初中数学竞赛辅导资料(1)
初中数学竞赛第1讲一元二次方程的解法(含解答)
第1讲一元二次方程的解法一、引例瑞士的列昂纳德.欧拉(1707~1783),既是一位伟大的数学家,也是一位教子有方的父亲,他曾亲自编过许多数学趣题用以启发孩子们思考。
如下题:“父亲临终时立下遗嘱,要按下列方式分配遗产:老大分得100克朗和剩下的110;老二分得200克朗和剩下的110;老三分得300克朗和剩下的110;……;以此类推分给其他的孩子,最后发现,遗产全部分完后所有孩子分得的遗产相等;遗产总数、孩子人数和每个孩子分得的遗产各是多少?”这道题需要列方程求解。
解析设孩子数为x人,则最后一个孩子分得遗产为100x克朗,老大分得遗产[100+1 10 (100x2-100)]克朗,得方程100+110(100x2-100)=100x. 同学们,你会解此方程吗?整理方程得 x2-10x+9=0.(x-9)(x-1)=0,∴x1=9,x2=1(舍去).遗产总数是8100克朗;有9个孩子,每个孩子分得的遗产是900克朗。
点评:二、一元二次方程的解法运用因式分解法时,首先应将右边各项移到方程的左边,使方程右边为0;然后再将方程左边的式子分解因式,使原方程化为两个一元一次方程,常借助于提公因式法、公式法、十字相乘法等来分解因式。
例1用适当的方法解下列一元二次方程:(1)(2x-1)2-9=0; (2)x2+x-1=0;(3)x2-4x=1; (4)3x2-16x+5=0;(5)(3x+2)2=4(x-3)2; (6)(y-1)2=2y(1-y);(7)3a2x22=0(a≠0) (8)x2+2mx=(n+m)(n-m).解析 (1)两边开平方,得 2x-1=3或2x-1=-3,∴ x1=2,x2=-1;(2)已知:a=1,b=1,c=-1.∴ x1,x2;(3)整理原方程,得 x2-4x-1=0,∴ (x-2)2=5.∴ x12(4)原方程可化为(3x-1)(x-5)=0,∴ x1=13,x2=5;(5)两边开平方,得3x+2=2(x-3)或3x+2=-2(x-3),∴ x1=-8, x2=45.(6)原方程可化为(y-1)(3y-1)=0,∴ y1=1, y2=1 3 .(7)原方程可化为∴ x1=,x2(8)原方程可化为(x+n+m)(x+m-n)=0,∴ x1=-n-m, x2=n-m.点评此题主要考虑怎样选择一元二次方程的解法,使运算达到最简便。
初中数学竞赛讲义(1)
初中数学竞赛讲义
1、证明:对于任意自然数k,存在无穷多个不含数码0的自然数t(十进制计数法),使得t与kt数码和相同。
2、设n是一个正整数,且d是十进制中的一个一位数,若
=0.d25d25d25…,求n
3、两位数
能整除十位数字为零的三位数。
求。
4、设n=99…9(100个9),则n3 的10进制表示中含有的数字9的个数为多少
5、求
…,1234567892的和的个位数的数字
6、求数1,2,3…,10n -2,10n -1的所有数码之和
7、求最小的自然数,当它的最后一个数码排列到第一位时,它的值增加到原来的五倍
8、已知a是一个1988位的自然数且可被9整除,a的各位数字相加和为b,b的各位数字相加和为c,c的各位数字相加和为d,求d
9、求适合等式
中的数码x,y,z
10、设x=0.1234567…999中的数字依次写下整数1到999而得到的,那么小数点右边第1983位数字是什么
11、设x与y是两个有两位数码的自然数,且x<y,乘积xy是一个有四位数码的自然数.首位数是2,如果把这个首位数2去掉,剩下的数正好是x+y,例如x=30,y=70.除此之外还有一组数具有如上性质,试求出这两个数
12、试求满足下列条件的六位整数
,。
这里a,b,c,d,e,f表示不同的数码,且a,e≠0
13、求满足
=(a+b+c)3的所有三位数。
14、已知某三位整数是5的倍数,其各位数字之和是20,个位数字与百位数字的和是3的倍数,求此整数。
15、求使nn有k个数字,kk有n个数字的所有自然数n,k
16、证明:如果n是正奇数,那么数22n(22n+1-1)在十进制中的最后两位数是28。
初一数学竞赛辅导讲义
初一数学竞赛讲座自然数的有关性质一、一、知识要点1、1、最大公约数定义1如果a1,a2,…,a n和d都是正整数,且d∣a1,d∣a2,…,d∣a n,那么d叫做a1,a2,…,a n 的公约数。
公约数中最大的叫做a1,a2,…,a n的最大公约数,记作(a1,a2,…,a n).如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4.2、2、最小公倍数定义2如果a1,a2,…,a n和m都是正整数,且a1∣m, a2∣m,…, a n∣m,那么m叫做a1,a2,…,a n的公倍数。
公倍数中最小的数叫做a1,a2,…,a n的最小公倍数,记作[a1,a2,…,a n].如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作[4,8,12]=24.3、3、最大公约数和最小公倍数的性质性质1 若a∣b,则(a,b)=a.性质2 若(a,b)=d,且n为正整数,则(na,nb)=nd.性质3 若n∣a, n∣b,则()nbanbna,,=⎪⎭⎫⎝⎛.性质4 若a=bq+r (0≤r<b),则(a,b)= (b,r) .性质4 实质上是求最大公约数的一种方法,这种方法叫做辗转相除法。
性质5若b∣a,则[a,b]=a.性质6若[a,b]=m,且n为正整数,则[na,nb]=nm.性质7若n∣a, n∣b,则[]nbanbna,,=⎥⎦⎤⎢⎣⎡.4、4、数的整除性定义3对于整数a和不为零的整数b,如果存在整数q,使得a=b q 成立,则就称b整除a或a被b整除,记作b∣a,若b∣a,我们也称a是b倍数;若b不能整除a,记作b a5、5、数的整除性的性质性质1 若a∣b,b∣c,则a∣c性质2 若c∣a,c∣b,则c∣(a±b)性质3 若b∣a, n为整数,则b∣n a6、6、同余定义4设m是大于1的整数,如果整数a,b的差被m整除,我们就说a,b关于模m同余,记作a≡b(mod m)7、7、同余的性质性质1 如果a≡b(mod m),c≡d(mod m),那么a±c≡b±d(mod m),ac≡bd(mod m)性质2 如果a≡b(mod m),那么对任意整数k有ka≡kb(mod m)性质3 如果a≡b(mod m),那么对任意正整数k有a k≡b k(mod m)性质4如果a≡b(mod m),d 是a ,b 的公约数,那么()⎪⎪⎭⎫ ⎝⎛≡d m,m mod d b da 二、二、例题精讲例1 设m 和n 为大于0的整数,且3m+2n=225.如果m 和n 的最大公约数为15,求m+n 的值(第11届“希望杯”初一试题)解:(1) 因为 (m,n)=15,故可设m=15a ,n=15b ,且(a,b)=1因为 3m+2n=225,所以3a+2b=15因为 a,b 是正整数,所以可得a=1,b=6或a=b=3,但(a,b)=1,所以a=1,b=6 从而m+n=15(a+b)=15⨯7=105评注:1、遇到这类问题常设m=15a ,n=15b ,且(a,b)=1,这样可把问题转化为两个互质数的求值问题。
数学竞赛知识点资料
数学竞赛知识点资料初中数学联赛竞赛知识点1.两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形:(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4·对称性:平行四边形是中心对称图形.基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数) 关键问题:找出总量的差与单位量的差。
初中数学竞赛计算知识点归纳1,C ;2,m=1,n=6 或 m=3,n=2 或 m=6,n=1;3,a=17,4,a=12,x1=1,x2=-2,x3=-28,或a=39,x1=-1,x2=-565,就是第四题的变形。
a=12,或 39过程:1,因为这些数据成对出现,且每一对都是互为倒数,所以只要求出x=2007和x=1/2007的值,就可以知道结果了。
你去求吧。
2,二次函数与横轴的两个交点间的距离等于根号下(b^2-4ac)再除以a的绝对值。
因此有:根号下[(3-mt)^2+12mt]≥(2t+n)的绝对值化简后有:(m^2-4)t^2+(6m-4n)t+9-n^2≥0也就是有:y=(m^2-4)t^2+(6m-4n)t+9-n^2的图象与横轴最多只有一个交点,即有判别式小于或等于0,则得:(mn-6)^2小于或等于0,即mn=6余下的你可做了。
全国初中数学竞赛辅导(初1)第15讲奇数与偶数教师版
全国初中数学竞赛辅导(初1)第15讲奇数与偶数教师版第⼗五讲奇数与偶数通常我们所说的“单数”、“双数”,也就是奇数和偶数,即±1,±3,±5,…是奇数,0,±2,±4,±6,…是偶数.⽤整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数.通常奇数可以表⽰为2k+1(或2k-1)的形式,其中k为整数,偶数可以表⽰为2k的形式,其中k 是整数.奇数和偶数有以下基本性质:性质1 奇数≠偶数.性质2 奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数.性质3 奇数×奇数=奇数,偶数×偶数=偶数,奇数×偶数=偶数.性质4 奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数.性质5 若⼲个奇数的乘积是奇数,偶数与整数的乘积是偶数.性质 6 如果若⼲个整数的乘积是奇数,那么其中每⼀个因⼦都是奇数;如果若⼲个整数的乘积是偶数,那么其中⾄少有⼀个因⼦是偶数.性质7 如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数⼀定是⼀奇⼀偶.性质8 两个整数的和与差的奇偶性相同.性质9 奇数的平⽅除以8余1,偶数的平⽅是4的倍数.性质10 整数a和|a|有相同的奇偶性性质11 两个连续的整数中,必有⼀个是奇数,⼀个是偶数,两个相邻整数之和是奇数,之积是偶数.性质12 如果若⼲个整数之和是奇数,那么其中⾄少有⼀个是奇数;如果奇数个整数之和是偶数,那么其中⾄少有⼀个是偶数.下⾯我们给出性质7⾄性质9的证明.性质7的证明设两个整数的和是偶数,如果这两个整数为⼀奇⼀偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数.同理两个整数的和(或差)是奇数时,这两个数⼀定是⼀奇⼀偶.性质8的证明设两个整数为X,y.因为(x+y)+(x-y)=2x为偶数,由性质7便知,x+y与x-y同奇偶.性质9的证明若x是奇数,设x=2k+1,其中k为整数,于是x2=(2k+1)2=4k3+4k+1=4k(k+1)+1.因为k与k+1是两个连续的整数,它们必定⼀奇⼀偶,从⽽它们的乘积是偶数.于是,x2除以8余1.若y是偶数,设y=2t,其中t为整数,于是y2=(2t)2=4t2所以,y2是4的倍数.例1 在1,2,3,…,1998中的每⼀个数的前⾯,任意添上⼀个“+”或“-”,那么最后运算的结果是奇数还是偶数?解由性质8知,这最后运算所得的奇偶性同1+2+3+…+1998=999×1999的奇偶性是相同的,即为奇数.例2 设1,2,3,…,9的任⼀排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是⼀个偶数.证法1 因为(a1-1)+(a2-2)+(a3-3)+…+(a9-9)=(a1+a2+…+a9)-(1+2+…+9)=0是偶数,所以,(a1-1),(a2-2),…,(a9-9)这9个数中必定有⼀个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4⽭盾),从⽽由性质5知(a1-1)(a2-2)…(a9-9)是偶数.证法2 由于1,2,…,9中只有4个偶数,所以a1,a3,a5,a7,a9中⾄少有⼀个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9⾄少有⼀个是偶数,从⽽(a1-1)(a2-2)…(a9-9)是偶数.例3 有n个数x1,x2,…,x n,它们中的每⼀个数或者为1,或者为-1.如果x1x2+x2x3+…+x n-1x n+x n x1=0,求证:n是4的倍数.证我们先证明n=2k为偶数,再证k也是偶数.由于x1,x2,…,x n。
初中数学竞赛讲义 第一章 整数
第一章 整数一、自然数的十进制表示数的进位制很多,常用的是十进位制,简单地说,就是用十个不同的数字符号(0,1,2,3,4,5,6,7,8,9)和由低向高位“满十进一”的位制原则,就可以写出一切自然数来.对于一切十进位制的自然数,都可以用其各位上单位的和的形式来表示,如:510910*********3+⨯+⨯+⨯=,对于任意自然数N ,都可以表示为:01221110101010a a a a a N n n nn +⨯+⨯++⨯+⨯=-- 的形式,这里0121,,,,,a a a a a n n -各表示0到9这十个数字中的任意一个,但0≠n a . 有时还把该自然数N 表示成0121a a a a a n n -(0≠n a ),在上面加一横,意在避免与0121,,,,,a a a a a n n -的乘积发生混淆.例1.一个六位数的最高位是1,若把1移作个位数,其余各数的大小和顺序都不变,则所得的新六位数恰好是原数的3倍,求原六位数.例2.设n 为正整数,计算 99999个n × 99999个n +199999个n例3.试问,是否存在整数ab 和cd ,使得abcd cd ab =⋅?二、奇数与偶数一个整数,不是奇数就是偶数.概念:偶数:能被2整除的整数叫做偶数;奇数:不能被2整除的整数就叫做奇数.我们常用n2表示偶数,用12+n或12-n表示奇数(n为整数).奇数偶数的常用性质:(1)奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数奇数×奇数=奇数奇数×偶数=偶数,偶数×偶数=偶数(2)奇数个奇数相加,其和为奇数;偶数个奇数相加,其和为偶数;任意多个偶数相加,和总为偶数;(3)任意多个奇数相乘,积为奇数;任意个偶数相乘,积为偶数.推论:奇数的正整数次幂是奇数,偶数的正整数次幂是偶数,(4)若干个整数的积为奇数,则每个整数都为奇数;若干个整数的积为偶数,则其中至少有一个是偶数;(5)两个连续整数,必有一个是奇数,一个是偶数;两个连续整数的和是奇数,积是偶数. (6)若a是整数,则a,a-,a具有相同的奇偶性;(7)若a,b是整数,则babaabbaba-+--+,,,,具有相同的奇偶性.例4.在2010个自然数1,2,3,…,2010的每一个数前面任意添加“+”号或“-”号,然后将这2010个整数相加,请你判断,最后的结果是奇数还是偶数?例5.已知cba,,中有两个奇数,一个偶数,试判断()()()321+++cba的奇偶性.例6.计算:()223521+-例7.已知y x ,均为一位正整数,且满足y x y x 9292=⋅,求y x ,的值.例8.已知自然数y x ,满足606341993=+y x ,求xy 的值.例9.某次九年级数学竞赛共有20道题,规定答对一题得5分,不答得1分,答错扣1分. 求证:不论多少人参赛,全体学生的得分总分一定是偶数.三、整数的整除(1)定义:设a ,b 是整数,0≠b ,如果有整数p ,使得bp a =,那么称a 能被b 整除,或称b 整除a ,记作a b .又称b 为a 的约数,a 为b 的倍数.如果a 不是b 的倍数,则称整数b 不整除a ,或称a 不能被b 整除.(2)整除的常用性质: ① 若b a ,c b ,则c a .② k 是任意整数,若a b ,则ka b . ③ 若b a ,c a ,则()c b a ±. ④ 若ab m ,()1,=a m ,则b m .⑤若mb,则[]ma,ma,.b⑥若mb,且()1a,mab.a,则m,=b(3)整数整除的常用判定方法:①若整数M的个位数是偶数,则M2.②若整数M的个位数是0或5,则M5.③若整数M的各位数字之和是3的倍数,则M3;若整数M的各位数字之和是9的倍数,则M9.4;④若整数M的末两位数是4的倍数,则M若整数M的末两位数是25的倍数,则M25.⑤若整数M的末三位数是8的倍数,则M8;若整数M的末三位数是125的倍数,则M125.11.⑥若整数M的奇位上数字之和与偶位上的数字之和的差是11的倍数,则M例10.在一个两位数的两个数字中间插入一个数字后,这个两位数就变成了一个三位数,且该三位数是原来两位数的9倍,则这样的两位数有多少个?例11.若78N=是一个能被17整除的四位数,求x.2x例12.从1到2000这2000个数中,有多少个数既不能被4整除,又不能被6整除?例13.五位数xy 538能被3,7,11整除,求22y x -的值.例14.已知整数45613ab 能被198整除,求a 与b 的值.四、质数与合数(没有说明的情况下,只在正整数范围内讨论)如果一个大于1的正整数只能被1和其本身整除,就把这个数叫做质数(也叫素数),如果还能被1和本身以外的数整除,就称其为合数.(负数的绝对值是质数的话,这个负数也是质数,在后面的章节中,如果没有特殊说明,只在正整数范围内考虑质数合数) 特别注意的是:1即不是质数也不是合数.五、质因数的分解我们经常把一个大于1的整数分解为若干个质数的连乘积形式,这就是所谓的分解质因数,乘积中的每一个质数,都叫做这个整数的质因数.关于质因数分解有以下定理:算数基本定理 任意一个大于1的整数N 都可以分解为质因数的乘积.如果不考虑这些质因数的次序,那么这种分解是唯一的.通常可以表示成以下形式:n n p p p N ααα 2121=()*在上式中,n p p p ,,,21 都是质数且互不相同,n ααα,,,21 都是正整数.这种分解式称为 正整数N 的标准分解式.例如540的标准分解式是53254022⨯⨯=.推论1(约数个数定理) 如果对于大于1的整数N ,其标准分解式如()*式所示, 那么N 共有正约数()()()11121+++n ααα 个,这些约数包括1和N 本身.推论2 如果对于大于1的整数N ,其标准分解式如()*式所示,那么N 是一个完全平方数的充要条件是n ααα,,,21 都是偶数,即N 的正约数个数是奇数.由此可以得到 质数的如下整除性质:(1)p 是质数,b a ,都是整数,如果ab p ,则a p 或b p ,特别地2a p 时,a p ; (2)n p p p ,,,21 是不同的质数,a 是整数,如果a p 1,a p 2,a p n , ,则a p p p n 21.例15.已知质数q p ,满足3153=+q p ,求13+q p 的值.例16.3个质数之积是这3个质数之和的17倍,求这3个质数.例17.已知p 是质数,36+p 也是质数,求4811-p 的值.例18.写出30个连续的自然数,使得个个都是合数.例19.360能被多少个不同的正整数整除.例20.写出在100以内的具有10个正约数的所有正整数.例21.求392的标准分解式,并求其全部正约数的和.例22.已知三位数abc是一个质数,如果将这个三位数重复写一遍,就得到一个六位数abcabc,问这个六位数一共有多少个不同的正约数.六、公约数与公倍数(一般情况下,只在正整数范围内讨论)(1)公约数与最大公约数整数a和b都有的约数,叫做a和b的公约数,a和b的最大公约数可以表示为()ba,,若()1a,则称a和b互质.b,=(2)公倍数和最小公倍数如果一个数既是a 的倍数又是b 的倍数,那么就称其为a 和b 的公倍数,a 和b 的最小公倍数记作[]b a ,定理1:若a ,b 是正整数,则()[]b a b a ab ,,=定理2:若a ,b 是正整数,则()()b a b b a ,,=+;()()b a b b a ,,=-例23.已知b a ,两正整数的最大公约数是6,最小公倍数是36,求b a ,这两个数.例24.正整数n m ,的最大公约数大于1,且满足3713=+n m ,求mn 的值.七、完全平方数如果N 是整数,且M N =2,则称整数M 为完全平方数(简称平方数),平方数M 有 以下常用性质:(1) 若M 是整数,则平方数2M 与()21+M 之间不存在其他平方数,即两个连续平方数之间任何一个数都不是平方数;(2) 平方数M 的末尾数只能是0,1,4,5,6,9,而不能是2,3,7,8; (3) 偶数的平方必是4的倍数,而奇数的平方必是8的倍数加1;(4) 平方数的末尾数是奇数时,其十位数必为偶数,平方数的末尾是6时,其十位数必为奇数;(5) 两个平方数的乘积还是平方数,一个平方数与一个非平方数的乘积肯定不是平方数; (6) 任何平方数除以3,余数不可能是2;除以4,余数不可能是2,3;除以5,余数不可能是2,3;除以8,余数不可能是2,3,5,6,7;除以9,余数不可能是2,3,5,6,8.例25.若N 是一个完全平方数,则它后面的一个完全平方数是_______________.例26.求自然数n ,使得n n S n 542+=为完全平方数.例27.直角三角形两条斜边长b a ,均为正整数,且a 为质数,若斜边场也是整数,求证 ()12++b a 是完全平方数.八、带余除法设整数a 除以整数b ()0≠b ,所得的商和余数分别为q 和r ()b r <≤0,则有r bq a +=, 即:被除数=除数×商+余数.(1)整数n m ,除以d 所得余数相同()n m d -⇔.(2)用任意连续n ()0>n 个整数除以n ,所得的余数中,0,1,…,1-n 各出现一次.九、末位数rk a+4与r a 有相同的末位数.其中a 为整数,k 为非负整数,r 为1、2、3、4中的任意一个.(注意:不要取0=r )例28.今有自然数带余除法算式8 C B A =÷,如果2178=++C B A ,求A 的值.例29.若一个正整数a 被2,3,4,5,6,7,8,9这八个自然数除,所得的余数都为1,求a 的最小值.例30.20032003的个位数是多少?习题一1、某校九年级(1)班同学做一个数学实验:在黑板上写上1,2,3,…,40这40个数,第一个同学上来擦去其中任意两个数,然后写上他们的和或者差,第二个同学、第三个同学及以后每位同学都按此规则操作,直到黑板上只有一个数为止,问:最后一个数是奇数还是偶数,为什么?2、已知z y x ,,为正整数,且z y ,均为质数,并满足zyxyz x 111,=+=,求x 的值.3、有()3≥n n 位同学围成一圈,求证:相邻两人是一男一女的对数必是偶数.4、设有101个自然数,记为101321,,,,a a a a ,已知10132110132a a a a x ++++= 为 偶数,判断10199531a a a a a y +++++= 是奇数还是偶数,说明理由.5、设y x ,为两个不同的正整数,并且5211=+yx,求y x +的值.6、设k a a a a ,,,,321 是k 个互不相等的正整数,且1995321=++++k a a a a ,求k 的最大值.7、已知正整数a 恰有12个正约数(包括1和a ),求符合要求的a 的最小值.8、将1,2,3,…,37排成一行:3721,,,a a a ,1,3721==a a ,并使k a a a +++ 21能被1+k a 整除(36,,2,1 =k ).求(1)37a ;(2)3a .9、一个三位数,等于它的各位数字之和的12倍,试写出所有这样的三位数.10、求方程10047=+y x 的非负整数解.11、已知q p 、都是质数,1是以x 为未知数的方程9752=+q px 的根,则410140++q p 的值是多少?12、正方体的每个面上都写着一个自然数,并且相对的两个面所写的两数之和相等, 若10的对面写的是质数a ,12的对面写的是质数b ,15的对面写的是质数c , 那么ac bc ab c b a ---++222的值是多少?13、已知两个连续奇数的平方差是2000,则这两个连续奇数可以是多少?14、今天是星期日,若明天算第一天,则第333201121+++ 天是星期几?15、z y x ,,为互不相等的自然数,且135032=z xy ,则z y x ++的最大值是多少?16、[]x 表示不超过x 的最大整数,如[]32.3=,已知正整数n 小于2002,且263nn n =⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡,则这样的n 有多少个?。
初中数学竞赛辅导资料(七年级上)
数的整除(一)内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除) 又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除) 又如10285 1028-5=1023 102-3=99(能11整除) 例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3例2己知五位数x 1234能被12整除, 求X解:∵五位数能被12整除,必然同时能被3和4整除,当1+2+3+4+X 能被3整除时,x=2,5,8 当末两位X 4能被4整除时,X =0,4,8 ∴X =8例3求能被11整除且各位字都不相同的最小五位数 解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可, ∴五位数字都不相同的最小五位数是10263。
练习1.分解质因数:(写成质因数为底的幂的連乘积)①593 ② 1859 ③1287 ④3276 ⑤10101 ⑥10296 2.若四位数a 987能被3整除,那么 a=_______________ 3.若五位数3412X 能被11整除,那么 X =__________- 4.当 m=_________时,535m 能被25整除5.当 n=__________时,n 9610能被7整除 6.能被11整除的最小五位数是________,最大五位数是_________7.能被4整除的最大四位数是____________,能被8整除的最小四位数是_________8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________9. 从1到100这100个自然数中,能同时被2和3整除的共_____个, 能被3整除但不是5的倍数的共______个。
初中数学竞赛辅导材料目录
初中数学竞赛辅导材料目录一、初中数学竞赛基础知识1.数集及其运算-自然数、整数、有理数、实数、复数的概念及运算性质-数集的表示方法与运算法则2.代数式与方程-一元一次方程与一元一次不等式的解法及应用-一次函数的定义、性质与图像-一元二次方程的解法及应用3.几何基本概念-点、线、面、角的定义与性质-直线、射线、线段、平行线、垂直线的概念与判定-多边形、三角形、四边形的性质4.图形的相似与投影-图形的相似判定条件及相似比的计算-平面图形在对称、旋转、平移、投影中的性质与运用5.数据的整理与表示-数据的收集、整理、描述和分析方法-列联表的制作与应用-分组频数统计图的制作与读图6.立体几何-空间图形的基本概念及性质-空间图形的展开与剖析-空间图形的体积与表面积计算方法二、初中数学竞赛解题技巧与方法1.快速计算技巧-快速计算小技巧的应用(如乘法口诀、整数加减乘除的计算等)-快速计算较大数的方法(如分解因数、整理计算顺序等)2.思维训练与问题解决-近似计算与估算的方法与应用-分析解题条件与利用信息求解问题-数学问题的逻辑和推理方法3.策略与技巧-消元法与代入法的使用-枚举与特例法的应用-逆向思维与反证法的运用4.考试技巧与应试心理-数学竞赛常见题型的解题思路-如何正确阅读题目与审题技巧-考试时间分配与答题顺序规划-心理调适与压力应对方法三、数学竞赛真题及解析1.真题分析与解题方法讲解-分析数学竞赛真题的特点与难点-理解题目要求、辅助线的作法、巧用条件等解题技巧-真题解析与解题思路讲解2.解题思路总结与题型归纳-简述各种常见数学竞赛题型的解题思路-总结解题中常用的技巧与方法-提供大量的练习题目,以加强学生对各类题型的掌握以上为初中数学竞赛辅导材料的目录,通过系统的学习与实践,相信学生们可以提升数学竞赛的能力,取得更好的成绩。
祝学习愉快!。
初中数学竞赛辅导资料
初中数学竞赛专题选讲识图一、内容提要1.几何学是研究物体形状、大小、位置的学科。
2.几何图形就是点,线,面,体的集合。
点是组成几何图形的基本元素。
《平面几何学》只研究在同一平面内的图形的形状、大小和相互位置。
3.几何里的点、线、面、体实际上是不能脱离物体而单独存在的。
因此单独研究点、线、面、体,要靠正确的想像点:只表示位置,没有大小,不可再分。
线:只有长短,没有粗细。
线是由无数多点组成的,即“点动成线”。
面:只有长、宽,没有厚薄。
面是由无数多线组成的,“线动成面”。
4.因为任何复杂的图形,都是由若干基本图形组合而成的,所以识别图形的组合关系是学好几何的重要基础。
识别图形包括静止状态的数一数,量一量,比一比,算一算;运动状态中的位置、数量的变化,图形的旋转,摺叠,割补,并合,比较等。
还要注意一般图形和特殊图形的差别。
二、例题例1.数一数甲图中有几个角(小于平角)?乙图中有几个等腰三角形?丙图中有几全等三角形?丁图中有几对等边三角形?E解:甲图中有10个角:∠AOB, ∠AOC,∠BOC,∠BOD,∠COD,∠COE,∠DOE,∠DOA,∠EOA,∠EOB.如果OA和OC成一直线,则少一个∠AOC,余类推。
乙图中有5个等腰三角形:△ABC,△ABD,△BDC,△BDE,△DEC 丙图中有全等三角形4对:(设AC和DB相交于O)△AOB≌△COD,△AOD≌△BOC,△ABC≌△CDA,△BCD≌△DAB。
丁图中共有等边三角形48个:边长1个单位:顶点在上▲的个数有 1+2+3+4+5=15顶点在下▼的个数有 1+2+3+4=10边长2个单位:顶点在上▲的个数有 1+2+3+4=10顶点在下▼的个数有 1+2=3边长3个单位:顶点在上▲的个数有 1+2+3=6边长4个单位:顶点在上▲的个数有 1+2=3边长5个单位:顶点在上▲的个数有 1以上要注意数一数的规律例2.设平面内有6个点A 1,A 2,A 3,A 4,A 5,A 6,其中任意3个点都不在同一直线上,如果每两点都连成一条线,那么共有线段几条?如果要使图形不出现有4个点的两两连线,那么最多可连成几条线段?试画出图形。
初二数学竞赛辅导1(全国初中数学联赛题整理)数论与应用题
初二数学竞赛辅导一例题选讲1、已知正整数a 、b 之差为120,它们的最小公倍数是其最大公约数的105倍,那么a 、b 中较大的数是_______________。
(2003.二/4))2、试求出这样的四位数,它的前两位数字与后两位数字分别组成的二位数之和的平方,恰好等于这个四位数。
(2003.第二试/一)3、如果对于不小于8的正整数n ,当3n+1是一个完全平方数时,n+1都能表示成个k 完全平方数的和,那么k 的最小值为多少?(2002.一/6)4、设N=23x+92y 为完全平方数,且不超过2392,则满足上述条件的一切正整数对(x ,y )共有________对。
(2002.二/4)5、已知x,y 是正整数,并且xy+x+y=23,12022=+xy y x ,则x 2+y 2= ______ 。
(2001.二/3)6、一个正整数,若分别加上100和168,则可得到两个完全平方数,这个正整数为 _______ 。
(2001.二/4)7、正整数n 小于100,并满足等式[2n ]+[3n ]+[6n ]=n ,其中[x]表示不超过x 的最大整数,这样的正整数n 有多少个?(2000.一/4)8、甲乙两人到特价商店购买商品,已知两人购买商品的件数相等,且每件商品的单价只有8元和9元,若两人购买商品一共花费了172元,则其中单价为9元的商品有_______件。
(2002.二/3)9、某商场对顾客实行优惠,规定:①如一次购物不超过200元,则不予折扣;②如一次购物超过200元但不超过500元的,按标价给予九折优惠;③如一次购物超过500元的,其中500元按第②条给予优惠,超过500元的部分则给予八折优惠。
某人两次去购物,分别付款168元和423元;如果他只去一次购物同样的商品,则应付款是多少?(2001.一/6)10、某果品店组合销售水果,甲种搭配:2千克A 水果,4千克B 水果;乙种搭配:3千克A 水果,8千克B 水果,1千克C 水果;丙种搭配:2千克A 水果,6千克B 水果,l 千克C 水果。
初中数学竞赛辅导资料(总24页)
初中数学竞赛辅导资料-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一篇 一元一次方程的讨论第一部分 基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2x +6=0, x (x -1)=0, |x |=6, 0x =0, 0x =2的解 分别是: x =-3, x =0或x =1, x =±6, 所有的数,无解。
2. 关于x 的一元一次方程的解(根)的情况:化为最简方程ax =b 后, 讨论它的解:当a ≠0时,有唯一的解 x =ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论x 取什么值,0x =0都成立)3. 求方程ax =b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程ax =b第二部分 典例精析例1 a 取什么值时,方程a (a -2)x =4(a -2) ①有唯一的解②无解③有无数多解④是正数解例2 k取什么整数值时,方程①k(x+1)=k-2(x-2)的解是整数?②(1-x)k=6的解是负整数?例3己知方程a(x-2)=b(x+1)-2a无解。
问a和b应满足什么关系?例4a、b取什么值时,方程(3x-2)a+(2x-3)b=8x-7有无数多解?第三部分 典题精练1. 根据方程的解的定义,写出下列方程的解:① (x +1)=0, ②x 2=9, ③|x |=9, ④|x |=-3,⑤3x +1=3x -1, ⑥x +2=2+x2. 关于x 的方程ax =x +2无解,那么a __________3. 在方程a (a -3)x =a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
初中数学竞赛辅导资料
初中数学竞赛辅导资料解三角形甲内容提要1. 由三角形的已知元素,求出所有未知元素的过程叫做解三角形.2. 解直角三角形所根据的定理 (在Rt △ABC 中,∠C=Rt ∠). ① 边与边的关系: 勾股定理----――c 2=a 2+b 2. ② 角与角的关系:两个锐角互余----∠A+∠B=Rt ∠ ③ 边与角的关系:(锐角三角函数定义)SinA=c a , CosA=c b , tanA=b a , CotA=ab. ④ 互余的两个角的三角函数的关系:Sin(90-A)= CosA , Cos(90-A)= SinA , tan(90-A)= CotA, Cot(90-A)= tanA. ⑤;余弦、余切随着角度的增大而减小(即减函数).3. 解斜三角形所根据的定理 (在△ABC 中)① 正弦定理:SinCcSinB b SinA a ===2R. (R 是△ABC 外接圆半径). ② 余弦定理: c 2=a 2+b 2-2abCosC ; b 2=c 2+a 2-2ca CosB ; a 2=c 2+b 2-2cbCosA. ③ 互补的两个角的三角函数的关系:Sin(180-A)= sinA , Cos(180-A)= - cosA , tan(180-A)=-cotA , cotA(180-A)=-tanA. ④ S △ABC =21absinC=21bcsinA=21casinB.4. 与解三角形相关的概念:水平距离,垂直距离,仰角,俯角,坡角,坡度,象限角,方位角等. 乙例题例1. 已知:四边形ABCD 中,∠A =60,CB ⊥AB ,CD ⊥AD ,CB =2,CD =1.求:AC 的长.解:延长AD 和BC 相交于E ,则∠E =30.在Rt △ECD 中,∵sinE=CECD, ∴CE=30sin 1=1÷21=2. EB =4. 在Rt △EAB 中, ∵tanE=EBAB,∴AB=EBtan30。
【精品】全国初中数学竞赛辅导(初1第17讲 二元一次不定方程的解法
全国初中数学竞赛辅导(初1)第17讲二元一次不定方程的解法第十七讲二元一次不定方程的解法我们知道,如果未知数的个数多于方程的个数,那么,一般来说,它的解往往是不确定的,例如方程x-2y=3,方程组等,它们的解是不确定的.像这类方程或方程组就称为不定方程或不定方程组.不定方程(组)是数论中的一个古老分支,其内容极其丰富.我国对不定方程的研究已延续了数千年,“百鸡问题”等一直流传至今,“物不知其数”的解法被称为中国剩余定理.近年来,不定方程的研究又有新的进展.学习不定方程,不仅可以拓宽数学知识面,而且可以培养思维能力,提高数学解题的技能.我们先看一个例子.例小张带了5角钱去买橡皮和铅笔,橡皮每块3分,铅笔每支1角1分,问5角钱刚好买几块橡皮和几支铅笔?解设小张买了x块橡皮,y支铅笔,于是根据题意得方程3x+11y=50.这是一个二元一次不定方程.从方程来看,任给一个x值,就可以得到一个y值,所以它的解有无数多组.但是这个问题要求的是买橡皮的块数和铅笔的支数,而橡皮的块数与铅笔的支数只能是正整数或零,所以从这个问题的要求来说,我们只要求这个方程的非负整数解.因为铅笔每支1角1分,所以5角钱最多只能买到4支铅笔,因此,小张买铅笔的支数只能是0,1,2,3,4支,即y的取值只能是0,1,2,3,4这五个.若y=3,则x=17/3,不是整数,不合题意;若y=4,则x=2,符合题意.所以,这个方程有两组正整数解,即也就是说,5角钱刚好能买2块橡皮与4支铅笔,或者13块橡皮与1支铅笔.像这个例子,我们把二元一次不定方程的解限制在非负整数时,那么它的解就确定了.但是否只要把解限制在非负整数时,二元一次不定方程的解就一定能确定了呢?不能!现举例说明.例求不定方程x-y=2的正整数解.解我们知道:3-1=2,4-2=2,5-3=2,…,所以这个方程的正整数解有无数组,它们是其中n可以取一切自然数.因此,所要解的不定方程有无数组正整数解,它的解是不确定的.上面关于橡皮与铅笔的例子,我们是用逐个检验的方法来求它们的非负整数解的,但是这种方法在给出的数比较大的问题或者方程有无数组解的时候就会遇到麻烦.那么能不能找到一个有效而又方便的方法来求解呢?我们现在就来研究这个问题,先给出一个定理.定理如果a,b是互质的正整数,c是整数,且方程ax+by=c ①有一组整数解x0,y0则此方程的一切整数解可以表示为其中t=0,±1,±2,±3,….证因为x0,y0是方程①的整数解,当然满足ax0+by0=c,②因此a(x0-bt)+b(y0+at)=ax0+by0=c.这表明x=x0-bt,y=y0+at也是方程①的解.设x',y'是方程①的任一整数解,则有ax'+bx'=c. ③③-②得a(x'-x0)=b'(y'-y0).④由于(a,b)=1,所以a|y'-y0,即y'=y0+at,其中t是整数.将y'=y0+at代入④,即得x'=x0-bt.因此x', y'可以表示成x=x0-bt,y=y0+at的形式,所以x=x0-bt,y=y0+at表示方程①的一切整数解,命题得证.有了上述定理,求解二元一次不定方程的关键是求它的一组特殊解.例1求11x+15y=7的整数解.解法1将方程变形得因为x是整数,所以7-15y应是11的倍数.由观察得x0=2,y0=-1是这个方程的一组整数解,所以方程的解为解法2先考察11x+15y=1,通过观察易得11×(-4)+15×(3)=1,所以11×(-4×7)+15×(3×7)=7,可取x0=-28,y0=21.从而可见,二元一次不定方程在无约束条件的情况下,通常有无数组整数解,由于求出的特解不同,同一个不定方程的解的形式可以不同,但它们所包含的全部解是一样的.将解中的参数t做适当代换,就可化为同一形式.例2求方程6x+22y=90的非负整数解.解因为(6,22)=2,所以方程两边同除以2得3x+11y=45.①由观察知,x1=4,y1=-1是方程3x+11y=1 ②的一组整数解,从而方程①的一组整数解为由定理,可得方程①的一切整数解为因为要求的是原方程的非负整数解,所以必有由于t是整数,由③,④得15≤t≤16,所以只有t=15,t=16两种可能.当t=15时,x=15,y=0;当t=16时,x=4,y=3.所以原方程的非负整数解是例3求方程7x+19y=213的所有正整数解.分析这个方程的系数较大,用观察法去求其特殊解比较困难,碰到这种情况我们可用逐步缩小系数的方法使系数变小,最后再用观察法求得其解.解用方程7x+19y=213 ①的最小系数7除方程①的各项,并移项得因为x,y是整数,故3-5y/7=u也是整数,于是5y+7u=3.T儆*5除此式的两边得2u+5v=3.④由观察知u=-1,v=1是方程④的一组解.将u=-1,v=1代入③得y=2.y=2代入②得x=25.于是方程①有一组解x0=25,y0=2,所以它的一切解为由于要求方程的正整数解,所以解不等式,得t只能取0,1.因此得原方程的正整数解为当方程的系数较大时,我们还可以用辗转相除法求其特解,其解法结合例题说明.例4求方程37x+107y=25的整数解.解 107=2×37+33,37=1×33+4,33=8×4+1.为用37和107表示1,我们把上述辗转相除过程回代,得1=33-8×4=37-4-8×4=37-9×4=37-9×(37-33)=9×33-8×37=9×(107-2×37)8×37=9×107-26×37=37×(-26)+107×9.由此可知x1=-26,y1=9是方程37x+107y=1的一组整数解.于是x0=25×(-26)=-650,y0=25×9=225是方程37x+107y=25的一组整数解.所以原方程的一切整数解为例5某国硬币有5分和7分两种,问用这两种硬币支付142分货款,有多少种不同的方法?解设需x枚7分,y枚5分恰好支付142分,于是7x+5y=142. ①所以由于7x≤142,所以x≤20,并且由上式知5|2(x-1).因为(5,2)=1,所以5|x-1,从而x=1,6,11,16,①的非负整数解为所以,共有4种不同的支付方式.说明当方程的系数较小时,而且是求非负整数解或者是实际问题时,这时候的解的组数往往较少,可以用整除的性质加上枚举,也能较容易地解出方程.多元一次不定方程可以化为二元一次不定方程.例6求方程9x+24y-5z=1000的整数解.解设9x+24y=3t,即3x+8y=t,于是3t-5z=1000.于是原方程可化为用前面的方法可以求得①的解为②的解为消去t,得大约1500年以前,我国古代数学家张丘建在他编写的《张丘建算经》里,曾经提出并解决了“百钱买百鸡”这个有名的数学问题,通俗地讲就是下例.例7今有公鸡每只五个钱,母鸡每只三个钱,小鸡每个钱三只.用100个钱买100只鸡,问公鸡、母鸡、小鸡各买了多少只?解设公鸡、母鸡、小鸡各买x,y,z只,由题意列方程组①化简得 15x+9y+z=300.③③-②得 14x+8y=200,即 7x+4y=100.解7x+4y=1得于是7x+4y=100的一个特解为由定理知7x+4y=100的所有整数解为由题意知,0<x,y,z<100,所以由于t是整数,故t只能取26,27,28,而且x,y,z还应满足x+y+z=100.t x y z26 4 18 7827 8 11 8128 12 4 84即可能有三种情况:4只公鸡,18只母鸡,78只小鸡;或8只公鸡,11只母鸡,81只小鸡;或12只公鸡,4只母鸡,84只小鸡.练习十七1.求下列不定方程的整数解:(1) 72x+157y=1;(2)9x+21y=144;(3)103x-91y=5.2.求下列不定方程的正整数解:(1)3x-5y=19; (2)12x+5y=125.3.求下列不定方程的整数解:(1)5x+8y+19z=50; (2)39x-24y+9z=78.4.求不定方程2x+5y+7z+3t=10的整数解.5.求不定方程组的正整数解.初中英语新课程标准测试题一、单选( 30分)1、学生学习外语需要大量的()A. 测试B.翻译C.天赋D.实践2、在我国,英语被列为义务教育阶段的()A. 必考课程B.网络课程C.必修课程D.选修课程3 、英语教学要始终使学生发挥() A主体作用 B.主导作用 C.主观作用 D.客观作用4、在基础英语课程体系中,除了教科书外,还有更加广泛的()A. 联系资料B.教辅资料C.课程资源D.网络资源5、国家英语课程要求开设英语课程的起点是()A. 小学1年级B.小学3年级C.初中1年级D.高中1年级6、国家课程三级管理机制是()A. 教育部、省和地区B.国家、地方和学校C.省/自治区、市和县D.地区、学校和教师7、说是运用口语表达思想和()A. 输入信息的能力B.输出信息的能力C.辨认语言的技巧D.理解话语的技能8、检验学生语言理解、分析和加工能力的客观标准是()。
(共30套)初中数学竞赛辅导讲义及习题解答大全 (含竞赛答题技巧)
(共30套)初中数学竞赛辅导讲义及习题解答大全适合中学教师作为辅导教材使用第一讲 走进追问求根公式形如02=++c bx ax (0≠a )的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。
而公式法是解一元二次方程的最普遍、最具有一般性的方法。
求根公式aacb b x 2422,1-±-=内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。
降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。
解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。
【例题求解】【例1】满足1)1(22=--+n n n 的整数n 有 个。
思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。
【例2】设1x 、2x 是二次方程032=-+x x 的两个根,那么1942231+-x x 的值等于( )A 、一4B 、8C 、6D 、0思路点拨:求出1x 、2x 的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如1213x x -=,2223x x -=。
【例3】 解关于x 的方程02)1(2=+--a ax x a 。
思路点拨:因不知晓原方程的类型,故需分01=-a 及01≠-a 两种情况讨论。
【例4】设方程04122=---x x ,求满足该方程的所有根之和。
思路点拨:通过讨论,脱去绝对值符号,把绝对值方程转化为一般的一元二次方程求解。
【例5】 已知实数a 、b 、c 、d 互不相等,且x ad d c c b b a =+=+=+=+1111, 试求x 的值。
思路点拨:运用连等式,通过迭代把b 、c 、d 用a 的代数式表示,由解方程求得x 的值。
初中八年级数学培优竞赛辅导讲义全册(213页)
初中八年级数学培优竞赛辅导讲义(共213页,按住ctrl键点击目录直接跳转到对应章节)第1讲全等三角形的性质与判定 (2)第2讲角平分线的性质与判定 (12)第3讲轴对称及轴对称变换 (17)第4讲等腰三角形 (25)第5讲等边三角形 (37)第06讲实数 (43)第7讲变量与函数 (50)第8讲一次函数的图象与性质 (55)第9讲一次函数与方程、不等式 (64)第10讲一次函数的应用 (69)第11讲幂的运算 (81)第12讲整式的乘除 (87)第13讲因式分解及其应用 (94)第14讲分式的概念•性质与运算 (101)第15讲分式的化简求值与证明 (109)第16讲分式方程及其应用 (118)第17讲反比例函数的图象与性质 (126)第18讲反比例函数的应用 (139)第19讲勾股定理 (146)第20讲平行四边形 (158)第21讲菱形与矩形 (167)第22讲正方形 (175)第23讲梯形 (185)第24讲数据的分析 (194)B AC D EF 第1讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同; 2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( ) A .5对 B .4对 C .3对 D .2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.解:⑴∵AB ∥EF ∥DC ,∠ABC =90. ∴∠DCB =90. 在△ABC 和△DCB 中AB DC ABC DCB BC CB =⎧⎪=⎨⎪=⎩∠∠ ∴△ABC ≌∴△DCB (SAS ) ∴∠A =∠D ⑵在△ABE 和△DCE 中A DAED DEC AB DC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ABE ≌∴△DCE ∴BE =CE ⑶在Rt △EFB 和Rt △EFC 中BE CEEF EF=⎧⎨=⎩ ∴Rt △EFB ≌Rt △EFC (HL )故选C . 【变式题组】 01.(天津)下列判断中错误的是( )A .有两角和一边对应相等的两个三角形全等B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等A F C E DB D .有一边对应相等的两个等边三角形全等 02.(丽水)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.03.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【解法指导】想证AF =DE ,首先要找出AF 和DE 所在的三角形.AF 在△AFB 和△AEF 中,而DE 在△CDE 和△DEF 中,因而只需证明△ABF ≌△DCE 或△AEF ≌△DFE 即可.然后再根据已知条件找出证明它们全等的条件.证明:∵FB =CE ∴FB +EF =CE +EF ,即BE =CF 在△ABE 和△DCF 中, AB DCAE DF BE CF =⎧⎪=⎨⎪=⎩∴△ABE ≌△DCF (SSS ) ∴∠B =∠C在△ABF 和△DCE 中, AB DC B C BF CE =⎧⎪=⎨⎪=⎩∠∠ ∴△ABF ≌△DCE ∴AF =DE【变式题组】01.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( ) A .2 B .3 C .4 D .5A B C D O FE A CEFBD02.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. \ 03.(北京)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【解法指导】⑴∠AFD =∠DCA⑵∠AFD =∠DCA 理由如下:由△ABC ≌△DEF ,∴AB =DE ,BC =EF , ∠ABC =∠DEF , ∠BAC =∠EDF ∴∠ABC -∠FBC =∠DEF -∠CBF , ∴∠ABF =∠DEC在△ABF 和△DEC 中, AB DE ABF DEC BF EC =⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DEC ∠BAF =∠DEC ∴∠BAC -∠BAF =∠EDF -∠EDC , ∴∠FAC =∠CDF∵∠AOD =∠FAC +∠AFD =∠CDF +∠DCA∴∠AFD =∠DCAAFECB DAE第1题图A BCDEBCDO第2题图B (E )OC F 图③DA【变式题组】01.(绍兴)如图,D、E分别为△ABC的AC、BC边的中点,将此三角形沿DE折叠,使点C 落在AB边上的点P处.若∠CDE=48°,则∠APD等于()A.42°B.48°C.52°D.58°02.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是()A.△ABC≌△DEF B.∠DEF=90°C.AC=DF D.EC=CF03.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.⑴求证:AB⊥ED;⑵若PB=BC,找出图中与此条件有关的一对全等三角形,并证明.【例4】(第21届江苏竞赛试题)已知,如图,BD、CE分别是△ABC的边A C和AB边上的高,点P在BD的延长线,BP=AC,点Q在CE上,CQ=AB.求证:⑴AP=AQ;⑵AP⊥AQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证AP=AQ,也就是证△APD和△AQE,或△APB和△QAC全等,由已知条件BP=AC,CQ=AB,应该证△APB≌△QAC,已具备两组边对应相等,于是再证夹角∠1=∠2即可. 证AP⊥AQ,即证∠PAQ=90°,∠PAD+∠QAC=90°就可以.证明:⑴∵BD、CE分别是△ABC的两边上的高,∴∠BDA=∠CEA=90°,∴∠1+∠BAD=90°,∠2+∠BAD=90°,∴∠1=∠2.在△APB和△QAC中, 2AB QCBP CA=⎧⎪=⎨⎪=⎩∠1∠∴△APB≌△QAC,∴AP=AQE FBACDG第2题图21ABCPQEFD⑵∵△APB ≌△QAC ,∴∠P =∠CAQ , ∴∠P +∠PAD =90° ∵∠CAQ +∠PAD =90°,∴AP ⊥AQ 【变式题组】01.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:02.直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am03.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE 的面积为__________演练巩固·反馈提高01.(海南)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°02.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40° 03.(牡丹江)尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( )AECBA 75° C45° BNM第2题图第3题图D第1题图a αcca50° b72° 58°A .SASB .ASAC .AASD .SSS 04.(江西)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°05.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( )A . △ABE ≌△CBDB . ∠ABE =∠CBDC . ∠ABC =∠EBD =45° D . AC ∥BE06.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对07.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.08.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB 的度数为_______.09.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____. 11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .DA C .Q P.BA E FB DC 12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .16.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等? ⑴阅读与证明:对于这两个三角形均为直角三角形,显然它们全等;对于这两个三角形均为钝角三角形,可证明它们全等(证明略); 对于这两个三角形均为锐角三角形,它们也全等,可证明如下;已知△ABC 、△A 1B 1C 1均为锐角三角形,AB =A 1B 1,BC =B 1C 1,∠C =∠C 1.求证:△ABC ≌△A 1B 1C 1.(请你将下列证明过程补充完整)⑵归纳与叙述:由⑴可得一个正确结论,请你写出这个结论.ABCDA 1B 1C 1D 1D B A C EF A E B F D CAEF C DB 培优升级·奥赛检测01.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( ) A .4对 B .5对 C .6对 D .7对02.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③03.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC04.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等05.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______.06.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE=AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)07.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.08.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线.求证:AC =2AE .09.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCEABE D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFCD 第1题图B第2题图第3题图AB C DEAEBDC=90°, ∠BAC =∠EAD .求证:∠CED =90°.10.(沈阳)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .⑴求证:AF +EF =DE ;⑵若将图①中△DBE 绕点B 顺时针方向旋转角α,且0°<α<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中结论是否仍然成立;⑶若将图①中△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③你认为(1)中结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF 、EF 与DE 之间的关系,并说明理由。
全国初中数学竞赛辅导(初1)_绝对值
第七讲初中数学竞赛中绝对值的应用(一)绝对值在计算中应用从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,任一个绝对值都是表示两个不同数的绝对值.即一个数与它相反数的绝对值是一样的.因为这个性质,所以含有绝对值的方程与不等式的求解过程又出现了一些新特点.本讲主要介绍方程与不等式中含有绝对值的处理方法.含绝对值的不等式的性质:(2)|a|-|b|≤|a+b|≤|a|+|b|;(3)|a|-|b|≤|a-b|≤|a|+|b|.因为绝对值的定义,所以含有绝对值的代数式无法实行统一的代数运算.通常的手法是分别按照绝对值符号内的代数式取值的正、负情况,脱去绝时值符号,转化为不含绝对值的代数式实行运算,即含有绝对值的方程与不等式的求解,常用分类讨论法.在实行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.例1 a,b为实数,下列各式对吗?若不对,应附加什么条件?(1)|a+b|=|a|+|b|;(2)|ab|=|a||b|;(3)|a-b|=|b-a|;(4)若|a|=b,则a=b;(5)若|a|<|b|,则a<b;(6)若a>b,则|a|>|b|.解(1)不对.当a,b同号或其中一个为0时成立.(2)对.(3)对.(4)不对.当a≥0时成立.(5)不对.当b>0时成立.(6)不对.当a+b>0时成立.例2设有理数a,b,c在数轴上的对应点如图1-1所示,化简|b-a|+|a+c|+|c-b|.解由图1-1可知,a>0,b<0,c<0,且有|c|>|a|>|b|>0.根据有理数加减运算的符号法则,有b-a<0,a+c<0,c-b<0.再根据绝对值的概念,得|b-a|=a-b,|a+c|=-(a+c),|c-b|=b-c.于是有原式=(a-b)-(a+c)+(b-c)=a-b-a-c+b-c=-2c.例3已知x<-3,化简:|3+|2-|1+x|||.分析这是一个含有多层绝对值符号的问题,可从里往外一层一层地去绝对值符号.解原式=|3+|2+(1+x)||(因为1+x<0)=|3+|3+x||=|3-(3+x)|(因为3+x<0)=|-x|=-x.解因为abc≠0,所以a≠0,b≠0,c≠0.(1)当a,b,c均大于零时,原式=3;(2)当a,b,c均小于零时,原式=-3;(3)当a,b,c中有两个大于零,一个小于零时,原式=1;(4)当a,b,c中有两个小于零,一个大于零时,原式=-1.说明本例的解法是采取把a,b,c中大于零与小于零的个数分情况加以解决的,这种解法叫作分类讨论法,它在解决绝对值问题时很常用.例5若|x|=3,|y|=2,且|x-y|=y-x,求x+y的值.解因为|x-y|≥0,所以y-x≥0,y≥x.由|x|=3,|y|=2可知,x<0,即x=-3.(1)当y=2时,x+y=-1;(2)当y=-2时,x+y=-5.所以x+y的值为-1或-5.例6若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.解a,b,c均为整数,则a-b,c-a也应为整数,且|a-b|19,|c-a|99为两个非负整数,和为1,所以只能是|a-b|19=0且|c-a|99=1,①或|a-b|19=1且|c-a|99=0.②由①有a=b且c=a±1,于是|b-c|=|c-a|=1;由②有c=a且a=b±1,于是|b-c|=|a-b|=1.无论①或②都有|b-c|=1且|a-b|+|c-a|=1,所以|c-a|+|a-b|+|b-c|=2.解依相反数的意义有|x-y+3|=-|x+y-1999|.因为任何一个实数的绝对值是非负数,所以必有|x-y+3|=0且|x+y-1999|=0.即由①有x-y=-3,由②有x+y=1999.②-①得2y=2002,y=1001,所以例8 化简:|3x+1|+|2x-1|.分析本题是两个绝对值和的问题.解题的关键是如何同时去掉两个绝对值符号.若分别去掉每个绝对值符号,则是很容易的事.例如,化简|3x+1|,只要考虑3x+1的正负,即可去掉绝对值符号.这里我们为三个部分(如图1-2所示),即这样我们就能够分类讨论化简了。
全国通用初中数学竞赛培优辅导讲义1-10)讲
2.根椐质数定义可知
1)质数只有1和本身两个正约数,
2)质数中只有一个偶数2
如果两个质数的和或差是奇数那么其中必有一个是2,
如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________
9.从1到100这100个自然数中,能同时被2和3整除的共_____个,
解:五位数字都不相同的最小五位数是10234,
但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行
调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习
1.分解质因数:(写成质因数为底的幂的連乘积)
①593②1859③1287④3276⑤10101⑥10296
那么N+2,N+3,N+4,N+5就是适合条件的四个合数. 即32,33,34,35就是所求的一组数。
本题可推广到n个。
令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数。
练习3
1.小于100的质数共___个,它们是__________________________________
三在近似数中,当0作为有效数字时,它表示不同的精确度。
例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5厘米;
初中数学竞赛辅导讲义(总77页)
初中数学竞赛辅导讲义-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除初中数学竞赛辅导讲义(初三)第一讲 分式的运算[知识点击]1、分部分式:真分式化为另几个真分式的和,一般先将分母分解因式,后用待定系数法进行。
2、综合除法:多项式除以多项式可类似于是有理数的除法运算,可列竖式来进行。
3、分式运算:实质就是分式的通分与约分。
[例题选讲]例1.化简2312++x x + 6512++x x + 12712++x x 解:原式= )2)(1(1++x x + )3)(2(1++x x + )4)(3(1++x x = 11+x - 21+x + 21+x - 31+x + 31+x - 41+x =)4)(1(3++x x例2. 已知z z y x -+ = y z y x +- = x z y x ++- ,且xyz ≠0,求分式xyz x z z y y x ))()((+-+的值。
解:易知:z y x + = y z x + = x z y + =k 则⎪⎩⎪⎨⎧=+=+=+)3()2()1(kx z y ky z x kz y x (1)+(2)+(3)得:(k-2)(x+y+z)=0 k=2 或 x+y+z=0 若k=2则原式= k 3 = 8 若 x+y+z=0,则原式= k 3 =-1例3.设 12+-mx x x =1,求 12242+-x m x x 的值。
解:显然X 0≠,由已知x mx x 12+- =1 ,则 x +x1 = m + 1 ∴ 22241x x m x +- = x2 + 21x - m2= (x +x1)2-2 –m2 =( m +1)2-2- m2= 2m -1 ∴原式=121-m例4.已知多项式3x 3 +ax 2 +3x +1 能被x 2+1整除,求a的值。
解:1- a=0 ∴ a=1例5:设n为正整数,求证311⨯ + 511⨯ + …… +)12)(12(1+-n n < 21证:左边=21(1 - 31 + 31 - 51+ …… +121-n - 121+n ) =21(1- 121+n )∵n 为正整数,∴121+n < 1 ∴1- 121+n < 1 故左边< 21 [小结归纳]1、部分分式的通用公式:)(1k x x + = k 1 (x 1 - kx +1) 2、参数法是解决比例问题特别是连比问题时非常有效的方法,其优点在于设连比值为K ,将连等式化为若干个等式,把各字母用同一字母的解析式表示,从而给解题带来方便。
初中数学竞赛辅导资料(1)
初中数学比赛指导资料(5)a n的个位数甲内容大纲.1. 整数 a 的正整数次a n,它的个位数字与 a 的末位数的n 次的个位数字同样。
比方2002 3与 23的个位数字都是8。
7位数是 5,620的个位数是6。
3.2, 3, 7 的正整数次的个位数字的律下表:指数12345678910⋯⋯底22486248624⋯⋯数33971397139⋯⋯77931793179⋯⋯其律是: 2 的正整数次的个位数是按2、 4、 8、 6 四个数字循出,即 24k+1与 21, 24K+2与 22,24K+3与 23,24K+4与 24的个位数是同样的(K 是正整数)。
3 和 7 也有似的性。
4. 4, 8,9 的正整数次的个位数,可模拟上述方法,也可以用4= 22,8= 23,9= 32化以 2、3 底的。
5.上所述,整数 a 的正整数次的个位数有以下的一般律:a4K+m与 a m的个位数同样 (k,m 都是正整数。
乙例例 1的个位数是多少?解:与 32003的个位数是同样的,∵ 2003= 4× 500+ 3,∴ 32003与 33的个位数是同样的,都是7,∴2003 的个位数是 7。
例 2 明 632000+ 1472002的和能被 10 整除的原由解:∵ 2000= 4×500, 2002= 4× 500+ 2∴ 632000与 34的个位数同样都是1,1472002与 72的个位数同样都是9,∴ 632000+ 1472002的和个位数是0,∴ 632000+ 1472002的和能被10 整除。
例 3K 取什么正整数,3k+2k是 5 的倍数?例 4解:列表察个位数的律K =1234⋯⋯3 的个位数3971⋯⋯2 的个位数2486⋯⋯3k+ 2k的个位数55⋯⋯从表中可知,当 K= 1,3 , 3k+ 2k的个位数是5,∵ a m与 a4n+m的个位数同样( m,n 都是正整数, a 是整数);∴当 K 任何奇数, 3k+ 2k是 5 的倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竟赛辅导资料(1)
数的整除(一)
甲内容提要:
如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.
①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)
又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:
①抹去个位数 ②减去原个位数 ③其差能被11整除
如 1001 100-1=99(能11整除)
又如10285 1028-5=1023 102-3=99(能11整除)
乙例题
例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。
求x,y
解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6.
∵328+92x =567,∴x=3
例2己知五位数x 1234能被12整除, 求X
解:∵五位数能被12整除,必然同时能被3和4整除,
当1+2+3+4+X 能被3整除时,x=2,5,8
4能被4整除时,X=0,4,8
当末两位X
∴X=8
例3求能被11整除且各位字都不相同的最小五位数
解:五位数字都不相同的最小五位数是10234,
但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行
调整末两位数为30,41,52,63,均可,
∴五位数字都不相同的最小五位数是10263。
丙练习
1分解质因数:(写成质因数为底的幂的連乘积)
①593②1859③1287④3276⑤10101⑥10296
987能被3整除,那么a=_______________ 2若四位数a
12X能被11整除,那么X=__________- 3若五位数34
35m能被25整除
4当m=_________时,5
9610能被7整除
5当n=__________时,n
6能被11整除的最小五位数是________,最大五位数是_________
7能被4整除的最大四位数是____________,能被8整除的最小四位数是_________
88个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,
⑧70972中,能被下列各数整除的有(填上编号):
6________,8__________,9_________,11__________
9从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么?
1234能被15整除,试求A的值。
11己知五位数A
12求能被9整除且各位数字都不相同的最小五位数。
13在十进制中,各位数码是0或1,并能被225整除的最小正整数是____(1989年全国初中联赛题)。