精品 初三数学讲义 -垂径定理—知识讲解(基础)

合集下载

初三九年级上册_圆的概念和性质辅导讲义(学生版)

初三九年级上册_圆的概念和性质辅导讲义(学生版)

初三九年级上册_圆的概念和性质辅导讲义知识图谱圆的相关概念知识精讲知识精讲一.圆的相关概念1.圆的概念(1)描述性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,其中固定端点O叫做圆心,OA叫做半径;(2)集合性定义:平面内到定点的距离等于定长的点的集合叫做圆,定点叫做圆心,定长叫做半径;(3)圆的表示方法:用符号 表示圆,定义中以O为圆心,OA为半径的圆记作“O”,读作“圆O”;(4)同圆、同心圆、等圆:①圆心相同且半径相等的圆叫同圆;②圆心相同,半径不相等的两个圆叫做同心圆;③能够重合的两个圆叫做等圆.2.弦与弧的相关概念:(1)弦:连结圆上任意两点的线段叫做弦;(2)直径:经过圆心的弦叫做圆的直径,直径等于半径的2倍;(3)弦心距:从圆心到弦的距离叫做弦心距;(4)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的圆弧记作 AB,读作弧AB;(5)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧;(6)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;(7)优弧、劣弧:大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧;(8)弓形:由弦及其所对的弧组成的图形叫做弓形.3.圆心角与圆周角(1)圆心角:顶点在圆心的角叫做圆心角;①将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧;②圆心角的度数和它所对的弧的度数相等;(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.三点剖析一.考点:圆的相关概念二.重难点:1.圆的两种定义的理解;2.弦心距、优弧、圆周角等陌生概念的理解与记忆.三.易错点:1.圆是一条封闭曲线并不包含所围成图形内部部分;2.弓形只是由弧和弦所构成不包含半径;3.同圆、等圆、同心圆的联系与区别.圆的相关概念例题例题1、判断:(1)直径是弦,弦是直径()(2)半圆是圆弧()(3)长度相等的弧是等弧()(4)能够重合的弧是等弧()(5)圆弧分为优弧和劣弧()(6)优弧一定大于劣弧()(7)半径相等的圆是等圆()例题2、设想有一根铁丝套在地球的赤道上,刚好拉紧后,又放长了15米,并使得铁丝均匀地离开地面.则下面说法中比较合理的是()A.你只能塞过一张纸 B.你只能塞过一只书包C.你能钻过铁丝 D.你能直起身体走过铁丝随练随练1、下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧随练2、过圆上一点可以做出圆的最长弦的条数是()A.1条 B.2条 C.3条D.无数条随练3、如图,O 的直径AB 与弦CD 的延长线交于点E ,若DE OB =,74AOC ∠=︒,则E ∠=.垂径定理知识精讲一.垂径定理1.定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论1:(1)平分弦(非直径)的直径,垂直于弦,并且平分弦所对的两条弧.(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2:圆的两条平行弦所夹的弧相等.应用垂径定理与推论进行计算时,往往要构造如右图所示的直角三角形,根据垂径定理与勾股定理有:222()2ar d =+,根据此公式,在a ,r ,d 三个量中知道任何两个量就可以求出第三个量.补充说明:做题过程中,定理与推论1(1)可以直接使用,而推论1(2)、(3)需证明后再使用.三点剖析一.考点:垂径定理二.重难点:利用垂径定理求圆的半径、弦长和弦心距.三.易错点:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题垂径定理例题例题1、在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为()A.40cmB.60cmC.80cmD.100cm例题2、如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O 的直径,弦AB CD ⊥于E ,1CE =寸,10AB =寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸例题3、如图是一个隧道的横截面,它的形状是以点O 为圆心的圆的一部分.如果M 是O 中弦CD 的中点,EM 经过圆心O 交O 于点E ,并且4CD =,6EM =,求O 的半径.例题4、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为8cm ,水面最深地方的高度为2cm ,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm例题5、⊙O 的半径为10,两平行弦AC ,BD 的长分别为12,16,则两弦间的距离是()A.2B.14C.6或8D.2或14随练随练1、如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA=30°,OC=3cm ,则弦AB 的长为()A.9cmB.3cmC.cmD.cm随练2、如图,ABC ∆内接于O ,D 为线段AB 的中点,延长OD 交O 于点E ,连接AE ,BE ,则下列五个结论AB DE AE BE OD DE AEO C ⊥==∠=∠①,②,③,④, 12AE AEB=⑤,正确结论的是随练3、如图,当圆形桥孔中的水面宽度AB 为8米时,弧ACB 恰为半圆.当水面上涨1米时,桥孔中的水面宽度A B ''为()15米 B.215米 C.217米 D.不能计算随练4、如图,在梯形ABCD 中,AB DC ∥,AB BC ⊥,2cm AB =,4cm CD =.以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ∠=︒,则圆心O 到弦AD 的距离是多少?弧,弦,圆心角之间的关系知一推二知识精讲一.圆心角、弧、弦之间的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弧也相等.若AOB A OB ''∠=∠,则 AB A B ''=,AB A B ''=,AM A M ''=.2.推论:同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.二.应用1.在解答圆的问题时,若遇弧相等常转化为它们所对的圆心角相等或弦相等来解答;2.有弦的中点时常作弦心距,利用垂径定理及圆心角、弧、弦、弦心距之间的关系来证题;另外,证明两弦相等也常作弦心距;3.在计算弧的度数时,或有等弧的条件时,或证等弧时,常作弧所对的圆心角;4.有弧的中点或证弧的中点时,常有以下几种引辅助线的方法:(1)连过弧中点的半径;(2)连等弧对的弦;(3)作等弧所对的圆心角三点剖析一.考点:弧、弦、圆心角、弦心距的关系二.重难点:弧、弦、圆心角、弦心距的关系三.易错点:1.两条弧存在倍数关系,但所对应的弦并不是存在相同的倍数关系;2.判断题中,注意题中前提条件,必须是在等圆或同圆中.弧,弦,圆心角之间的关系知一推二例题例题1、下列说法中正确的是()①圆心角是顶点在圆心的角;②两个圆心角相等,它们所对的弦相等;③两条弦相等,圆心到这两弦的距离相等;④在等圆中,圆心角不变,所对的弦也不变.A.①③ B.②④ C.①④ D.②③例题2、如图,以ABC ∆的边BC 为直径的O 分别交AB AC 、于点D E 、,连结OD OE 、,若65A ∠=︒,则DOE ∠=.例题3、如图,AB 、CD 为⊙O 的直径, AC CE=,(1)试说明BD CE =;(2)若连结BE ,问BE 与CD 平行吗?请说明理由.随练随练1、如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一定正确的是()A.CD ⊥ABB.∠OAD=2∠CBDC.∠AOD=2∠BCDD.弧AC=弧BC随练2、如图,A ,B ,C ,D 均为⊙O 上的点,且AB CD =,则下列说法不正确的是()A.AOB COD ∠=∠B.AOC BOD ∠=∠C.AC BD =D.OC CD=随练3、如图,⊙O 是△ABC 的外接圆,∠AOB=70°,AB=AC ,则∠ABC=___________.拓展拓展1、如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.45()cm B.9cm C.45 D.62cm拓展2、下列说法正确的有()①在同圆或等圆中能够完全重合的弧叫等弧;②在同一平面内,圆是到定点距离等于定长的点的集合;③度数相等的弧叫做等弧;④优弧大于劣弧;⑤直角三角形的外心是其斜边中点.A.①②③④⑤B.①②⑤C.①②③⑤D.②④⑤拓展3、如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,则OP的长度范围为____cm≤OP≤____cm.拓展4、如图,已知四边形ABCD是边长为4的正方形,以AB为直径向正方形内作半圆,P为半圆上一动点(不与A、B重合),当PA=时,△PAD为等腰三角形.拓展5、在⊙O中,AB是⊙O的直径,AB=8cm,^^^AC CD BD==,M是AB上一动点,CM+DM的最小值是__________.拓展6、如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是mm.拓展7、在⊙O 中,点C 是劣弧AB 的中点,则线段AB 和线段AC 的大小为()A.2AB AC =B.2AB AC >C.2AB AC< D.无法确定拓展8、如图,在⊙O 中,∠AOB 的度数为m ,C 是弧ACB 上一点,D 、E 是弧AB 上不同的两点(不与A 、B 两点重合),则D E ∠+∠的度数为()A.mB.1802m︒-C.902m ︒+D.2m 拓展9、如图,在半径为2的⊙O 中,弦AB=2,⊙O 上存在点C ,使得弦AC=22BOC=______________°.拓展10、如图9A 、B 是⊙O 上的两点,∠AOB =120°,C 是弧 AB 的中点,求证四边形OACB 是菱形.图9。

初三数学知识梳理讲义

初三数学知识梳理讲义

初三数学讲义第一讲将军饮马之线段和最小值问题领跑一线考点定位知识点一轴对称性质成轴对称的两个图形全等,其对应边相等,对应角相等.知识点二“将军饮马”解决线段最值问题的实质是利用轴对称性质“化折为直”,转化为两点之间线段最短或者点到直线垂线段最短.将军饮马基础模型如图,在直线异侧两个点A 和B ,在直线上求一点P ,使得PA+PB 最短.做法:1.找出定点和动点2.找河(即动点出现两次点所在直线或线段)3.做对称(做定点的对称点)4.连线计算典例分析例1(2016 某一中滨河分校模拟)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BC B.CE C.AD D.AC思路点拨:因为AB=AC得△ABC为等腰三角形,根据等腰三角形“三线合一”,AD为底边中线,也为BC边上的高线,易得点B、点C关于AD对称.若求BP+EP最小,即求PE+PC最小值,再根据三角形三边关系得PE+PC最小值,即求线段CE的长度.解析:如图,连接PC,△AB=AC,AD为中线,△点B、点C关于AD对称△PB=PC,△PB+PE=PC+PE,在△CPE中,PC+PE≥CE△PE+PC最小值为CE长度,△PB+PE最小值为CE长度,故选B.例2(2015陕西)如图,在每一个四边形ABCD中,均有AD△BC,CD△BC,△ABC=60°,AD=8,BC=12.如图,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值.思路点拨:作点C关于直线AD的对称点C′,连接C′N,C′D,C′B交AD于点N′,连接CN′,则BN+NC=BN+NC′,BC′=BN′+C′N′,△BN+NC′≥BC′,则可得到△BNC周长的最小值,即BN+NC′+BC=BC′+BC.解析:过点A作AE△BC于E,如图所示:△AD△BC,AE△BC,△ABC=60°,△CE=AD=8,△BE=4,AE=BE•3=43△CC′=2CD=2AE=83△BC=12,△BC22421′BC CC+=△△BNC周长的最小值为421+12.实战演练1.如图,菱形ABCD中,AB=2,△BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.2.如图,正方形ABCD中,AB=4,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为.3.如图,菱形ABCD的边长为6,M、N分别是边BC、CD上的点,且MC=2MB,ND=2NC,点P是对角线BD上一点,则PM+PN的最小值是________.4.如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,求PD + PE的最小值.5.如图,△ABC中,AB=AC=13,BC=10,AD是△BAC的角平分线,E是AD上的动点,F 是AB边上的动点,则BE+EF的最小值为.6.如图,正方形ABCD的边长是2,△DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值为.7.如图,在锐角△ABC中,AB=√2,△BAC=45°,△BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.8.如图,直线l外有一点D,D到l的距离为3,让腰长为2的等腰直角三角板ABC的腰AB 在直线l上滑动,则AD+DC的最小值为.9.如图,在菱形ABCD中,AB=10,∠ABC=60°,E为BC上一动点, P为BD上一动点,则PE+PC最小值为_______.10.如图,矩形ABCD中,AD=3,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD 上的动点,则AQ+QP的最小值是_______.第二讲 折叠求长度问题知识点一折叠是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等. 解题步骤知识点二1. 找对应边、对应角2. 设未知数(一般设所求边或其对应相等边)3. 利用勾股定理列方程4. 计算典例分析例1.如图,在矩形纸片ABCD 中,AB =6,AD =8,点E 在BC 边上,将△DCE 沿DE 折叠,使点C 恰好落在对角线BD 上的点F 处,求DE 的长.解:△四边形ABCD 为矩形,△AB =CD ,AD =BC ,△DCB =90°,△AB =CD =6,AD =BC =8,在Rt△BCD 中,BD =222286AC AB +=+=10,由于折叠△DFE =△DCB =90°,DF =DC =6,EF =EC ,△△BFE =180°−△DFE =90°,设EC =x ,则BE =8−x ,在Rt△BEF 中,由勾股定理得:BE2=EF 2+BF 2,△(8−x )2=x 2+42,解得:x =3,即:EC =3,在Rt△DEC 中,由勾股定理得:DE 2=CE 2+DC 2,△DE =5363DC CE 2222=+=+例2.如图,将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C ′上.若AB =6,BC =9,求BF 的长.解:△将长方形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C′上△BC'=21AB =3,CF =C'F 在Rt△BC'F 中,C'F 2=BF 2+C'B 2,△CF 2=(9−CF )2+9△CF =5△BF =41.如图,在正方形ABCD 中,AC 为对角线,点E 在AB 边上,EF △AC 于点F ,连接EC ,AF =3,△EFC 的周长为12,则EC 的长为( )A .B .3C .5D .62.(2017秋•长岭县月考)如图,正方形ABCD 中,AC 是对角线,AE 平分△BAC ,EF △AC 于点F ,求证:BE =CF .3.(2016春•潮南区期末)如图,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.(1)猜想线段GF与GC有何数量关系?并证明你的结论;(2)若AB=3,AD=4,求线段GC的长.4.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()5.如图,将平行四边形ABCD沿EF对折,使点A落在点C处,若△A=60°,AD=6,AB=12,则AE的长为.6.如图,在Rt△ABC中,△ACB=90°,且AC=8,BC=6.点P是边AC上一动点,以直线BP为轴把△ABP折叠,使得点A落在图中点A′处,当△AA′C是直角三角形时,则线段CP 的长是.7.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与DC相交于G点,且OE=OD.(1)求证:AP=DG;(2)求AP的长度.8.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.10.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,EC交AD于F.(1)求证:△AFE△△CFD;(2)若AB=3,BC=6,求图中阴影部分的面积.第三讲菱形知识点:菱形定义:有一组临边相等的平行四边形叫做菱形。

初三数学讲义:一元二次方程及其解法(一)直接开平方法—知识讲解(基础)

初三数学讲义:一元二次方程及其解法(一)直接开平方法—知识讲解(基础)

一元二次方程及其解法(一)直接开平方法—知识讲解(基础)责编:康红梅【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.要点诠释:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:(1);(2).【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得,所以.其中,二次项的系数,所以原方程是一元二次方程.(2)整理原方程,得,所以.其中,二次项的系数为,所以原方程不是一元二次方程.【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.的方程都不是一元二次方程,缺一不可.举一反三:【高清ID 号:388447关联的位置名称(播放点名称):一元二次方程的概念-例1】【变式】判断下列各式哪些是一元二次方程.①21x x ++;②2960x x -=;③ 2102y =;④215402x x -+=; ⑤ 2230x xy y +-=;⑥ 232y =;⑦ 2(1)(1)x x x +-=.【答案】②③⑥.【解析】①21x x ++不是方程;④215402x x -+=不是整式方程;⑤ 2230x xy y +-=含有2个未知数,不是一元方程;⑦ 2(1)(1)x x x +-=化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.类型二、一元二次方程的一般形式、各项系数的确定2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:(1)-3x 2-4x+2=0; (2).【答案与解析】(1)两边都乘-1,就得到方程3x 2+4x-2=0.各项的系数分别是: a=3,b=4,c=-2.(2)两边同乘-12,得到整数系数方程6x 2-20x+9=0.各项的系数分别是:. 【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2,(2)题中不能写为.举一反三:【高清ID 号:388447关联的位置名称(播放点名称):一元二次方程的形式-例3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项:(1)2352x x =-; (2)(1)(1)2a x x x +-=-.【答案】(1)235+2=0x x -,二次项系数是3、一次项系数是-5、常数项是2.(2)(1)(1)2a x x x +-=-化为220,ax x a +--=二次项系数是a 、一次项系数是1、常数项是-a-2.类型三、一元二次方程的解(根)3. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( ) A.-3,2 B.3,-2 C.2,-3 D.2,3【答案】A;【解析】∵ x=2是方程x2+px+q=0的根,∴ 22+2p+q=0,即2p+q=-4 ①同理,12+p+q=0,即p+q=-1 ②联立①,②得24,1,p qp q+=-⎧⎨+=-⎩解之得:3,2.pq=-⎧⎨=⎩【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用2,1代替方程中未知数x的值,得到两个关于p、q的方程,解方程组可求p、q的值.类型四、用直接开平方法解一元二次方程4.(2016春•仙游县月考)求下列x的值(1)x2﹣25=0(2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】解:(1)∵x2﹣25=0,∴x2=25,∴x=±5.(2)∵(x+5)2=16,∴x+5=±4,∴x=﹣1或﹣9.【总结升华】应当注意,形如=k或(nx+m)2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.举一反三:【变式1】用直接开平方法求下列各方程的根:(1)x2=361;(2)2y2-72=0;(3)5a2-1=0;(4)-8m2+36=0.【答案】(1)∵ x2=361,∴ x=19或x=-19.(2)∵2y2-72=0,2y2=72,y2=36,∴ y=6或y=-6.(3)∵5a2-1=0,5a2=1,a2=,∴a=或a=-.(4)∵-8m2+36=0,-8m2=-36,m2=,∴m=或m=-.【变式2】解下列方程:(1)(2015 •东西湖区校级模拟)(2x+3)2-25=0;(2)(2014秋•滨州校级期末)(1﹣2x)2=x2﹣6x+9. 【答案】解:(1)∵ (2x+3)2=25,∴ 2x+3=5或2x+3=-5.∴x1=1,x2=-4.(2)∵(1﹣2x)2=x2﹣6x+9,∴(1﹣2x)2=(x﹣3)2,∴1﹣2x=±(x﹣3),∴1﹣2x=x﹣3或1﹣2x=﹣(x﹣3),∴x1=43,x2=﹣2.。

一元二次方程复习课件

一元二次方程复习课件

初三数学第21章一元二次方程复习讲义一、一元二次方程的定义方程中只含有一个未知数,•并且未知数的最高次数是2,•这样的整式的方程叫做一元二次方程,通常可写成如下的一般形式:ax 2+bx+c=0(a ≠0)其中二次项系数是a ,一次项系数是b ,常数项是c .例1.求方程2x 2+3=22x-4的二次项系数,一次项系数及常数项的积.例2.若关于x 的方程(m+3)27m x -+(m-5)x+5=0是一元二次方程,试求m 的值,•并计算这个方程的各项系数之和.例3.若关于x 的方程(k 2-4)x 2+1k -x+5=0是一元二次方程,求k 的取值范围.例4.若α是方程x 2-5x+1=0的一个根,求α2+21α的值.1.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( ) A .4 B .0或2 C .1 D .1-2.一个三角形的两边长为3和6,第三边的边长是方程(2)(4)0x x --=的根,则这个三角形的周长是( ) A.11 B.11或13 C.13 D.11和13 3.如图,在宽为20m ,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为2540m ,求道路的宽.(部分参考数据:2321024=,2522704=,2482304=)二、一元二次方程的一般解法 基本方法有:(1)配方法; (2)公式法; (3) 因式分解法。

联系:①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次. ②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.例1、用三种方法解下列一元二次方程1、x 2 +8x+12=02、3x 23x-6=0用适当的方法解一元二次方程1、x2-2x-2=02、2x23、x(2x-3)=(3x+2)(2x-3)4、4x2-4x+1=x2+6x+95、(x-1)2-2(x2-1)=0注意:选择解方程的方法时,应先考虑直接开平方法和因式分解法;再考虑用配方法,最后考虑用公式法三、判定一元二次方程的根的情况?一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac,1.△=b2-4ac>0↔一元二次方程有两个不相等的实根;2.△=b2-4ac=0↔一元二次方程有两个相等的实数;3.△=b2-4ac<0↔一元二次方程没有实根.例1、不解方程判断下列方程根的情况1、x2-(2、x2-2kx+(2k-1)=0例2、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a 的值为例3、已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为例5、已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根求4)2(222-+-baab的值例6、(2006.广东)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.四、一元二次方程根与系数的关系一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x 1x2x1 + x 2= -bax 1 x2=ca例1.方程的x2-2x-1=0的两个实数根分别为x1,x2, 则(x1 -1)(x 2-1)=例2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-ba,x1·x2=ca;(2)•求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.五、一元二次方程与实际问题的应用步骤:①审②设③列④解⑤答应用题常见的几种类型:1. 增长率问题 [增长率公式:b x a =2)1( ]例1:某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份平均每月增长的百分率是多少?例2:某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。

九年级数学下册讲义投影

九年级数学下册讲义投影

第二十九章投影与视图29.1 投影1.投影的定义一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.物体投影的形成需要具备两个条件:一是投影线(光源),二是投影面.【注意】光线、物体、投影面的相对位置发生变化,物体的影子就会相应发生变化.2.平行投影(2)由平行光线形成的投影叫做平行投影.如物体在太阳光的照射下形成的影子(简称日影)就是平行光线.日影的方向可以反映当地时间.(2)平行投影的特征等高的物体垂直于地面放置时,同一时刻,同一地点,在太阳光下,它们的影子一样长.等长的物体平行于地方放置时,同一时刻,同一地点,它们在太阳光下的影子一样长,且影长等于物体本身的长度.同一物体在太阳光下,不同时刻,不仅影子的大小在改变,而且影子的方向也在改变,就我们所在北半球而言,从早晨到傍晚,物体的影子由西向东绕物体沿顺时针方向转动,其影长的变化规律是:长→短→长.在平行光线下,不同时刻,同一物体的影子长度不同;同一时刻,不同物体的影子长度与它们本身的高度成比例.【注意】确定平行投影中物体或影子的方法:平行投影中的物体,光线、影子构成一个三角形,在平行投影中光线是平行的,因此由一条光线就可以作出其他平行光线,进而可以作出相应的物体或影子.3.中心投影(1)由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯泡发出的光照射下形成的影子就是中心投影.(2)中心投影的特征:了解投影、平行投影、中心投影、正投影的概念,能够确定物体在太阳光下的K—重点一、平行投影平行投影的特点:(1)平行投影中,同一时刻的光线是平行的;(2)平行投影的物高与影长对应成比例.【例1】下列光线所形成投影是平行投影的是A.太阳光线B.台灯的光线C.手电筒的光线D.路灯的光线【名师点睛】判断投影是平行投影的方法是看光线是否是平行的,如果光线是平行的,所得到的投影就是平行投影.【例2】下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③【名师点睛】本题考查平行投影,解题的关键是熟练掌握太阳光是平行光线,本题属于基础题型.二、中心投影中心投影的特点:(1)等高的物体垂直地面放置时,在灯光下,离点光源近的物体影子短,离点光源的物体影子长;(2)等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度短.【例3】小红和小花在路灯下的影子一样长,则她们的身高关系是A.小红比小花高B.小红比小花矮C.小红和小花一样高D.不确定【名师点睛】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.三、利用投影解决实际问题两个多边形相似,必须同时具备两个条件:(1)角分别相等;(2)边成比例.【例4】如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?【名师点睛】本题考查的是相似三角形的应用,解答此题的关键是正确求出树的影长,这是此题的易错点.1.下列说法错误的是A.太阳光所形成的投影是平行投影B.在一天的不同时刻,同一棵树所形成的影子长度不可能一样C.在一天中,不论太阳怎样变化,两棵相邻树的影子都是平行或重合的D.影子的长短不仅和太阳的位置有关,还与事物本身的长度有关2.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地上的投影不可能是A.线段B.一个点C.等边三角形D.等腰三角形3.在阳光下摆弄一个矩形,它的影子不可能是A.线段B.矩形C.等腰梯形D.平行四边形4.下面四幅图是小刚一天之中在学校观察到的旗杆的影子,请将它们按时间先后顺序进行排列A.(1)(2)(3)(4)B.(2)(3)(1)(4)C.(2)(1)(3)(4)D.(4)(1)(3)(2)5.下面说法正确的有①矩形的平行投影一定是矩形;②梯形的平行投影一定是梯形;③两条相交直线的平行投影可能是平行的;④如果一个三角形的平行投影是三角形,那么它的中位线平行投影一定是这个三角形平行投影对应的中位线.A.①②B.④C.②③D.①④6.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为A.8cm B.20cmC.3.2cm D.10cm7.下列说法正确的是A.皮影戏是在灯光下形成的中心投影B.甲物体比乙物体高,则甲的投影比乙的投影长C.物体的正投影与物体的大小相等D.物体的正投影与物体的形状相同8.如图中是两根直立的标杆同一时刻在太阳光线下形成的影子的是A.B.C.D.9.在____________的照射下,在同一时刻,不同物体的物高与其影长成比例.10.为了测量校园里水平地面上的一棵大树的高度,数学综合实践活动小组的同学们开展如下活动:某一时刻,测得身高1.6m的小明在阳光下的影长是1.2m,在同一时刻测得这棵大树的影长是3.6m,则此树的高度是________m.11.人在灯光下走动时,其自身的影子通常会发生变化,当人走近灯光时,其影子的长度就会________;当人远离灯光时,其影子的长度就会________.12.如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.13.画图:如图是小明与妈妈(线段AB)、爸爸(线段CD)在同一路灯下的情景,其中粗线分别表示三人的影子.请根据要求进行作图(不写画法,但要保留作图痕迹)(1)画出图中灯泡P所在的位置.(2)在图中画出小明的身高(线段EF).。

专题六—线段最值问题之将军饮马问题.doc

专题六—线段最值问题之将军饮马问题.doc
让我们跟着上面讲的五步骤來做一下本题第一步一一找到你要作轴对称的点很明显de均可第二步一一找到你要作关于哪条直线的对称点根据上面给的方法是p所在直线即为ac第三部一一作出轴对称图形虽然第一步说了对称点即为点b第四步一一连接与直线的交点即为所要找的点p连接be与ac交点即为点p有的学生会连接bd然后把bd与ac的交点误以为是点p明显是没有按照基本模型来第五步一一计算线段be即为所求最小值由于aabe为等边三角形所以beab由于正方形面积为12所以边长ab2a3即pdpe的最小值为2a3还要把dp连起来去计算dppe的我也是醉了课堂练习1在边长为2cm的正方形abcd中点q为bc边的中点点p为对角线ac一动点连接pbpq则apbq周长的最小值为2在菱形abcd屮对角线ac6bd8点ef分别是边abbc的中点点p在ac上运动在运动过程中存在pepf3如图在边长为2的等边zabc中d为bc的中点e是ac边上一点则bede的最小值为4如图在rtaabc中zc90zb二60
学员编号: 学员姓名:
授课 类型 授课日 期时段
T (同步知识主题)
辅导讲义
小初高中精品学科讲义
年 级:初三 辅导科目:数学
课 时 数:3 学科教师:
C (专题方法主题)
T (学法与能力主题)
线段最值问题—将军饮马问题
唐朝诗人李欣的诗《古从军行》开头两句说:"白日登山望烽火,黄昏饮马傍交河."诗中隐含着一个有趣的 数学问题.如图所示,诗中将军在观望烽火之后从山脚下的 A 点出发,走到河边饮马后再到 B 点宿营.请问怎样 走才能使总的路程最短?
落在 AB 边上的点 E 处,若点 P 是直线 AD 上的动点,则△ PEB 的周长的最小值是

5、如图,在锐角△ ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交 BC 于点 D,M、N 分别是 AD 和 AB 上的动

人教版 初三数学讲义(共27页)

人教版 初三数学讲义(共27页)

第二十二章 二次函数测试1 二次函数y =ax 2及其图象学习要求1.熟练掌握二次函数的有关概念.2.熟练掌握二次函数y =ax 2的性质和图象.课堂学习检测一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______.3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______. 6.写出下列二次函数的a ,b ,c .(1)23x x y -= a =______,b =______,c =______. (2)y =πx 2a =______,b =______,c =______.(3)105212-+=x x ya =______,b =______,c =______. (4)2316x y --= a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( );(2)221x y =如图( ); (3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ).9.已知函数,232x y -=不画图象,回答下列各题.(1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x ______时,y =0;(6)当x ______时,函数y 的最______值是______.10.画出y =-2x 2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值.综合、运用、诊断一、填空题11.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大. 函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______. 函数______有最小值为______.12.已知函数y =ax 2+bx +c (a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.13.已知函数y =(m 2-3m )122--m m x的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴方程为______,开口______. 14.已知函数y =m 222+-m m x+(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. (2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 15.已知函数y =m mm x+2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题16.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x (x +1) B .xy =1C .y =2x 2-2(x +1)2D .132+=x y17.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( )A .①>②>③B .①>③>②C .②>③>①D .②>①>③ 18.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大 19.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线y=-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点三、解答题20.函数y =(m -3)232--m mx 为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.拓展、探究、思考21.抛物线y =ax 2与直线y =2x -3交于点A (1,b ).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.22.已知抛物线y =ax 2经过点A (2,1).(1)求这个函数的解析式;(2)写出抛物线上点A 关于y 轴的对称点B 的坐标; (3)求△OAB 的面积;(4)抛物线上是否存在点C ,使△ABC 的面积等于△OAB 面积的一半,若存在,求出C 点的坐标;若不存在,请说明理由.测试2 二次函数y =a (x -h )2+k 及其图象学习要求掌握并灵活应用二次函数y =ax 2+k ,y =a (x -h )2,y =a (x -h )2+k 的性质及图象.课堂学习检测一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______. (2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a (x -m )2的顶点坐标为______,对称轴为______.2.若函数122)21(++-=m m xm y 是二次函数,则m =______.3.抛物线y =2x 2的顶点,坐标为______,对称轴是______.当x ______时,y 随x 增大而减小;当x ______时,y 随x 增大而增大;当x =______时,y 有最______值是______. 4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x ______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A .y =2x 2与y =3x 2 B .2212+=x y 与2122+=x yC .y =2x 2与y =x 2+2D .y =x 2与y =x 2-2 9.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( )A .2)5(31-=x yB .5312--=x yC .2)5(31+-=x yD .2)5(31+=x y三、解答题10.在同一坐标系中画出函数=+=221,321y x y 3212-x 和2321x y =的图象,并说明y 1,y 2的图象与函数221x y =的图象的关系.11.在同一坐标系中,画出函数y 1=2x 2,y 2=2(x -2)2与y 3=2(x +2)2的图象,并说明y 2,y 3的图象与y 1=2x 2的图象的关系.综合、运用、诊断一、填空题12.二次函数y =a (x -h )2+k (a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x ______时,y 随x 增大而减小. 1314.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y 的最______值是______;当x ______时,y 随x 增大而增大.15.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为______.二、选择题16.一抛物线和抛物线y =-2x 2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( ) A .y =-2(x -1)2+3 B .y =-2(x +1)2+3 C .y =-(2x +1)2+3 D .y =-(2x -1)2+317.要得到y =-2(x +2)2-3的图象,需将抛物线y =-2x 2作如下平移( )A .向右平移2个单位,再向上平移3个单位B .向右平移2个单位,再向下平移3个单位C .向左平移2个单位,再向上平移3个单位D .向左平移2个单位,再向下平移3个单位三、解答题18.将下列函数配成y =a (x -h )2+k 的形式,并求顶点坐标、对称轴及最值.(1)y =x 2+6x +10 (2)y =-2x 2-5x +7(3)y =3x 2+2x (4)y =-3x 2+6x -2(5)y =100-5x 2 (6)y =(x -2)(2x +1)拓展、探究、思考19.把二次函数y =a (x -h )2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a (x -h )2+k 的开口方向、对称轴和顶点坐标.测试3 二次函数y =ax 2+bx +c 及其图象学习要求掌握并灵活应用二次函数y =ax 2+bx +c 的性质及其图象.课堂学习检测一、填空题1.把二次函数y =ax 2+bx +c (a ≠0)配方成y =a (x -h )2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x ______时,y 随x 增大而减小;x ______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x ______时,y 随x 增大而减小,当x ______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a (x -h )2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x ______时,函数y 随x 的增大而增大,当x =______时,y =0.6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4.二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x xy +=③④y =5-2x 2,是二次函数的有( ) A .② B .②③④ C .②③ D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4) 10.抛物线x x y --=221的顶点坐标是( ) A .)21,1(- B .)21,1(- C .)1,21(-D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a )B .(-1,-a )C .(-1,a )D .(0,-a )三、解答题12.已知二次函数y =2x 2+4x -6.(1)将其化成y =a (x -h )2+k 的形式;(2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象;(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0;(8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.综合、运用、诊断一、填空题13.已知抛物线y=ax2+bx+c(a≠0).(1)若抛物线的顶点是原点,则____________;(2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y轴上,则____________;(4)若抛物线的顶点在x轴上,则____________.14.抛物线y=ax2+bx必过______点.15.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m=______,这个函数的解析式是______.16.若抛物线y=x2-4x+c的顶点在x轴上,则c的值是______.17.若二次函数y=ax2+4x+a的最大值是3,则a=______.18.函数y=x2-4x+3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位.19.抛物线y=ax2+bx(a>0,b>0)的图象经过第______象限.二、选择题20.函数y=x2+mx-2(m<0)的图象是( )21.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么( )A.a<0,b>0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<022.已知二次函数y=ax2+bx+c的图象如右图所示,则( )A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>023.已知二次函数y =ax 2+bx +c 的图象如下图所示,则( )A .b >0,c >0,∆=0B .b <0,c >0,∆=0C .b <0,c <0,∆=0D .b >0,c >0,∆>024.二次函数y =mx 2+2mx -(3-m )的图象如下图所示,那么m 的取值范围是( )A .m >0B .m >3C .m <0D .0<m <325.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )26.函数xaby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )三、解答题27.已知抛物线y =x 2-3kx +2k +4.(1)k 为何值时,抛物线关于y 轴对称; (2)k 为何值时,抛物线经过原点.28.画出23212++-=x x y 的图象,并求:(1)顶点坐标与对称轴方程;(2)x 取何值时,y 随x 增大而减小? x 取何值时,y 随x 增大而增大?(3)当x 为何值时,函数有最大值或最小值,其值是多少? (4)x 取何值时,y >0,y <0,y =0? (5)当y 取何值时,-2≤x ≤2?拓展、探究、思考29.已知函数y 1=ax 2+bx +c (a ≠0)和y 2=mx +n 的图象交于(-2,-5)点和(1,4)点,并且y 1=ax 2+bx +c 的图象与y 轴交于点(0,3).(1)求函数y 1和y 2的解析式,并画出函数示意图; (2)x 为何值时,①y 1>y 2;②y 1=y 2;③y 1<y 2.30.如图是二次函数y =ax 2+bx +c 的图象的一部分;图象过点A (-3,0),对称轴为x=-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确的是________________.(填序号)测试4 二次函数y =ax 2+bx +c 解析式的确定学习要求能根据条件运用适当的方法确定二次函数解析式.一、填空题1.二次函数解析式通常有三种形式:①一般式________________;②顶点式________ __________;③双根式__________________________(b 2-4ac ≥0).2.若二次函数y =x 2-2x +a 2-1的图象经过点(1,0),则a 的值为______.3.已知抛物线的对称轴为直线x =2,与x 轴的一个交点为),0,23(则它与x 轴的另一个交点为______.二、解答题4.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,求:(1)对称轴方程____________;(2)函数解析式____________;(3)当x ______时,y 随x 增大而减小;(4)由图象回答:当y >0时,x 的取值范围______;当y =0时,x =______;当y <0时,x 的取值范围______.5.抛物线y =ax 2+bx +c 过(0,4),(1,3),(-1,4)三点,求抛物线的解析式.6.抛物线y =ax 2+bx +c 过(-3,0),(1,0)两点,与y 轴的交点为(0,4),求抛物线的解析式.7.抛物线y=ax2+bx+c的顶点为(2,4),且过(1,2)点,求抛物线的解析式.8.二次函数y=x2+bx+c的图象过点A(-2,5),且当x=2时,y=-3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数的图象上.9.抛物线y=ax2+bx+c经过(0,0),(12,0)两点,其顶点的纵坐标是3,求这个抛物线的解析式.10.抛物线过(-1,-1)点,它的对称轴是直线x+2=0,且在x轴上截得线段的长度为,22求抛物线的解析式.综合、运用、诊断11.抛物线y=ax2+bx+c的顶点坐标为(2,4),且过原点,求抛物线的解析式.12.把抛物线y=(x-1)2沿y轴向上或向下平移后所得抛物线经过点Q(3,0),求平移后的抛物线的解析式.13.二次函数y=ax2+bx+c的最大值等于-3a,且它的图象经过(-1,-2),(1,6)两点,求二次函数的解析式.14.已知函数y1=ax2+bx+c,它的顶点坐标为(-3,-2),y1与y2=2x+m交于点(1,6),求y1,y2的函数解析式.拓展、探究、思考15.如图,抛物线y=ax2+bx+c与x轴的交点为A,B(B在A左侧),与y轴的交点为C,OA=OC.下列关系式中,正确的是( )A .ac +1=bB .ab +1=cC .bc +1=aD .c ba =+1 16.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直,若小正方形边长为x ,且0<x ≤10,阴影部分的面积为y ,则能反映y 与x 之间的函数关系的大致图象是( )17.如图,在直角坐标系中,Rt △AOB 的顶点坐标分别为A (0,2),O (0,0),B (4,0),把△AOB 绕O 点按逆时针方向旋转90°得到△COD .(1)求C ,D 两点的坐标;(2)求经过C ,D ,B 三点的抛物线的解析式;(3)设(2)中抛物线的顶点为P ,AB 的中点为M (2,1),试判断△PMB 是钝角三角形,直角三角形还是锐角三角形,并说明理由.测试5 用函数观点看一元二次方程学习要求1.理解二次函数与一元二次方程的关系,掌握抛物线与x 轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题.2.掌握并运用二次函数y =a (x -x 1)(x -x 2)解题.课堂学习检测一、填空题1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0;若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________.2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______.3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______.4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______.5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______.6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限.二、选择题7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( )A.没有实根B.只有一个实根C.有两个实根,且一根为正,一根为负D.有两个实根,且一根小于1,一根大于28.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( )A.只有一个B.恰好有两个C.可以有一个,也可以有两个D.无交点9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( )A.有两个不相等的实数根B.有两个异号实数根C.有两个相等的实数根D.无实数根10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,∆>0 B.a>0,∆<0C.a<0,∆>0 D.a<0,∆<0三、解答题11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.12.对称轴平行于y 轴的抛物线过A (2,8),B (0,-4),且在x 轴上截得的线段长为3,求此函数的解析式.综合、运用、诊断一、填空题13.已知直线y =5x +k 与抛物线y =x 2+3x +5交点的横坐标为1,则k =______,交点坐标为______.14.当m =______时,函数y =2x 2+3mx +2m 的最小值为⋅98 二、选择题15.直线y =4x +1与抛物线y =x 2+2x +k 有唯一交点,则k 是( )A .0B .1C .2D .-116.二次函数y =ax 2+bx +c ,若ac <0,则其图象与x 轴( )A .有两个交点B .有一个交点C .没有交点D .可能有一个交点17.y =x 2+kx +1与y =x 2-x -k 的图象相交,若有一个交点在x 轴上,则k 值为( )A .0B .-1C .2D .41 18.已知二次函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )A .无实根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根19.已知二次函数的图象与y 轴交点坐标为(0,a ),与x 轴交点坐标为(b ,0)和(-b ,0),若a >0,则函数解析式为( )A .a x b a y +=B .a x ba y +-=22 C .a x ba y --=22 D .a x b a y -=22 20.若m ,n (m <n )是关于x 的方程1-(x -a )(x -b )=0的两个根,且a <b ,则a ,b ,m ,n 的大小关系是( )A .m <a <b <nB .a <m <n <bC .a <m <b <nD .m <a <n <b三、解答题21.二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 是常数)中,自变量x 与函数y 的对应值如(1)(2)一元二次方程ax 2+bx +c =0(a ≠0,a ,b ,c 是常数)的两个根x 1,x 2的取值范围是下列选项中的哪一个______.①223,02121<<<<-x x ②252,21121<<-<<-x x ③252,02121<<<<-x x ④223,21121<<-<<-x x 22.m 为何值时,抛物线y =(m -1)x 2+2mx +m -1与x 轴没有交点?23.当m 取何值时,抛物线y =x 2与直线y =x +m(1)有公共点;(2)没有公共点.拓展、探究、思考24.已知抛物线y =-x 2-(m -4)x +3(m -1)与x 轴交于A ,B 两点,与y 轴交于C 点.(1)求m 的取值范围.(2)若m <0,直线y =kx -1经过点A 并与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式.测试6 实际问题与二次函数学习要求灵活地应用二次函数的概念解决实际问题.课堂学习检测1.矩形窗户的周长是6m ,写出窗户的面积y (m 2)与窗户的宽x (m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x 的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB 时,水面宽8m ,水位上升3m , 就达到警戒水位CD ,这时水面宽4m ,若洪水到来时,水位以每小时0.2m 的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O 处开出一高球,球从离地面1m 的A 处飞出(A 在y 轴上),运动员乙在距O 点6m 的B 处发现球在自己头的正上方达到最高点M ,距地面约4m 高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m2,试求宽AB的长;(2)按题目的设计要求,能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数m=162-3x.(1)写出商场卖这种商品每天的销售利润y(元)与每件的销售价x(元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.测试7 综合测试一、填空题1.若函数y=x2-mx+m-2的图象经过(3,6)点,则m=______.2.函数y=2x-x2的图象开口向______,对称轴方程是______.3.抛物线y=x2-4x-5的顶点坐标是______.4.函数y=2x2-8x+1,当x=______时,y的最______值等于______.5.抛物线y=-x2+3x-2在y轴上的截距是______,与x轴的交点坐标是____________.6.把y=2x2-6x+4配方成y=a(x-h)2+k的形式是_______________.7.已知二次函数y=ax2+bx+c的图象如图所示.(1)对称轴方程为____________;(2)函数解析式为____________;(3)当x______时,y随x的增大而减小;(4)当y>0时,x的取值范围是______.8.已知二次函数y=x2-(m-4)x+2m-3.(1)当m=______时,图象顶点在x轴上;(2)当m=______时,图象顶点在y轴上;(3)当m=______时,图象过原点.二、选择题9.将抛物线y=x2+1绕原点O旋转180°,则旋转后抛物线的解析式为( ) A.y=-x2B.y=-x2+1 C.y=x2-1 D.y=-x2-1 10.抛物线y=x2-mx+m-2与x轴交点的情况是( )A.无交点B.一个交点C.两个交点D.无法确定11.函数y=x2+2x-3(-2≤x≤2)的最大值和最小值分别为( )A.4和-3 B.5和-3 C.5和-4 D.-1和4 12.已知函数y=a(x+2)和y=a(x2+1),那么它们在同一坐标系内图象的示意图是( )13.y =ax 2+bx +c (a ≠0)的图象如下图所示,那么下面六个代数式:abc ,b 2-4ac ,a-b +c ,a +b +c ,2a -b ,9a -4b 中,值小于0的有( )A .1个B .2个C .3个D .4个14.若b >0时,二次函数y =ax 2+bx +a 2-1的图象如下列四图之一所示,根据图象分析,则a 的值等于( )A .251+-B .-1C .251--D .1三、解答题15.已知函数y 1=ax 2+bx +c ,其中a <0,b >0,c >0,问:(1)抛物线的开口方向?(2)抛物线与y 轴的交点在x 轴上方还是下方?(3)抛物线的对称轴在y 轴的左侧还是右侧?(4)抛物线与x 轴是否有交点?如果有,写出交点坐标;(5)画出示意图.16.已知二次函数y =ax 2+bx +c 的图象顶点坐标为(-2,3),且过点(1,0),求此二次函数的解析式.(试用两种不同方法)17.已知二次函数y =ax 2+bx +c ,当x =-1时有最小值-4,且图象在x 轴上截得线段长为4,求函数解析式.18.二次函数y =x 2-mx +m -2的图象的顶点到x 轴的距离为,1625求二次函数解析式.19.如图,从O 点射出炮弹落地点为D ,弹道轨迹是抛物线,若击中目标C 点,在A测C 的仰角∠BAC =45°,在B 测C 的仰角∠ABC =30°,AB 相距,km )31( ,OA =2km ,AD =2km .(1)求抛物线解析式;(2)求抛物线对称轴和炮弹运行时最高点距地面的高度.20.二次函数y 1=ax 2-2bx +c 和y =(a +1)²x 2-2(b +2)x +c +3在同一坐标系中的图象如图所示,若OB =OA ,BC =DC ,且点B ,C 的横坐标分别为1,3,求这两个函数的解析式.答案与提示第二十二章 二次函数测试11.y =ax 2+bx +c (a ≠0),x ,常数,a . 2.抛物线,y 轴,(0,0). 3.(0,0),y 轴,上,下. 4.减小,增大,x =0,小. 5.增大,减小,x =0,大. 6.(1).0,3,1- (2)π,0,0, (3),10,5,21- (4).6,0,31--7.越小,越大.8.(1)D ,(2)C ,(3)A ,(4)B ,(5)F ,(6)E .9.(1)向下,(2)y 轴.(3)(0,0).(4)减小.(5)=0(6)=0,大,0. 10.略.11.(1)②、③;①、④.(2)③;②.(3)①、④;③.(4)①,0;④,0. 12.(1)a ≠0,(2)a =0且b ≠0,(3)a =c =0且b ≠0. 13.y =4x 2;(0,0);x =0;向上. 14.(1)2;y =2x 2;抛物线;一、二,(2)0;y =-2x ;直线;二、四. 15.-2或1;1;-2.16.C 、B 、A . 17.C . 18.D . 19.C . 20.(1)m =4,y =x 2;(2)m =-1,y =-4x 2.21.(1)a =-1,b =-1;(2));2,2().2,2(---C B(3)S △OBC =22. 22.(1)241x y =; (2)B (-2,1);(3)S △OAB =2; (4)设C 点的坐标为),41,(2m m 则.221|141|4212⨯=-⨯⨯m 则得6±=m 或.2±=m∴C 点的坐标为).21,2(),21,2(),23,6(),23,6(-- 测试21.(1)(0,0),y 轴;(2)(0,c ),y 轴; (3)(m ,0),直线x =m .2.m =-13.(0,0),y 轴,x ≤0,x >0,0,小,0. 4.向下,相同,(0,0),y 轴.5.(0,3),y 轴,x ≤0,0,小,3,上,3.6.向上,(2,0),直线x =2,x ≥2,2,小,0,右,2. 7.C . 8.D . 9.C . 10.图略,y 1,y 2的图象是221x y =的图象分别向上和向下平移3个单位.11.图略,y 2,y 3的图象是把y 1的图象分别向右和向左平移2个单位. 12.(h ,k ),直线x =h ;h ,k ,x ≤h . 131415..52312)3(3122+-=+-=x x x y16.B . 17.D .18.(1)y =(x +3)2+1,顶点(-3,1),直线x =-3,最小值为1.(2),881)45(22++-=x y 顶点),881,45(-直线,45-=x 最大值为⋅881(3),31)31(32-+=x y 顶点),31,31(--直线,31-=x 最小值为⋅-31(4)y =-3(x -1)2+1,顶点(1,1),直线x =1,最大值为1. (5)y =-5x 2+100,顶点(0,100),直线x =0,最大值为100.(6),825)43(22--=x y 顶点),825,43(-直线,43=x 最小值为⋅-82519.(1);5,1,21-===k h a (2)开口向上,直线x =1,顶点坐标(1,-5).测试31.).44,2(,44)2(222a b ac ab a b ac a b x a y ---++= ⋅-<-≥--=-=abx a b x a b ac a b x a b x 2,2,44,2,222.,43),849,43(-小,⋅>≤---43,43),5,0(),0,1()0,25(,849x x 、3.(-1,4),(-3,0)、(1,0),(0,3).4.y =(x -2)2+1,低,(2,1). 5.-2,-7,x ≥-2,.72±-=x 6.±2. 7.右,3,上,4.8.D . 9.B. 10.B . 11.C .12.(1)y =2(x +1)2-8;(2)开口向上,直线x =-1,顶点(-1,-8);(3)与x 轴交点(-3,0)(1,0),与y 轴交点(0,-6); (4)图略;(5)将抛物线y =x 2向左平移1个单位,向下平移8个单位;得到y =2x 2+4x -6的图象; (6)x ≤-1;(7)当x <-3或x >1时,y >0;当x =-3或x =1时,y =0; 当-3<x <1时,y <0; (8)x =-1时,y 最小值=-8; (9)-8≤y <10; (10)S △=12.13.(1)b =c =0;(2)c =0;(3)b =0;(4)b 2-4ac =0. 14.原. 15.2,y =2x 2-3x . 16.4. 17.-1. 18.1. 19.一、二、三.20.C. 21.B . 22.D . 23.B . 24.C . 25.B . 26.C . 27.(1)k =0;(2)k =-2. 28.,2)1(212+--=x y ①顶点(1,2),直线x =1; ②x ≥1,x <1; ③x =1,y 最大=2;④-1<x <3时,y >0;x <-1或x >3时y <0;x =-1或x =3时,y =0;.225≤≤-y ⑤ 29.(1)y 1=-x 2+2x +3,y 2=3x +1.(2)①当-2<x <1时,y 1>y 2.②当x =-2或x =1时,y 1=y 2. ③当x <-2或x >1时y 1<y 2. 30.①,④.测试41.①y =ax 2+bx +c (a ≠0); ②y =a (x -h )2+k (a ≠0); ③y =a (x -x 1)(x -x 2)(a ≠0). 2..2± 3.).0,211(4.(1)x =-1; (2)y =x 2+2x -3;(3)x ≤-1; (4)x <-3或x >1,x =-3或x =1,-3<x <1.5..421212+--=x x y 6..438342+--=x x y7.y =-2(x -2)2+4即y =-2x 2+8x -4.8.y =x 2-2x -3,点B (0,3)不在图象上. 9..1212x x y +-= 10.y =x 2+4x +2. 11.y =-x 2+4x . 12.y =x 2-2x -3. 13.y =-2x 2+4x +4.14..42,25321221+=++=x y x x y15.A . 16.B .17.解:(1)由旋转的性质可知:OC =OA =2,OD =OB =4.∴C 、D 两点的坐标分别是C (-2,0),D (0,4). (2)设所求抛物线的解析式为y =ax 2+bx +c .根据题意,得⎪⎩⎪⎨⎧==+-=++.4,024,0416c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧==-=.4,1,21c b a∴所求抛物线的解析式为.4212++-=x x y (3)如图,△PMB 是钝角三角形,图中,PH 是抛物线=++-=4212x x y 29)1(212+--x 的对称轴.M 、P 点的坐标分别为).29,1(),1,2(P M ∴点M 在PH 的右侧,∵∠PHB =90°,∠1>90°,∠PMB >∠1, ∴∠PMB >90°,则△PMB 为钝角三角形.测试5 1.≥0,y =a (x -x 1)(x -x 2). 2.⋅493.31->m 且m ≠0. 4.0. 5.(-1,0). 6.一.7.D . 8.B . 9.C . 10.D . 11.y =2x 2+2x -4.12.45665182-+-=x x y 或y =2x 2+2x -4.13.4,(1,9). 14.⋅9815.C . 16.A . 17.C . 18.D . 19.B . 20.A . 21.(1)开口向下,顶点(1,2),(2)③. 22.⋅<21m 23.由x 2-x -m =0(1)当∆=1+4m ≥0,即41-≥m 时两线有公共点.(2)当∆=1+4m <0,即41-<m 时两线无公共点. 24.(1) ∆=(m +2)2>0,∴m ≠-2;(2)m =-1,∴y =-x 2+5x -6.测试61.y =-x 2+3x (0<x <3)图略. 2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5. 当x 2=3时,BC =24-3³3>10,不合题意,舍去; 当x 2=5时,BC =24-3³5=9,符合题意. 故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃. 由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 324625.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元. 6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720. (2)∵y =-4x 2+64x +30720=-4(x -8)2+30976, ∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴(2)把s =30代入,2212t t s -=解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -=得7月末的累积利润为s 7=10.5(万元). 把t =8代入,2212t t s -=得8月末的累积利润为s 8=16(万元). ∴s 8-s 7=16-10.5=5.5(万元). 即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).测试7 1.⋅=21m 2.向下,x =1. 3.(2,-9). 4.2,小,-7. 5.-2,(1,0)、(2,0). 6.⋅--=21)23(22x y 7.(1);23=x (2)y =x 2-3x -4;(3);23≤x (4)x <-1或x >4. 8.(1)m =14或2; (2)m =4; (3)⋅=23m 9.D . 10.C . 11.C . 12.C . 13.C . 14.D . 15.(1)开口向下; (2)上方; (3)右侧;(4)有,).0,24(),0,24(22aacb b a ac b b ----+- (5)略. 16.⋅+--=3534312x x y 17.y =x 2+2x -3.18.23212--=x x y 或⋅+-=23272x x y 19.作CE ⊥x 轴于E ,设CE =x 千米.∵∠CAB =45°,∴CE =AE =x ,在Rt △BCE 中,,33,30x CE EB CBA ==∴=∠ AB =AE +EB ,即,331x x +=+解得x =1,∴OE =OA +AE =2+1=3. 由C (3,1),D (4,0),O (0,0),设y =a (x -4)(x -0),把(3,1)代入上式:1=a (3-4)(3-0),解得),40)(0)(4(31,31≤≤---=∴-=x x x y a 即2)2(31--=x y34+,抛物线对称轴:x =2,炮弹运行最高点时距地面高度是34千米.20.⋅+-=+-=310432,31312221x x y x y。

初三-第08讲-垂径定理(提高)-教案.doc

初三-第08讲-垂径定理(提高)-教案.doc

学科教师辅导讲义学员编号:年级:九年级(下)课时数:3学员姓名:辅导科目:数学学科教师:授课主题第08讲-----垂径定理授课类型T同步课堂P实战演练S归纳总结教学目标①深刻理解垂径定理及其推论的内容;②熟练掌握垂径定理及其推论的应用条件与结论;③应用垂径定理解决实际问题。

授课日期及时段T(Textbook-Based)——同步课堂一、知识梳理体系搭建二、知识概念垂径定理1、内容:垂直于弦的直径平分这条弦,并且平分这条弦所对的两段弧2、逆定理:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧3、推论:弦的垂直平分线经过圆心,并且平分这条弦所对的弧平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧在同圆或者等圆中,两条平行弦所夹的弧相等4、使用条件:一条直线,在下列4条中只要具备其中任意两条作为条件,就可以推出其他三条结论(1)平分弦所对的弧(2)平分弦 (不是直径)(3)垂直于弦(4)经过圆心考点一:垂径定理及其推论例1、下列说法不正确的是()A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧【解析】C.例2、如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()A.B.πC.2πD.4π【解析】连接OD.∵CD⊥AB,∴CE=DE=CD=,故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠ABD=60°,∴∠CDB=30°,∴∠COB=60°,∴OC=2,∴S扇形OBD==,即阴影部分的面积为.故选A.例3、如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C 的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1)【解析】如图线段AB的垂直平分线EQ和线段CD的垂直平分线NF的交点M,即为弧的圆即圆心的坐标是(﹣1,1),故选B.例4、如图,AB是⊙O的弦,C是AB的三等分点,连接OC并延长交⊙O于点D.若OC=3,CD=2,则圆心O到弦AB的距离是()A.6B.9﹣C.D.25﹣3【解析】如图:过O作OG⊥AB于G,根据垂径定理有:AG=BG,设AC=2a,则CB=4a,CG=a,GB=3a,在Rt△OCG中,OC2=OG2+CG2=OG2+a2①在Rt△OBG中,OB2=OG2+GB2=OG2+9a2②又OC=3,OB=5,代入①②中,解方程得:a2=2,OG2=7.所以圆心到弦的距离是.故选C.例5、如图,⊙O的半径为5,弦AB=8,则圆上到弦AB所在的直线距离为2的点有()个.A.1B.2C.3D.0【解析】作圆的直径CE⊥AB于点D,连接OA,∵AB=8,∴AD=4.∵OA=5,∴OD==3,∴CD=OC﹣3=5﹣3=2,即C到弦AB所在的直线距离为2,∴在劣弧AB上,到弦AB所在的直线距离为2的点只有CD;∵DE=5+3=8>2,∴在优弧AEB上到弦AB所在的直线距离为2的点有2个,即圆上到弦AB所在的直线距离为2的点有3个.故选C.考点二:应用垂径定理解决实际问题例1、李明到某影剧城游玩,看见一圆弧形门如图所示,李明想知道这扇门的相关数据.于是她从景点管理人员处打听到:这个圆弧形门所在的圆与水平地面是相切的,AB=CD=40cm,BD=320cm,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮助李明计算出这个圆弧形门的最高点离地面的高度是多少?【解析】如图,连接AC,作AC的中垂线交AC于G,交BD于N,交圆的另一点为M.则MN为直径.取MN的中点O,则O为圆心,连接OA、OC.∵AB⊥BD,CD⊥BD,∴AB∥CD∵AB=CD∴ABCD为矩形∴AC=BD=320cm,GN=AB=CD=40cm ∴AG=GC=160cm,设⊙O的半径为R,得R2=(R﹣40)2+1602,解得R=340cm,340×2=680(cm).答:这个圆弧形门的最高点离地面的高度为680cm.例2、用工件槽(如图1)可以检测一种铁球的大小是否符合要求,已知工件槽的两个底角均为90°,尺寸如图(单位:cm).将形状规则的铁球放入槽内时,若同时具有图1所示的A、B、E三个接触点,该球的大小就符合要求.图2是过球心O及A、B、E三点的截面示意图,求这种铁球的直径.【解析】连接OA、OE,设OE与AB交于点P,如图∵AC=BD ,AC⊥CD,BD⊥CD ∴四边形ACDB是矩形∵CD=16cm,PE=4cm ∴PA=8cm,BP=8cm,在Rt△OAP中,由勾股定理得OA2=PA2+OP2即OA2=82+(OA﹣4)2解得:OA=10.答:这种铁球的直径为20cm.P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、下列说法中,不成立的是()A.弦的垂直平分线必过圆心B.弧的中点与圆心的连线垂直平分这条弧所对的弦C.垂直于弦的直线经过圆心,且平分这条弦所对的弧D.垂直于弦的直径平分这条弦【解析】C.2、⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5B.7C.9D.11【解析】由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选A.3、如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=30°,CD=6,则圆的半径长为()A.2B.2C.4D.【解析】连接OC,如图所示:则∠BOC=2∠A=60°,∵AB⊥CD,∴CE=DE=CD=3,∵sin∠BOC=,∴OC===2.故选:A.4、如图,以O为圆心的两个同心圆中,小圆的弦AB的延长线交大圆于点C,若AB=4,BC=1,则下列整数与圆环面积最接近的是()A.10B.13C.16D.19【解析】过点O作OD⊥AB,垂足为D,则AD=2,DC=2+1=3,S圆环=π(OC2﹣OA2)=π(OD2+DC2﹣OD2﹣AD2)=π(9﹣4)=5π≈15.7故选C.5、如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3B.5C.6D.8【解析】∵CD为⊙O的直径,弦AB⊥CD,AE=3,∴AB=2AE=6,∴△ACB的面积为×AB×CE=×6×2=6,故选C.6、如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?【解析】如图所示,连接OA、OC.设⊙O的半径是R,则OG=R﹣2,OE=R﹣4.∵OF⊥CD,∴CG=CD=10cm.在直角三角形COG中,根据勾股定理,得R2=102+(R﹣2)2,解,得R=26.在直角三角形AOE中,根据勾股定理,得AE==8cm.根据垂径定理,得AB=16(cm).7、如图是一个半圆形桥洞截面示意图,圆心为O,直径AB是河底线,弦CD是水位线,CD∥AB,且AB=26m,OE⊥CD于点E.水位正常时测得OE:CD=5:24(1)求CD的长;(2)现汛期来临,水面要以每小时4m的速度上升,则经过多长时间桥洞会刚刚被灌满?【解析】(1)∵直径AB=26m,∴OD=,∵OE⊥CD,∴,∵OE:CD=5:24,∴OE:ED=5:12,∴设OE=5x,ED=12x,∴在Rt△ODE中(5x)2+(12x)2=132,解得x=1,∴CD=2DE=2×12×1=24m;(2)由(1)得OE=1×5=5m,延长OE交圆O于点F,∴EF=OF﹣OE=13﹣5=8m,∴,即经过2小时桥洞会刚刚被灌满.➢课后反击1、下列说法正确的是()A.长度相等的两条弧是等弧B.平分弦的直径垂直于弦C.直径是同一个圆中最长的弦D.过三点能确定一个圆【解析】C.2、下列说法正确的是()A.平分弦的直径垂直于弦B.把(a﹣2)根号外的因式移到根号内后,其结果是﹣C.相等的圆心角所对的弧相等D.如果一个角的两边与另一个角的两边分别平行,那么这两个角相等【解析】B.3、如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD=()A.5B.8C.2D.4【解析】B.4、如图,在⊙O中,弦AB⊥AC,OD⊥AB于点D,OE⊥AC于点E,若AB=8cm,AC=6cm,则⊙O的半径OA的长为()A.7cm B.6cmC.5cm D.4cm【解析】C.5、如图,已知AB是⊙O的直径,弦CD⊥AB于E,连接BC,BD,AC,则下列结论中不一定正确的是()A.∠ACB=90°B.DE=CE C.OE=BE D.∠ACE=∠ABC【解析】C.6、如图,⊙O的直径AB=10,C是AB上一点,矩形ACND交⊙O于M,N两点,若DN=8,则AD的值为()A.4B.6C.2D.3【解析】A.7、如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高PM为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施?(=1.414)【解析】设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP′,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N===16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.8、赵州桥的主桥拱是圆弧形,它的跨度(弧所对的弦)长为37.4m,拱高(弧的中点到弦的距离)为7.2m,请求出赵州桥的主桥拱半径(结果保留小数点后一位).【解析】设O为圆心,作OD⊥AB于D,交弧AB于C,如图所示:∵拱桥的跨度AB=37.4m,拱高CD=7.2m,∴AD=AB=18.7m,∴AD2=OA2﹣(OC﹣CD)2,即18.72=AO2﹣(AO﹣7.2)2,解得:AO≈27.9m.即圆弧半径为27.9m.答:赵州桥的主桥拱半径为27.9m.直击中考1、【2016•牡丹江】如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5 C.4D.3.5【解析】C.2、【2016•三明】如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是()A.2B.3C.4D.5【解析】A.3、【2016•黔南州】如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A.cm B.3cm C.3cm D.6cm【解析】A.4、【2014•济南】如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A.2B.C.D.【解析】连结BD、OC,如图,∵四边形BCDE为矩形,∴∠BCD=90°,∴BD为⊙O的直径,∴BD=2,∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,而OB=OC,∴∠CBD=30°,在Rt△BCD中,CD=BD=1,BC=CD=,∴矩形BCDE的面积=BC•CD=.故选:B.5、【2014•三明】如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BE B.=C.△BOC是等边三角形D.四边形ODBC是菱形【解析】B.6、【2013•深圳】如图所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径.【解析】∵小刚身高1.6米,测得其影长为2.4米,∴8米高旗杆DE的影子为:12m,∵测得EG的长为3米,HF的长为1米,∴GH=12﹣3﹣1=8(m),∴GM=MH=4m.如图,设小桥的圆心为O,连接OM、OG.设小桥所在圆的半径为r,∵MN=2m,∴OM=(r﹣2)m.在Rt△OGM中,由勾股定理得:∴OG2=OM2+42,∴r2=(r﹣2)2+16,解得:r=5,答:小桥所在圆的半径为5m.S(Summary-Embedded)——归纳总结重点回顾垂径定理及其逆定理内容及应用条件;应用垂径定理解决实际问题。

人教版初三数学讲义

人教版初三数学讲义

人教版初三数学讲义数学讲义九年级上册第一学期九年级数学教学进度表说明:2011年1月22日(农历十二月十九日,星期六)寒假开始,2月12日(农历正月初十日,星期六)寒假结束。

2011年2月13日(农历正月十一日,星期日)春季开学,2月14日(农历正月十二日,星期一)正式上课,共21周。

目录第二十一章二次根式21.1二次根式(1)21.2二次根式的乘除(第1课时)(3)21.2二次根式的乘除(第2课时)(5)21.2二次根式的加减(第1课时)(7)21.2二次根式的加减(第2课时)(9)小结(11)第二十二章一元二次方程22.1 一元二次方程(13)22.2.1配方法(第1课时) (15)22.2.1配方法(第2课时) (17)22.2.1公式法(19)22.2.3因式分解法(21)22.2.4 一元二次方程的根与系数关系(23)22.3 实际问题与一元二次方程(第1课时)(25) 22.3 实际问题与一元二次方程(第2课时)(27) 小结(29)第二十三章旋转23.1 图形的旋转(1) (33)23.1 图形的旋转(2) (36)23.1 图形的旋转(3) (39)23.2.1中心对称(1) (42)23.2.1中心对称(2) (45)23.2.1中心对称(3) (48)22.2 中心对称图形,关于原点对称的点的坐标(51)23.3 课题学习图案设计(55)小结(57)第二十四章圆24.1.1 圆(59)24.1.2 垂直于弦的直径(62)24.1.3 弧、弦、圆心角(66)24.1.4 圆周角(70)24.2.2 直线和圆的位置关系(77)24.2.3 圆和圆的位置关系(80)24.3 正多边形和圆(85)24.4圆锥的侧面积和全面积(90)小结(93)第二十五章概率25.1.1随机事件(第一课时) (96)25.1.1 随机事件(第二课时)(98)25.1.2 概率的意义(100)25.2 用列举法求概率(第一课时) (104) 25.2 用列举法求概率(第二课时) (107) 25.2 用列举法求概率(第三课时) (109) 25.3.1利用频率估计概率(111)25.3.2利用频率估计概率(113)25.4课题学习键盘上字母的排列规律(115) 小结(117)第二十一章二次根式教案教学过程设计- 1 -第二十一章二次根式教案- 2 -第二十一章二次根式教案教学过程设计- 3 -第二十一章二次根式教案- 4 -第二十一章二次根式教案教学过程设计- 5 -第二十一章二次根式教案- 6 -第二十一章二次根式教案教学过程设计- 7 -第二十一章二次根式教案- 8 -第二十一章二次根式教案教学过程设计- 9 -第二十一章二次根式教案.- 10 -第二十一章二次根式教案教学过程设计- 11 -第二十一章二次根式教案难度,与实数,有理式,勾股定理等知识综合运用.。

第三讲代数方程3.6

第三讲代数方程3.6

第3讲 代数方程【知识要点】(1)整式方程(一元一次、一元二次和简单的高次方程)的解法,分式方程和无理方程的解法,一元二次方程的判别式;(2)整式方程组(二元一次、三元一次、二元二次方程组)的解法;(3)列一次方程(组)、一元二次方程、分式方程解应用题.【典型题例】例1.解方程:(1)()1023132=--x x(2)8(2x+3)3 +27=0(3)x 5-4x 3-32x=0(4)52)2(32)2(2=-+-+-x x x x(5)0236622321222=+-+-+---++x x x x x x x x x(6)7165112=-++++--x x x x例2:解方程组:(1)⎪⎪⎩⎪⎪⎨⎧=-++=++-4342121272223x y y x y x y x(2)⎩⎨⎧=-=+-6249622y x y xy x(3)⎩⎨⎧=+-=++372222y xy x y xy x例3.(1)方程k 2x 2+(2k —1)x+1=0有实数根,求k 的范围.(2)如果关于x 的方程mx 2—2(m+2)x+m+5=0没有实数根,试判断方程 (m-5)x 2—2(m+2)x+m=0根的情况。

例4。

有一块长为80米,宽为50米的长方形绿地,其中有三条直路(图中的阴影部分,道路的一边AD与长方形绿地的一边平行,且道路的出入口AB、CD、EF、KI、GH、IJ的长度都相等,其余部分种植绿化,已知道路面积为352平方米,求道路出入口的边的长度.例5 .甲、乙两城市间的铁路线长1080千米,2004年火车再次提速后速度比2002年增加了18千米/时,因而运行时间缩短了3小时。

(1)求2002年的火车速度;(2)如2003年火车也曾提速一次,求这二次提速平均每次提高百分之几?(已知5=2.236 精确到1%)例6 。

如图,在十项全能比赛中,一运动员从湖中A点出发,先划船到湖边C处上岸,再跑步到达终点B,湖岸是一直线MN,点A到MN的最近处D的距离是800米。

10讲中考数学解答题部分精选

10讲中考数学解答题部分精选

2、先化简再求值:11131332--+÷--x x x x x ,并从不等式组(){x 3x 22 4x 25x 1-≥+--< 的解中选一个你喜欢的数代入,求原分式的值.3、为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、 乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息: 信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍. 根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品? 佛山学习前线教育培训中心4、(2011广东省中考)如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n的代数式表示:第n行的第一个数是___________________,最后一个数是________________,第n行共有_______________个数;(3)求第n行各数之和.5、(2011•台州)2011年5月19日,中国首个旅游日正式启动.某校组织了八年级800名学生参加的旅游地理知识竞赛,李老师为了了解学生对旅游地理知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格4个级别进行统计,并绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请根据以上提供的信息,解答下列问题:(1)求被抽取部分学生的人数;(2)请补全条形统计图,并求出扇形统计图中表示及格的扇形的圆心角度数;(3)请估计八年级800名学生中达到良好和优秀的总人数.6、小红在复习数学知识时,针对“求一元二次方程的解”,整理了以下几种方法,请你按有关内容补充完整:y7、(2011肇庆)如图8,矩形ABCD 的对角线相交于点O ,DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠ACB =30︒,菱形OCED 的面积为38, 求AC 的长.8、在等腰三角形ABC 中,AB=AC ,O 为AB 上一点,以O 为圆心、OB 长为半径的圆交BC 于D ,DE ⊥AC 交AC 于E.(1)试判断DE 与⊙O 的位置关系,并说明理由. (2)若⊙O 与AC 相切于F ,AB=AC=5cm ,53sin =A ,求⊙O 的半径的长.CE图89、2011年3月10日,云南盈江县发生里氏5.8级地震。

初三数学讲义:垂径定理—知识讲解(提高)

初三数学讲义:垂径定理—知识讲解(提高)

垂径定理—知识讲解(提高)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.学会运用垂径定理及其推论解决有关的计算、证明和作图问题.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1. 如图,⊙O的两条弦AB、CD互相垂直,垂足为E,且AB=CD,已知CE=1,ED=3,则⊙O的半径是.【答案】5.【解析】作OM ⊥AB 于M 、ON ⊥CD 于N ,连结OA ,∵AB=CD ,CE =1,ED =3,∴OM=EN=1,AM=2,∴.【点评】对于垂径定理的使用,一般多用于解决有关半径、弦长、弦心距之间的运算(配合勾股定理)问题.举一反三:【变式1】如图所示,⊙O 两弦AB 、CD 垂直相交于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径.【答案】如图所示,过点O 分别作OM ⊥AB 于M ,ON ⊥CD 于N ,则四边形MONH 为矩形,连结OB ,∴ 12MO HN CN CH CD CH ==-=- 11()(38)3 2.522CH DH CH =+-=+-=, 111()(46)5222BM AB BH AH ==+=+=, ∴ 在Rt △BOM中,OB == 【变式2】(2015春•安岳县月考)如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.【答案与解析】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=2.2.已知:⊙O的半径为10cm,弦AB∥CD,AB=12cm,CD=16cm,求AB、CD间的距离.【思路点拨】在⊙O中,两平行弦AB、CD间的距离就是它们的公垂线段的长度,若分别作弦AB、CD的弦心距,则可用弦心距的长表示这两条平行弦AB、CD间的距离.【答案与解析】(1)如图1,当⊙O的圆心O位于AB、CD之间时,作OM⊥AB于点M,并延长MO,交CD于N点.分别连结AO、CO.∵AB∥CD∴ON⊥CD,即ON为弦CD的弦心距.∵AB=12cm,CD=16cm,AO=OC=10cm,=8+6=14(cm)图1 图2(2)如图2所示,当⊙O的圆心O不在两平行弦AB、CD之间(即弦AB、CD在圆心O的同侧)时,同理可得:MN=OM-ON=8-6=2(cm)∴⊙O 中,平行弦AB 、CD 间的距离是14cm 或2cm.【点评】解这类问题时,要按平行线与圆心间的位置关系,分类讨论,千万别丢解.举一反三:【变式】在⊙O 中,直径MN ⊥AB ,垂足为C ,MN=10,AB=8,则MC=_________.【答案】2或8.类型二、垂径定理的综合应用3.(2015•普陀区一模)如图,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉,小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得∠OAB=45°,在AB 延长线上的C 处测得∠OCA=30°,已知BC=50米,求人工湖的半径.(结果保留根号)【答案与解析】解:过点O 作OD ⊥AC 于点D ,则AD=BD ,∵∠OAB=45°,∴AD=OD ,∴设AD=x ,则OD=x ,OA=x ,CD=x+BC=x+50.∵∠OCA=30°,∴=3,即=3,解得x=25,∴OA=x=×(25)=((米).答:人工湖的半径为(【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.4. 不过圆心的直线l 交⊙O 于C 、D 两点,AB 是⊙O 的直径,AE ⊥l 于E ,BF ⊥l 于F .(1)在下面三个圆中分别画出满足上述条件的具有不同位置关系的图形;(2)请你观察(1)中所画图形,写出一个各图都具有的两条线段相等的结论(OA =OB 除外)(不再标注其他字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程);(3)请你选择(1)中的一个图形,证明(2)所得出的结论.【答案与解析】(1)如图所示,在图①中AB、CD延长线交于⊙O外一点;在图②中AB、CD交于⊙O内一点;在图③中AB∥CD.(2)在三个图形中均有结论:线段EC=DF.(3)证明:过O作OG⊥l于G.由垂径定理知CG=GD.∵ AE⊥l于E,BF⊥l于F,∴ AE∥OG∥BF.∵ AB为直径,∴ AO=OB,∴ EG=GF,∴ EC=EG-CG=GF-GD=DF.【点评】在运用垂径定理解题时,常用的辅助线是过圆心作弦的垂线,构造出垂径定理的基本图形.。

广州中考数学专题复习:函数

广州中考数学专题复习:函数

初三数学讲义函数知识点一:一次函数1) 一次函数y kx b =+的图象 k 、b 的符号 k >0,b >0 k >0,b <0 k <0,b >0 k <0, b <0 图像的大致位置经过象限 第 象限第 象限第 象限第 象限性质 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而 y 随x 的增大而2)已知直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________.3.当实数x 的取值使得2-x 有意义时,函数y=4x+1中y 的取值范围是( ) A.y ≥-7 B. y ≥9 C. y>9 D. y ≤94.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .5.如图11,在方格纸上建立平面直角坐标系,线段AB 的两个端点都在格点上,直线MN 经过坐标原点,且点M 的坐标是(1,2)。

(1)写出点A 、B 的坐标;(2)求直线MN 所对应的函数关系式;(3)利用尺规作出线段AB 关于直线MN 的对称图形(保留作图痕迹,不写作法)。

知识点二.:反比例函数1)反比例函数xky =的图像 k 、b 的符号 k >0 k <0 图像的大致位置经过象限 第 象限 第 象限性质 y 随x 的增大而 y 随x 的增大而A.2x y =B. 1-=x yC. x y 43=D. xy 1= 3. 已知函数xy 2=,当x =1时,y 的值是________ 4.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、(1-2)两点。

若y 1<y 2,则x 的取值范围是( )。

(A )、x <-1或x >-1 (B )、 x <-1或0<x <1(C )、-1<x <0或0<x <1 (D )、-1<x <0或x >15.如图,已知A(-4,2)、B(n ,-4)是一次函数y kx b =+的图象与反比例函数my x=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围. (3)求△AOB 的面积.6.如图3,正比例函数x ky 11=和反比例函数xky 22=的图象交于A(-1,2)、B (1,-2)两点。

初三数学讲义——一元二次方程的解法

初三数学讲义——一元二次方程的解法

中国教育领军品牌
5 方程 x 2 mx (n 1) 0 的两个根是 2 和-4,那么 m = 思维提升: 1、若两数和为 4,两数积为 3,则这两数分别为 .
,n=
.
2 2、已知方程 2 x 2 3x 4 0 的两根为 x1 , x2 ,那么 x12 x2 =
. , m 的值是 . .
(7) 4 x2 12x 1 0
2 (8) (x 1 ) 6( x 1) 2 45 0
3、公式法 公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。 一元二次方程 ax2 bx c 0(a 0) 的求根公式:
x
b b 2 4ac 2 (b 4ac 0) 2a
2 2
一元二次方程(m-1)x +2mx+m+3=0 有两个不相等的实数根,求 m 的最大整数值.
2
7/8
中国教育领军品牌
8/8
4、因式分解法 因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程 最常用的方法。 分解因式法的步骤:把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因 式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式
2 ( 7x 3 ) 16 0 (1) 25
教学内容 一、教材回归
一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。 2、一元二次方程的一般形式: ax2 bx c 0(a 0) ,它的特征是:等式左边加一个关于未知数 x 的二 次多项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项 系数;c 叫做常数项。

初三数学讲义

初三数学讲义

初三数学总复习代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 1、有理数:任何一个有理数总可以写成qp 的形式,其中p 、q 是互质的整数,这是有理数的重要特征。

2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。

3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。

二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=02、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ;(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a (2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3)立方根:3a 叫实数a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

原点、正方向、单位长度是数轴的三要素。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

九上6讲: 试图与投影

九上6讲: 试图与投影

初三数学讲义第六讲视图与投影题型分类:无星代表普通高中★重点高中★★三大名校◆1、三视图:(1)视图的有关概念:从物体正面观察物体时,看到的图叫做;从物体左面察物体时,看到的图叫做;从物体上面观察物体时,看到的图叫做。

(2)三种视图的内在联系:三视图之间要保持长,高,宽。

一般地,俯视图要画在主视图的,左视图要画在正视图的。

(3)三种视图的画法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成______线,看不见部分的轮廓线通常画成_______线.◆2、投影:(1)太阳光与影子①太阳光线可以看成平行光线,像这样的光线所形成的投影称为_________.②探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称。

(2)区分平行投影与中心投影:①观察光源;②观察影子①分别过每个物体的顶端及其影子的顶端作一条直线,若两直线______,则为平行投影;若两直线_______,则为中心投影,其交点就是光源的位置.②灯光的光线可以看成是从_______发出的(即为点光源),像这样的光线形成的投影称为中心投影.③中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的___________即为光源的位置.★例题1:如下图,是一个由若干个相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体的个数是( )A .7个B .8个C .9个D .10个变式练习1: 若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( )A .6桶B .7桶C .8桶D .9桶例题2:(2011广东广州市)5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位) (2)画出该几何体的主视图和左视图变式练习2:一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图),圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).主视图左视图 俯视图A图3A C EM B N DFA C图1例题3:如图1,测得木杆DE 的长为2米,它的影长EF 为3米,测得金字塔的影长AC 为201米,求金字塔的高BC 。

初三数学暑假衔接班讲义(好)

初三数学暑假衔接班讲义(好)

目录本次培训具体计划如下,以供参考:第一讲如何做几何证明题第二讲平行四边形(一)第三讲平行四边形(二)第四讲梯形第五讲中位线及其应用第六讲一元二次方程的解法第七讲一元二次方程的判别式第八讲一元二次方程的根与系数的关系第九讲一元二次方程的应用第十讲专题复习一:因式分解、二次根式、分式第十一讲专题复习二:代数式的恒等变形第十二讲专题复习三:相似三角形第十三讲结业考试(未装订在内,另发)第十四讲试卷讲评第一讲:如何做几何证明题【知识梳理】1、几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。

几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。

这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2、掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3、掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。

在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【例题精讲】【专题一】证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。

很多其它问题最后都可化归为此类问题来证。

证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

【例1】已知:如图所示,∆A B C 中,∠=︒===C AC BC AD DB AE CF 90,,,。

黄浦新王牌-暑假补习计划-初三数学-唐L老师

黄浦新王牌-暑假补习计划-初三数学-唐L老师

暑假班九年级班教学计划
暑假班课程将针对九年级上学期的数学重点内容做一个大致的预习。

课程采用老师自编的特色数学讲义, 主题和讲授顺序都和上海二期课改课本保持一致, 但内容将更加简洁、精炼。

讲义的内容主要分三块: 《相似三角形》、《锐角三角比》、《二次函数》。

每块简明扼要地讲解各章中的重点内容, 配以难度适中、数量合适的习题, 以便学员及时复习。

与此同时, 也会有介绍上海的中考招生模式的内容。

为了保证学习效果, 请学员务必课上认真思考、勇于提问, 课后及时复习讲义内容, 并做好布置的相关练习。

老师将提供个人网络联系方式, 在必要时通过网络为学员排疑解难。

以下是暑假班课时安排, 仅供参考。

老师将根据班级的整体情况, 做具体地调整, 狠抓基础概念和基本技能, 不求快、难、怪, 但求确保大部分学员都能够学有所得、学有所成。

同时, 老师将全力为提高课程的质量而努力, 欢迎各位学
员和家长提出宝贵意见和建议。

另外, 有些学校初三会提前学习新课(基本学完三角形一边平行线), 但由于学校上课时间短, 速度快, 并且这一部分的知识并不容易理解和运用, 会使学生只会背概念, 证明过程生疏, 因此这一部分课上在讲授新课的同时, 还注
重辅助线的添加, 使学生能运用灵活。

初三数学讲义

初三数学讲义

初三数学讲义第一章:整数整数是数学中的基本概念之一,它包括正整数、负整数和零。

正整数是大于零的整数,负整数是小于零的整数,零是不大于也不小于零的整数。

我们可以通过数轴来表示整数,数轴上的每个点对应一个唯一的整数。

第二章:有理数有理数是整数和分数的统称,包括正有理数、负有理数和零。

有理数可以用分数的形式表示,其中分子和分母都是整数,并且分母不能为零。

有理数的加法、减法、乘法和除法运算规则与整数类似,我们可以通过运算法则来进行计算。

第三章:代数式代数式是由数、字母和运算符号组成的式子,它可以表示数与数之间的关系。

代数式中的字母代表未知数,可以根据具体情况进行求解。

代数式可以进行加法、减法、乘法和除法运算,也可以进行化简和展开等操作。

第四章:方程与不等式方程是含有未知数的等式,它表示两个代数式之间的相等关系。

方程的解是使得方程成立的未知数的值,可以通过变量的代入和化简来求解。

不等式是含有不等关系的代数式,通过不等式可以表示数的大小关系。

不等式的解是使得不等式成立的数的取值范围。

第五章:函数函数是一种特殊的关系,它将一个自变量的值对应到一个因变量的值。

函数可以用图像、表格或公式来表示,通过函数可以描述数的变化规律。

函数包括线性函数、二次函数、指数函数、对数函数等多种类型,每种类型函数都有其特定的性质和应用。

第六章:几何与图形几何是研究空间和图形性质的数学分支,它包括平面几何和立体几何两个方面。

平面几何研究二维图形,如点、线、面和多边形等;立体几何研究三维图形,如立方体、圆柱体、球体和锥体等。

通过几何可以研究图形的性质、相似关系、投影和旋转等问题。

第七章:统计与概率统计是研究数据收集、整理、分析和解释的学科,通过统计可以获取数据的规律和趋势。

概率是研究随机事件发生可能性的学科,通过概率可以预测事件发生的可能性。

统计与概率常常结合在一起应用,可以进行统计推断和概率计算,用来解决实际问题。

第八章:数学思维与方法数学思维是指运用数学知识和方法进行问题分析和解决的思维方式。

初三数学精品讲义一次函数的图象与性质

初三数学精品讲义一次函数的图象与性质

一、知识回顾与归纳1. 一次函数的概念函数y=_______(k、b为常数,k______)叫做一次函数. 当b_____时,函数y=____(k____)叫做正比例函数.2.一次函数图象与正比例函数图象间的关系(1)把 y =kx 的图象向上平移b 个单位得y =________,向下平移b 个单位得y =________.(2)若直线y =k 1x +b 与y =k 2x +b 平行,则_______,________.反之也成立 . xyO3.正比例函数的图象与性质(1)图象:正比例函数y = kx (k 是常数,k ≠0)) 的图象是经过原点的一条直线,我们称它为直线y = kx .(2)性质:当k >0时,直线y = kx 经过第一,三象限, 从左向右上升,即随着x 的增大y 也增大;当k <0时,直线y = kx 经过第二,四象限,从左向右下降,即随着 x 的增大y 反而减小. 0yx K>0 K<04.一次函数的图象及性质(1)一次函数y=kx+b(k≠0)的图象是过点(0,___),(____,0)的__________.(2)性质:当k>0时, 从左向右上升,即随着x的增大y也增大;当k<0时, 从左向右下降,即随着x的增大y反而减小.5. 一次函数y =kx +b (k ≠0)k 的作用及b 的位置.k 决定直线的方向和直线的陡、平情况k >0,直线左低右高 b >0,直线交y 轴正半轴(x 轴上方)k <0,直线左高右低b <0,直线交y 轴负半轴(x 轴下方) |k|越大直线越陡 yO(0,b ) (0,b ) x二、专题讲解专题一 基础概念、性质的理解例 1、(1)函数 经过第 象限,y 随x 的增大而 。

其与x 轴的交点坐标为 ,与y 轴的交点坐标为 .3=+32y x -(2)如图所示,关于x的一次函数y=mx-m 的图像可能是()(3)已知一次函数y =(3k -1)x +2,若y 随x 的增大而增大,则k 的取值范围是 ( )A.<0B.>011C.<D.>33k k k k例2、已知直线y 1=k 1x +b 1经过原点和点(-2,-4),直线y 2=k 2x +b 2 经过点(8,-2)和点(1,5).(1)求y 1及y 2的函数解析式,并画出函数图象. O x y y 1=2xy 2=-x +6 N M专题二 一次函数解析式的确定及相关计算例2、已知直线y 1=k 1x +b 1经过原点和点(-2, -4),直线y 2=k 2x +b 2 经过点(8,-2)和点(1,5).(2)若两直线相交于M ,求点M的坐标. O xy y 1=2xy 2=-x +6 N M例2、 (3)若直线y 2与x 轴交于点N ,试求△MON 的面积. O xy y 1=2xy 2=-x +6 N M课堂小结正比例函数一次函数表达式y=kx(k≠0)y=kx+b(k≠ 0,b为任意实数)k>0 k<0 k>0 ,b>0 k>0 ,b<0 k<0,b>0 k<0,b<0 图象性质1、图象是经过原点与第一、三象限的直线;2、函数y随着x的增大而增大1、图象是经过原点与第二、四象限的直线;2、函数y随着x的增大而减小1、图象是经过第一、二、三象限的直线;2、函数y随着x的增大而增大1、图象是经过第一、三、四象限的直线;2、函数y随着x的增大而增大1、图象是经过第一、二、四象限的直线;2、函数y随着x的增大而减小1、图象是经过第二、三、四象限的直线;2、函数y随着x的增大而减小yxOyxO O O O O课后练习1.关于函数y=-2x+1,下列结论正确的是()A.图象经过点(2,0)B.图象经过第一、二、三象限C.图象与y轴的交点为(0,1)D.y随x的增大而增大2.如图,在同一直角坐标系中,关于x的一次函数y = x+ b与y = bx+1的图象只可能是()3.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行且经过点A(1,﹣2),则kb=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档