数学建模案例

合集下载

数学建模模型案例

数学建模模型案例

数学建模模型案例一、旅行商问题(TSP)旅行商问题是一个典型的数学优化问题,在旅行商问题中,旅行商需要在给定的一系列城市之间找到一条最短路径,使得他能够只经过每个城市一次并最终回到起点城市。

这个问题可以用图论和线性规划等方法来进行建模和求解,可以应用于物流配送、路径规划等领域。

二、股票价格预测模型股票价格预测是金融领域中的一个重要问题。

可以使用时间序列分析、机器学习等方法来建立股票价格预测模型。

模型需要考虑多个因素,如历史股价、经济指标、市场情绪等,以预测未来股票价格的趋势和波动。

三、疫情传播模型疫情传播模型是在流行病学领域中使用的一种数学模型,用于研究疾病在人群中的传播规律。

常见的疫情传播模型有SIR模型、SEIR 模型等,这些模型可以用来预测疫情的传播速度、感染人数以及制定相应的防控策略。

四、能源优化调度模型能源优化调度模型用于优化电力系统、能源系统等中的能源调度问题。

这种模型需要考虑电力需求、能源供应、能源转换效率等因素,以最小化成本或最大化效益,并且满足各种约束条件。

五、机器学习分类模型机器学习分类模型用于将数据集中的样本分为不同的类别。

这种模型可以使用各种机器学习算法,如逻辑回归、决策树、支持向量机等,以根据样本的特征来预测其所属的类别。

六、交通拥堵预测模型交通拥堵预测模型用于预测城市交通网络中的拥堵情况。

这种模型可以使用历史交通数据、天气数据、道路网络数据等进行建模,以预测未来某个时刻某个路段的交通状况,并提供相应的交通管理建议。

七、供应链优化模型供应链优化模型用于优化供应链中的物流和库存管理等问题。

这种模型需要考虑供应商、生产商、分销商之间的关系,以最小化库存成本、运输成本等,并满足客户需求。

八、排课调度模型排课调度模型用于学校或大学的课程安排问题。

这种模型需要考虑教室、教师、学生、课程等因素,以最大化教学效果、减少冲突,并满足各种约束条件。

九、旅行路线规划模型旅行路线规划模型用于帮助旅行者规划旅行路线。

数学建模案例精选

数学建模案例精选

数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。

在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。

下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。

案例一,交通拥堵问题。

在城市交通管理中,交通拥堵一直是一个严重的问题。

如何合理规划道路和交通流量,是一个复杂的问题。

数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。

案例二,股票价格预测。

股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。

数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。

案例三,物流配送优化。

在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。

数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。

案例四,环境污染监测。

环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。

数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。

通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。

数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。

因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。

希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。

数学建模与应用案例

数学建模与应用案例

数学建模与应用案例数学建模是一种将数学方法和技巧应用于实际问题求解的过程。

它通过建立数学模型,对问题进行抽象和描述,然后利用数学工具进行分析和求解,最终得出问题的解决方案。

数学建模在各个领域都有广泛的应用,本文将介绍几个数学建模与应用的案例。

案例一:交通流量预测交通流量预测是城市交通规划和管理中的重要问题。

通过对交通流量进行预测,可以合理安排交通资源,提高交通效率。

数学建模可以通过分析历史交通数据,建立交通流量预测模型。

以某城市的交通流量预测为例,可以采用时间序列分析方法,通过对历史交通数据的分析,建立交通流量与时间的关系模型。

然后利用该模型对未来的交通流量进行预测,从而为交通规划和管理提供科学依据。

案例二:股票价格预测股票价格预测是金融领域的重要问题。

通过对股票价格进行预测,可以帮助投资者做出更明智的投资决策。

数学建模可以通过分析历史股票数据,建立股票价格预测模型。

以某股票的价格预测为例,可以采用时间序列分析方法,通过对历史股票数据的分析,建立股票价格与时间的关系模型。

然后利用该模型对未来的股票价格进行预测,从而为投资者提供参考。

案例三:疾病传播模型疾病传播是公共卫生领域的重要问题。

通过建立疾病传播模型,可以预测疾病的传播趋势,制定有效的防控策略。

数学建模可以通过分析疾病传播的规律,建立疾病传播模型。

以某传染病的传播为例,可以采用传染病动力学模型,通过对疾病传播的机理进行建模,预测疾病的传播速度和范围。

然后利用该模型对疾病传播进行预测,从而为公共卫生部门提供决策支持。

案例四:物流配送优化物流配送是供应链管理中的重要问题。

通过优化物流配送方案,可以降低物流成本,提高物流效率。

数学建模可以通过分析物流配送的需求和约束条件,建立物流配送优化模型。

以某物流公司的配送问题为例,可以采用线性规划方法,通过对物流配送的需求和约束进行建模,优化配送方案。

然后利用该模型对物流配送进行优化,从而为物流公司提供最佳配送方案。

数学建模与应用案例练习题

数学建模与应用案例练习题

数学建模与应用案例练习题数学建模是将实际问题转化为数学问题,并通过数学方法和计算机技术求解的过程。

它在各个领域都有着广泛的应用,能够帮助我们更好地理解和解决现实中的复杂问题。

下面我们将通过一些具体的案例练习题来深入了解数学建模的方法和应用。

案例一:生产计划优化问题某工厂生产 A、B 两种产品,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个单位的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个单位的工时。

工厂现有 100 个单位的原材料和 80 个单位的工时,A 产品的单位利润为 5 元,B 产品的单位利润为 4 元。

问如何安排生产计划,才能使工厂获得最大利润?首先,我们设生产 A 产品 x 件,生产 B 产品 y 件。

那么,目标函数就是利润最大化,即 Z = 5x + 4y。

然后,我们需要考虑约束条件。

原材料的限制为 2x +3y ≤ 100,工时的限制为 3x +2y ≤ 80,同时 x、y 都应该是非负整数。

接下来,我们可以使用线性规划的方法来求解这个问题。

通过绘制可行域,找到目标函数在可行域上的最大值点。

经过计算,我们可以得出当 x = 20,y = 20 时,工厂能够获得最大利润 180 元。

这个案例展示了数学建模在生产决策中的应用,通过合理地安排生产计划,能够有效地提高企业的经济效益。

案例二:交通流量预测问题在一个城市的某个十字路口,每天不同时间段的车流量不同。

我们收集了过去一段时间内每天各个时间段的车流量数据,希望建立一个数学模型来预测未来某一天的车流量。

首先,我们对收集到的数据进行分析,发现车流量具有一定的周期性和季节性变化。

然后,我们可以选择使用时间序列分析的方法来建立模型。

比如,可以使用 ARIMA 模型(自回归移动平均模型)。

在建立模型之前,需要对数据进行预处理,包括平稳性检验、差分处理等。

通过建立合适的 ARIMA 模型,并进行参数估计和检验,我们就可以利用这个模型对未来的车流量进行预测。

初中数学建模的若干简要案例

初中数学建模的若干简要案例

初中数学建模的若干简要案例1.找出一个公园内最短游览路径的问题假设一个公园有多个景点,每个景点之间有不同的距离,我们希望找到一条最短的路径,使得可以在最短时间内游览完所有的景点。

我们可以将每个景点表示为节点,距离表示为边,然后利用图论中的最短路径算法(如迪杰斯特拉算法)来解决这个问题。

2.优化一家快递公司的邮件投递路径假设一个快递公司需要投递邮件到不同的区域,每个区域的邮件数不同,我们希望找到一条最优的路径,使得快递员可以在最短时间内投递完所有的邮件。

我们可以将每个区域表示为节点,不同区域之间的距离表示为边,然后利用图论中的最短路径算法或者启发式算法(如A*算法)来解决这个问题。

3.设计一个购物车的最佳装载方案假设一个网上购物平台需要将一些商品装载到购物车中,每个商品有不同的体积和重量,而购物车有一定的容量限制。

我们希望找到一个最佳的装载方案,使得购物车可以装载尽可能多的商品。

我们可以将每个商品表示为节点,商品之间的限制条件(如体积和重量限制)表示为约束条件,然后利用线性规划算法(如简单的背包问题)来解决这个问题。

4.优化一条生产线的生产效率假设一个工厂有多个生产环节,每个生产环节有不同的效率和成本,我们希望找到一个最优的生产线配置方案,使得生产效率最高,成本最低。

我们可以将每个生产环节表示为节点,不同生产环节之间的依赖关系和成本表示为边,然后利用图论中的最优路径算法(如最小生成树算法)来解决这个问题。

5.设计一个最优的课程表假设一个学校有多个班级和多个教师,每个班级需要上不同的课程,每个教师可以同时教授多个班级的课程,我们希望找到一个最优的课程表,使得教师的利用率最高,学生的课程安排最优。

我们可以将每个班级和教师表示为节点,教师的教学能力和班级的需求表示为边的权重,然后利用图论中的最大流算法或者启发式算法(如基因算法)来解决这个问题。

这些案例都是初中数学建模的常见问题,通过数学建模的方法,可以帮助我们解决这些实际问题,提高问题的解决效率和准确性。

数学建模解决实际问题的实践案例

数学建模解决实际问题的实践案例

数学建模解决实际问题的实践案例数学建模是一种将实际问题进行抽象、建模、求解、验证的一种方法,可以解决各种各样的实际问题。

实践中,数学建模已经发展成为一门独立的学科,吸引着越来越多的学生和专业人士关注和参与。

本文将介绍数学建模解决实际问题的一些实践案例,以期为学习和实践的人提供一些启示和借鉴。

1. 预测疫情发展趋势随着全球新冠疫情的爆发,各国政府和公众非常关注疫情的发展趋势。

数学建模可以帮助预测疫情的传播和爆发趋势,为政府制定应对措施提供参考和依据。

一个成功的例子是2020年初,中国各大高校和研究机构联合开展的“新冠疫情数学建模竞赛”,其中多个团队使用了数学模型预测了疫情的发展趋势,并对实际情况进行调整和优化,取得了很好的成果。

2. 优化交通运输系统交通拥堵是城市发展的一大难题,为了解决这个问题,可以使用数学模型优化交通运输系统。

例如,瑞典斯德哥尔摩的交通问题比较突出,瑞典皇家理工学院的研究人员使用数学模型建立了一个交通仿真系统,可以模拟不同的交通场景,优化交通路线和信号灯的配时,从而减少拥堵和排放污染物。

3. 改善医疗服务质量医疗服务是人民生活的重要组成部分,如何优化医疗服务质量是医疗行业面临的重要问题。

数学模型可以帮助医疗机构优化医疗流程和资源配置,提高医疗服务效率和质量。

例如,美国佛罗里达州的一家医疗中心就使用了数学模型对医生的看诊时间进行优化,从而减少了等待时间和排队人数,提高了医疗服务质量和满意度。

4. 提高金融风险管理能力金融风险管理是金融机构必须面对的问题之一,如何预测和管理风险是保证金融行业稳定发展的关键。

数学模型可以帮助金融机构进行风险评估和预测,制定风险管理策略。

例如,中国银监会就使用了数学模型对风险指标进行监测和预测,从而提高了银行业的风险管理能力和金融稳定性。

总的来说,数学建模可以解决各种各样的实际问题,这些案例只是冰山一角。

数学建模不仅有理论上的重要性,更有实践上的应用价值。

数学建模与实践案例集

数学建模与实践案例集

数学建模与实践案例集数学建模是一种将实际问题抽象化为数学问题,并通过建立数学模型来解决实际问题的方法。

数学建模既是一门学科,也是一种实践活动。

下面将介绍一个数学建模的实践案例集。

案例一:环境资源优化分配地区存在多个工业企业,这些企业需要使用环境资源,例如水、土地、能源等。

然而,这些资源有限,如何合理地将资源分配给各个企业,以保证资源的最大化利用率和企业的最大化生产效益,就是一个重要的问题。

数学建模可以通过建立数学模型来解决这一问题。

首先,需要确定各个企业对资源的需求量以及资源供应的限制条件。

然后,通过线性规划模型来求解最优资源分配方案。

除此之外,还可以采用动态规划、整数规划、网络流等方法来求解。

案例二:物流配送路径优化物流配送是一个复杂的系统工程,如何找到最优的配送路径,以降低配送成本、提高配送效率,是物流公司和电商企业关注的重点问题。

案例三:股票价格预测股票价格的波动性很大,如何准确预测股票价格的变动趋势,对于投资者来说是一个重要的问题。

数学建模可以通过建立时间序列模型来解决这一问题。

首先,需要收集历史股票价格数据,对其进行分析,提取相关的特征变量。

然后,通过回归分析、ARIMA模型、神经网络模型等方法来建立股票价格预测模型。

最后,可以利用建立的模型对未来的股票价格进行预测。

以上是三个数学建模的实践案例集。

通过数学建模,可以将实际问题转化为数学问题,并通过建立合适的数学模型来进行求解,实现对问题的优化和预测,为实践提供了一种有效的方法。

数学建模具有广泛的应用领域,不仅可以应用于工程技术、经济管理等领域,还可以应用于生物医学、气象预报等领域。

数学建模案例分析--线性代数建模案例20例

数学建模案例分析--线性代数建模案例20例

线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。

案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。

根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。

【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。

数学教学中的数学建模案例

数学教学中的数学建模案例

数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。

在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。

本文将介绍几个数学建模在数学教学中的典型案例。

案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。

为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。

首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。

然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。

通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。

在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。

学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。

这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。

案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。

如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。

我们可以以某个路口的交通流问题为例。

假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。

首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。

然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。

在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。

学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。

通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。

案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。

数学建模的创新案例与思考

数学建模的创新案例与思考

数学建模的创新案例与思考在现代社会中,数学建模已经成为解决复杂问题和开展科学研究的重要方法之一。

通过数学建模,我们可以将现实问题抽象化、分析化,找到问题的本质,并通过数学方法进行求解和优化。

本文将介绍一些数学建模的创新案例,并对其进行思考和总结。

案例一:交通路径规划随着城市交通问题的日益凸显,优化交通路径规划成为一项重要任务。

基于数学建模的方法,我们可以借助图论、最短路径算法等工具,对城市路网和交通流量进行建模和分析,从而为交通管理者提供最佳路径规划方案。

以某城市为例,我们可以通过收集该城市的交通数据,包括道路长度、道路拓扑结构、交通流量等信息。

然后,我们可以建立数学模型,将城市道路网络抽象为图,并根据交通流量分布情况确定边的权重。

接下来,可以使用最短路径算法,如迪杰斯特拉算法或A*算法,从而求解出最优路径。

通过该数学建模方法,我们能够准确评估交通路线的效率,并提出改进建议。

在实践中,这种方法已经被应用于公交车路径优化、快递员配送路线规划等方面,取得了显著的效果。

案例二:股票价格预测股票价格的预测一直是金融领域的热门研究课题之一。

传统的技术分析和基本面分析方法存在局限性,而数学建模方法则可以更准确地预测股票价格的走势。

在这种情况下,我们可以使用时间序列分析和回归分析等方法来构建数学模型。

首先,我们需要收集大量的历史股票数据,包括价格、交易量、市场指标等信息。

然后,利用统计学方法对数据进行分析,并建立相应的模型。

最后,通过模型的拟合和预测,我们可以得到对股票价格走势的预测结果。

值得注意的是,股票市场的复杂性使得股票价格的预测存在一定的不确定性。

因此,在实际应用中,我们需要结合多种建模方法和技术指标,综合考虑各种因素,提高预测的准确性和可靠性。

总结与思考数学建模作为一种创新的思维方式和工具,已经在各个领域展现出了巨大的潜力和广泛的应用前景。

通过数学建模,我们可以更好地理解和解决现实问题,并推动科学研究的发展。

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法

实际问题的数学建模和解决方法数学建模是将实际问题转化为数学模型,并利用数学方法对问题进行分析和求解的过程。

在实际生活中,我们面临各种各样的问题,例如交通拥堵、疾病传播、环境污染等,这些问题的解决离不开数学建模的应用。

本文将通过几个具体案例,介绍实际问题的数学建模和解决方法。

案例一:交通拥堵问题交通拥堵是城市中常见的难题。

为了缓解交通拥堵,我们可以使用数学建模的方法来分析和优化交通流。

首先,我们可以将城市的交通网络抽象成一个图,节点表示交叉口,边表示道路。

然后,根据实际情况,给每条边赋予一个权重,表示该道路的通行能力。

接下来,我们可以使用最短路径算法来求解最短路径,并将结果应用于交通规划和调度。

案例二:疾病传播问题疾病传播是公共卫生领域的重要问题。

为了有效地控制疾病的传播,我们可以使用数学建模的方法来分析和预测疾病的传播路径和速度。

首先,我们可以将人群划分为不同的类别,如易感者、感染者和康复者。

然后,我们可以建立传染病传播的动力学模型,例如SIR模型,来描述不同类别之间的转化关系。

接下来,我们可以使用微分方程组来求解该模型,并根据模型的结果进行疾病控制和预防策略的制定。

案例三:环境污染问题环境污染是全球面临的重要挑战之一。

为了减少环境污染的影响,我们可以使用数学建模的方法来分析和评估不同的治理措施。

首先,我们可以建立环境污染的传输模型,考虑污染物在大气、地表和地下水中的运移规律。

然后,我们可以使用数学方法,如有限元法或数值模拟方法,来求解该模型,并评估不同治理方案的效果。

最后,根据模型的结果,制定相应的环境保护政策和措施。

总结起来,数学建模是解决实际问题的一种重要方法。

通过将实际问题抽象为数学模型,并运用数学方法对模型进行求解和分析,我们能够更好地理解问题的本质和规律,并提出有效的解决方案。

在今后的发展中,数学建模将在各个领域发挥重要作用,为我们解决更多实际问题提供帮助。

以上是对题目“实际问题的数学建模和解决方法”的论述,通过介绍交通拥堵、疾病传播和环境污染等不同领域的案例,说明了数学建模在解决实际问题中的应用。

银行数学建模竞赛案例

银行数学建模竞赛案例

银行数学建模竞赛案例以下是一个可能的银行数学建模竞赛案例:题目:银行客户流失预测模型背景:某银行希望通过数学建模来预测客户的流失情况,以便采取措施提高客户的留存率。

该银行提供各种金融服务,包括储蓄账户、贷款、信用卡等。

要求:针对该银行的客户数据库,建立一个客户流失预测模型,并使用该模型预测未来一年内的客户流失率。

数据集:- 客户特征数据:包括客户的年龄、性别、职业、收入、信用评级等。

- 服务使用情况数据:包括客户是否使用过各种金融产品,如储蓄账户、贷款、信用卡等。

- 客户流失数据:包括客户是否在过去一年内流失。

任务:1. 数据探索:对提供的数据进行统计分析和可视化,了解数据的分布、关联性等。

2. 特征工程:根据数据探索的结果,选择合适的特征用于模型建立,并进行数据预处理(如缺失值处理、标准化等)。

3. 模型建立:选择合适的机器学习模型或统计模型来建立客户流失预测模型。

可选择的模型包括逻辑回归、决策树、随机森林、支持向量机等。

4. 模型评估:使用交叉验证等方法评估模型的性能,并选择合适的评估指标(如准确率、召回率、F1分数等)。

5. 模型优化:根据评估结果,对模型进行优化,可以尝试不同的特征选择、模型调参等方法。

6. 未来预测:使用优化后的模型预测未来一年内客户的流失率,并给出相关报告和建议。

参考解决思路:1. 数据探索:使用统计方法和可视化工具对数据进行探索,分析客户特征和服务使用情况之间的关系,并观察流失客户与非流失客户的差异。

2. 特征工程:根据数据探索的结果选择重要的特征,并对数据进行预处理,如处理缺失值、进行标准化或归一化等。

3. 模型建立:根据任务的要求选择合适的模型进行建立,可以尝试多种模型并进行比较。

4. 模型评估:使用交叉验证等方法评估模型的性能,并选择合适的评估指标进行评估。

5. 模型优化:根据评估结果对模型进行优化,可以尝试不同的特征选择、模型调参等方法来提高模型的性能。

6. 未来预测:使用优化后的模型对未来一年内客户的流失率进行预测,并给出相关报告和建议,如哪些客户群体容易流失,可以采取什么措施来提高他们的留存率等。

数学建模案例

数学建模案例

数学建模案例案例1 化工厂排污某河流有两个化工厂,流经第一化工厂的河流为每天500万m2,在两个工厂之间有一条流量为每天200万m2支流,第一化工厂每天排放含有某种有害物质的工业污水2万m2,第二化工厂每天排放这种工业污水1.4万m2,第一化工厂每天排放的工业污水流到第二化工厂以前,有20%可自然净化。

根据环保要求,河流中工业污水的含量不大于0.2%,这两个工厂都需要各自处理不部分工业污水。

第一化工厂处理工业污水的成本是1000元/万m2,第二化工厂处理工业污水的成本是800元/万m2。

现在满足环保要求的条件下,每厂各应处理多少工业污水,使这两个工厂总的处理工业污水费用最小。

○工厂1500万m2 ○工厂2 200万m2案例2 自来水输送小区基本用水量(水库供水量千吨A:50 B:60 C:50 (以天计)甲:30;50 乙:70;70 丙:10;20 丁:10;40 小区额外用水量千吨收入:900元/千吨引水管理费元/千吨 A 甲 160 130 乙丙 220 170 丁 () ()千吨) B C 140 190 130 200 190 230 150 / 其他费用:450元/千吨 ? 应如何分配水库供水量,公司才能获利最多?? 若水库供水量都提高一倍,公司利润可增加到多少?案例3 公共部门建模(ST. JOSEPH 公共事业委员会)St. Joseph公共事业委员会负责对最近一次洪水所导致的公共事业问题进行检查并汇报。

需要调查的项目包括电线、天然气管道以及绝缘设施。

委员会只有1星期时间用于检查。

委员会分到了3名电气专家与2名天然气专家,每人可以在其专业领域范围内进行40小时的检察工作。

另外委员会还预留出了$10,000用于绝缘设施的检查。

这$10,000可以雇用当地专业的绝缘设施企业Weathertight Insulation进行多达100小时($100/小时)的检察。

这些专家需要对当地的民宅、写字楼以及工厂进行检查。

数学建模经典案例

数学建模经典案例

数学建模经典案例数学建模是数学与现实问题相结合的一门学科,它通过建立数学模型来描述和解决实际问题,是数学在实际中的应用。

在工程、经济、生态学、医学等领域,数学建模都发挥着重要作用。

下面我们将介绍几个经典的数学建模案例,以便更好地理解数学建模的应用和意义。

首先,我们来看一个经典的物理建模案例,自由落体运动。

自由落体运动是物理学中的一个经典问题,它描述了在只受重力作用下,物体在空气中自由下落的运动规律。

数学建模可以通过牛顿的运动定律和重力加速度的概念,建立起自由落体运动的数学模型,从而可以精确地预测物体下落的时间、速度和位置。

这种模型不仅在物理学研究中有重要意义,还在工程领域的抛物线轨道设计、空投物资的计算等方面有着广泛的应用。

其次,我们来看一个经典的经济建模案例,供需关系。

供需关系是经济学中的一个核心概念,它描述了市场上商品的供给和需求之间的关系。

数学建模可以通过建立供求曲线和均衡价格的概念,分析市场上商品的价格变化和供需关系的影响。

这种模型不仅在经济学理论研究中有重要意义,还在市场预测、价格调控等方面有着广泛的应用。

再次,我们来看一个经典的生态建模案例,捕食者-被捕食者模型。

捕食者-被捕食者模型是生态学中的一个经典问题,它描述了捕食者和被捕食者之间的数量动态关系。

数学建模可以通过建立捕食者和被捕食者的数量变化方程,分析它们之间的相互作用和数量波动的规律。

这种模型不仅在生态学研究中有重要意义,还在环境保护、生态平衡调控等方面有着广泛的应用。

最后,我们来看一个经典的医学建模案例,传染病传播模型。

传染病传播模型是医学中的一个重要问题,它描述了传染病在人群中的传播规律。

数学建模可以通过建立传染病的传播链模型和传染率的概念,分析传染病的传播速度和范围,并提出相应的防控策略。

这种模型不仅在流行病学研究中有重要意义,还在疫情预测、疫苗研发等方面有着广泛的应用。

通过以上几个经典的数学建模案例,我们可以看到数学建模在不同领域中的重要作用和广泛应用。

数学建模的实践案例

数学建模的实践案例

数学建模的实践案例在现代社会中,数学建模已成为解决各种实际问题的一种重要方法。

通过将数学工具和建模技巧应用于实际情境中,数学建模可以帮助我们理解问题的本质、预测未来的趋势以及提供解决方案。

本文将介绍两个数学建模的实践案例,分别是城市交通流量优化和疫情爆发预测。

案例一:城市交通流量优化城市交通拥堵一直是许多大城市面临的重要问题。

通过利用数学建模,可以对城市交通流量进行优化,减少拥堵情况并提高交通效率。

首先,我们需要收集并分析城市交通数据,包括道路交通量、交通信号灯等。

然后,我们可以建立数学模型,将城市交通流量问题抽象成数学表达式。

例如,可以使用图论中的最短路径算法来确定最佳的交通路线,或者使用流体力学中的纳维-斯托克斯方程来描述交通流动的过程。

接下来,我们可以使用数值计算方法来求解这些数学模型,得到优化后的交通方案。

例如,可以使用迭代法来求解最短路径问题,或者使用有限元法来模拟交通流动。

通过对比不同方案的性能指标,我们可以选择最优的交通优化方案,并进行实际实施。

通过数学建模优化城市交通流量,可以显著减少交通拥堵情况,提高交通效率,减少汽车尾气排放,改善城市环境。

案例二:疫情爆发预测近年来,全球范围内的疫情爆发成为严重的公共卫生问题。

数学建模可以帮助我们预测疫情的发展趋势,制定相应的防控措施。

首先,我们可以对已有的疫情数据进行收集和分析。

例如,可以统计每个地区的感染人数、康复人数和死亡人数。

然后,我们可以建立数学模型,描述疫情的传播过程。

常用的模型包括传染病动力学模型和时空统计模型。

接下来,我们可以使用数值计算方法来拟合这些数学模型,通过参数估计和模型验证,得到可靠的疫情预测结果。

例如,可以使用最小二乘法来拟合传染病动力学模型,或者使用贝叶斯统计方法来更新模型参数。

通过疫情预测模型,我们可以对未来的疫情发展趋势进行预测,并制定相应的防控策略。

例如,我们可以预测疫情的高风险地区,及时采取隔离和封控措施,减少疫情传播。

小学数学建模案例

小学数学建模案例

小学数学建模案例在小学数学教学中,建模思想的渗透对于培养学生的数学思维和解决实际问题的能力具有重要意义。

下面将通过几个具体的案例来展示小学数学建模的应用。

案例一:行程问题假设小明和小红分别从 A、B 两地同时出发,相向而行。

小明的速度是每小时 5 千米,小红的速度是每小时 4 千米,经过 3 小时两人相遇。

求 A、B 两地的距离。

在解决这个问题时,我们可以引导学生建立一个数学模型。

首先,明确速度、时间和路程之间的关系:路程=速度 ×时间。

对于小明来说,他走的路程是 5×3 = 15 千米;对于小红来说,她走的路程是 4×3 = 12 千米。

因为两人是相向而行,所以 A、B 两地的距离就是两人所走路程之和,即 15 + 12 = 27 千米。

通过这个案例,学生能够理解和运用速度、时间和路程的关系来解决实际问题,建立起初步的数学模型。

案例二:购物中的折扣问题商场在进行促销活动,一件原价 200 元的衣服,现在打八折出售。

请问现在这件衣服的价格是多少?在解决这个问题时,我们可以建立这样的模型:折扣后的价格=原价 ×折扣率。

这里的折扣率是八折,也就是 80%(08)。

所以这件衣服现在的价格是 200×08 = 160 元。

进一步拓展,如果买两件这样的衣服,商场再给总价打九折,那么购买两件衣服需要花费多少钱?首先算出两件衣服不打折的总价是 200×2 = 400 元。

打八折后的价格是 400×08 = 320 元。

然后再打九折,最终价格是 320×09 = 288 元。

通过这个案例,学生能够理解折扣的概念,并运用数学模型计算出实际的价格。

案例三:图形面积问题有一块长方形的草地,长是 8 米,宽是 5 米。

在草地的周围围上一圈篱笆,篱笆的长度是多少?解决这个问题,我们需要建立周长的模型。

长方形的周长=(长+宽)× 2。

数学建模案例精选

数学建模案例精选

数学建模案例精选
1. 动物捕食模型:
假设有两种动物A和B,它们在一个共享的环境中捕食和被捕食。

设定一个数学模型来描述它们的相互作用,使用微分方程来描述A和B的数量如何随时间变化。

2. 水资源管理模型:
假设有一个山谷,它的水源受到当地人口的影响,以及当地的农业和工业活动。

设定一个数学模型来描述山谷水源的变化,并评估不同的管理策略,以确保水资源的可持续利用。

3. 城市交通模型:
假设有一个大城市,它的交通状况受到当地人口的影响,以及当地的交通基础设施。

设定一个数学模型来描述城市交通系统的变化,并评估不同的管理策略,以改善城市交通状况。

数学建模模型案例

数学建模模型案例

数学建模模型案例1. 汽车加速度模型在这个模型中,我们可以通过测量汽车的速度和时间来确定汽车的加速度。

通过使用加速度的定义,我们可以得到一个基本的数学模型,该模型描述了汽车在给定时间内的速度变化情况。

我们可以使用这个模型来预测汽车的行驶速度,或者评估不同驾驶条件下的加速性能。

2. 疫情蔓延模型疫情蔓延模型用于描述传染病在人群中的传播过程。

通过考虑人群的接触模式和传染病的传播机制,可以建立数学模型来预测疫情的蔓延速度和范围。

这个模型可以帮助政府和卫生机构制定有效的疫情控制策略,以减少疫情的影响。

3. 股票价格预测模型股票价格预测模型是通过分析历史股票价格和相关经济指标来预测未来股票价格的数学模型。

通过使用统计方法和机器学习算法,可以建立一个模型,该模型可以根据过去的数据来预测未来的股票价格走势。

这个模型可以帮助投资者做出更明智的投资决策。

4. 能源消耗模型能源消耗模型用于估计不同能源消耗的量和趋势。

通过分析能源的使用模式和相关因素,可以建立一个数学模型,该模型可以预测未来能源消耗的变化。

这个模型可以帮助能源公司和政府制定合理的能源规划,以提高能源利用效率。

5. 物流配送模型物流配送模型用于优化物流配送过程中的路线规划和资源分配。

通过考虑不同的因素,如货物数量、距离和交通情况,可以建立一个数学模型,该模型可以帮助物流公司或配送中心确定最优的配送路线和资源分配方案,以提高效率和降低成本。

6. 生产计划模型生产计划模型用于优化生产过程中的资源分配和生产安排。

通过考虑不同的因素,如生产能力、订单需求和原材料供应,可以建立一个数学模型,该模型可以帮助生产企业确定最优的生产计划,以提高生产效率和降低成本。

7. 交通流模型交通流模型用于描述交通流量和交通拥堵情况。

通过考虑不同的因素,如道路容量、车辆速度和交通信号灯,可以建立一个数学模型,该模型可以帮助交通管理部门优化交通信号灯控制和道路规划,以减少交通拥堵和提高通行效率。

数学建模的实际案例与反思

数学建模的实际案例与反思

数学建模的实际案例与反思数学建模作为一门现代应用数学的分支,通过将数学方法与实际问题相结合,对问题进行定量分析和求解,为解决实际问题提供了全新的视角和方法。

在实践中,数学建模也经常面临着各种挑战和困难。

本文将以数学建模的实际案例为线索,对该领域的发展和应用进行反思,并探讨其未来的发展方向。

案例一:城市交通流量优化面对城市交通日益严重的拥堵问题,如何优化交通流量已成为城市规划者和交通管理者亟待解决的难题。

这一问题就可以通过数学建模来进行分析和求解。

首先,可以用数学模型对交通状况进行建模,包括车辆数量、行驶速度等参数;然后,通过对数据进行分析和优化算法的设计,得到最优的交通流量方案。

该方法不仅可以减少行程时间,还能提高整体交通效益,为城市交通管理提供科学依据。

案例二:股票市场波动预测股票市场波动对投资者而言是一个关键的问题,准确预测市场的波动趋势有助于投资者做出明智的决策。

数学方法可以通过建立股票市场的数学模型,结合历史数据和相关经济指标,对市场波动进行预测。

这样的建模方法可以帮助投资者降低风险,提高投资收益,为投资领域的决策提供科学依据。

案例三:疾病传播模型疾病的传播对公共卫生和社会稳定具有重要影响,针对不同的传染病,可以利用数学建模的方法来进行疫情预测和控制策略的制定。

通过构建传染病传播的数学模型,可以对疫情传播的趋势进行预测和分析,进而制定相应的防控措施。

这种模型的应用可以提前发现潜在的疫情蔓延风险,快速响应并有效地减少疫情扩散。

数学建模的实际案例给我们展示了数学在实际生活中的广泛应用和价值。

通过数学建模,我们可以对各个领域的问题进行系统的分析、预测和优化,为决策和问题解决提供科学依据。

然而,数学建模也存在着一些挑战和困难。

首先,实际问题的复杂性和多样性给数学建模带来了挑战。

不同的问题需要使用不同的数学模型和方法进行建模,而选择合适的模型和方法需要对问题进行深入的了解和分析,这对建模者的数学素养和领域知识要求较高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力等级
隶属度
-2
-1
0
1
2
0-3
0.0
0.0
0.0
0.2
0.8
4-5
0.0
0.0
0.2
0.6
0.2
5-6
0.1
0.3
0.5
0.1
0.0
6-7
0.2
0.4
0.3
0.1
0.0
>7
0.5
0.3
0.2
0.0
0.0
表2.7
水的流速与搜索风险评估等级之间的隶属度子集表,见表2.8所示。
水的流速
隶属度
-2
-1
0
子因素权重搜索设备完备性:0.3333
能见度距离:0.2805
风力等级:0.1834
环境影响:水的流速:0.1542
交通量:0.114
表3.2
马航残骸和黑夹子搜索海域搜索船只各项指标信息表
第一级指标
第二级指标
高危险
较高危险
一般危险
较低危险
低危险
搜索船只
应急性计划
0.0
0.0
0.0
0.8
0.2
通讯设备状况







搜索黑匣子
摘要
一、问题重述
2014年3月8号,马来西亚航空370号班机从马来西亚吉隆坡前往中国北京途中失联,被认为是有史以来“最离奇”的飞机失联案例。空难的谜团不能解开,很大程度上取决于能不能打捞到“黑匣子”。MH370的失联,各国为此出动了25架飞机,40艘舰艇,甚至包括若干卫星。
我们要解决的问题如下:
-2
-1
0
1
2
<1000
0.0
0.0
0.1
0.3
0.6
2000~3000
0.0
0.00.20.5源自0.33000~4000
0.0
0.1
0.4
0.4
0.1
4000~5000
0.2
0.5
0.2
0.1
0.0
>5000
0.8
0.2
0.0
0.0
0.0
表2.9
3.风险评估模型各指标权重的确定
建立多指标体系后,还需要确定各评判指标的权重。权重指各因素在评价指标体系中对其要评价目标索契作用的大小程度。要想得到更接近实际的评价效果必须合理地分配权重。本文利用层次分析法来确定紧急海上搜索各个因素的权重。根据网上资料,可知道有关专家的主体意见,虽然缺乏大量统计资料证实但也是客观事实的近似反应。
二、模型假设
1.马航370残骸和黑夹子落点的可疑位置已确定。
2.专家对搜索船只在搜索过程中的权重确定真是可靠。
3.船只在搜索过程中只受到文中因素的影响,其余因素影响很小。
4.在搜索过程中,风速和浪高等环境因素是不变的。
5.搜索过程中各种搜索工具不会出现故障。
6.搜救船只只能按照特定航道行驶。
7.搜索船只的设备都比较齐全,船只的类别对搜索的影响不大。
我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。如有违反选拔规则的行为,我们将受到严肃处理。
我们选择的题号是(从A/B/C中选择一项填写):C
队员签名:1.
2.
3.
日期:2014年8月19日
2014年河南科技大学数学建模竞赛选拔
编号专用页
评阅编号(评阅前进行编号):
评阅记录(评阅时使用):
0.1
0.0
4.根据各评价因素的得分得出模糊关系矩阵,经过单因素模糊评判得:
B1==A1•R1=(0.0000,0.0000,0.0392,0.0625,0.3358)
B2=A2•R2=(0.0000,0.0000,0.1330,0.7667,0.1000)
B3=A3•R3=(0.1833,0.5994,0.1770,0.0404.,00000)
2014年河南科技大学模拟训练一
承诺书
我们仔细阅读了数学建模选拔赛的规则.
我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。
我们知道,抄袭别人的成果是违反选拔规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
1
2
0-0.4
0.0
0.0
0.0
0.2
0.8
0.4-1.2
0.0
0.0
0.0
0.6
0.3
1.2-2.2
0.0
0.1
0.1
0.3
0.1
2.2-3.2
0.2
0.5
0.5
0.1
0.0
>3.2
0.7
0.3
0.2
0.0
0.0
表2.8
交通量与搜索风险等级之间的隶属度子集表,见表2.9所示。
交通量(艘次/月)
隶属度
2.搜索风险评估与各指标隶属度的确定
评价等级V=(-2,-1,0,1,2)代表5个模糊子集。通过专家经验等方法,最终确定各指标与各评判等级之间的隶属度如下:
(1)应急计划与搜索风险等级之间的隶属度子集表,见表2.2所示。
应急计划完备性
应急计划完备性
隶属度
-2
-1
0
1
2
一级
0.0
0.0
0.0
0.0
1.0
能见度影响搜索行动的隶属度子集表,如表2.6所示。
能见度距离(n mile)
隶属度
-2
-1
0
1
2
>6
0.0
0.0
0.0
0.2
0.8
4-6
0.0
0.0
0.1
0.4
0.3
2-4
0.0
0.1
0.4
0.6
0.1
0.5-2
0.2
0.5
0.2
0.1
0.0
<0.5
0.8
0.2
0.0
0.0
0.0
表2.6
风力与搜救风险评估等级之间的隶属度子集表,如表2.7所示。
救助人员业务水平
隶属度
-2
-1
0
1
2
一级
0.0
0.0
0.0
0.0
1.0
二级
0.0
0.0
0.0
0.3
0.2
三级
0.0
0.1
0.6
0.0
0.0
四级
0.2
0.7
0.1
0.0
0.0
五级
1.0
0.0
0.0
0.0
0.0
备注:搜索队员素质等级需要经过专家评判确定,一级代表最佳,五级代表一般。
表2.4
(4)搜索设备影响对搜索行动的隶属度子集表,如表2.5:
二级
0.0
0.0
0.0
0.8
0.2
三级
0.0
0.1
0.6
0.3
0.0
四级
0.2
0.7
0.1
0.0
0.0
五级
1.0
0.0
0.0
0.0
0.0
备注:应急计划完备性等级需要经过专家评判确定,一级代表最佳,五级代表一般。
表2.2
(2)通讯设备与搜救风险等级之间的隶属度子集表,见表2.3
通讯设备状况
隶属度
-2
-1
1.我们首先将单独对船只这种搜寻工具分析,根据假设确定最后失联地点,找出大概搜索区域,确定飞机残骸和黑夹子疑似地点,利用性变形最短路径模型确定搜索完所有可疑地点的最短路径,最后求出最小风险系数下的最优搜索方案,并明确这种搜索方案的优缺点。
2.所有的飞机船舰及卫星都有一个国家统一调度,则根据卫星、飞机、船舰的各自的探索方式划分搜寻区域,进行统一分工合作,提高搜索的效率和降低搜索的费用。分别建立模型得出每种单一搜索工具的最优搜索你方案,最终利用多人TST问题计算整合出多种搜索工具共同参与下的最优搜索方案。
0.0
0.0
0.2
0.7
0.1
搜索人员业务水平
0.0
0.0
0.0
0.7
0.3
搜索设备完备性
0.0
0.0
0.1
0.8
01
搜索目标
0.0
0.0
0.0
0.1
0.9
搜索环境
能见度距离
0.0
0.0
0.1
0.6
0.2
风力等级
0.0
0.0
0.2
0.6
0.2
水的流速
0.0
0.0
0.1
0.6
0.3
交通量
0.1
0.4
0.4
8.在搜索过程中,风速和浪高等环境因素是不变的。
9.各种搜索人员之间能够实现理想状态下的无障碍交流和信息共享。
三、符号说明
变量和缩略语
定义
WC
风飘矢量位移
Vt
海流t时刻的速度
S1
只在洋流影响下的漂流位移
S0
初始位移
La1
A线上相邻顶点之间的距离
A
顶点的分组A即搜索路线A线
M
关联矩阵
A
邻接矩阵
Lab
A线和B线之间的距离
B4=A4•R4=(0.0111,0.0446,0.1657,0.5346,0.2440)
经过综合模糊评判,可以得到马航370残骸和黑夹子搜索风险系数:
相关文档
最新文档