最大气泡压力法测定溶液的表面张力
最大气泡发测定溶液表面张力
最大气泡发测定溶液表面张力实验名称:最大气泡法测定溶液表面张力实验目的:1. 学习和掌握气泡法测定液面张力的实验原理和方法;2. 了解表面张力相关概念和公式;3. 掌握实验数据处理和分析方法。
实验原理:表面张力是液体表面所受到的分子间的一种力,它使液面趋于最小面积的状态。
根据杨氏定律,液体表面张力F的大小可表示为:F = γL其中γ为表面张力系数,L为液体表面的周长。
最大气泡法测定溶液表面张力,是将一根玻璃管塞在一溶液中,管口抬离液面后,通过吹气法在玻璃管内形成一个气泡,并逐渐加大压力,当气泡从玻璃管中抬出时,管口压力减小至最小值,并变为固定值。
此时气泡直径、管口边缘长度等数据均可用来计算出溶液的表面张力。
实验步骤:1.准备一根内径约为0.7~1mm的直玻璃管,两端均作过热处理并制成吸管型。
吸管要求口径尽量小,以便形成小的气泡。
2.用去离子水清洗玻璃管,再用酒精涂洗干净。
3.实验表面张力:(1)加入一定量的去离子水到三个试管中,分别加入0.1~0.3mL的酒精、苯、正丁醇。
(2)用吸球吸取被测溶液,直到牢固地充满了玻璃管,放在液面上,使液面把玻璃管口罩住,然后用手握住吸球以上提管子,使玻璃管口稍稍浮起,吸球松开,保证玻璃管内无气泡,玻璃管内液面刚好在液面之上。
(3)在玻璃管外侧,用一长管膜压力,直到液面在玻璃管上方,形成一气泡。
此时,按膜的位置调整气泡直径和液面周长的比值为0.9左右,再用一根呈45度角的玻璃管口吹气,增加气泡直径,同时测量管口长度、气泡直径和液面间的高度差,记录数据。
(4)重复2-3步骤不少于三次,取平均值,计算表面张力。
数据计算:1. 气泡直径d的平均值2. 玻璃管口边缘长度l的平均值3. 液面间高度差h的平均值4. 比值P = l/d5. 表面张力系数γ = πdP(ρgh+2ηv/d)/2实验结果:被测液体 | 气泡直径d/mm | 玻璃管口边长l/mm | 液面间高度差h/mm | P | γ/mN·m-1:---:|:---:|:---:|:---:|:---:|:---:去离子水 | 3.51 | 14.05 | 161.8 | 3.2 | 72.11酒精 | 2.12 | 8.73 | 116.5 | 4.11 | 21.44苯 | 2.40 | 9.57 | 197.6 | 4.0 | 34.74正丁醇 | 2.82 | 11.38 | 168.5 | 4.03 | 23.21结论:根据实验结果,不同液体的表面张力不同。
最大气泡压力法测定溶液表面张力
物理化学实验最大气泡压力法测定溶液表面张力C210 2010-04-12T=286.15K P=85.02kPa一、实验目的1.掌握最大气泡法测定溶液表面张力的原理和方法2.测水溶液的表面张力并计算定不同浓度正丁醇计算吸附量3.加深对表面张力、表面自由能、表面张力和吸附量关系的理解二、实验原理处于溶液表面的分子,受到不平衡的分子间力的作用而具有表面张力s.气泡最大压力法测定表面张力装置见实物;实验中通过滴水瓶滴水抽气使得体系压力下降,大气压与体系压力差△p逐渐把毛细管中的液面压至管口,形成气泡。
如果毛细管半径很小,则形成的气泡基本上是球形的;当气泡开始形成时,表面几乎是平的,这时曲率半径最大;随着气泡的形成,曲率半径逐渐变小,直到形成半球形,这时曲率半径R和毛细管半径r相等,曲率半径达最小值,根据拉普拉斯公式得:附加压力达最大值ΔP max =σ/r min。
气泡进一步长大,R变大,附加压力则变小,直到气泡逸出。
加入表面活性物质时溶液的表面张力会下降,溶质在表面的浓度大于其在本体的浓度,此现象称为表面吸附现象;单位溶液表面积上溶质的过剩量称为表面吸附量Γ, Γ=-(c/RT)*( dσ/dc).对可形成单分子层吸附的表面活性物质,溶液的表面吸附量Γ与溶液本体浓度c之间的关系符合朗格谬尔吸附等温式: Γ=Γ∞*kc/1+kc朗格谬尔吸附等温式的线性形式为: c/Γ=c/Γ∞+1/kΓ∞Γ∞为饱和吸附时,单位溶液表面积上吸附的溶质的物质的量,则每个溶质分子在溶液表面上的吸附截面积为:A m=1/(N A*Γ∞)三、仪器与试剂恒温槽装置;数字式微压差计;抽气瓶l个;表面张力测定仪烧杯(1000mL);T形管1个;电导水;正丁醇(A.R.)及其不同浓度的标准溶液;四、实验步骤1.仪器常数的测定将表面张力测定仪清洗干净;在干净的表面张力测定仪中装入电导水,使毛细管上端塞子塞紧时,毛细管刚好与液面垂直相切;抽气瓶装满水,连接好后旋开下端活塞使水缓慢滴出;控制流速使气泡从毛细管平稳脱出(每个气泡4-6秒),记录气泡脱出瞬间数字微压差计的最大数值,取三次并求平均值。
最大泡压法测定溶液的表面张力
(2)测定不同浓度乙醇溶液的表面张力 配制浓度分别为0.02,0.05,0.10,0.15,0.20, 0.25,0.30,0.35,0.50mol.L-1 正丁醇溶液各50ml。 按(1) 数据记录和处理
(1) 记录实验温度,大气压,以及蒸馏水和不 同浓度乙醇溶液的的△h。 (2) 按式(7-66)计算毛细管常数K。不同温度 下纯水的表面张力见附录14。
最大泡压法测表面张力
(3)求乙醇的分子截面积 饱和吸附量
kc 1 kc
(7-68)
c 作 ~c图,由直线斜率求
1 c 1 k
求乙醇分子截面积
1 = L
(7-69)
8
最大泡压法测表面张力
3. 实验步骤
(1) 测定毛细管常数K. 将蒸馏水装于带支管的毛细管,使毛细管的端 面与液面相切,打开滴液漏斗的活塞,使水缓慢滴 下而降低系统的压力,气泡均匀逸出,读取U形压 力计两臂最大高度差。
2
最大泡压法测表面张力
2. 实验原理
体相分子:
(1)溶液的界面吸附 纯液体和其蒸气组成的体系 自由移动不消耗功
表面分子: 液体有自动收缩表面 而呈球形的趋势。
2 G (J m ) γ A T , P ,nB
g
l
比表面自由能(表面张力)
3
最大泡压法测表面张力
溶液: 体系可调节溶质在表面相的浓度来降低 表面自由能。
(3) 按式(7-66)计算不同浓度乙醇溶液的表 面张力。
10
最大泡压法测表面张力
(4)作 ~c/c 曲线,在曲线上分别取c / c 为0.03, 0.05,0.10,0.15,0.20,0.30,0.40的点作 d 切线,求切线斜率 。 dc / c
最大泡压法测定溶液的表面张力
数据处理
根据溶液温度查表可知水的表面张力。
根据公式
,可得各溶液的
表面张力。
p 曲线上取两个点 (C=0.05和0.20处),分别作出切线并求 相应的斜率,求出这两个点的吸附量。
根据方程(14-2)求算各浓度的吸附量,并 作出(c/ Γ)-c图,由直线斜率求其Γ ∞,并 计算横面积S0值。
仪器与试剂
实验装置见图1。 毛细管要求出泡均匀,最好在纯水中测量
hmax达14cm左右,不可内径太粗, 否则误差大,毛细管头部必须平整光滑, 不沾油污,以免出泡不均匀。 正丁醇(分析纯)。
实验步骤
仪器常数的测定
洗净试管,用蒸馏水淌洗后,再加蒸馏水,调节毛细 管高度,使毛细管刚接触液面,如图14-3接好仪器(不 能漏气)。试管安装在恒温槽中。
吴肇亮,蔺五正,杨国华等.物理化学实验[M], 北京,石油大学出版社 ,1993.
Hugh W. Salzberg et. al., Physical Chemistry Laboratory: Principles and Macmillan Publishing Co.,INC.(New York).1978.
思考问题
最大泡压法测定表面张力时为什么要测定仪器常数? 用最大泡压法测定易发泡液体的表面张力时应注意
哪些问题? 有些物质(如十二烷基硫酸钠)用最大泡压法测定
其溶液的表面张力往往和用其它方法(如滴重法) 测量结果相差较大,试简单分析其原因。
参考文献
李江中,罗志刚,通用化学实验技术[M], 广州,: 华南理工大学出版社,1997.
在σ—c曲线上任意选一点i做切线,即可 得该点所对应浓度ci的斜率(d/dci)T代 入(14-2)式,可求出不同浓度时的吸附 量Γ。
最大泡压法测定溶液的表面张力(泡压法、滴重法、毛细管升高法)
最⼤泡压法测定溶液的表⾯张⼒(泡压法、滴重法、⽑细管升⾼法)表⾯张⼒的测定——最⼤⽓泡压⼒法、滴重法、⽑细管升⾼法⼀、实验原理:1.最⼤⽓泡压⼒法测定表⾯张⼒(装置如下图所⽰):其中,B是管端为⽑细管的玻璃管,与液⾯相切。
⽑细管中⼤⽓压为P0。
试管A中⽓压为P,当打开活塞E时,C中的⽔流出,体系压⼒P逐渐减⼩,逐渐把⽑细管液⾯压⾄管⼝,形成⽓泡。
当⽓泡在⽑细管⼝逐渐长⼤时,其曲率半径逐渐变⼩,⽓泡达最⼤时便会破裂。
此时⽓泡的曲率半径最⼩,即等于⽑细管半径r,⽓泡承受的压⼒差也最⼤△P=P0-P=2γ/r 此压⼒差可由压⼒计D读出,故γ=r△P/2若⽤同⼀⽀⽑细管测两种不同液体,其表⾯张⼒分别为γ1、γ2,压⼒计测得压⼒差分别为△P1、△P2则:γ1/γ2=△P1/△P2若其中⼀种液体的γ已知,例如⽔,则另⼀种液体的表⾯张⼒可由上式求得。
2.⽑细管⾝升⾼法(装置如下图所⽰):⽑细管法测定表⾯张⼒仪器⽑细管表⾯张⼒⽰意图当⼀根洁净的,⽆油脂的⽑细管浸进液体,液体在⽑细管内升⾼到h⾼度。
在平衡时,⽑细管中液柱重量与表⾯张⼒关系为:2πσrcosθ=πr2gdhσ=gdhr/2cosθ(1)如果液体对玻璃润湿,θ=0,cosθ=1(对于很多液体是这样情况),则:σ=gdhr/2 (2)式中σ为表⾯张⼒;g为重⼒加速度;d为液体密度;r为⽑细管半径。
上式忽略了液体弯⽉⾯。
如果弯⽉⾯很⼩,可以考虑为半球形,则体积应为:πr3 -2/3πr3 =1/3πr3从(2)可得:σ=gdr/2(h+1/3r)(3)更精确些,可假定弯⽉⾯为⼀椭圆球。
(3)式应变为:σ=gdhr/2(1+1/3(r/h)-0.1288(r/h)2+0.1312(r/h)3)(4)3. 滴重法(装置如右图所⽰):从图中可看出,当达到平衡时,从外半径为r的⽑细管滴下的液体重量应等于⽑细管周边乘以表⾯张⼒,即:mg=2πσr (5)式中m为液滴质量;r为⽑细管外半径;σ为表⾯张⼒;g为重⼒加速度。
溶液表面张力的测定——最大气泡压力法
实验七 溶液表面张力的测定——最大气泡压力法一. 实验目的1. 用最大气泡法测定不同浓度乙醇溶液的表面张力。
2. 了解表面张力的性质, 表面自由能的意义以及表面张力和吸附的关系。
3. 学会镜面法作切线的方法。
二. 实验原理用本法测定[乙醇, 水]溶液的数据对[σ, c], 作图将c-σ曲线在不同浓度的斜率 T 代入吉布斯等温吸附式:Γ=﹣c RT c σ∂⎛⎫ ⎪∂⎝⎭T 求出相应的吉布斯吸附量Γ;按朗格茂尔等温吸附变形公式:c 1c α∞∞=+ΓΓΓ C/Γc-C 直线斜率tg β求出饱和吸附量 , 进而得出乙醇分子横切面积S 和分子长度 , 结合直线截距得出吸附系数α:∞Γ=(tg β)-1以上个式中, c 为浓度;T 为绝对温度(K );σ为表面张力;Γ为吉布斯吸附量;M 为溶质摩尔质量;ρ为溶质密度;S 为分子截面积;δ为分子长;α为吸附系数;NA 为阿伏伽德罗数(6.02×1023/mol );R 为气体常数。
为了求以上参数, 关键是测σ。
表面张力及界面张力, 矢量。
源于凝聚相界面分子受力不平衡, 意为表面的单位长度收缩力。
σ也是在个条件下凝聚系表面相得热力学强度性质, 如果恒温、恒压下扩大单位表面积所需的可逆功, 故亦称为表面自由焓。
1. σ与凝聚相和表面共存接触相种类有关, 还与T,P 有关, 与凝聚相纯度和杂志种类有关。
浓度升高, 溶液的σ有增有减, 随溶质、溶剂而异, 表面活性剂是两亲分子, 他们的水溶液σ随浓度升高先剧降, 后微升, 在渐趋稳定。
σ随c 而变化的本质是溶液表面浓度对体相浓度的偏离, 此现象称为表面吸附。
表面吸附量Γ与浓度有关, 用吉布斯等温方程求出 为σ-c 曲线在指定浓度的斜率。
<0, Γ>0为正吸附, 表面浓度较体浓度高, 达饱和吸附时, Γ趋于饱和吸附量 , 此时两亲分子在溶液表面处于高度有序的竖立密集, 形成单分子膜。
,2. 若将兰格缪尔等温吸附式中的吸附量赋予吉布斯吸附量的特定意义, 则可从其变形式求出 设分子吸附层厚δ, δ即两亲分子长。
最大泡压法测溶液的表面张力
七、思考题
1、有哪些因素影响表面张力测定的结果?如 何减小以致消除这些因素对实验的影响?
2、用最大泡压法测定表面张力时,为什么要 读取最大压力差?
3、在测量中,如果抽气速度过快,对测量结 果有何影响?
六、数据处理
1、以纯水测得结果按(15~8)式计算仪器 常数K’值,水的表面张力由附录表中查出
2、用表格列出各浓度的溶液压力差值,并求 得其表面张力值。
3、在方格坐标纸上作σ-c图 ,并在σ-c曲线上 取10~20个点,分别作出切线,并求得对
应的斜率。
4、根据方程(15-2)求算各浓度的吸附量,并 作出(c/ Γ)-c图,由直线斜大气泡法表面张力测定装置 1-滴液漏斗,2-支管试管,3-毛细管,4-恒 温槽,5-压差计
根据拉普拉斯公式,气泡承受的压力差也最大。 (15-6)
三、仪器与试剂
表面张力测定装置 洗耳球 滴管 不同浓度的乙醇溶液
1套 1个 1个
四、实验步骤
仪器常数的测定 溶液的表面张力的测定
五、实验注意事项
1、测定用的毛细管一定要清洗干净,否则气泡 不能连续稳定地通过,而使压力计读书不稳定。
2、控制好出泡速度,不要使气泡一连串地脱 出,,读取压力计的压差时,应取气泡单个逸 出时的最大压力差。
3、洗涤毛细管时不能用热风吹干或烘烤,避免毛 细管的结构发生变化。
4、实验结束后要将所用仪器全部洗涤干净。
(情绪管理)最大气泡压力法测定溶液的表面张力最全版
(情绪管理)最大气泡压力法测定溶液的表面张力最大气泡压力法测定溶液的表面张力壹、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在壹个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于且指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大壹平方米表面所需的最大功A或增大壹平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J·m-1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N·m-1。
如欲使液体表面面积增加ΔS时,所消耗的可逆功A应该是:壹A=ΔG=σΔS(1)液体的表面张力和温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度和溶液内部浓度不同的现象叫做溶液的表面吸附。
在壹定的温度和压力下,溶液表面吸附溶质的量和溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示:Γ=-()T(2)式中:Γ为吸附量(mol·m-1);σ为表面张力(J·m-1);T为绝对温度(K);c为溶液浓度(mol.L -1);R为气体常数(8.314J.K—I·mol-1)。
()T表示在壹定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即()T<0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即()T>0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
最大气泡压力法测定溶液的表面张力
最大气泡压力法测定溶液的表面张力一、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、基本原理在一个液体的内部,任何分子周围的吸引力是平衡的。
可是在液体表面表面层中,每个分子都受到垂直于并指向液体内部的不平衡力。
所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能,通常把增大一平方米表面所需的最大功A 或增大一平方米所引起的表面自由能的变化△G,称为单位表面的表面能,其单位为J ·m -1;而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N ·m -1。
如欲使液体表面面积增加ΔS 时,所消耗的可逆功A 应该是:一A =ΔG =σΔS (1)液体的表面张力与温度有关,温度愈高,表面张力愈小。
根据能量最低原则,若溶质能降低溶剂的表面张力,则表面层中溶质的浓度应比溶液内部的浓度大,如果所加溶质能使溶剂的表面张力升高,那么溶质在表面层中的浓度应比溶液内部的浓度低。
这种表面浓度与溶液内部浓度不同的现象叫做溶液的表面吸附。
在一定的温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加入的溶质量(即溶液的浓度)有关,它们之间的关系可用吉布斯(Gibbs)公式表示: Γ=-RT c (c∂∂σ)T (2) 式中:Γ为吸附量(mol ·m -1);σ为表面张力(J ·m -1);T 为绝对温度(K);c 为溶液浓度(mol .L -1);R 为气体常数(8.314J .K —I ·mol -1)。
(c∂∂σ)T 表示在一定温度下表面张力随溶液浓度而改变的变化率。
如果σ随浓度的增加而减小,也即(c∂∂σ)T <0,则Γ>0,此时溶液表面层的浓度大于溶液内部的浓度,称为正吸附作用。
如果σ随浓度的增加而增加即(c ∂∂σ)T >0,则Γ<0,此时溶液表面层的浓度小于溶液本身的浓度,称为负吸附作用。
最大气泡法测定液体表面张力
最大气泡法测定液体表面张力目的要求了解表面张力的性质,表面自由能的意义以及表面张力和吸附的关系掌握用最大泡压法测定表面张力的原理和技术测定不同浓度乙醇水溶液的表面张力,计算表面吸附量和乙醇分子的横截面积实验原理1.在指定的温度下,纯液体的表面张力是一定的,一旦在液体中加入溶质成溶液时情况就不同了,溶液的表面张力不仅与温度有关,而且也与溶质的种类,溶液浓度有关。
这是由于溶液中部分溶质分子进入到溶液表面,是表面层分子组成发生了改变,分子间引力起了变化,因此表面张力也随着改变,根据实验结果,加入溶质以后在表面张力发生改变的同时还发生溶液表面层的浓度与内部浓度有所差别,有些溶液表面层浓度大于溶液内部浓度,有些恰恰相反,这种现象称为溶液的表面吸附作用。
实验原理按吉布斯吸附等温式:c d 1 d 1 RT dc RT d ln c式中:Г-代表溶质在单位面积表面层中的吸附量molm-2C-代表平衡时溶液浓度molL-1R1-气体常数8.314Jmol-1K-1T-吸附时的温度K。
从1式可看出,在一定温度时,溶液表面吸附,与平衡时溶液浓度C和表面张力随浓度变化率成正比关系。
实验原理当c T <0时,Г>0表示溶液表面张力随浓度增加而降低,则溶液表面发生正吸附,此时溶液表面层浓度大于溶液内部浓度。
当c >0时,Г<0表示溶液表面张力随浓度增加而增T 加,则溶液表面发生负吸附,此时溶液表面层浓度小于溶液内部浓度。
我们把能产生显著正吸附的物质即能显著降级溶液表面张力的物质,称为表面活性物质。
本实验用表面活性物质乙醇配制成一系列不同浓度的水溶液,分别测定这些溶液的表面张力σ,然后以σ对lnC作图得一曲线,求曲线上某一点的斜率可计算相当于该点浓度时溶液的表面吸附量。
实验原理2.本实验测定各溶液的表面张力采用气泡最大压力法,此法原理是当毛细管与液面接触时,往毛细管内加压或在溶液体系减压则可以在液面的毛细管出口处形成气泡。
实验八十三 最大泡压法测定溶液的表面张力
EMBED Equation.3 (3)
式中k为经验常数,与溶质的表面活性大小有关。由上式可知,当浓度很小时,Γ与c成直线关系;当浓度较大时,Γ与c成曲线关系;当浓度足够大时,则呈现一个吸附量的极限值,即 EMBED Equation.3 。此时若再增加浓度,吸附量不再改变。所以 EMBED Equation.3 称为饱和吸附量。 EMBED Equation.3 可以近似的看做是在单位表面上定向排列呈单分子层吸附时溶质的物质的量。求出 EMBED Equation.3 值,即可算出每个被吸附的表面活性物质分子的横截面积As。
式中L为阿伏加德罗常数。
因此,如测得不同浓度溶液的表面张力,从γ-c曲线可求得不同浓度的斜率dγ/dc,即可求出不同浓度的吸附量Γ,再从c/Г-c直线上求出Г∞,便可计算出溶质分子的横截面积As。
4、最大泡压法
测定表面张力的方法很多,本实验用最大泡压法测定正丁醇水溶液的表面张力。实验装置如图83-4所示。
式中γ为液体的比表面自由能,单位为J·m-2,即增加单位表面积引起系统吉布斯自由能的增量,或者单位表面积上的分子比相同数量的内部分子“超额的” 吉布斯自由能。也可将γ看作液体限制其表面,力图使它收缩的单位直线长度上所作用的力,称为表面张力,单位为N·m-1。γ表示了液体表面自动缩小趋势的大小,其值与液体的成分、溶质的浓度、温度及表面气氛等因素有关。
2、溶液的表面吸附
纯液体表面层的组成与内部的组成相同,因此,纯液体降低表面自由能的唯一途径是尽可能缩小其表面积。对于溶液,由于溶质能使溶剂表面张力发生改变,因此,可以通过调节溶质在表面层的浓度来降低表面自由能。
实验五溶液表面张力的测定
四、实验步骤: 实验步骤:
1、毛细管常数的测定: 按实验装置图装好仪器,打开恒温水浴,使其温度稳定于25℃。取一支 浸泡在洗液中的毛细管依,次用自来水,蒸馏水反复清洗若干次,同样把 玻璃套管也清洗干净,加上蒸馏水,插上毛细管,用套管下端的开关调节 液面恰好与毛细管端面相切,使样品在其中恒温10分钟。在分液漏斗中加 入适量的水并与吸滤瓶连接好,注意切勿使体系漏气。然后调节分液漏斗 下的活塞使水慢慢滴入吸滤瓶中,这时体系压力逐渐增加,直至气泡由毛 细管口冒出,细心调节出泡速度,使之在5-10秒钟内出一个。注意气泡爆 破前U型压力计两边的读数,并重复记录最高最低值三次,求平均值而得。 根据手册查出25℃时水的表面张力为=71.97×10-3N·m-1,以σ/△h =K求
1、测定不同浓度(c)正丁醇水溶液的表面张力(s)。 2、了解表面张力的性质、表面能的意义以及表面张力和吸附的关系。 3、掌握一种测定表面张力的方法—最大气泡法。
二、实验原理: 验原理:
1.表面张力的概念:在表层中,由于表面分子 净受一个向内的拉力的作用使部分表面分子进入 到内部,使表面分子总数减少,因此,表层分子之间的距离加大,从而使 表面分子沿该方向上的引力增大,这就使得分子间产生一个相互收缩的力, 这个分子间相互作用收缩的力就称为表面张力。 2表面张力是液体的重要特性之一,与所处的温度、压力、液体的组成共存 的另一相的组成等有关。纯液体的表面张力通常指该液体与饱和了其自身 蒸气的空气共存的情况而言。
气泡最大压力法测定溶液的表面张力实验报告
气泡最大压力法测定溶液的表面张力实验报告实验目的:通过气泡最大压力法测定溶液的表面张力,了解表面张力的概念和影响因素。
实验原理:气泡最大压力法是一种测定液体表面张力的方法。
当气泡在液体表面吸附时,空气和液体之间的表面张力使得气泡表面产生压力。
随着气泡的增大,表面张力也会增大,当气泡增大到一定大小时,表面张力将无法支持气泡继续增大而使气泡破裂。
这个时候,气泡的最大直径对应着液体的表面张力大小。
实验步骤:1.准备实验器材:气泡压力计、毛细管、洗涤瓶、滴管、等量筒、称量器等。
2.实验前准备:将需要测定的液体放入等量筒中,加入适量的去离子水混合均匀,然后将等量筒称量,记录液体的质量。
3.制备毛细管:将毛细管烤制成圆形并将两端磨平。
4.实验操作:将洗涤瓶中的液体吸入毛细管中,然后将毛细管浸入液体中,使其浸入到液面下方,然后轻轻地将毛细管取出来,观察毛细管内部是否存在气泡,若存在气泡,则需要重新制备毛细管。
5.测定表面张力:将毛细管蘸入液体中,使其与液面触碰,在液面上形成一个液体凸起,然后将气泡压力计放在凸起上,逐渐加压,直到气泡破裂,记录最大直径,并测量气泡的压力。
6.实验数据处理:根据测得的气泡最大直径和压力值,计算出液体的表面张力值。
实验结果:通过气泡最大压力法测定,得到液体的表面张力值为x N/m。
实验分析:根据实验数据分析得知,液体的表面张力受到多种因素的影响,如温度、溶液浓度、表面活性剂的种类和浓度等。
在相同的温度下,溶液的表面张力随溶液浓度的增加而增加。
表面活性剂可降低液体的表面张力,增加液体的润湿性。
实验总结:本实验通过气泡最大压力法测定溶液的表面张力,达到了目标,并深入了解了表面张力的概念和影响因素。
同时,也提高了实验操作的技能和实验数据分析的能力。
最大气泡压力法测定溶液表面张力
最大气泡压力法测定溶液表面张力一、前言表面张力是指液体表面处的分子间相互作用力,是液体表面能量和单位面积的量度。
在实际应用中,表面张力常常被用来描述液体与固体或气体之间的相互作用,如液滴形态、液滴与固体表面接触角等。
因此,测定溶液表面张力具有重要的理论和实际意义。
最大气泡压力法是一种常用的测定溶液表面张力的方法。
该方法基于气泡在液体中升降时所受到的阻力与气泡直径之间的关系,通过测量最大气泡升降速度和直径来计算溶液的表面张力。
二、实验步骤1. 实验仪器和试剂准备(1)实验仪器:最大气泡压力法测定仪、电子天平、恒温水槽。
(2)试剂:去离子水、丙酮、十二烷基硫酸钠(SDS)、甘油。
2. 样品制备将待测样品加入到清洁干燥的容器中,并在恒温水槽中调节至所需温度。
3. 测定最大气泡压力(1)在样品表面加入一定量的SDS和甘油,使得液面平整且不出现颗粒状物质。
(2)将测定仪的玻璃管插入到样品中,并通过注射器向玻璃管中注入空气,形成一个气泡。
(3)调节测定仪的升降速度,当气泡升至一定高度时停止升降,记录此时的气泡直径和压力。
(4)逐步增加气泡压力并记录相应的气泡直径和压力值,直至气泡破裂或者脱离液面为止。
4. 计算表面张力根据测得的最大气泡直径和压力值,可以通过下列公式计算溶液表面张力:γ = (4σ/3r) (ΔP/P0)其中,γ为溶液表面张力;σ为水-空气界面张力常数;r为最大气泡半径;ΔP为最大气泡压差;P0为大气压强。
5. 数据处理对于同一样品,在不同温度下进行多次测量,并取平均值计算出表面张力。
三、实验注意事项1. 实验前要仔细清洗测定仪和玻璃管,避免杂质对实验结果的影响。
2. 在加入SDS和甘油时要注意控制添加量,避免过量引起液面不平整。
3. 测定时要保持恒温,避免温度变化对实验结果的影响。
4. 测定时要保持气泡升降速度稳定,并逐步增加气泡压力,避免气泡破裂或脱离液面。
5. 测定同一样品时要进行多次测量,并取平均值计算表面张力,提高实验结果的准确性。
最大气泡压力法测定溶液的表面张力实验报告
最大气泡压力法测定溶液的表面张力实验报告最大气泡压力法测定溶液的表面张力实验报告引言:表面张力是液体分子间相互作用力所导致的现象,它对于液体的性质和行为具有重要影响。
本实验采用最大气泡压力法来测定溶液的表面张力,通过实验数据的分析,探究不同溶液浓度对表面张力的影响。
实验目的:1. 了解表面张力的概念和测定方法;2. 掌握最大气泡压力法测定溶液表面张力的实验操作;3. 分析不同溶液浓度对表面张力的影响。
实验原理:最大气泡压力法是一种常用的测定溶液表面张力的方法。
实验中,将一根细玻璃管插入液面,通过调节压力差,使气泡从玻璃管中产生并脱离液面,此时气泡的半径与液体表面张力成正比。
通过测量气泡的半径和液体的密度,可以计算出溶液的表面张力。
实验步骤:1. 准备实验所需材料和仪器,包括细玻璃管、溶液、压力计等;2. 将细玻璃管插入液面,调节压力差,使气泡从玻璃管中产生并脱离液面;3. 测量气泡的半径和液体的密度;4. 计算溶液的表面张力。
实验结果与分析:根据实验数据计算得到不同溶液浓度的表面张力值,并进行比较分析。
实验结果显示,随着溶液浓度的增加,表面张力呈现下降的趋势。
这是因为溶液浓度的增加会导致溶质分子在液体表面的分布增多,从而减弱液体分子间的相互作用力,进而降低表面张力。
实验误差分析:在实验过程中,由于操作技巧和仪器精度等因素的影响,可能会产生一定的误差。
例如,测量气泡半径时,由于气泡形状的不规则性,可能会导致测量结果的误差。
此外,实验中还需要考虑环境因素对实验结果的影响,如温度、湿度等。
实验改进:为减小实验误差,可以采取以下改进措施:1. 提高操作技巧,尽量保持气泡形状的规则性;2. 使用更精确的仪器和测量方法,如使用显微镜观察气泡形状,使用更精确的测量仪器测量气泡半径;3. 控制实验环境的温度和湿度,避免外界因素对实验结果的干扰。
结论:通过最大气泡压力法测定溶液的表面张力,我们得出了不同溶液浓度对表面张力的影响。
气泡最大压力法测定溶液的表面张力实验报告
气泡最大压力法测定溶液的表面张力实验报告本实验的目的是通过气泡最大压力法测定不同浓度的表面活性剂溶液的表面张力,探究表面张力与溶液浓度之间的关系,并深入理解表面张力的概念及其在生活中的应用。
实验器材:1. 气泡最大压力法仪器2. 不同浓度的表面活性剂溶液3. 实验室天平4. 滴管5. 纸巾实验步骤:1. 将气泡最大压力法仪器调至初始状态,确保其工作正常。
2. 分别取出不同浓度的表面活性剂溶液,通过天平精确称取出10mL的溶液。
3. 将取出的溶液倒入气泡最大压力法仪器的试管中,并通过滴管将溶液表面涂上适量的矿物油,以防止气泡的破裂。
4. 将气泡最大压力法仪器的气泡管顶端浸入溶液中,启动仪器,并等待仪器读数稳定。
5. 调节气泡最大压力法仪器的气泡大小,直至气泡破裂,记录下此时的最大压力值。
6. 重复以上步骤,分别测量不同浓度的表面活性剂溶液的最大压力值,并记录下每组数据。
7. 将测得的数据绘制成表格或图表,分析表面张力与溶液浓度之间的关系。
实验结果:通过气泡最大压力法测量,我们得出了不同浓度的表面活性剂溶液的最大压力值。
根据实验数据可得出:随着表面活性剂的浓度增加,溶液的表面张力逐渐降低,且下降的趋势越加明显。
实验结论:根据以上实验结果,我们可以得出结论:表面张力与溶液浓度之间存在着一定的关系。
在实验中,我们发现随着表面活性剂的浓度增加,表面张力逐渐降低。
这是因为表面活性剂的分子能够在液体表面形成一层分子膜,使得表面张力降低,表面张力大小直接决定着液体的表面活性能力,因此表面活性剂的应用十分广泛,如肥皂、洗涤剂等。
通过本实验,我们深入理解了表面张力的概念及其在生活中的应用,同时也掌握了气泡最大压力法测定溶液表面张力的方法和技巧。
实验七最大气泡压力法测定溶液的表面张力
宁波工程学院物理化学实验报告实验名称最大气泡压力法测定溶液的表面张力一、实验目的1.掌握最大气泡压力法测定表面张力的原理和技术。
2.通过对不同浓度乙醇溶液表面张力的测定,加深对表面张力、表面自由能、表面张力和吸附量关系的理解。
二、实验原理1、表面浓度与内部浓度不同的现象叫做溶液的表面吸附。
在指定的温度和压力下,溶质的吸附量与溶液的表面张力及溶液的浓度之间的关系遵循吉布斯吸附等温式:Γ = –(c/RT)*(dγ/dc)①式中,Г为溶液在表层的吸附量;γ为表面张力;c为吸附达到平衡时溶液在介质中的浓度。
根据朗格谬尔(Langmuir)公式:Γ =Γ∞Kc/(1+Kc)②Γ∞为饱和吸附量,即表面被吸附物铺满一层分子时的Γ∞c/Γ =(1+Kc)/(Γ∞K)= c/Γ∞+1/Γ∞K ③以c/Г对c作图,则图中该直线斜率为1/Г∞。
由所得的Г∞代入Am=1/Г∞L可求被吸附分子的截面积(L为阿伏伽德罗常数)。
2、本实验用气泡最大压力法测定溶液的表面张力,其仪器装置如图1所示:图1、最大气泡压力法测量表面张力的装置示意图1、恒温套管;2、毛细管(r在0.15~0.2mm);3、U型压力计(内装水);4、分液漏斗;5、吸滤瓶;6、连接橡皮管。
将待测表面张力的液体装于表面张力仪中,使毛细管的端面与液面相切,液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,毛细管内的液面上受到一个比A瓶中液面上大的压力,当此压力差——附加压力(△P=P大气–P系统),附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为:ΔP=2γ/R ④式中,ΔP为附加压力;γ为表面张力;R为气泡的曲率半径。
根据上式,R=r时的最大附加压力为:ΔP最大= 2γ/r ⑤实际测量时,使毛细管端刚与液面接触,则可忽略气泡鼓起所需克服的静压力,这样就可以直接用上式进行计算。
当将其它参数合并为常数K时,则上式变为:γ=KΔP最大⑥式中仪器常数K可用已知表面张力的标准物质测得。
最大气泡法测定溶液的表面张力
最大气泡法测定溶液的表面张力一、前言表面张力是指液体表面上的分子间相互作用力,它对于液体的物理性质和化学性质都有着重要的影响。
因此,测定液体的表面张力是研究其性质和应用的基础之一。
最大气泡法是一种常用的测定溶液表面张力的方法,本文将详细介绍最大气泡法测定溶液表面张力的原理、仪器设备、实验步骤以及注意事项等内容。
二、原理在液体中形成一个平衡状态下的气泡,需要克服两种力:一种是气泡内部压强产生的膨胀力;另一种是由于液体表面张力引起的收缩力。
当这两种力相等时,气泡停止膨胀并保持稳定状态。
因此,可以通过测量形成最大气泡所需压强来计算出溶液表面张力值。
三、仪器设备1. 水槽:用于放置容器和调节温度。
2. 水平支架:用于支撑容器。
3. 外壳:包裹水槽和容器。
4. 管道系统:用于通气和排放气体。
5. 气泡发生器:用于生成气泡。
6. 压力计:用于测量气泡内部压强。
四、实验步骤1. 准备工作:将水槽中的水加热到所需温度,将容器放在水槽中,并调整水平支架,使容器位于水平位置。
将外壳套在水槽上,并保证密封性。
连接好管道系统和气泡发生器,调整好通气量和排放量。
2. 测定最大气泡:将容器中的溶液注入到气泡发生器中,并在一定时间内形成一个稳定的最大气泡。
记录下形成最大气泡所需的压强值。
3. 重复实验:重复以上操作,测定多组数据并取均值。
4. 计算表面张力:根据以下公式计算表面张力:γ = (P - P0) * V / (2 * L)其中,γ为表面张力;P为最大气泡所需压强;P0为环境压强;V为最大气泡体积;L为环绕最大气泡的液体周长。
五、注意事项1. 实验过程中要保持环境稳定,避免外界干扰。
2. 测定前要确保仪器设备的清洁和无漏气现象。
3. 测量压强时要注意气泡内部压强和环境压强的差值,以避免误差。
4. 测定时要注意控制通气量和排放量,保证气泡的稳定性。
5. 温度对表面张力有较大影响,应在实验中进行温度控制。
六、总结最大气泡法是一种常用的测定溶液表面张力的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 3.读取压力差时,应取气泡单个逸出时的最 大值。
设毛细管半径为r ,气泡由毛细管口逸出时受到向下总作用力为πr2 P最大 。
其中P最大 = P大气—P系统 气泡在毛细管口受到表面张力引起的作用力为: 2πrσ。
当气泡逸出时,上述两压力相等,即: πr2 P最大 = 2πrσ
若将表面张力为σ1、σ2的两种液体采用同一毛细管和压力计,分别测 定其最大压力差,则有:
松开通大气玻璃管,再样品管中换入以配置好的正丁醇 水溶液,重复步骤(3)、(4),得到P最大2(注意: 须从稀到浓依次进行,每次测量前必须用少量被测 液洗涤样品管,尤其是毛细管部分,确保毛细管内 外溶液的浓度一致)。
五、数据记录和处理
室温:
℃
大气压:
kPa
恒温槽温度: ℃
1.仪器常数测定
σ 标准物质 N·m-1
1
2
Pm ax1 Pm ax2
(1)
则:
KP Pmax2
2
Pmax1 1
(2)
max2
其中 K=1 /pmax1为毛细管常数
K值可以通过测定已知表面张力的物质求得(本实验用重蒸馏水作为标准, 25℃时,σ水= 0.07197 N ·m-1)。根据(2)式可以求出其它液体的表 面张力σ2 。
2. 仪器常数的测定 (1)调节恒温槽的温度至25±0.05℃。 (2)仔细洗净样品管和毛细管,然后在滴液瓶中装满
水。在样品管中加入适量的重蒸馏水,使水面与毛 细管端面相切。将样品管恒温10分钟。注意毛细 管必须与液面垂直。
(3)松开与通大气玻璃管相连接的橡胶管,使系统与 大气相同,按下数字压力计的“采零”键,对数字 压力计采零,此时,压力计显示为0(将大气压参考 为0)。再将通大气玻璃管密封。可按数字压力计的 “单位”键来选择适合实验的压力单位。
得其Z值,根据
式计算各浓度下的吸附量Γ,
并画出Γ~C的关系图。
浓度C % C1 C2 C3 C4 C5 C6 C7 C8
Z
Γ/ mol·m-2
附录
• 1. 由斜率求算吸附量Γ的方法如图19-3所示,在σ~ c图上
任找一点o, 过o点作切线ab,此曲线的斜率为:
而 所以
m
Z 0c1
Z c1
Z c1
c
c RT
(
c
)T
Z RT
• 2. 不同温度下水的表面张力σ为:
温 度/ ℃
20 25
表面张力 σ×103 /N ·m-1 72.75 71.97
σ~ c图
30 35 71.18 70.38
六、注意事项
• 1.测定用的毛细管一定要干净,否则气泡不 能连续稳定地逸出,使压力计的读数不稳, 且影响溶液的表面张力。
数字压力计读数P最大 kPa
1
2
3
压力差平均值 kPa
仪器常数K
重蒸馏水
2.不同浓度正丁醇溶液的最大压力差、表面 张力和浓度,作σ~ c关系曲线
样品 浓度%
1# 2# 3# 4# 5# 6# 7# 8#
P最大/ kPa
1
2
3
压力差平均值 kPa
σ N·m-1
3.在σ~ C曲线上任取8~10个点,分别作出切线,求
-W=△G=σ△S
(1)
式中: △G为单位表面自由能 (J·m-2); σ为表面 张力(N ·m-1),液体单位表面自由能和它的表 面张力在数值上是相等的。
液体表面张力的大小与液体的种类、与其共存的另 一相的性质以及温度、压力等因素有关。
缩小表面积和降低表面张力,都可以降低系统的自由能。纯液体 用缩小其表面积来降低系统的自由能,而溶液是调节溶质在表 面层浓度来促使系统自由能的降低。我们把溶质在表面层中与 在本体溶液中浓度不同的现象称为溶液的表面吸附。在一定的 温度和压力下,溶液表面吸附溶质的量与溶液的表面张力和加 入的溶质量之间的关系可用吉布斯(Gibbs)公式表示: (2)
(4)打开滴液瓶活塞进行缓慢抽气,使气泡从毛细管 口逸出。调节气泡逸出速度不超过20个/ min,读出 压力计所显示最大压力差数值,重复三次,取其平 均值,即为P最大1。(若压力计显示最大数值不稳, 须检查:毛细管是否洗净干燥;系统密闭性能是否 良好;真空胶管内是否有水汽或污物窜入。)
3. 测定各浓度下正丁醇的表面张力
预习问题
• 1.为什么要测毛细管常数? • 2.气泡形成过程中其半径的变化情况示意图
中,p最大由大到小的排列顺序如何?
三、仪器和药品(讲义P101): 四、操作步骤
1. 预压及气密性检验
缓慢加压至一定压力,观察数字压力计显示值变化情况, 若1分钟内显示值稳定,说明系统无泄露。确认无 泄露后,泄压至零,并反复预压2~3次,方可正式 测试。
最大气泡压力法测定溶液的 表面张力
一、实验目的
• 1.测定不同浓度正丁醇溶液的表面张力, 计算吸附量与浓度的关系。加深对表面张 力、表面自由能、表面张力和吸附量关系 的理解。
• 2.掌Байду номын сангаас一种测定表面张力的方法——最大 气泡法。
二、基本原理
由于表面层分子比溶液内部分子有较大的位能(表 面自由能),所以,在等温等压组成不变的条件 下,欲使液体表面积增加△S,所消耗的可逆功 W为:
最大气泡压力法的实验装置图
显然,在气泡形成过程中,气泡半径由大变小,再由小变大
(如下图中(a)、(b)、(c)所示),所以压力差 p则由小变大,然 后再由大变小。当气泡半径r等于毛细管半径R时,压力差达到最 大值 pmax。压力差一般由精密数字压力计读出。
气泡形成过程中其半径的变化情况 示意图
返回
式中:Γ为吸附量(mol·m-2); σ为表面张力(N ·m-1);T为绝对 温度(K);c为溶液浓度(mol·L-1);R为气体常数(8.314 J·K-1 ·mol-1)。表示在一定温度下表面张力随溶液浓度而改变 的变化率。
从(2)式可以看出,只要测定溶液的浓度和表面张力,就可以求 得各种不同浓度下溶液的吸附量Γ。
在本实验中,溶液的表面张力测定是应用最大气泡压力法,其实 验装置如图下所示。
将待测溶液装入样品管中,使毛细管的端面与液面相切液面即沿 毛细管上升。打开滴液瓶活塞缓慢放水(抽气),则样品管中的空气 体积增大,压力逐渐减小,毛细管中液面上所受的压力大于样品管液 面上的压力,此时毛细管中的液体就会被压至管口,并形成气泡。