABD的面积为24,求DE的长.B CDFEA打造最具专业性的教育集团模型九:角平分线模型(轴对称变换)例10.如图,AD是△ABC的角平分线,DE⊥AB于点E,已知△ABC的面积为28,AC=6,DE=4,则AB的长为()A. 4 B. 6 C. 8 D. 10针对性练习8.如图,∠B=∠C=90∘,M是BC的中点,DM平分∠ADC,且∠ADC=110∘,则()A. 30∘B. 35∘C. 45∘D. 60∘模型十:倍长中线模型(中心对称变换)例11.(Ⅰ)如图①,在△ABC中,∠B=60°,∠C=80°,AD平分∠BAC.求证AD=AC;(Ⅱ)如图②,在△ABC中,点E在BC边上,中线BD与AE相交于点P,AP=BC.求证PE=BE.针对性练习9.等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO;(2)如图2,若OA=5,OC=2,求B点的坐标;(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQA=18,分别以AC、CQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.EDC yxA OF模型十一:动点模型例12.已知:如图,ABC ∆是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是cm 1/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点的P 运动时间)(s t , 当t 为何值时,PBQ ∆是直角三角形?针对性练习 点P 、10.如图1,Q 分别是等边AB 、ABC ∆边BC 上的动点(端点除外),点P 从顶点A 、点Q 从顶点B 同时出发,且它们的运动速度相同,连接AQ 、CP 交于点M .(1)求证:ABQ ∆≌CAP ∆;(2)当点P 、Q 分别在AB 、BC 边上运动时,QMC ∠变化吗?若变化,请说明理由;若不变,求出它的度数. (3)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则QMC ∠变化吗?若变化,请说明理由;若不变,则求出它的度数.模型十二:坐标模型例13.已知)0,3(-A ,动点).3()3,(-<-x x C , 以OA 为一边作等边OAD ∆,连接CD ,在CD 的上方作等边CDE ∆,连接EA 并延长交y 轴负半轴于点F .(1)求证:ODC ∆≌ADE ∆; (2)求CAE ∠的度数;(3)点C 在何处时,CAF ∆是等腰三角形.10题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年-2022年最新
2021广东中考高分突破 数学
返回
2021年-2022年最新
第四章 三角形
数学建模 四大常考全等模型
返回
2021年-2022年最新
模型解读
模型一 平移型 特征:沿同一直线(l)平移可得两三角形重合.
已知:
AE=BF, CB∥DF, AC∥DE 结论:△ABC≌△EFD
返回
证明:∵四边形 ABCD 是正方形,
∴∠ADF=∠CDE=90°,AD=CD. ∵AE=CF,∴DE=DF. 在△ADF 和△CDE 中, AD=CD ∠ADF=∠CDE, DF=DE
返回
2021年-2022年最新
∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE. ∠AGE=∠CGF
在△AGE 和△CGF 中, ∠GAE=∠GCF, AE=CF
(2)CF⊥AE.
返回
2021年-2022年最新
特征:有三个直角. (1)一线三垂直型:
模型四 三垂直型
考虑:△ABE≌△ECD 结论:BC=BE+EC=AB+CD
返回
2021年-2022年最新
(2)三个直角(不在同一直线):
考虑:△ABE≌△BCD 结论:EC=AB-CD
考虑:△ABE≌△ECD 结论:BC=AB-CD
证明:∵AB=AC,∠BAD=∠CAE,AD=AE, ∴△ABD≌△ACE(SAS). ∴∠ABD=∠ACE. ∵AB=AC,∴∠ABC=∠ACB. ∴∠ABC-∠ABD=∠ACB-∠ACE. ∴∠OBC=∠OCB.∴BO=CO. ∴△BOC是等腰三角形.
返回
2021年-2022年最新
4.(创新题)如图,在正方形ABCD中,E,F分别为边AD和CD上的 点,且AE=CF,连接AF,CE交于点G.求证:AG=CG.
返回
2021年-2022年最新
模型二 翻折型 特征:所给图形可沿某一直线折叠,直线两旁的部分能完全重 合. (1)在三角形中:
返回
2021年-2022年最新
(2)在正方形中:
返回
2021年-2022年最新
3.如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:△BOC 是等腰三角形.
返回
2021年-2022年最新
(2)两个正方形:
已知:四边形ABEF和四边形ACHD均为正方形 结论:△ABD≌△AFC;BD=FC;BD⊥CF
返回
2021年-2022年最新
5.如图,在四边形ABCD中,E点在AD上,∠BAE=∠BCE=90°,且 BC=CE,AB=DE.求证:△ABC≌△DEC.
2021年-2022年最新
模型训练
1.如图,在四边形ABCD中,E是AB的中点,AD∥EC,∠AED=∠B. 若DE=3,CE=4,则BC= 3 .
返回
2021年-2022年最新
2.如图,点B,D在AE上,BC∥EF,AC∥DF,请补充一个条件: AD=BE(答案不(唯只一填)写一个即可),使
△ABC≌△DEF.
返回
2021年-2022年最新
返回
∠AEB=∠DFA 在△BEA 与△AFD 中, ∠EBA=∠FAD ,
AB=AD
∴△BEA≌△AFD(AAS).∴AE=DF.
返回
2021年-2022年最新
7.如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l 的垂线,点E,F为垂足,连接BF. (1)求证:AE=DF; (2)若AE=6,BF=2 29 ,则△ABF的面积为 8 .
返回
2021年-2022年最新
证明:(1)∵△EBF 是等腰直角三角形,∴BE=BF,∠EBF=90°.
∵四边形 ABCD 是正方形,
∴BA=BC,∠Aபைடு நூலகம்C=90°.
∴∠ABE+∠ABF=∠CBF+∠ABF.
∴∠ABE=∠CBF.
AB=CB 在△ABE 和△CBF 中, ∠ABE=∠CBF,
BE=BF ∴△ABE≌△CBF(SAS).
返回
2021年-2022年最新
证明:∵∠BAE=∠BCE=90°,
∴∠ABC+∠AEC=180°.
∵∠AEC+∠DEC=180°,
∴∠DEC=∠B.
在△ABC 和△DEC 中,
AB=DE ∠B=∠DEC, BC=EC ∴△ABC≌△DEC(SAS).
返回
2021年-2022年最新
6.如图,△EBF是等腰直角三角形,点B为直角顶点,四边形 ABCD是正方形. (1)求证:△ABE≌△CBF; (2)CF与AE有什么特殊的位置关系?直接写出来.
返回
2021年-2022年最新
7.如图,正方形ABCD的顶点A在直线l上,分别过点B,D作直线l 的垂线,点E,F为垂足,连接BF. (1)求证:AE=DF; (2)若AE=6,BF=2 29 ,则△ABF的面积为 .
返回
2021年-2022年最新 证明:(1)∵四边形 ABCD 是正方形,
∴∠BAD=90°,AB=AD. ∵BE⊥l,DF⊥l, ∴∠AEB=∠DFA=90°. ∵∠EAB+∠FAD=90°,∠EAB+∠EBA=90°, ∴∠FAD=∠EBA.
∴△AGE≌△CGF(AAS),∴AG=CG.
返回
2021年-2022年最新
模型三 旋转型(手拉手) 1.特征:此模型可看成是将三角形绕着公共顶点旋转一定角度 所构成的.
返回
2021年-2022年最新
2.结论: (1)两个等边三角形:
已知:△ABE和△ACF均为等边三角形 结论:△ABF≌△AEC;BF=EC;∠BOE=∠BAE=60°
相关文档
最新文档