Flotherm学习教程 ppt课件
flotherm高级教程共46页文档
2019.10.25 ➢FLOTHERM的文件管理(20min) ➢网格划分技术(40min) ➢FLOMOTION的使用(30min) ➢收敛问题及其解决(20min) ➢FLO/MCAD的导入(30min) ➢优化模块的使用(30min)
2019.10.26 ➢瞬态分析定义(30min) ➢芯片建模方法(90min) ➢批处理文件的编辑(10min) ➢Compact Model的建立(30min) ➢其它使用技巧(40min)
z
xx
x
z
z
网格约束
• 网格约束用于在几何实体上设定网格
点击打 开膨胀 设置
网格约束
Minimum Number和 Maximum Size 分别设置最 小单元数,或者最大网格单元 尺寸.建议采用Maximum Size.
Minimum Size是设置最小网 格尺寸,可以控制网格精度
使用Region定义网格约束
数据库的管理
数据库文件放置于 Flocentral\Libraries目录下
数据库的管理
数据库文件属性的编辑
Library Name:数据库名 Directory:数据库存放路径 Read Only:只读属性
数据库的管理
数据库的导入导出可借助于数 据库文件.library来进行
高级培训:网格划分技巧
40min 俞丹海 Flomerics中国代表处
求解域设定
• 在某些特殊场合必须要放大求解区域
– 自然对流换热系统 – 封闭系统 – 外部边界条件对内部影响较大的情况
• 在强迫对流散热系统中,通常不需要放大求解域
求解域扩大原则
2y
y
– 除重力反方向外,其余按照装 置尺寸在各个方向扩大一倍
FloEMC-Flotherm中文教程T3
教程 3: 使用发射模型计算屏蔽效能教程3将介绍如何用将发射天线置于壳体内部的方式来计算壳体的电场屏蔽效能。
在计算了自由空间的场分布之后,用户可以归一化处理这些场分布的大小。
在本例中,用户需要做以下的工作:第一步:导入提供的模型第二步:按照辐射问题的要求修改模型的边界条件第三步:计算有及没有缝隙和底盘两种情况的模型第四步:分析这两种情况的计算结果第五步:用没有底盘的计算结果去归一化有底盘的计算结果第六步:确认电场泄漏位置及情况在此教程中,将会讨论下列新名词:精简模型(SmartParts);通风板(Perforated Plates),缝隙( Slots),搭接( Seam),线缆( Wires);库(Library);目录组成(Assemblies);模型等级(Hierarchy);坐标系统(Coordinate Systems);网格(Grid);激活/使无效(Activation / Deactivation)模型及仿真的问题的描述水平方向的缝隙 (1.5 x 0.25 in.)垂直方向的缝隙 (1.5 x 0.25 in.)有搭接的箱盖 (1cm 搭接)箱角上缝隙 (4 in. x 10 mil.)铝箱(6 x 6 x 4 in.)FLO/EMC 所建的仿真模型箱体表面的缝隙等效的通风板模型(Perforated Plate)壳体上的搭接(( )保存所有操作。
并点击进入选择模式。
平面,如右图所示。
点击图标爱人者,人恒爱之;敬人者,人恒敬之;宽以济猛,猛以济宽,政是以和。
将军额上能跑马,宰相肚里能撑船。
最高贵的复仇是宽容。
有时宽容引起的道德震动比惩罚更强烈。
君子贤而能容罢,知而能容愚,博而能容浅,粹而能容杂。
宽容就是忘却,人人都有痛苦,都有伤疤,动辄去揭,便添新创,旧痕新伤难愈合,忘记昨日的是非,忘记别人先前对自己的指责和谩骂,时间是良好的止痛剂,学会忘却,生活才有阳光,才有欢乐。
不要轻易放弃感情,谁都会心疼;不要冲动下做决定,会后悔一生。
FloTHERM培训资料
中科信软高级技术培训中心-
FLOTHERM 软件介绍
全球第一个专门针对电子散热领域的CFD软件
通过求解电子设备内外的传导\对流\辐射,从而解决热设计 问题
据第三方统计,在电子散热仿真领域,FloTHERM 全球市 场占有率达到70% 据我们的调查,98%的客户乐意向同行推荐 FloTHERM
FloEDA EDA软件高级接口
1. 支持多种EDA格式:方便电子工 程师与热工程师协同工作 2. 包含走线、器件参数、过孔等详 细信息的模型读入:保证模型准 确性 3. 准确的模型简化方法:保证结果 准确度的同时减少计算时间
FloMCAD.Bridge CAD软件接口模块
1. 支持多种模型格式:适用范围广 泛 2. 方便的操作:缩短建模时间
流动状态、 流体物性 固体表面的属性
7
热仿真基本理论---传热的三种基本方式
热辐射: Stefan-Bolzmann 定律: Qε = ε σ A T4
ε 表面发射率, σ = 5.67 x 10-8 W/m2.K4
(0 ≤ ε ≤ 1) (Stefan-Boltzmann常数)
W
Qε
表面积 A
热仿真基本理论---传热的三种基本方式
完全CAD化的建模功能: 提供对齐、自动捕捉等建模 手段。
移动物体 在一个方向上改变大小 在两个方向上改变大小 18
使用Flotherm建立模型
方便快捷的建模“搭 建方法”:
PCB’s 风扇 通风孔 IC’s 机箱
19
从FloMCAD导入模型
SolidWork ProE - prt asm CATIA
FloTHERM 核心热分析模块
Flotherm教程4FurtherRefinementSolidTemperatures
ρ Board Volume . conductor
10
Flotherm 4.1 Lecture 4 << Index >>
Options for conductivity model
Layer Definition
– Set number of layers – Set thickness and
All require dielectric and conductor materials
All result in a single PCB with an othotropic conductivity
7
Flotherm 4.1 Lecture 4 << Index >>
Options for conductivity model
T0220 Component
Compact to Detailed
13
Flotherm 4.1 Lecture 4 << Index >>
Components
Increased detail means: Increased accuracy Increased realism But also: Solutions take longer Design changes take
Modeling PCBs II
Changing the Modeling level to Conducting
The size section now requires a thickness in the Z direction.
The Dielectric and Conductor Materials must be specified.
flotherm高级教程-PPT精品文档
– 膨胀区域可以按照尺 寸大小或物体比例来 定义 – 可以通过定义最小单 元数或最大单元尺寸 来控制网格 – 不同的膨胀可以单独 设置在正,反两个方向.
网格约束(膨胀)
• 我们来看一下前面的例子…
– Low 方向约束定义 为10%尺寸内最小 划分两个网格单元 设置 – High 方向约束定义 为100mm内最大网 格尺寸10mm设置
如果意外导致项目文件不可用!!
1: 在目录:项目文件\PDProject下,将文件group拷出
2: 将group文件添加后缀后.pdml
3: 重新读入该pdml文件即可,便可恢复该文件,但计算结果无法恢复
IDF导入
可导入的文件包括IDF2.0及IDF3.0 IDF文件包括 Board 文件(.brd or .emn) Library文件(.lib or .emp)
FLOTHERM使用高级培训
段宗宪\俞丹海 Flomerics中国代表处
Agenda
2019.10.25 FLOTHERM的文件管理(20min) 网格划分技术(40min) FLOMOTION的使用(30min) 收敛问题及其解决(20min) FLO/MCAD的导入(30min) 优化模块的使用(30min)
网格划分
• 网格长宽比问题:
– 最小单元尺寸(系统网格) – 建立合理精度的模型(例如,根据实际问题的大小 确定尺寸单位精度) – 避免产生小尺寸网格导致较大差异的网格过渡
扩大求解域的影响
• 当我们扩大求解域时,必然增加整个系统网格数. • 这主要是因为物体几何网格线延伸到整个求解 域边界, 同时会增加求解计算时间.
2019.10.26 瞬态分析定义(30min) 芯片建模方法(90min) 批处理文件的编辑(10min) Compact Model的建立(30min) 其它使用技巧(40min)
flotherm教学资料
6
學習項目 1
學習項目 熟悉各種工作視窗
7
熟悉各種工作視窗
No 1 2 3 4 5 6 7
工作視窗 Project Manager Drawing Board Flow Motion Tables Profiles FLO/MCAD Visualization
8
熟悉各種工作視窗
No 1 2 3 4 5 6 7
切換 指標/游擊手 叫出/關閉 繪圖列 隱藏物體 回覆至原來的畫面
16
細部操作 於上課中詳述
學習項目 3
學習項目 熟練各種模型的建法
17
熟練各種模型的建法
No 工作視窗 1 2 3 4 5 6 7
功能
產生一個 矩型體
用途
最常用 機殼上的通風口 CPU 的熱源
Cuboid
Resistance 產生一個 流阻 Source PCB Enclosure Fan Region
細部操作 於上課中詳述
25
學習項目 4
學習項目 利用MCD將Pro/E的圖型轉入Flotherm
首先, 將 Pro/E 的圖轉成 IGS 檔.
26
啟動 FLOMCAD 視窗
27
呼叫 IGES 檔案 1
28
呼叫 IGES 檔案 2
選擇要轉入的 IGS 檔.
29
呼叫 IGES 檔案 3
轉入成功!
指標: 選取
14
學習項目 2
學習項目 熟練快速鍵
15
快速鍵
No 快速鍵 功能 1 2 3 4 No 快速鍵 功能
F3 F4 F5 F6
目錄管理:獨立出來 目錄管理:完全關閉 目錄管理:回到上一層 目錄管理: 完全展開
热设计基础知识及flotherm热仿真-PPT
导热介质-导热垫
我公司现有的导热硅胶垫:
对导热垫的性能要求和主要检测项目: 1)导热系数和热阻:热性能满足要求 2)硬度:优先选用硬度较低的材料 3)绝缘性能:要求耐压满足产品需求(一般3KV) 4)阻燃:要求材料阻燃级别达到V1及以上
导热介质-相变导热膜
导热介质-相变导热膜
导热介质-导热垫
热传导
热阻Rja:芯片的热源结(junction)到周围冷却空气(ambient)的总热 阻,乘以其发热量即获得器件温升。
热阻Rjc:芯片的热源结到封装外壳间的热阻,乘以发热量即获得结与壳的温差。
热阻Rjb:芯片的结与PCB板间的热阻,乘以通过单板导热的散热量即获得结 与单板间的温差。
热传导
单层平壁导热
热流量是指单位时间内通过某一给定面积的热量, 单位为W。
导热系数是指在稳定传热条件下,1m厚的材料,两 侧表面的温差为1度(K,°C),在1秒内,通过1平 方米面积传递的热量,单位为瓦/米·度(W/m·K,此 处的K可用°C代替)。它是表征材料导热能力优劣 的物性参数。在30 °C时,空气的导热系数为 0.027 W/m·°C ,因此可以利用空气夹层来绝热, 通常把导热系数小于0.23 W/m·°C 的材料称为 绝热材料。
电子设备冷却方法的选择
✓ 设备内部的散热方法应使发热元器件与被冷却表面或散热器之间有一 条低热阻的传热路径。
✓ 利用金属导热是最基本的传热方法,其热路容易控制。热辐射换热则 需要比较高的温差,且传热路径不容易控制。对流换热需要较大的面 积,在安装密度较高的设备内部难以满足要求。
✓ 大多数小型电子元器件最好采用自然冷却方法。自然对流冷却表面的 热流密度为0.039W/cm2 。有些高温元器件的热流密度可高达 0.078W/cm2 。
flotherm散热学习(中文教程)
选中新创建的属性,点击按钮‘Attach’(应用于)。
注意,当属性成功地配属后,在‘Currently Attached’(当前已应用于)框中会显示该属性。
点击’Dismiss’(离开)按钮,关闭’Thermal’(热)对话框
通过菜单[Project / Save] (项目/保存)可点击存盘图标( )保存项目。
Size(尺寸)
X =0.005 m
Y =0.10 m
Z =0.15 m
PressApply.
点击‘Apply’(应用)。
在这里,键入的数字会自动转换为科学记数法,另处,在这里,数字可以用任何格式输入。
点击调色板上图标( )两次或点击库管理窗口‘Library Manager’图标打开库管理窗口(library manager)( )。
X =0.005 m
Y =0.04 m
Z =0.04 m
在库管理窗口中展开[Materials / Ceramics](材料/陶瓷)。
拖动‘Alumina (Typical)’(氧化铝(典型))至“Heated Block”。
库管理窗口可以通过点击窗口底部图标 来关闭。
将鼠标指向立方体“Heated Block”上,右键点击,在下拉菜单中选择‘Thermal’(热)。
在弹出的‘Thermal Selection’(热选择)对话框中点击按钮‘New’(新建)。
在‘Thermal Attribute’(热属性)对话框中添加名字–如:“Block Heat”。
保留缺省设定的‘Conduction’(传导)选项,在‘Total Power’(总功率)输入框中键入一个值“8 W”。
X =0.07 m
Y =0.40 m
海基科技FLOTHERM使用教程(English)
FloTHERM(5.1) Tutorial研发厂商:Flomerics中国代理:海基科技FLOTHERM (5.1)What is FLOTHERM?FLOTHERM is a powerful 3D computational fluid dynamics software that predicts airflow and heat transfer in and around electronic equipment, including the coupled effects of conduction, convection and radiation.FLOTHERM is powerful 3D simulation software for thermal design of electronic components and systems. It enables engineers to create virtual models of electronic equipment, perform thermal analysis and test design modifications quickly and easily in the early stages of the design process well before any physical prototypes are built. FLOTHERM uses advanced CFD (computational fluid dynamics) techniques to predict airflow, temperature and heat transfer in components, boards and complete systems.Unlike other thermal simulation software, FLOTHERM is a Design-Class or industry-specific analysis tool specially designed for a wide range of electronic applications that include:∙computers and data processing,∙telecommunications equipment and network systems∙semiconductor devices, ICs and components∙aerospace and defense systems∙automotive and transportation systems∙consumer electronicsAs a Design-Class tool, FLOTHERM features specialization, built-in intelligence and automation not found in traditional analysis software. This functionality maximizes productivity for thermal design experts, minimizes the learning curve for mechanical design engineers and provides the highest levels of return on investment available from analysis software.In a small to medium-sized company, FLOTHERM can pay for itself several times over in just one year and even faster as the size of the company increases. Experience the benefits of using FLOTHERM for thermal design of electronics, that include:∙solving thermal problems before hardware is built∙reducing design re-spins and product unit costs∙improving reliability and overall engineering designHow to Run FLOTHERM?FLOTHERM is normally run interactively, so problem setup, flow calculation and results analysis can be completed in the same program session.To Start an Interactive SessionOn NT/Windows 2000/XP PlatformsIn the Flotherm51 group use the following menu sequence:Start -> Programs -> Flomerics -> FLOTHERM -> FLOTHERM 5.1Exiting FLOTHERM :To exit from FLOTHERM, in the Project Manager choose Exit from the Project menu.FLOTHERM then checks for project changes before exiting the program.If changes are detected, you are given the chance to save them using a query dialog. There are three options:a. [Yes] saves the project and solution data before exiting.If saving a new project, the Save Project Dialog, appears so you can give it a name, title and class.An existing project is overwritten.b. [No] does not save the project before exiting.c. [Cancel] cancels the exit request.Getting Started :-1. Creating a New Project:-∙Create a new project using the DefaultSI template.∙Name the New Project :Choose Save As... from the Project menu.Name = BasicsTitle = Fundamentals of FLOTHERM∙Add Reminders :Click on [Notes] to call the notepad editor dialog. Using the Edit Notes dialog you can add notes to accompany the project. For example a change log could be included to identify the modeling process followed.For the purposes of this exercise just type "Learning the fundamentals of FLOTHERM" and append the date to the text by clicking on [Date] and click [OK] in the Edit Notes dialog.2. How to Set the Size of the Solution Domain :-∙Display the System Menu:Move the mouse over the System node and right-click to display the System menu.∙Open the Overall Solution Domain dialog:Choose Location... from the System menu.∙Set Size of Solution Domain:Leave the Position settings at zero, but define the Size as:X=0.07m, Y=0.40m, Z=0.30m.3. Creating a Large Plate :-∙Create the GeometryRepresent a large plate in the project by adding a cuboid made of mild steel.∙Open the New Object Palette∙Click on the Root Assembly to select it and click the palette icon at the top of the Project Manager to open the New Object∙Call the Edit Primitive Dialog to change the Cuboid Defaults :Right-click the new cuboid and choose Location... from the pop-up menu to call the Edit Primitive Dialog.∙Define the Large Plate :In the Edit Primitive dialog, changeName to Large Plateand set position to:X=0.03 m, Y=0.10 m and Z=0.10 mand set size to:X=0.005 m, Y=0.1 m 0, Z=0.15 mClick [Apply] to confirm the settings.Note that the numbers entered are converted to scientific notation, however, they can be entered in any format. Click [OK] to dismiss the dialog and the cuboid can be seen renamed in the tree.∙Attach a Material using the Library :Open the Library Manager Open the Library Manager by either clicking again on the palette button, or the Library Manager button∙Access the Alloy Materials:∙Attach Attribute:Left click-drag Steel (Mild) onto the Large Plate.4. How to Create a Heated Block : Add a cuboid with an attached Alumina ceramic property to represent a heated block.∙Create the Geometry.∙Add a Cuboid. Select the Root Assembly and add another cuboid.∙Open Edit Primitive dialog. Right-click the new cuboid and choose Location...from the pop-up menu.∙Change the Cuboid Definition.Make the following settings in the Edit Primitive dialog:Rename the object to Heated BlockSet Position to: X=0.035 m, Y=0.12 m, Z=0.14 m Set Size to: X=0.005 m, Y=0.04 m, Z=0.04 m and click [OK].∙Attach a Property using the Library.∙Attach a Material Property to the Heated BlockExpand the Libraries node down to: Libraries->Flomerics_Libraries->Materials->CeramicsLeft click-drag Alumina (Typical) onto the Heated Block.∙∙Close the Library Manager:∙Close the library by clicking on the double arrow, the palette icon or the F7 function key.∙Attach a Thermal Attribute using the Dialogs:Because the thermal attribute now required is not in the library, now create a new attribute.∙Call the Thermal Selection Dialog:Right-click the Heated Block cuboidand choose Thermal from the pop-up menuto call the Thermal selection dialog.∙Create a New Thermal Attribute:Click [New...] in the Thermal Dialog to displaythe Thermal Attribute.Now make the following settings:Name = Block HeatThermal Model kept as ConductionTotal Power = 8 WClick [OK] to return to the Thermal selection dialog.∙Attach the New Thermal:With Block Heat highlighted in the Thermal list, click on [Attach].Note that the Currently Attached field updates when the attribute is successfully attached.[Dismiss] the dialog.∙Save the Project:Choose Save from the Project menu or click the save button.Note: During model set up it is a very good idea to save the project at regular intervals.5. How to Set the Grid :-The Drawing Board can be used to view the grid as well as the geometry structure.∙Display the Drawing BoardClick the button in the Project Manager to launch the Drawing Board.In the Drawing Board we can see the two blocks we have just created in 2D or 3D views. ∙Display the GridPress g on the keyboard to display the grid.Note that, at present, the grid is created by the geometry boundaries alone (i.e. the key point grid). This will not be sufficient to achieve a solution, so more grid must be added.∙Adding Grid:∙Display the System Grid DialogThere are a number of methods available, but here we will use a pre-set system grid. In the Drawing Board, choose System Grid... from the Grid menu to display the System Grid dialog.∙Add a Fine GridIn the System Grid dialog activate the Dynamic Update and click on [Fine]. The grid display in the Drawing Board updates.The program defines positions for the minimum and maximum cell sizes using a smoothing algorithm. 6. Solving the Project :-∙The solver requires less than 35 iterations for the solution to converge.∙Start the Solution∙Click in either the Drawing Board or Project Manager to start the solution. A sanity check is performed first and the message window appears indicating an open external boundary does not have an ambient attached.For now, ignore this since the default ambient (set in the Global System Settings dialog) will besufficient for our purposes.∙After the sanity check has been performed, the solution continues and the Profiles window opens and the progress bar displayed.∙The solution completes to show a converged plot.7. Visualizing the Results :-FLOMOTION can be used to display plots of results superimposed over the model.∙Display FLOMOTIONClick to launch FLOMOTION.A 2D view of the geometry is shown.∙Change to a 3D View: Press "i" in the keyboard to change to a 3D isometric view.∙Add a Plane PlotIn the Plane Plot Panel, change the direction to Z.and click the Create Plane button∙ A temperature contour fill plot is displayed.∙Change Geometry to Wireframe∙Press "w" in the keyboard to make thegeometry wireframe.∙The geometry becomes transparent allowingthe hidden results to be seen. Warning: under some conditions, theresults will also b ecome wireframe, so you can’t see them.8. Tabulating the Results :-In addition to viewing a graphical representation of the results, we can look at tabulations of data using the Tables window. For example, we can investigate the amount of heat conducted from the heated block, or, the amount of heat convected from the surface of the heated block to the air.∙Display the Tables Window: Click to launch the Tables window.The default view shows a summary of the geometry set up.∙Choose Data for Solid ConductorsClick to display the Geometry Table Selections dialog.Check Solid Conductors and click [OK].∙Display Summary Results∙Click to page down to display the summary table forsolid conductors. As you scroll across the surfacetemperature, conducted heat and convected heatare displayed for each surface of the conductingcuboids.Extra Points: Here we won’t be providing as much detail, so you’ll need to do some investigating on your own.1. Now add a monitoring point to the heated block so we can determine its temperature.∙Display the Project manager window.∙Highlight the Root Assembly and click on the icon at the right side of the Project Manager to add the Monitoring Point.∙Call the Edit Monitor Point to change the Monitor Point Position:Right click the Monitoring Point and choose Location…from the pop-up menu to call the Edit Monitor Point.∙Positioning the Monitoring Point:In the Edit Monitor Point, change the Name and Location to the desired one by allocating (x,y,z) co-ordinates. Choose coordinates to place the monitoring point in the center of the heated block.2. Now add a heat sink to your heated block.∙Display the Project manager window.∙Highlight the Root Assembly and click on the icon at the right side of the Project Manager to add a Heat Sink.∙Call the Edit Smart Part to change the Heat Sink Position:Right click the Heat Sink and choose Location…from the pop-up menu to call the Edit Smart Part.∙Positioning the Heat Sink:In the Edit Smart Part, change the Name and Location to place your heat sink on top of the heated block. Check to make sure that the heat sink has been placed in the proper location. You may need to experiment a bit. You will see that the heat sink is placed in the x-y dimension with the find extending in the z dimension, which isn’t what we want. Go to Tools-Rotate Clockwise to rotate the heat sink to the proper orientation. You will also need to pick a material and geometry for your heat sink. Aluminum is the most common material. Choose whatever geometry you’d like (pin fins or channels, heat sink height, etc.)3. Now add an enclosure, and cut holes in it for a fan and for an exhaust vent.∙Display the Project manager window.∙Highlight the Root Assembly and click on the icon at the right side of the Project Manager to setup an Enclosure. Make an enclosure large enough to enclose your whole system, with some room left over.∙You can see that the Enclosure has six walls, so we can introduce a hole wherever desired.∙Choose a location for your fan and for the exhaust vent. Click on the wall where a hole is to beadded and select the icon.∙In order to position the hole, we allocate the co-ordinates as desired.∙Call the Edit Smart Part to change the Hole’s position:Right click the Hole and choose Location…from the pop-up menu to call the Edit Smart Part.∙Positioning the Hole: In the Edit Smart Part, change the Name and Location to the desired one by allocating (x,y,z) co-ordinates. Pick any reasonable size for the wholes for your vent and fan.4. Now add a fan.∙Display the Project manager window. Highlight the Root Assembly and click on the icon at the right side of the Project Manager to add a Fan.∙Call the Edit Smart Part to change the Fan’s Position:Right click the Fan and choose Location…from the pop-up menu to call the Edit Smart Part.∙Positioning the Fan:In the Edit Smart Part, change the Name and Location to the desired one by allocating (x,y,z) co-ordinates.∙Go back to the fan menu to change the construction of the fan. Check out the various options available. For example, you can set a fixed flow rate, or you can even enter your own fan curve. For this exercise, choose any reasonable fixed flow rate.5. Now re-solve the project.∙Start the Solution∙Click in either the Drawing Board or Project Manager to start the solution. A sanity check is performed, after the sanity check has been performed, the solution continues and the Profiles window opens and the progress bar is displayed.∙Spend some time investigating to solution in FLOMOTIONThis ends the Flotherm Tutorial. If you have extra time available, spend some time investigating other aspects of the program or add some new element to your project. It will take quite a bit of time before it becomes easy for you to use this (or any other CFD) program!Possible Solution Scenarios:When the solution process is initiated, the most likely scenario is that the solution will converge, but there are the following possibilities reflected by the residual error plots shown below.Controlling the SolutionIf your solution fails to converge or converges extremely slowly, then you can reset the solution control panels, but first consider the following rules for assessing a solution convergence problem as the problem may well lie in the project set-up.Rules for Assessing Convergence Problems1. If a solution diverges, it is almost guaranteed to be a problem definition problem. Be immediatelysuspicious of the set up and check all defined objects and attributes before proceeding to alter any solution control parameters.2. If a solution fails to converge successfully, then it is important to check the grid. If there are pooraspect ratio grid cells and large jumps in grid size between adjacent grid cells, then this is the likely cause of the problem.3. If you are happy with the set up and the grid, then and only then should the solution controlparameters be adjusted.4. Do not waste time forcing low-level stable or low-level oscillation convergence profiles downto a residual error level of 1. Use the monitor points and error field to sensibly assess whether the solution is converged to a defined level of accuracy, and then stop the solution.If you do need to change the control parameters, then the following section provides an overview of how to resolve and manage the solution process.Techniques for Controlling the SolutionFLOTHERM contains a number of techniques, both automatic and manual, which can be used to optimize the solution process. In discussing their use, it is important to note that it is only possible to give general guidelines rather than hard and fast rules on how they should be altered for particular situations.In FLOTHERM, extremely complex and highly non-linear systems involving multiple modes of heat transfer are being modeled and it is impossible to automatically generate appropriate solution control parameters that will guarantee convergence under all circumstances. The automatic settings have been designed to give a reasonable convergence profile for the majority of applications, but may need to be adjusted in more complex situations.Much of this tutorial has been copied directly from the online Flotherm manual. It has been put together in this form by Girish Suppa with additions/modifications by Nicole Okamoto.。
Flotherm 教程 Appendices
<< Index >>
Energy
• Work done on fluid: • Rate of work done on fluid element by surface force equals product of force and component of velocity in direction of force • In the x direction:
• Equivalent equations for y and z directions
<< Index >>
Momentum
• The body force is the force due to gravity on the control volume • If gravity acts in the negative y direction (this is the default in FLOTHERM)
η xy η xz y z δxδyδz • Plus body force in x direction
<< Index >>
Momentum
• Can express acceleration as rate of change of velocity • Need to consider change of velocity in space and time
<< Index >>
Mass
• Mass of volume = density volume • Mass = r xyz • Assuming volume does not deform, rate of change of mass with time =
FloTHERM基础培训教程PPT课件
7
热设计的基本要求
满足设备可靠性的要求 满足设备预期工作的热环境的要求 满足对冷却系统的限制要求
热设计工程师 —— 与EE, ME, Layout等项目
相关人员紧密配合,力求提高产品各方面性能并 降低成本
8
了解散热性能的方法
实验研究
— 优点:直观,可靠 — 缺点:昂贵,周期长
数值仿真(CFD)
Table 数据表窗口 提供输入输出参数的数据表输出
19
FloTHERM文件结构
索引文件 库文件区 项目文件
20
FloTHERM文件结构
首先FLOTHERM软件借助四 个目录管理文件管理每个项 目文件
项目文件夹
千万别去尝试去修改项 目文件中名中的数字串
21
定义一个新项目
定义项目名称 定义散热环境以及散热方式 定义求解域
Step2:点击monitor point
也可以不选择元件,直接建 立监控点并把位置设置到关 心的地方
35
网格定义
36
求解器设置
设置求解方式 设置迭代次数 附加选项
37
错误检查与初始化
错误检查
— Error:Data error interrupting solution — Warning:flags set up problems such as incorrect location of
总部: 英国伦敦
分公司:
英国、美国、俄罗斯 匈牙利、法国、德国 意大利、瑞典、日本 中国、印度、新加坡
研发中心:
伦敦、波士顿、硅谷 圣迭戈、法兰克福、 布达佩斯、莫斯科、 班加罗尔
代理商:
以色列、韩国、日 本、台湾、澳大利 亚、巴西
仿真软件FlOTHERM资料(二)
并介绍了 T3Ster 和 TERALED 系统如何满足照明设备制造商及其客户在这方
面的需求。
13.白皮书:热仿真简化 LED 光源的研发
高功率高亮度发光二极体(LED)以其出色的色彩饱和度和使用寿命长的特点正
渗透到一些照明应用中。然而,对热设计师来说,防止LED过热是最具挑战性的
任务。因此,通过计算流体动力(CFD)模拟LED组件在应用设计过程中变得越来
8.固态照明热设计中的工艺现状分析 固态照明热设计中的工艺现状分析
9.关于高功率LED封装的高效散热技术 白炽灯主要依靠热量使灯丝发光,使发热黑体产生光能。与白炽灯不同,发 光二极管(LED)是半导体,必须保持冷却。当 LED 产生光能时,热量就是
其副产物。LED 中产生的热量会使温度增加。由于 LED 的温度增加,光输出
相应减小,光会改变颜色,LED 的寿命也会降低。温度对 LED 的照明性能和 使用寿命都有不利影响。所以,热性能管理成为固态照明(SSL)设计中最需
要解决的问题。
10.仿真帮助Philips解决环境光源电视技术的散热挑战 根据一些工程实例和分析计算,总结了影响电子设备热设计的各种不确定性 因数,并提供了大量参考数据,希望能为工程师全面准确地进行热设计工作 提供帮助。
11.电子设备热设计中的不确定性
任何一种形式的电气照明产品都产生一种负产品:热。从白炽光源到荧光照 明,代代工程师都在研发将热量最小化或将从光源或设备分离热量的方法。 然而 LED 照明,目前正以不断提高的质量和不断增加的形式,带来了新的和
不同的挑战。
12.电子设备热设计规范 按照 JESD51-14 和 CIE127-2007 的规定,利用 JEDEC 标准静态试验进行瞬 态温度测量提高了发光二极管(LED)热特性测量的精确性。这些高标准也增
Flotherm学习教程 (课堂PPT)
1. 理论解析: 利用数学方程式解决. 但此种方式, 仅适合非 常简单的问题. 在真实世界几乎无法用此种方式来解题.
2. 实验: 直接量测. 此方法为最准确. 但是必须要有实际的 产品才可做到.
3. 数值方法: 系利用电脑程式来解决散热问题. 可以在无实 体的情况下, 自由去做模拟.
Sieyuan Electric
3
Flotherm 的应用
元器件级 系统级
Sieyuan Electric
版级和模块级 环境级
4
Flotherm 的应用
液冷分析:可以分析含多种冷却介质的散热系统,如对液 冷、风冷同时存在的电子设备或冷板等的热分析;
多项冷却介质冷却模型
Sieyuan Electric
11
学习项目 1
学习项目 熟悉各种工作视窗
Sieyuan Electric
12
熟悉各种工作视窗
No 工作视窗 1 Project Manager 2 Drawing Board 3 FloMotion 4 Launch Tables 5 Profiles Windows 6 FLO/MCAD
Sieyuan Electric
➢ 使用者本身的能力: CFD 牵涉到流体力学, 传热学, 材料 性质等专业知识. 使用者要能具备这些知识, 才能有效运 用CFD软件.
总之, 沒有一套CFD软件是十全十美的. 就像一部车子, 驾驶 人必须要操纵过它, 才能掌握车子的性能. 同样, 工程师要灵 活运用Flotherm, 也必须要花时间去 ‘操纵’ 它, 才能体 会 Flotherm 可以为你做什么.
Drawing Board
调整显示工具
翻转
Flotherm学习教程
Library 的动作
(1)将已建好的物体 存进Library
以 单一 Smart Part 为例
(1)将已建好的物体 存进Library(续)
以 Assembly 为例
(2)将Library里的物体 呼叫进 现在的专案里
以 单一 Smart Part 为例
(2)将Library里的物体 呼叫进 现在的专案里(续)
Project Manager
档案管理
复制, 移动, 阵 列
视图管理
工具选项
模型
网格划分 运算
Drawing Board
物件分层
Drawing Board
调整显示工具
翻转
显示网格的资料 对齐工具
视角视窗切换 工具 自动对齐工具
测量尺寸工具 指标 与 手 切换工具 背景顏色 切换工具
学习项目 2
Flotherm 介紹 2
CFD 软件在计算什么呢? 所有CFD软件均是在计算 压力, 速度, 温度, 此三个变数. 因
为此三个变数是构成流体力学, 热传学的基本物理量. 由于速度是向量, 所以在表达速度时, 习惯以X, Y, Z 三个方
向的分量来做表示. 亦即 Vx, Vy, Vz. 因此, CFD 软件在求解 五个变数,
Flotherm学习教程
Байду номын сангаас
Flotherm 介紹 1
Flotherm 是一套专门为电子散热领域所设计的商业CFD 软体.
CFD 为 Computational Fluid Dynamics 的缩写, 意思为 计算流体力学. 所谓 ‘计算’ , 是指利用电脑程式来解决 的意思.亦有称为数值方法.
以往在解决散热问题可以用三种方式: 1. 理论解析: 利用数学方程式解决. 但此种方式, 仅适合非 常简单的问题. 在真实世界几乎无法用此种方式来解题. 2. 实验: 直接量测. 此方法为最准确. 但是必须要有实际的 产品才可做到. 3. 数值方法: 系利用电脑程式来解决散热问题. 可以在无实 体的情况下, 自由去做模拟.
FLOTHERM101基于FLOW SIMULATION自然对流热分析教程(30WLED)PPT课件
可以在user defined右侧的空白处右键选择new item,新建 模型表面发射率(根据实际情况)
•19
1 2
选取光源,添加一个30W热 源
•20
设置热阻情况,前面计算得出面积热阻 为0.0000667K*㎡/W
•21
前处理
• 模型处理 • 导航设置 • 计算域设置 • 物理参数设定 • 网格划分 • 侦测目标添加
•14
前处理
• 模型处理 • 导航设置 • 计算域设置 • 物理参数设定 • 网格划分 • 侦测目标添加 • 视频教程加Q 76615399
•15Biblioteka 赋予材质•16赋予材质AL6061
•17
同样方法把铜赋予光源
•18
右击Radiative Surface,选择Insert Radiative Surface,单 击Create/Edit
•31
• 右键点选rusults 中的goals,可以创建所设置的goals温度 数据的excel表
• 同样可以方法,可以显示面、体上的温度参数 • 后处理还可以得到其他的计算结果的显示……..
•32
•33
点、面参数
•34
点、面参数
•35
体参数
•36
点、面参数
•37
粒子效果图
•38
提问与解答环节
Questions and answers
•39
添加
添加
添加 标题
标题
标题
添加
标题
此处结束语
点击此处添加段落文本 . 您的内容打在这里,或通过 复制您的文本后在此框中选择粘贴并选择只保留文字
•40
谢谢聆听
THANK YOU FOR LISTENING 演讲者:XX 时间:202X.XX.XX
Flotherm学习教程PPT课件
5
结束. 退出视窗. 可到Project Manager/External/Library 里 去检查是否有Heat Sink这个群组存在.
42
(1)将已建好的物体 存进Library(续)
以 Assembly 为例
步骤
1
先建一个 Assembly, 并命名为. 里头建立所有 PSU所需的 物件.
14
熟悉各种工作视窗 No 工作视窗 1 Project Manager 2 Drawing Board 3 FlowMotion 4 Launch Tables
5 Profiles Windows 6 FLOMCAD
功能 类似文档总管. 管理所有的物体 类以 Auctocad. 具有绘图功能 可做动态显示.
步骤
1 先建一个 heat sink, 并命名为 HS1.
点选之, 按右键, 进入 Location. 点选 Library.便会自动出 2 现右边画面
3 在 Selection Form 下 选择 Project. 此时将会出现 HS1
在中间栏位 输入 Heat Sink, 按 Save. (此动作是在 4 Library 里建立一个Heat Sink 的群组, 并将HS1存此此群元器件级 系统级源自版级和模块级 环境级5
Flotherm 的应用
液冷分析:可以分析含多种冷却介质的散热系统,如对液冷、风冷同时存在的 电子设备或冷板等的热分析;
多项冷却介质冷却模型
6
Flotherm 的建模
参数化的建模功能 Flotherm软件提供了专门应用于电子设备热分析的SMART-PART技术,提供
29
学习项目 4
学习项目 利用MCD将Pro/E的图型转入Flotherm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每一个模型都要合乎热传与流场的观念: ➢ 热传: 热的传递路径与方式 ➢ 流场: 空气的流动路径
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
3
Flotherm学习教程
元器件级
版级和模块级
系统级
环境级
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
4
Flotherm学习教程
液冷分析:可以分析含多种冷却介质的散热系统,如对液 冷、风冷同时存在的电子设备或冷板等的热分析;
多项冷却介质冷却模型
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
5
Flotherm学习教程
参数化的建模功能 Flotherm软件提供了专门应用于电子设备热分析的
SMART-PART技术,提供了电子设备的参数化三维建模: 1) 基本几何形体的建模:提供了立方体、棱柱、圆柱、
计算的边界条件,使得模型计算结果层层传递,从系统级到 子系统级,简化计算过程,减轻工作量,从而大大缩减模型 分析时间。
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
9
Flotherm学习教程
要非常熟练 模型 的建立. 把它当作是在画 Pro/E, AutoCad.
2
Flotherm学习教程
准确度 一直是CFD软件最为人挑剔的地方. 有几项因为影响到CFD 软件的准确度:
➢ 软件本身的程式: 沒有人会看的到程式, 也不知道程式写 的对不对.
➢ 使用者本身的能力: CFD 牵涉到流体力学, 传热学, 材料 性质等专业知识. 使用者要能具备这些知识, 才能有效运 用CFD软件.
热容网络模型,同时也提供热源和阻尼模型的建立,将器件 的热源特性和阻尼特性进行输入仿真:
薄板模型
热阻-热容网络模型
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
8
Flotherm学习教程
4) 高级Zoom-in 功能: 高级Zoom-in功能可将上级模型计算结果作为下级模型
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
1
Flothermபைடு நூலகம்习教程
CFD 软件在计算什么呢? 所有CFD软件均是在计算 压力, 速度, 温度, 此三个变数. 因
为此三个变数是构成流体力学, 热传学的基本物理量. 由于速度是向量, 所以在表达速度时, 习惯以X, Y, Z 三个方
10
Flotherm学习教程
No 学习项目
1
熟悉各种工作视窗
2
熟练快速键
3
熟练各种模型的建法
4
利用MCD将Pro/E的图型转入Flotherm
5
熟练Library的使用
6
熟练各种模型的 “性质” 定义
总之, 沒有一套CFD软件是十全十美的. 就像一部车子, 驾驶 人必须要操纵过它, 才能掌握车子的性能. 同样, 工程师要灵 活运用Flotherm, 也必须要花时间去 ‘操纵’ 它, 才能体 会 Flotherm 可以为你做什么.
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
以往在解决散热问题可以用三种方式:
1. 理论解析: 利用数学方程式解决. 但此种方式, 仅适合非 常简单的问题. 在真实世界几乎无法用此种方式来解题.
2. 实验: 直接量测. 此方法为最准确. 但是必须要有实际的 产品才可做到.
3. 数值方法: 系利用电脑程式来解决散热问题. 可以在无实 体的情况下, 自由去做模拟.
圆球、斜板等基本形体的模型建立:
Rcal公司的雷达防御系统热分析
Ascom公司的散热模组分析
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
6
Flotherm学习教程
2) 典型电子器件的建模: 提供了机箱、风扇、散热器、滤网、热交换器、热管、
向的分量来做表示. 亦即 Vx, Vy, Vz. 因此, CFD 软件在求解 五个变数,
➢ P: 压力 ➢ Vx : X 方向的速度. ➢ Vy : Y 方向的速度. ➢ Vz : Z 方向的速度 ➢ T: 温度.
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
Flotherm学习教程
产品开发部 沈金南 2012-05-03
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
Flotherm学习教程
Flotherm 是一套专门为电子散热领域所设计的商业CFD 软体.
CFD 为 Computational Fluid Dynamics 的缩写, 意思为 计算流体力学. 所谓 ‘计算’ , 是指利用电脑程式来解决 的意思.亦有称为数值方法.
冷板、TEC(半导体制冷器)等电子设备内的常有器件的参数 化模型建立:
TEC和机箱型
离心风扇与轴流风
Sieyuan Electric
Copyright © Sieyuan Electric Co., Ltd. All Rights Reserved.
7
Flotherm学习教程
3) 简化模型的建立: 可以进行模型的简化,软件提供了薄板导热模型和热阻-