初中数学九年级二次函数基础练习题47143

合集下载

初三--二次函数基础分类练习题(含答案)

初三--二次函数基础分类练习题(含答案)

1 二次函数练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式: 2、 下列函数:① y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数5、当____m =时,函数()2564mm y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.211、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .tttt36、已知函数24mm y mx--=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.4练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、 请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).54、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.4、 抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.5、 二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<167、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小7 练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标813、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;297、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④1014、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。

九年级数学二次函数练习题

九年级数学二次函数练习题

九年级数学二次函数练习题一、选择题1. 已知二次函数y = ax² + bx + c 的图象在 x 轴上有两个不同的零点,那么判断条件为:A. a > 0B. b > 0C. c > 0D. δ > 02. 已知二次函数y = 2x² + kx + 3 在 x 轴上只有一个零点,那么 k 的取值范围是:A. k ≤ 0B. k < 3C. 0 < k < 3D. k > 33. 根据二次函数y = ax² + bx + c 的图像,当 a > 0 且 b > 0 时,函数图像的开口方向和最小值分别是:A. 上,最小值存在B. 上,最小值不存在C. 下,最小值存在D. 下,最小值不存在4. 对于二次函数y = ax² + bx + c,当 a < 0 时,它的图像是关于x 轴的对称图形。

那么当 a > 0 时,它的图像是关于:A. y 轴的对称图形B. 原点的对称图形C. x 轴的对称图形D. 零点的对称图形5. 已知二次函数y = ax² - bx + c 的两个零点的和为 4,积为 -3,那么 a, b, c 的值分别为:A. 1, 7, 12B. 1, -3, 12C. 1, 3, 12D. 1, -7, 12二、填空题1. 已知二次函数y = ax² + bx + c 的图象在点(1, 2)上,且 a + b +c = 6,求函数的表达式。

2. 已知二次函数y = 2x² - 5x + 3,求函数的最小值。

3. 当二次函数y = ax² + bx + c 的图象过点(1, 3)时,若 a = 2, b= 1,求 c 的值。

4. 如果抛物线y = ax² + bx + c 的图象关于 y 轴对称,且 (1, 3) 在图象上,求 a, b, c 的值。

人教版九年级数学上册二次函数基础课时练习题(含答案)

人教版九年级数学上册二次函数基础课时练习题(含答案)

初中数学试卷灿若寒星整理制作二次函数基础分类练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:时间t (秒) 1 2 3 4 … 距离s (米)281832…写出用t 表示s 的函数关系式. 2、 下列函数:①23y x ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm y mx 的图象是开口向下的抛物线,求m 的值.s t OstOstOs tO7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6. (1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c15、试求抛物线2y ax bx c 与x 轴两个交点间的距离(240b ac练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,则函数的关系式为 4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =1 7、已知二次函数2yx px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.11、已知抛物线22yx mx m .(1)求证此抛物线与x 轴有两个不同的交点; (2)若m 是整数,抛物线22yx mx m 与x 轴交于整数点,求m 的值;(3)在(2)的条件下,设抛物线顶点为A ,抛物线与x 轴的两个交点中右侧交点为B. 若M 为坐标轴上一点,且MA=MB ,求点M 的坐标.练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第x 年维修、保养费累计..为y(万元),且y=ax2+bx,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m) 与水平距离x (m) 之间的函数关系式为y=-112x2+23x+53,求小明这次试掷的成绩及铅球的出手时的高度.4、用 6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件. ① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式; ② 若商场每天要盈利 1200 元,每件应降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m ,跨度为 10m ,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边 1m 处,桥洞离水面的高是多少? 3.5 0.50 2 7月份千克销售价(元)7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d表示h的函数关系式;(3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m).练习一 二次函数参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二 函数2ax y =的图象与性质参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =练习三 函数c ax y +=2的图象与性质参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四 函数()2h x a y -=的图象与性质参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五 ()k h x a y +-=2的图象与性质参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4) 2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六 c bx ax y ++=2的图象和性质参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七 c bx ax y ++=2的性质参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、aacb 42-练习八 二次函数解析式参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y 、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九 二次函数与方程和不等式参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十 二次函数解决实际问题参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254(x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

新人教版九年级上册数学:《二次函数》基础练习含答案(5套)

时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.若y =mx 2+nx -p (其中m ,n ,p 是常数)为二次函数,则( ) A .m ,n ,p 均不为0 B .m ≠0,且n ≠0 C .m ≠0 D .m ≠0,或p ≠02.当ab >0时,y =ax 2与y =ax +b 的图象大致是( )二、填空题(每小题4分,共8分)3.若y =x m -1+2x 是二次函数,则m =________. 4.二次函数y =(k +1)x 2的图象如图J22-1-1,则k 的取值范围为________.图J22-1-1三、解答题(共11分) 5.在如图J22-1-2所示网格内建立恰当直角坐标系后,画出函数y =2x 2和y =-12x 2的图象,并根据图象回答下列问题(设小方格的边长为1):图J22-1-2(1)说出这两个函数图象的开口方向,对称轴和顶点坐标;(2)抛物线y =2x 2,当x ______时,抛物线上的点都在x 轴的上方,它的顶点是图象的最______点;(3)函数y =-12x 2,对于一切x 的值,总有函数y ______0;当x ______时,y 有最______值是______.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下列抛物线的顶点坐标为(0,1)的是( ) A .y =x 2+1 B .y =x 2-1 C .y =(x +1)2 D .y =(x -1)22.二次函数y =-x 2+2x 的图象可能是( )二、填空题(每小题4分,共8分)3.抛物线y =x 2+14的开口向________,对称轴是________.4.将二次函数y =2x 2+6x +3化为y =a (x -h )2+k 的形式是________. 三、解答题(共11分)5.已知二次函数y =-12x 2+x +4.(1)确定抛物线的开口方向、顶点坐标和对称轴; (2)当x 取何值时,y 随x 的增大而增大?当x 取何值时,y 随x 的增大而减小?时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.已知二次函数的图象过(1,0),(2,0)和(0,2)三点,则该函数的解析式是( ) A .y =2x 2+x +2 B .y =x 2+3x +2 C .y =x 2-2x +3 D .y =x 2-3x +22.若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )A .y =-(x -2)2-1B .y =-12(x -2)2-1C .y =(x -2)2-1D .y =12(x -2)2-1二、填空题(每小题4分,共8分) 3.如图J22-1-3,函数y =-(x -h )2+k 的图象,则其解析式为____________.图J22-1-34.已知抛物线y =x 2+(m -1)x -14的顶点的横坐标是2,则m 的值是________.三、解答题(共11分)5.已知当x =1时,二次函数有最大值5,且图象过点(0,-3),求此函数关系式.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.下表是二次函数y =ax 2+bx +c 的自变量x 的值与函数y 的对应值,判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的一个解的范围是( )x 6.17 6.18 6.19 6.20y =ax 2+bx +c-0.03-0.010.020.04A.6<x <6.17 B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.202.二次函数y =2x 2+3x -9的图象与x 轴交点的横坐标是( ) A.32和3 B.32和-3 C .-32和2 D .-32和-2二、填空题(每小题4分,共8分)3.已知抛物线y =x 2-x -1与x 轴的交点为(m,0),则代数式m 2-m +2 011的值为__________.4.如图J22-2-1是抛物线y =ax 2+bx +c 的图象,则由图象可知,不等式ax 2+bx +c <0的解集是________.图J22-2-1三、解答题(共11分) 5.如图J22-2-2,直线y =x +m 和抛物线y =x 2+bx +c 都经过点A (1,0),B (3,2). (1)求m 的值和抛物线的关系式;(2)求不等式x 2+bx +c >x +m 的解集(直接写出答案).图J22-2-2时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.在半径为4 cm 的圆中,挖去一个半径为x cm 的圆,剩下一个圆环的面积为y cm 2,则y 与x 的函数关系为( )A .y =πx 2-4B .y =π(2-x )2C .y =-(x 2+4)D .y =-πx 2+16π2.已知某种礼炮的升空高度h (m)与飞行时间t (s)的关系式是h =-52t 2+20t +1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为( )A .3 sB .4 sC .5 sD .6 s 二、填空题(每小题4分,共8分) 3.出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x =________元,一天出售该种手工艺品的总利润y 最大.4.如图J22-3-1,某省大学的校门是一抛物线形水泥建筑物,大门的地面宽度为8 m ,两侧距地面4 m 的高处各有一个挂校名横匾用的铁环,两铁环的水平距离为6 m ,则校门的高度为(精确到0.1 m ,水泥建筑物厚度忽略不计)________.图J22-3-1三、解答题(共11分)5.杂技团进行杂技表演,演员从跷跷板右端A 处弹跳到人梯顶端椅子B 处,其身体(看成一个点)的路线是抛物线y =-35x 2+3x +1的一部分,如图J22-3-2.(1)求演员弹跳离地面的最大高度;(2)已知人梯高BC =3.4米,在一次表演中,人梯到起跳点A 的水平距离是4米,问这次表演是否成功?说明理由.图J22-3-2基础知识反馈卡·22.1.11.C 2.D 3.3 4.k >-1 5.解:图略.(1)函数y =2x 2的图象开口向上,对称轴为y 轴,顶点坐标为(0,0).函数y =-12x 2的图象开口向下,对称轴为y 轴,顶点坐标为(0,0).(2)≠0 低(3)≤ =0 大 0 基础知识反馈卡·22.1.2 1.A 2.B3.上 y 轴 4.y =2⎝⎛⎭⎪⎫x +322-32 5.解:(1)将二次函数y =-12x 2+x +4配方,得y =-12(x -1)2+92.所以抛物线的开口向下,顶点坐标为⎝ ⎛⎭⎪⎫1,92,对称轴为x =1. (2)当x >1时,y 随x 的增大而减小;当x <1时,y 随x 的增大而增大.基础知识反馈卡·*22.1.31.D2.C3.y =-(x +1)2+54.-35.解:由题意可设函数关系式为y =a (x -1)2+5,∵图象过点(0,-3),∴a (0-1)2+5=-3,解得a =-8.∴y =-8(x -1)2+5,即y =-8x 2+16x -3.基础知识反馈卡·22.21.C 2.B 3.2 012 4.-2<x <35.解:(1)∵直线y =x +m 经过点A (1,0),∴0=1+m .∴m =-1. 即m 的值为-1.∵抛物线y =x 2+bx +c 经过点A (1,0),B (3,2), ∴⎩⎪⎨⎪⎧ 0=1+b +c ,2=9+3b +c ,解得⎩⎪⎨⎪⎧b =-3,c =2. ∴二次函数的关系式为y =x 2-3x +2. (2){x |x <1或x >3}. 基础知识反馈卡·22.3 1.D 2.B 3.4 4.9.1 m5.解:(1)y =-35x 2+3x +1=-35⎝ ⎛⎭⎪⎫x -522+194.故函数的最大值是194,∴演员弹跳离地面的最大高度是194米.(2)当x =4时,y =-35×42+3×4+1=3.4=BC .∴这次表演成功.基础知识反馈卡·23.1 1.D 2.A3.∠D∠E DE DC 4.C顺时针90 5.解:(1)旋转中心是点B.(2)旋转了90度.(3)AC与EF垂直且相等.。

九年级数学二次函数专项训练含答案-精选5篇

九年级数学二次函数专项训练含答案-精选5篇

九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)

九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。

答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。

2. 求函数 $y = -x^2 + 4x + 1$ 的零点。

答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。

3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。

答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。

4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。

答案:由于两个函数有相同的图像,所以它们的系数相等。

比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。

5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。

答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。

代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。

整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。

由于该方程为二次方程,必然存在实数解。

九年级数学 二次函数(基础篇)(专项练习)Word版含解析

九年级数学 二次函数(基础篇)(专项练习)Word版含解析

专题2.2 二次函数(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.2 二次函数(基础篇)(专项练习)一、单选题知识点一、二次函数的判断1.下列函数中是二次函数的是( )A .y =3x +1B .y =3x 2﹣6C .21y x x =+D .y =﹣2x 3+x ﹣12.下列是二次函数的是( )A .21y x x =+B .213y x =+C .1y x =+D .221x -3.下列函数中,是二次函数的是( )A .y =6x 2+1B .y =6x +1C .y =8xD .y =﹣28x +1 4.以x 为自变量的函数:①(2)(2)y x x =+-;①2(2)y x =+;①2123y x x =+-;①()21y x x x =--.是二次函数的有( )A .①①B .①①①C .①①①D .①①①① 知识点二、根据二次函数定义求参数5.若函数()2my m x =+是二次函数,那么m 的值是( ) A .2 B .-2或2C .-2D .0或2 6.若函数()2211mm y m x --=+是关于x 的二次函数,则m 的值是( )A .2B .1-或3C .3D .1-7.若()2234y a x x =--+是二次函数,则a 的取值范围是( )A .2a ≠B .0a >C .2a >D .0a ≠ 8.若函数()27321m y m x x -=--+是二次函数,则m 的值为( )A .3B .3-C .3±D .9 知识点三、列二次函数解析式9.一个边长为2厘米的正方形,如果它的边长增加()0x x >厘米,则面积随之增加y 平方厘米,那么y 与x 之间满足的函数关系是( )10.下列问题中的两个变量成反比例关系的是( )A .汽车以80千米/时的速度行驶s 千米,用时t 时B .正方形的周长C 与它的面积SC .有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)D .圆的面积S 与它的半径r11.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+12.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A .y=36(1﹣x )B .y=36(1+x )C .y=18(1﹣x)2D .y=18(1+x 2)二、填空题知识点一、二次函数的判断13.像y =-5x ²+100x +60000,26y x =,220S x x =-+,函数都是用自变量的_____次式表示的.一般地,若两个自变量x ,y 之间的对应关系可以表示成2y ax bx c =++ (a ,b ,c 是常数,a ≠0)的形式,则称y 是x 的______函数.其中,x 是______,a 为_______,2ax 叫做________;b 为_______,bx 叫做________;c 为_______.14.观察:①26y x =;①235y x =-+;①2200400200y x x =++;①22y x x =-;①21132y x x =-+;①()221y x x =+-.这六个式子中二次函数有___________________.(只填序号)15.关于x 的二次函数()()211y m x m x m =++-+,当0m =时,它是______函数;当1m =-时,它是______函数.16.给出下列函数:①y ①()21y x x x =-+;①21y x x=+;①()1y x x =-.其中是二次函数的有______,若把它写成2y ax bx c =++的形式,则=a ______,b =______,c =______.知识点二、根据二次函数定义求参数27m -18.已知y =()22m m m x --+3是x 的二次函数,则m =_____. 19.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.20.已知二次函数()2211y a x x a =-++-的图像经过原点,则a 的值是_______.知识点三、列二次函数解析式21.将长为20cm 的铁丝首尾相连围成扇形(忽略铁丝的粗细),扇形面积为()2cm y 、扇形半径为()cm x 且010x <<,则y 与x 之间的函数关系式为__________.22.已知()21f x x =+,则()1f -=___________23.在实数范围内定义一种运算“①”,其运算法则为a ①b =22a ab -,根据这个法则,若(3)y x =+①2,则y =________(写成一般式).24.在一幅长60cm,宽40cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是ycm 2,设金色纸边的宽度为xcm,那么y 关于x 的函数是 ___________.三、解答题25.如果函数y =(m ﹣3)232mm x -++mx +1是二次函数,求m 的值. 26.已知()()24236--=++--m m y m x m x 是y 关于x 的二次函数,试确定m 的值.27.当m 为何值时,函数()221181m m y m x x --=++-是二次函数.28.如图2所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(cm 2)与它的一边长x(cm)之间的函数关系式.29.某农科所研究出一种新型的花生摘果设备,一期研发成本为每台6万元,该摘果机的销售量y (台)与售价x (万元/台)之间存在函数关系:24y x =-+.(1)设这种摘果机一期销售的利润为1W (万元),问一期销售时,在抢占市场份额(提示:销量尽可能大)的前提下利润达到32万元,此时售价为多少?(2)由于环保局要求该机器必须增加除尘设备,科研所投入了7万元研究经费,使得环保达标且机器的研发成本每台降低了1万元,若科研所的销售战略保持不变,请问在二期销售中利润达到63万元时,该机器单台的售价为多少?30.如图,在△ABC中,①ACB=90°,①A=30°,AB=4,点P是AB边上一个动点,过点P作AB的垂线交AC边与点D,以PD为边作①DPE=60°,PE交BC边与点E.(1)当点D为AC边的中点时,求BE的长;(2)当PD=PE时,求AP的长;(3)设AP 的长为x,四边形CDPE的面积为y,请直接写出y与x的函数解析式及自变量x的取值范围.参考答案:1.B【分析】根据二次函数的定义:形如()20y ax bx c a =++≠的函数,判断即可.【详解】解:A 、该函数是一次函数,故本选项不符合题意;B 、该函数二次函数,故本选项符合题意;C 、该函数不是二次函数,故本选项不符合题意;D 、该函数不是二次函数,故本选项不符合题意.故选B .【点睛】本题考查了二次函数的定义,熟练掌握定义是解题的关键.2.B【分析】根据二次函数的定义,形如2(0y ax bx c a =++≠,其中,,a b c 是常数)的函数是二次函数,据此分析即可.【详解】A. 21y x x=+,不是二次函数,故该选项不符合题意; B.213y x =+,是二次函数,故该选项符合题意;C.1y x =+,是一次函数,故该选项不符合题意;D.221x -,不是函数,故该选项不符合题意.故选B .【点睛】本题考查了二次函数的定义,掌握二次函数的定义是解题的关键.3.A【分析】根据二次函数的定义求解.【详解】解:A .是二次函数,故本选项符合题意;B .是一次函数,不是二次函数,故本选项不符合题意;C .是反比例函数,不是二次函数,故本选项不符合题意;D .等式的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A .【点睛】本题考查二次函数的基础知识,熟练掌握二次函数的意义是解题关键.4.C【分析】根据二次函数的定义进行判断.【详解】解:①2(2)(2)=4y x x x =+--,符合二次函数的定义,故①是二次函数; ①2(2)y x =+,符合二次函数的定义,故①是二次函数;①2123y x x =+-,符合二次函数的定义,故①是二次函数;①()2221=y x x x x x x x =----=-,不符合二次函数的定义,故①不是二次函数.所以,是二次函数的有①①①,故选:C .【点睛】本题考查了二次二次函数的定义,熟记概念是解题的关键.5.A【分析】根据二次函数的定义得出20m +≠且2m =,继而即可求解.【详解】①函数()2my m x =+是二次函数, ①20m +≠且2m =,①2m =故选:A .【点睛】本题考查二次函数的定义,解题的关键是根据二次函数的定义得出:20m +≠且2m =.6.C【分析】根据二次函数的定义条件列出方程与不等式即可得解.【详解】①函数()2211m m y m x --=+是关于x 的二次函数,①2212m m --=,且10m +≠,由2212m m --=得,3m =或1m =-,由10m +≠得,1m ≠-,①m 的值是3,故选:C .【点睛】本题考查了二次函数的定义、解一元一次不等式、解一元二次方程等知识,解答本题的关键是根据二次函数的定义列出方程与不等式.7.A【分析】根据二次函数的二次项系数不为0可得关于a 的不等式,解不等式即得答案.【详解】解:由题意得: a -2 ≠0,则a ≠2.故选择:A .【点睛】本题考查了二次函数的定义,属于基础题型,掌握二次函数的概念是关键.8.C【分析】根据二次函数的定义即可得.【详解】由题意得:272320m m ⎧-=⎨-≠⎩, 解得3m =±,故选:C .【点睛】本题考查了二次函数的定义,熟记定义是解题关键.9.D【分析】根据题意列出增加的面积与原面积的关系式,即可解题.【详解】解:由题意得,222(2)24y x x x =+-=+y ∴与x 之间满足的函数关系是二次函数,故选:D .【点睛】本题考查列二次函数的表达式,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】根据题意逐一写出两个变量之间的函数关系,逐一分析即可得到答案.【详解】解:A 、汽车以80千米/时的速度行驶s 千米,用时t 时,则80s t =,s 是t 的正比例函数,故本选项错误;B 、正方形的面积22,416C C S ⎛⎫== ⎪⎝⎭S 是C 的二次函数,故本选项错误; C 、有一水池的容量为100立方米,每小时的灌水量q (立方米)与灌满水池所需要的时间t (小时)的函数关系为:100q t =,所以q 是t 的反比例函数,故本选项正确; D 、圆的面积S 与它的半径r 的函数关系为:2,S r π= 所以S 是r 的二次函数,故本选项错误.故选:C .【点睛】本题考查的是列函数关系式,同时考查正比例函数,反比例函数,二次函数的含义,掌握反比例函数的含义是解题的关键.11.A【分析】先求出原来的圆的面积,再用x 表示挖去的圆的面积,相减得到圆环的面积.【详解】解:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,①圆环面积216y x ππ=-.故选:A .【点睛】本题考查二次函数的列式,解题的关键是根据题意用x 表示各个量,然后列出函数关系式.12.C【分析】原价为18,第一次降价后的价格是18×(1-x ),第二次降价是在第一次降价后的价格的基础上降价的为:18×(1-x )×(1-x )=18(1-x )2,则函数解析式即可求得.【详解】解:原价为18,第一次降价后的价格是18×(1-x );第二次降价是第一次降价后的价格的基础上降价:18×(1-x )×(1-x )=18(1-x )2, 则函数解析式是:y=18(1-x )2,故选C .【点睛】本题需注意第二次降价是在第一次降价后的价格的基础上降价的.13. 二 二次 自变量 二次项系数 二次项 一次项系数 一次项 常数项【解析】略14.①①①①【分析】根据二次函数的定义可得答案.【详解】解:这六个式子中,二次函数有:①y=6x 2;①y=-3x 2+5;①y=200x 2+400x+200;①22y x x =-.故答案为:①①①①.【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键.15. 二次 一次【分析】将0m =和1m =-代入到()()211y m x m x m =++-+中即可.当0m =时,2y x x ,是二次函数;当1m =-时,21y x =--,是一次函数.【详解】当0m =时,2yx x ,是二次函数;当1m =-时,21y x =--,是一次函数.故答案为二次 一次 【点睛】本题主要考查二次函数与一次函数的定义,掌握一次函数与二次函数的定义是解题的关键.16. ① 1- 1 0【分析】根据二次函数的概念:2(0)y ax bx c a =++≠逐一进行判断即可.①①①都不满足二次函数的形式,①是二次函数【详解】①不满足二次函数的形式,所以不是二次函数;①()21y x x x x =-+=-,是一次函数,也不满足要求;①不满足二次函数的形式,所以不是二次函数;①()21y x x x x =-=-+是二次函数所以二次函数只有①其中1,1,0a b c =-==故答案为 ① 1- 1 0【点睛】本题主要考查二次函数的概念,掌握二次函数的概念是解题的关键.17.3-【分析】根据二次函数的定义得出30m -≠且272m -=,求出即可. 【详解】解:函数27(3)m y m x -=-是二次函数, 30m ∴-≠且272m -=,解得:3m =-.故答案为:3-.【点睛】本题考查了二次函数的定义,解题的关键是能熟记二次函数的定义即:表示形式为2(0)y ax bx c a =++≠.18.-1【分析】根据二次函数定义可得m 2﹣m =2,且m ﹣2≠0,再解出m 的值即可.【详解】解:由题意得:m 2﹣m =2,且m ﹣2≠0,解得:m =﹣1,故答案为:﹣1.【点睛】此题主要考查了二次函数定义,解题的关键是掌握一般地,形如2y ax bx c =++(a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.其中x 、y 是变量,a 、b 、c 是常量,a 是二次项系数,b 是一次项系数,c 是常数项.y ═ax 2+bx +c (a 、b 、c 是常数,a ≠0)也叫做二次函数的一般形式.19.3【分析】根据二次函数图象过原点,把()0,0代入解析式,求出m 的值,还需要考虑二次项系数不能为零.【详解】解:根据二次函数图象过原点,把()0,0代入解析式,得209m =-,整理得29m =,解得3m =±,①30m +≠,①3m ≠-,①3m =.故答案为:3.【点睛】本题考查二次函数图象的性质,需要注意解出的解要满足二次项系数不能为零的隐藏条件.20.1-【分析】根据二次函数图象经过原点、并结合二次项系数不为零进行解答即可.【详解】解:①二次函数()2211y a x x a =-++-的图像经过原点()0,0①21010a a -≠⎧⎨-=⎩①1a =-.故答案是:1-【点睛】本题考查了根据二次函数的定义求参数、解一元一次不等式、解一元二次方程等,熟练掌握相关知识点是解题的关键.21.210y x x =-+【分析】根据扇形的面积公式即可得. 【详解】扇形的面积公式:12S lr =扇,其中l 为扇形的弧长,r 为扇形半径, 由题意得:扇形的弧长为()202cm x -,则()12022y x x =-, 即210y x x =-+,故答案为:210y x x =-+.【点睛】本题考查了扇形的面积公式、列二次函数关系式,熟记公式是解题关键. 22.2.【分析】求()1f -的值,即是求当=1x -时,21x +的值,从而进行计算即可得到答案.【详解】解:①()21f x x =+①()()21112f -=-+=故答案为:2.【点睛】本题主要考查了函数在某一点的函数值,解题的关键是把该点的x 值代入函数解析数进行运算求解.23.223y x x =+-【分析】先根据新定义列出关系式,然后改写成一般式即可.【详解】解:由题意可得:2(3)22(3)y x x =+-⨯+整理,得:226941223y x x x x x =++--=+-故答案为:223y x x =+-【点睛】本题考查新定义问题,正确理解题意列出关系式并准确计算是解题关键.24.y =(60+2x )(40+2x )【详解】试题分析:整个挂图仍是矩形,长是:60+2x ,宽是:40+2x ,由矩形的面积公式得y =(60+2x )(40+2x ).故答案为y =(60+2x )(40+2x ).点睛:本题考查了根据实际题意列函数解析式,根据题意,找到所求量的等量关系是解决问题的关键.本题需注意长和宽的求法.25.0【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数是二次函数,即可答题.【详解】解:根据二次函数的定义:m 2﹣3m +2=2,且m ﹣3≠0,解得:m =0.【点睛】本题考查二次函数的定义,解题的关键是熟练掌握二次函数的定义.26.3m =【分析】根据二次函数的定义:最高次数是2,二次项系数不能是0,求出m 的值.【详解】解:根据题意得242m m ,260m m --=,解得12m =-,23m =, ①20m +≠,即2m ≠-,①3m =.【点睛】本题考查二次函数的定义,解题的关键是二次函数的定义.27.m=3【分析】根据二次函数的定义即可求出结论.【详解】解:①函数()221181mm y m x x --=++-是二次函数①210212m m m +≠⎧⎨--=⎩ 解得:m=3即当m=3时,函数()221181m m y m x x --=++-是二次函数.【点睛】此题考查的是根据二次函数的定义,求参数,掌握二次函数的定义是解题关键.28.S =- x 2+30x (0<x <30)【分析】由铁丝的长是60cm ,一边长xcm ,可知另一边长是(30-x )cm ,然后根据长方形的面积公式即可求出矩形面积S (cm 2)与它的一边长x (cm)之间的函数关系式.【详解】①铁丝的长是60cm ,一边长x cm ,①另一边长是(30-x )cm ,①S =x (30-x )=- x 2+30x (0<x <30).【点睛】本题考查了列二次函数解析式,解决本题的关键得到所求矩形的等量关系,易错点是得到另一边的长度;注意求自变量的取值应从线段的长为正数入手考虑.29.(1)在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台;(2)要使二期利润达到63万元,销售价应该为10万元/台.【分析】(1)先根据等量关系式:总利润=(售价-成本)⨯销售量,列出函数关系式,再将132W =代入函数关系式得出方程求解即得;(2)先根据等量关系式:总利润=(售价-新成本)⨯销售量-7,列出函数关系式,再将263W =代入函数关系式得出方程求解即得.【详解】(1)根据题意列出函数关系式如下:21(6)(6)(24)(15)81W x y x x x =-⋅=--+=--+当132W =时,2(15)8132x --+=,解得18x =,222x =.①要抢占市场份额①8x =.答:在抢占市场份额的前提下利润要达到32万元,此时售价为8万元/台.(2)降低成本之后,每台的成本为5万元,每台利润为(5)x -万元,销售量24y x =-+.依据题意得22(5)(24)729127W x x x x =--+-=-+-,当263W =时,22912763x x -+-=,解得110x =,219x =.①要继续保持扩大销售量的战略①10x =答:要使二期利润达到63万元,销售价应该为10万元/台.【点睛】本题考查函数解析式及解一元二次方程,解题关键是正确找出等量关系式:总利润=(售价-成本)⨯销售量.30.(1)54;(2)125;(3)2(03)y x x =<< 【分析】(1)根据含有30°角的直角三角形的性质和勾股定理求出AP 的长,从而求出BP 的长,然后求出BE 的长;(2)设AP= x ,则BP=4—x ,根据含有30°角的直角三角形的性质和勾股定理求出PD 和PE 的长,再根据PD=PE 列出方程即可.(3)分别用AP 表示PD 、PE 、BE,再根据ABC APD BPE y S S S ∆∆∆=--即可求出.【详解】(1)在△ABC 中,①ACB=90°,①A=30°,AB=4,12,2BC AB AC ∴==∴= ①点D 为AC 边的中点3522AD DP AP BP AB AP ∴====∴=-=, ①①DPE=60°,过点P 作AB 的垂线交AC 边与点D ,①①EPB=30°,①EB 15=24BP = (2)设AP= x ,则BP=4—x ,在两个含有30°的,Rt APD Rt BPE ∆∆中得出:AD=2DP ,BP=2BE,由勾股定理解得:),4PD PE x ==-, ①PD=PE ,)4x x =-解得125x = 即有AP= 125 (3)由(2)知:AP= x,)()1,4,42PD x PE x BE x ==-=-)()211112?4?42222(03)ABC APD BPE y S S S x x x x x ∆∆∆∴=--=⨯⨯---=<< 【点睛】本题主要考查了含有30°角的直角三角形的性质和勾股定理,以及二次函数,熟练掌握相关知识是解题的关键.。

初三数学二次函数练习题及答案

初三数学二次函数练习题及答案

初三数学二次函数练习题及答案以下是关于初三数学二次函数练习题及答案的内容:一、选择题1. 某二次函数图像开口向上,顶点坐标为(2,-3),则该二次函数的解析式是:A. f(x) = 3(x-2)^2 - 3B. f(x) = -3(x-2)^2 + 3C. f(x) = -3(x-2)^2 - 3D. f(x) = 3(x-2)^2 + 3答案:C2. 若二次函数关于x轴对称,则该二次函数的解析式可能是:A. f(x) = -2(x-3)^2 + 4B. f(x) = 2(x-3)^2 + 4C. f(x) = -2(x+3)^2 + 4D. f(x) = 2(x+3)^2 + 4答案:A3. 已知二次函数y = ax^2 + bx + c的顶点坐标为(-1,4),则a、b、c 中有一定关系是:A. b = -2a-8cB. c = -2a-8bC. a = -2b-8cD. a = -2b-8a答案:A二、填空题1. 已知二次函数y = 2x^2 + 3x + k,其中k为常数,若该二次函数的图像和x轴有两个交点,则k的取值范围是______。

答案:k < -9/8 或 k > -3/82. 已知二次函数y = ax^2 + bx + c的顶点坐标为(2,-1),则a,b,c中的未知数为______。

答案:a、b、c均为未知数3. 若已知二次函数y = 3(x-2)^2 + k的图像过点(3,12),则k的取值为______。

答案:k = 3三、解答题1. 请解释二次函数图像开口的方向如何确定,并举例说明。

答案:二次函数的图像开口方向由二次项系数a的正负来确定。

当a > 0时,二次函数图像开口向上;当a < 0时,二次函数图像开口向下。

例如,二次函数y = -2x^2 + 3x + 1的图像开口向下。

2. 某二次函数图像开口向上,顶点坐标为(-2,4),请写出该二次函数的解析式。

初三数学二次函数练习题及答案

初三数学二次函数练习题及答案

初三数学二次函数练习题及答案一、基础练习1.把抛物线y=2x向上平移1个单位,得到抛物线_______,把抛物线y=-2x?向下平移个单位,得到抛物线________..抛物线y=3x-1的对称轴是_____,顶点坐标为________,它是由抛物线y=3x?向_______平移______个单位得到的..把抛物线向左平移1个单位,得到抛物线_________,把抛物线 ?向右平移3个单位,得到抛物线________.24.抛物线y=x-1)的开口向________,对称轴是______,顶点坐标是_________,222222?它是由抛物线x2向______平移______个单位得到的..把抛物线y=-13132向_____平移______个单位,就得到抛物线y=-13x2.6.把抛物线y=42向______平移_______个单位,就得到函数y=42的图象..函数y=-的最大值为________,函数y=-x-22213的最大值为________.8.若抛物线y=a的对称轴为x=-3,且它与抛物线y=-2x2的形状相同,?开口方向相同,则点关于原点的对称点为________..已知抛物线y=a2过点,则该函数y=a2当x=________?的时候,?有最____值______.10.若二次函数y=ax2+b,当x取x1,x2时,函数值相等,则x取x1+x2时,函数的值为________.11.一台机器原价50万元.如果每年的折旧率是x,两年后这台机器的价格为y?万元,则y与x的函数关系式为A.y=50B.y=50C.y=50-x2D.y=5012.下列命题中,错误的是 A.抛物线221212x2-1不与x轴相交;B.抛物线x2-1与121222形状相同,位置不同;12C.抛物线y= D.抛物线y=2的顶点坐标为;12)的对称轴是直线x=13.顶点为且开口方向、形状与函数y=- A.y=-13 1313x的图象相同的抛物线是 D.y=1222B.y=-13x2-5C.y=-13214.已知a x-2的图象上,则A.y1 2在同一坐标系中的图象大致为二、整合练习 1.已知反比例函数y=kx的图象经过点A,若二次函数y=12x2-x?的图象平移后经过该反比例函数图象上的点B,C,求平移后的二次函数图象的顶点坐标.2.如图,在正方形ABCD中,AB=2,E是AD边上一点.BE?的垂直平分线交AB于M,交DC于N.设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;当AE为何值时,四边形ADNM的面积最大?最大值是多少?3.将二次函数y=-2x2+8x-5的图象开口反向,并向上、下平移得一新抛物线,新抛物线与直线y=kx+1有一个交点为.求:这条新抛物线的函数解析式;这条新抛物线和直线y=kx+1的另一个交点.答案: 一、1.y=2x2+1 y=-2x2-2.y轴下 1.x+1)2x-3)2.上直线x=1 右 1.右,6.左.0138..大 0 10.11.A 12.D 13.C 14.C15.B+k过原点,所以0=1+k,k=-1,双曲线y=-1x )二、1.由反比例函数y=kx的图象过点A,所以1k2=4,k=2,?所以反比例函数的解析式为y=2x.又因为点B,C在y=2x的图象上,所以m=2,n=1222=1,设二次函数y=12x-x的图象平移后的解析式为y=2+k,它过点B,C,所以平移后的二次函数图象的顶点为.2.连接ME,设MN交BE交于P,根据题意得MB=ME,MN⊥BE.过N作NG⊥AB于F,在Rt△MBP和Rt△MNE中,∠MBP+∠BMN=90°,∠FNM+∠BMN=90°,∠MBP=∠MNF,又AB=FN,Rt△EBA≌Rt△MNE,MF=AE=x.在Rt△AME中,由勾股定理得 ME2=AE2+AM2,所以MB2=x2+AM2,即2=x2+AM2,解得AM=1- 所以四边形ADNM的面积S=AM?DN2?AD?12AM?AF214x2.×2=AM+AM+MF=2AM+AE=2+x=-12x2+x+2.即所求关系式为S=-S=-12x2+x+2.52x2+x+2=-12+=-122+52.52当AE=x=1时,四边形ADNM的面积S的值最大,此时最大值是.3.y=-2x2+8x-5=-22+3,将抛物线开口反向,且向上、?下平移后得新抛物线方程为y=22+m.因为它过点,所以4=22+m,m=2,这条新抛物线方程为y=22+2,即y=2x2-8x+10.直线y=kx+1过点,4=3k+1,k=1,求得直线方程为y=x+1.另一个交点坐标为。

word完整版初中数学九年级二次函数基础练习题

word完整版初中数学九年级二次函数基础练习题

二次函数基础练习题1. 抛物线 y ax 2 bx c(a0)过第二、三、四象限,则 a0 , b0 , c0 .2. 抛物线 yax 2bx c(a 0) 过第一、二、四象限,则 a 0 , b 0 , c 0 . 3.已知抛物线 yax 22x c 与 x 轴的交点都在原点的右边,则点M ( a,c )在第象限.4. 二次函数 y ax 2 bx c 的图象如下图,则 a0 , b0 , c0 ,b 2-4ac0 , a + b + c 0 ,a - b + c0 ;5. 二次函数 y ax 2bx c 的图象如下图,则 a 0 , b0 , c 06. 二次函数 y ax2bx c 的图象如下图,那么以下四个结论:① a <0 ;② c >0 ; ③ b24ac >0 ; ④ b<0 中,a正确的结论有 ( ) 个7. 已知:抛物线y ax 2( a < 0)经过点(- 1, 0),且知足 4a + 2b + c > 0.以下结论:bx c① a + b > 0;② a + c > 0;③- a + b + c > 0;④2 > 0 .此中正确的个数有()个ax 2b 2ac8. 已知二次函数 y bx c 中 a 0,b 0,c 0 ,则此函数的图象不经过第 象限 9. 已知二次函数 y ax 2 bx c 中 a 0,b 0, c0 ,则此函数的图象不经过第 象限10. 已知二次函数 yax 2bx c 中 a 0, b 0,c0 ,则此函数的图象只经过第象限11. 如图,函数 y ax 2 bx c 的图象中函数值y 0 时,对应 x 的取值范围是函数值 y0时,对应 x 的取值范围是12. 如图,函数 y ax 2 bx c 的图象中函数值 y0 时,对应 x 的取值范围是-5113. 二次函数 yx 2 bx c 的图象如下图,则函数值y 0 时,对应 x 的取值范围是。

初三二次函数练习题

初三二次函数练习题

初三二次函数练习题d o c(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--二次函数测试题一.选择题1、二次函数y=x 2+x-2的图象与x 轴交点的横坐标是( )A .2和-1B .2-和1C .2和1D .2-和-12.抛物线y=-3(x+6)2-1的对称轴是直线( ).A .x=-6B .x=-1C .x=lD .x=63.关于x 的一元二次方程向(a-1)x 2+x+a 2-1=0的一个根是0,则a 的值为( )A .B .1C .-1D .1或-14.将抛物线y=5x 2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为( )A .y=5(x+3)2+2B .y=5(x+3)2-2C .y=5(x-3)2+2D .y=5(x-3)2-25.下列四个函数中,y 随x 增大而减小的是( )A .y=2x =-2x+5 C . D .y=-x 2+2x-16.在平面直角坐标系中,若点P(x-2,x)在第二象限.则x 的取值范围为( )A .x>0B .x<2C .O<x<2D .x>27.抛物线y=8x 2+2mx+m-2的顶点在x 轴上,则顶点坐标是( )A .(4,0)B . C. D .(0,)8、下列函数中是二次函数的是( )(A )142+=x y ;(B )14+=x y ;(C )x y 4=;(D )142+=x y 。

10、与抛物线152--=x y 顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数是()(A )152--=x y ;(B )152-=x y ;(C )152+-=x y ;(D )152+=x y 。

11、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )12、已知二次函数y=ax 2+bx+c 的图象如图,则a 、b 、c 满足 ( )(A )a <0,b <0,c >0;(B )a <0,b <0,c <0;(C )a <0,b >0,c >0;(D )a >0,b <0,c >0。

初三__二次函数基础分类练习题(含答案)[1]

初三__二次函数基础分类练习题(含答案)[1]

初三__二次函数基础分类练习题(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初三__二次函数基础分类练习题(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初三__二次函数基础分类练习题(含答案)(word版可编辑修改)的全部内容。

12二次函数练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:时间t (秒) 1 2 3 4 …距离s (米)2 8 18 32 …写出用t 表示s 的函数关系式:2、 下列函数:① 23yx ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1y x x ,其中是二次函数的是 ,其中a,b ,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数二次函数 4、当____m 时,函数2221mm ym m x 是关于x 的5、当____m时,函数2564mm ymx +3x 是关于x的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____。

7、在圆的面积公式 S =πr 2中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积. 9、如图,矩形的长是 4cm,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式。

(完整版)初三__二次函数基础分类练习题(含答案)

(完整版)初三__二次函数基础分类练习题(含答案)

1 二次函数练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:时间t (秒) 1 2 3 4 … 距离s (米)281832…写出用t 表示s 的函数关系式: 2、 下列函数:①23y x ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x (m 为常数)是关于x 的二次函数4、当____m 时,函数2221m m y mm x是关于x 的二次函数5、当____m时,函数2564m m ymx+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm , 那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?2练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm ymx 的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m xm y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax 与直线1yx 交于点,2b ,求这条抛物线所对应的二次函数的关系式.s t O st O stOs t O3练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位. 3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.4练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<1 7、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小5练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?6 练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是 (第5题)(第6题) (第7题) (第10题) 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m= 9、二次函数2yx ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个713、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2yax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c 的值。

初三数学二次函数基础练习题

初三数学二次函数基础练习题

九年级数学下----二次函数基础题练习1一、填空题: 1、若函数y =1)1(++a x a 是二次函数,则=a 。

2、二次函数开口向上,过点(1,3),请你写出一个满足条件的函数 。

3、二次函数y =x 2+x-6的图象:1)与y 轴的交点坐标 ;2)与x 轴的交点坐标 ; 3)当x 取 时,y <0; 4)当x 取 时,y >0。

4、把函数y =322-+-x x 配成顶点式 ;顶点 , 对称轴 ,当x 取 时,函数y 有最________值是_____。

5、函数y =x 2-k x+8的顶点在x 轴上,则k = 。

6、抛物线y =3-x 2左平移2个单位,再向下平移4个单位,得到的解析式是 ,顶点坐标 。

7抛物线y =3-x 2向右移3个单位得解析式是 8、如果点(1-,1)在y =2ax +2上,则=a 。

9、函数y =21-x 21- 对称轴是_______,顶点坐标是_______。

10、函数y =21-2)2(-x 对称轴是______,顶点坐标____,当 时y 随x 的增大而减少。

11、函数y =x 223+-x 的图象与x 轴的交点有 个,且交点坐标是 。

12、①y =x 2(-1+x )2;②y =21x;③2+-=x y ;④y =21-2)2(-x ;二次函数有 个。

二、选择题;1、下列函数中,图象一定经过原点的函数是( ) A. 23-=x y B.Xy 1=C.x x y 22+=D.12+=x y 2、二次函数422-+-=x x y ,它的对称轴、顶点坐标分别是( ) A 、直线x =1,(1,-3) B 、直线x =-1,(-1,-3) C 、直线x =1,(1, 3) D 、直线x =-1,(-1,3)3、二次函数c bx x y ++=2的图象上有两点(3,8)和(-5,8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。

人教版数学九年级上册《二次函数》基础课时练习题(含答案)

人教版数学九年级上册《二次函数》基础课时练习题(含答案)

二次函数基础分类练习题附答案练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t(秒)的数据如下表:时间 t (秒)1234距离 s(米)281832写出用 t 表示 s 的函数关系式 .2、下列函数:①y = 3x 2;②y = x2-x (1 + x ) ;③y = x2(x2+x) -4 ;④ y =12 + x ;x⑤ y = x (1 -x ) ,其中是二次函数的是,其中 a =, b =, c =3时,函数y = ( m - 2) x2+ 3x - 5( m 为常数)是关于x 的二次函数、当 m4、当m = _ _ _ _时,函数y =(m2+ m )x m2- 2 m- 1是关于x的二次函数5、当m = _ _ _ _时,函数y = (m -4) x m2 - 5 m+ 6+3x 是关于x的二次函数6、若点 A ( 2, m ) 在函数y x 21的图像上,则 A 点的坐标是____ .7、在圆的面积公式2的关系是()S=πr中, s 与 rA 、一次函数关系B 、正比例函数关系C、反比例函数关系D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S( cm2)与小正方形边长x( cm)之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加x cm,那么面积增加ycm2,①求 y 与 x 之间的函数关系式 .② 求当边长增加多少时,面积增加8cm2.10、已知二次函数y ax2c(a 0), 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为 a 米的旧墙及可以围成24 米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形 .( 1)如果设猪舍的宽 AB 为 x 米,则猪舍的总面积S(米2)与 x 有怎样的函数关系?( 2)请你帮富根老伯计算一下,如果猪舍的总面积为32 米2,应该如何安排猪舍的长BC 和宽 AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数y ax 2的图象与性质1、填空:( 1)抛物线y1x 2的对称轴是(或),顶点坐标是,当 x时, y2随 x 的增大而增大,当 x时, y 随 x 的增大而减小,当 x=时,该函数有最值是;( 2)抛物线y 1x 2的对称轴是(或),顶点坐标是,当 x时, y 随 x 的2增大而增大,当x时, y 随 x 的增大而减小,当 x=时,该函数有最值是;2、对于函数y2x2下列说法:①当x 取任何实数时, y的值总是正的;②x 的值增大, y 的值也增大;③ y 随 x 的增大而减小;④图象关于y 轴对称 .其中正确的是.2)3、抛物线 y=- x 不具有的性质是(A 、开口向下B 、对称轴是y 轴C、与 y轴不相交D、最高点是原点12t 的函数图像大致是()4、苹果熟了,从树上落下所经过的路程s 与下落时间 t满足 S=2 gt( g=9.8),则 s 与s s s stOO t O t O tA B C D5、函数y ax2与 y ax b的图象可能是()A .B .C. D .6、已知函数y = mx m2- m- 4的图象是开口向下的抛物线,求m 的值.3 x 2,当x1>x2>0时,求y1与y2的大小关系.8、二次函数y29、已知函数y m 2 x m2m 4是关于x的二次函数,求:( 1)满足条件的 m 的值;( 2)m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时, y 随 x 的增大而增大;( 3)m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时, y 随 x 的增大而减小?10、如果抛物线y = ax 2与直线 y = x - 1 交于点(b, 2),求这条抛物线所对应的二次函数的关系式.练习三函数 y ax 2 c 的图象与性质1、抛物线y2x 2 3 的开口,对称轴是,顶点坐标是,当 x时 , y 随 x 的增大而增大 , 当 x时 , y 随 x 的增大而减小 .2、将抛物线y 1x2向下平移2 个单位得到的抛物线的解析式为,再向上平移3 个单位得到的抛物线的解3析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k,得到不同的抛物线y x2k ,当k取0, 1 时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线y2x 2 1 向上平移4个单位后,所得的抛物线是,当 x=时,该抛物线有最(填大或小)值,是.5、已知函数y mx 2(m 2m)x 2 的图象关于y轴对称,则m=________;6、二次函数y ax 2c a0 中,若当、 x ( x)时,函数值相等,则当x 取 x1+x 2时,函数值等x 取 x121≠x2于.练习四函数 y a x h 2的图象与性质1、抛物线y1x 3 2,顶点坐标是,当 x时 ,y 随 x 的增大而减小,函数有最值22、试写出抛物线y3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.( 1)右移 2 个单位;( 2)左移2个单位;( 3)先左移 1 个单位,再右移 4 个单位 . 33y x 1 2和y x1具有的共同性质(至少2个).、请你写出函数、二次函数 y a x h 2的图象如图:已知1,,试求该抛物线的解析式.4a OA=OC25、抛物线y 3(x 3) 2与x轴交点为A,与y轴交点为B,求 A 、 B 两点坐标及⊿AOB 的面积 .6、二次函数y a(x 4)2,当自变量x 由 0 增加到 2 时,函数值增加 6.(1)求出此函数关系式 .(2)说明函数值 y 随 x 值的变化情况 .7、已知抛物线y x 2(k 2) x 9 的顶点在坐标轴上,求k 的值 .练习五y a x h 2k 的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________ .2、二次函数y= (x- 1)2+ 2,当 x=____时, y 有最小值 .3、函数 y=1(x- 1)2+3,当 x____时,函数值y 随 x的增大而增大 .21212的图象向平移 3 个单位,再向平移 2个单位得到 .4、函数 y=(x+3) -2 的图象可由函数 y=x225、已知抛物线的顶点坐标为( 2,1) ,且抛物线过点 (3,0) ,则抛物线的关系式是6、如图所示,抛物线顶点坐标是P( 1,3),则函数 y 随自变量 x 的增大而减小的x 的取值范围是()A 、 x>3B、 x<3C、 x>1D、 x<17、已知函数y 3 x 2 29.( 1)确定下列抛物线的开口方向、对称轴和顶点坐标;( 2)当 x=时,抛物线有最值,是.( 3)当 x时, y 随 x 的增大而增大;当 x时, y 随 x 的增大而减小 .(4)求出该抛物线与 x 轴的交点坐标及两交点间距离;(5)求出该抛物线与 y 轴的交点坐标;(6)该函数图象可由y3x2的图象经过怎样的平移得到的?8、已知函数yx 1 2 4 .( 1)指出函数图象的开口方向、对称轴和顶点坐标;( 2)若图象与 x 轴的交点为 A 、 B 和与 y 轴的交点 C,求△ ABC 的面积;( 3)指出该函数的最值和增减性;( 4)若将该抛物线先向右平移 2 个单位,在向上平移 4 个单位,求得到的抛物线的解析式;( 5)该抛物线经过怎样的平移能经过原点.( 6)画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当 x 取何值时,函数值小于 0.练习六y ax 2bx c 的图象和性质1、抛物线y x2 4 x 9的对称轴是.2、抛物线y2x212 x25 的开口方向是,顶点坐标是.3、试写出一个开口方向向上,对称轴为直线x=-2 ,且与 y 轴的交点坐标为(0,3)的抛物线的解析式.4、将 y= x2-2x+ 3化成y= a (x- h)2+k的形式,则y=____ .5、把二次函数y =- 1 x2- 3x - 5的图象向上平移 3 个单位,再向右平移 4 个单位,则两次平移后的函数图象22的关系式是6、抛物线y x 2 6 x 16 与x轴交点的坐标为_________;7、函数y 2 x2x 有最____值,最值为_______;8、二次函数y x 2bx c 的图象沿 x 轴向左平移2个单位,再沿 y 轴向上平移 3 个单位,得到的图象的函数解析式为 y x 22x 1,则 b 与 c 分别等于()A、6,4B、- 8,14C、- 6,6D、- 8,- 149y x22x1的图象在x 轴上截得的线段长为()、二次函数A、2 2B、3 2C、2 3D、3 310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:( 1)y 1 x22x1;( 2)y3x 28x 2 ;(3)y 1 x2x 4 2411、把抛物线y2x 24x 1沿坐标轴先向左平移 2 个单位,再向上平移 3 个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数y x2x 6 的图象与x轴和y轴的交点坐标13、已知一次函数的图象过抛物线y = x 2 + 2x + 3 的顶点和坐标原点1)求一次函数的关系式;2)判断点(- 2, 5)是否在这个一次函数的图象上14、某商场以每台2500 元进口一批彩电.如每台售价定为2700 元,可卖出 400 台,以每 100 元为一个价格单位,若将每台提高一个单位价格,则会少卖出50 台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七y ax 2bx c 的性质1、函数y = x2+ px + q的图象是以(3,2)为顶点的一条抛物线,这个二次函数的表达式为2、二次函数y = mx 2 + 2x + m -4m 2的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线y = ax 2 + bx + c 与y轴交于点A (0,2),它的对称轴是x = - 1,那么ac=b4、抛物线y x 2bx c与x轴的正半轴交于点A、B两点,与y轴交于点C,且线段AB的长为1,△ABC的面积为 1,则 b 的值为 ______.5、已知二次函数y ax 2bx c 的图象如图所示,则a___0,b___0,c___0,b24ac ____0;6、二次函数y ax2bx c 的图象如图,则直线 y ax bc 的图象不经过第象限.7、已知二次函数y = ax 2 + bx + c (a0 )的图象如图所示,则下列结论:1)a,b同号;2)当x = 1和x = 3时,函数值相同; 3)4a + b = 0;4)当y = - 2时, x 的值只能为0;其中正确的是8、已知二次函数y4x 22mx m2与反比例函数 y2m 4的图象在第二象限内x的一个交点的横坐标是-2,则 m=9、二次函数y = x2+ ax + b中,若a + b = 0,则它的图象必经过点()A (- 1,-)B()C()D(- 1,1) 11,- 11,110、函数y ax b 与 y ax 2bx c 的图象如图所示,则下列选项中正确的是()A 、ab0, c0B、ab0, c0C、ab0, c0D、ab0, c011、已知函数y ax2bx c 的图象如图所示,则函数y ax b的图象是()12、二次函数y ax 2bx c 的图象如图,那么abc、 2a+b、 a+b+c、a-b+c 这四个代数式中,值为正数的有()A.4 个B.3个C.2 个D.1 个13、抛物线的图角如图,则下列结论:①> 0;②;③>;④< 1.其中正确的结论是().( A )①②(B)②③(C)②④(D)③④14、二次函数y = ax2+ bx + c的最大值是- 3a,且它的图象经过(- 1,- 2) , (1, 6) 两点,求a、 b 、c15、试求抛物线y = ax 2 + bx + c 与 x 轴两个交点间的距离(b2 - 4ac > 0练习八二次函数解析式1、抛物线y=ax2+bx+c 经过 A(-1,0), B(3,0), C(0,1) 三点,则a=, b=, c=2、把抛物线y=x 2+2x-3 向左平移 3 个单位,然后向下平移 2 个单位,则所得的抛物线的解析式为.3、二次函数有最小值为- 1 ,当 x = 0 时,y = 1,它的图象的对称轴为x = 1 ,则函数的关系式为4、根据条件求二次函数的解析式( 1)抛物线过(-1, -6)、( 1, -2)和( 2, 3)三点( 2)抛物线的顶点坐标为(-1, -1),且与 y 轴交点的纵坐标为-3( 3)抛物线过(-1, 0),(3, 0),(1,- 5)三点;( 4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,- 2);5、已知二次函数的图象经过(- 1,1) 、 (2,1) 两点,且与x轴仅有一个交点,求二次函数的解析式6、抛物线2与点 (3,2),顶点在直线y=3x-3 上, a<0,求此二次函数的解析式 . y=ax +bx+c 过点 (0,-1)7、已知二次函数的图象与x 轴交于 A ( -2, 0)、B ( 3, 0)两点,且函数有最大值是2.( 1)求二次函数的图象的解析式;( 2)设次二次函数的顶点为P,求△ABP 的面积 .8、以 x 为自变量的函数y x 2(2m 1)x ( m24m 3) 中,m为不小于零的整数,它的图象与x 轴交于点 A 和 B,点 A 在原点左边,点 B 在原点右边 .(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点 A ,与这个二次函数的图象交于点C,且S ABC =10,求这个一次函数的解析式.练习九二次函数与方程和不等式1、已知二次函数y kx 27x7 与x轴有交点,则k 的取值范围是.2、关于 x 的一元二次方程x 2x n0 没有实数根,则抛物线y x2x n的顶点在第 _____象限;3y x22kx2与x 轴交点的个数为()、抛物线A 、 0B 、1C、 2 D 、以上都不对4、二次函数y ax 2bx c 对于x的任何值都恒为负值的条件是()A 、a 0,0B、a0,0C、a0,0 D、 a 0,05、y x2kx1 与 y x2x k 的图象相交,若有一个交点在x 轴上,则 k 为()A 、 0B 、-1C、 21 D、46、若方程ax2bx c0 的两个根是-3和1,那么二次函数y ax 2bx c 的图象的对称轴是直线()A 、x=- 3B、x=- 2C、x=- 1D、x= 17y =x2+ px + q的图象与 x 轴只有一个公共点,坐标为(- 1,0),求p,q的值、已知二次函数8 、画出二次函数y x 22x 3 的图象,并利用图象求方程x 2 2 x 3 0 的解,说明x 在什么范围时x22x 30.9、如图:( 1)求该抛物线的解析式;( 2)根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数y ax2bx c 的图象过A(-3,0),B(1,0),C(0,3),点D在函数图象上,点C、D是二次函数图象上的一对对称点,一次函数图象过点B、D ,求( 1)一次函数和二次函数的解析式,( 2)写出使一次函数值大于二次函数值的 x 的取值范围 .11、已知抛物线y = x 2 - mx + m - 2 .( 1)求证此抛物线与x 轴有两个不同的交点;( 2)若m是整数,抛物线y = x 2 - mx + m - 2 与 x 轴交于整数点,求m 的值;( 3)在( 2)的条件下,设抛物线顶点为 A ,抛物线与x轴的两个交点中右侧交点为 B.若 M 为坐标轴上一点,且MA=MB ,求点 M 的坐标 .练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100 万元引进一条农产品生产线,预计投产后每年可创收33 万元,设生产线投产后,从第一年到第x 年维修、保养费累计为y(万元),且y= ax2+ bx ,若第一年的维修、保养费为 2 万元,第二年的为 4 万元 ...求: y 的解析式 .3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m) 与水平距离x (m) 之间的函数关系式为y=-121x2+23 x+53,求小明这次试掷的成绩及铅球的出手时的高度.千克销售价 (元)3.50.5027月份4、用6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出20 件,每件盈利40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件 .①设每件降价x 元,每天盈利y 元,列出y 与 x 之间的函数关系式;②若商场每天要盈利1200 元,每件应降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,如图所示,把它的图形放在直角坐标系中 .①求这条抛物线所对应的函数关系式.②如图,在对称轴右边1m 处,桥洞离水面的高是多少?7、有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.( 1)在如图所示的直角坐标系中,求出该抛物线的解析式.( 2)在正常水位的基础上,当水位上升h(m) 时,桥下水面的宽度为d(m) ,试求出用 d 表示 h 的函数关系式;( 3)设正常水位时桥下的水深为2m,为保证过往船只顺利航行,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有 0.5m,若行车道总宽度AB 为 6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m) .练习一二次函数参考答案1: 1、 s2t 2 ; 2、⑤, -1 , 1, 0 ; 3 、 ≠2, 3 , 1 ; 6 、( 2 , 3 ); 7 、 D ; 8 、S 4x 2225(0 x15), 189;9、y x 2 7x ,1;10、y x 22 ;11、S 4x 224 x,2当 a<8 时,无解, 8a 16 时, AB=4,BC=8 ,当 a 16 时, AB=4,BC=8 或 AB=2,BC=16.练习二函数 yax 2 的图象与性质参考答案 2:1、(1)x=0,y 轴,( 0,0),>0 ,,<0, 0,小, 0; (2)x=0,y 轴,( 0,0), <,>, 0,大, 0;2、④; 3、 C ; 4、 A ; 5、 B ; 6、 -2; 7、3 ; 8、 y 1 y 2 0 ; 9、(1)2 或 -3,(2) m=2、 y=0、 x>0 ,( 3) m=-3, y=0 ,x>0 ; 10、 y2 x 29练习三函数 yax 2c 的图象与性质参考答案3:1、下, x=0,( 0, -3),<0, >0; 2、1 221 2yx , yx 1 0 -2),33,( ,(0, 1); 3、①②③; 4、 y 2x23, 0,小, 3; 5、 1; 6、 c.练习四函数 ya xh 2 的图象与性质参考答案 4:1、( 3,0),>3,大, y=0;2 、 y3(x 2)2, y3( x2) 2 , y 3( x 3) 2 ;3、3略; 4、 y1(x 2)2; 5、( 3, 0),( 0, 27), 40.5; 6、 y1(x 4)2 ,当 x<4 时, y22随 x 的增大而增大,当 x>4 时, y 随 x 的增大而减小; 7、-8, -2, 4.练习五y a xh 2k 的图象与性质参考答案 5: 1、略; 2、 1; 3、>1; 4、左、下; 5、 y x 24x 3 ;6、 C ; 7、( 1)下,x=2,(2,9),( 2) 2、大、 9,( 3) <2、>2,(4)( 23 ,0)、 ( 2 3 ,0)、 2 3 ,( 5)( 0,-3);( 6)向右平移 2 个单位,再向上平移9 个单位; 8、( 1)上、 x=-1 、( -1,-4);( 2)( -3,0)、( 1, 0)、( 0, -3)、6,( 3) -4,当 x>-1 时, y 随 x 的增大而增大;当x<-1 时, y 随 x的增大而减小 ,(4) y(x 1) 2 ;( 5)向右平移 1 个单位,再向上平移4 个单位或向上平移3 个单位或向左平移1 个单位;( 6) x>1 或 x<-3 、 -3<x<1练习六yax 2 bx c 的图象和性质参考答案6: 1、 x=-2; 2、上、(3,7);3、略; 4、 ( x 1)22 ;5、 y1 ( x 1)2 5 ;1;8、 C ;9、A ;10、( 1) y1(x26、( -2, 0)( 8,0);7、大、2) 2 1 、上、 x=2、( 2,82-1),( 2) y3( x 4 ) 2 103 3、下、 x4 、( 4 , 10 ),( 3) y1( x 2)2 3 、下、 x=2 、( 2, -3); 11、有、 y=6 ;3 3 3412、( 2,0)( -3,0)(0,6);13、y=-2x 、否; 14、定价为 3000 元时,可获最大利润 125000 元练习七yax 2 bxc 的性质参考答案 7: 1、 yx 26x 11; 2、( -4, -4); 3、 1; 4、 -3; 5、 >、 <、>、 >; 6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、y 2x 24x4 ;15、 b 24aca练习八二次函数解析式参考答案 8:1、1 2、1;2、28 x 10 ;3、y 2x24x 1 ;4(、 1)y x 2 2 x 53 35 x 25 x15、( 4 ) y 1 x 25;5、、( 2 ) y2x 24x 3 、( 3 ) y3x4 2 422y 4 x 24 x 1; 6、 yx24x 1; 7、( 1 ) y8 x 2 8 x 48、5;8、9 9 9252525yx 22x 3、 y=-x-1 或 y=5x+5练习九二次函数与方程和不等式参考答案 9: 1 、 k 7 0 ; 2、一; 3、C ;4、D ;5、C ;6、 C ;7、2,1; 8、且 k4x 1 1, x 2 3, 1 x3 ; 9 、( 1 ) yx 22x 、 x<0或 x>2 ; 10、 y=-x+1 ,yx 22x 3,x<-2 或 x>1;11 、( 1)略 ,(2)m=2,(3)(1 , 0)或( 0, 1)练习十二次函数解决实际问题参考答案 10: 1、① 2 月份每千克 3.5 元② 7 月份每千克 0.5 克③ 7 月份的售价最低④2~ 7 月份售价下跌; 2、y= x2+ x;3、成绩 10 米,出手高度5米;4、S3(x 1)23,3322当 x= 1 时,透光面积最大为m2; 5、(1) y= (40- x) (20+ 2x) =- 2x2+ 60x+ 800,( 2)21200=- 2x2+ 60x+ 800, x1= 20, x2= 10 ∵要扩大销售∴ x 取 20 元,( 3)y=- 2 (x 2-30x) + 800=- 2 (x- 15)2+ 1250∴当每件降价 15 元时,盈利最大为1250 元; 6、( 1)设 y= a (x- 5)2+ 4, 0= a (- 5)2+ 4, a=-4,∴ y=-42525(x- 5)2+ 4,( 2)当 x= 6 时,y=-4+ 4=3.4(m) ;7、( 1)y1x 2,(2)d10 4h ,(3)当水深超过 2.76m 2525时;8、126( 46) ,9,,,44货车限高为 3.2m.21。

初三数学二次函数基础练习题

初三数学二次函数基础练习题

初三数学二次函数基础练习题一、基础概念回顾二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

在解题前,我们首先需要回顾一些基础概念。

1. 顶点坐标:二次函数的顶点坐标可通过公式(-b/2a, f(-b/2a))求得。

其中,b和a代表二次项和一次项的系数。

2. 对称轴:二次函数的对称轴是垂直于x轴通过顶点的直线。

3. 开口方向:当a > 0时,二次函数开口朝上;当a < 0时,二次函数开口朝下。

4. 判别式:二次函数的判别式D = b^2 - 4ac。

判别式的正负决定了二次函数的图像与x轴的交点情况。

二、基础练习题1. 以下哪个为二次函数的解析式?A) y = -3x + 2B) y = x^3 - 4x^2 + x + 6C) y = 2x^2 + 5x - 3D) y = |x|答案:C2. 求二次函数f(x) = 3x^2 + 4x - 7的顶点坐标。

解答:由公式可知,顶点坐标为(-b/2a, f(-b/2a))。

代入a = 3和b = 4,得到顶点坐标为(-2/3, f(-2/3))。

我们还需要计算f(-2/3)的值。

将x = -2/3代入二次函数,得到f(-2/3) = 3(-2/3)^2 + 4(-2/3) - 7 = -12/3 - 8/3 - 7 = -27/3 = -9。

因此,二次函数f(x) = 3x^2 + 4x - 7的顶点坐标为(-2/3, -9)。

3. 判断二次函数g(x) = -2x^2 + 3x + 1的开口方向。

解答:由于a = -2 < 0,所以二次函数g(x)的开口方向朝下。

4. 求解二次方程x^2 - x - 2 = 0的解。

解答:对于二次方程ax^2 + bx + c = 0,可以使用求根公式x = (-b ±√(b^2 - 4ac)) / 2a求解。

将a = 1,b = -1,c = -2代入公式,得到x = (-(-1) ± √((-1)^2 - 4·1·(-2))) / 2·1= (1 ± √(1 + 8)) / 2= (1 ± √9) / 2= (1 ± 3) / 2因此,二次方程x^2 - x - 2 = 0的解为x = (1 + 3) / 2 = 2和x = (1 - 3) / 2 = -1。

二次函数基础练习题(打印版)

二次函数基础练习题(打印版)

二次函数基础练习题(打印版)### 二次函数基础练习题一、选择题1. 函数\( y = ax^2 + bx + c \)(其中\( a \neq 0 \))是二次函数,当\( a > 0 \)时,其开口方向是()A. 向上B. 向下C. 向左D. 向右2. 若二次函数\( y = ax^2 + bx + c \)的对称轴是直线\( x = 1 \),则\( b \)和\( a \)的关系是()A. \( b = 2a \)B. \( b = -2a \)C. \( b = a \)D. \( b = -a \)二、填空题1. 二次函数\( y = ax^2 + bx + c \)的顶点坐标是(),其中\( a \neq 0 \)。

2. 若二次函数的图象与x轴有两个交点,则\( b^2 - 4ac \)的值大于()。

三、解答题1. 已知二次函数\( y = ax^2 + bx + c \)的图象经过点(1,2)和(-1,0),求\( a \)的值。

2. 求二次函数\( y = x^2 - 2x + 1 \)的顶点坐标,并判断其图象的开口方向。

四、应用题1. 某工厂生产一种产品,其成本函数为\( C(x) = 0.5x^2 - 100x + 3000 \),其中\( x \)为生产数量(单位:件)。

求该工厂生产多少件产品时,每件产品的平均成本最低。

2. 某公司计划在一块长为50米的长方形地块上建造一个仓库,仓库的一边靠墙,另外三边需要用围栏围起来。

若围栏的总长度为90米,求仓库的最大面积。

答案:一、选择题1. A2. A二、填空题1. \( \left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right) \)2. 0三、解答题1. 将点(1,2)代入\( y = ax^2 + bx + c \)得\( a + b + c = 2 \),将点(-1,0)代入得\( a - b + c = 0 \)。

人教版九年级数学上册二次函数基础课时练习题(含答案)

人教版九年级数学上册二次函数基础课时练习题(含答案)

初中数学试卷二次函数基础分类练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:时间t (秒) 1 2 3 4 … 距离s (米)281832…写出用t 表示s 的函数关系式. 2、 下列函数:① 23y x ;② 21y x x x ;③ 224y x x x ;④ 21yx x ;⑤ 1yx x ,其中是二次函数的是 ,其中a,b,c3、当m 时,函数2235y mx x(m 为常数)是关于x 的二次函数4、当____m 时,函数2221mm y m m x 是关于x 的二次函数5、当____m时,函数2564mm ymx +3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系 8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; (2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm y mx 的图象是开口向下的抛物线,求m 的值.st Os tOs tOs tO7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax 与直线1y x 交于点,2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6. (1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为2,1,且抛物线过点3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( ) A 、x>3 B 、x<3 C 、x>1 D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322yx x的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( ) A 、6,4 B 、-8,14 C 、-6,6 D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x 的顶点和坐标原点1) 求一次函数的关系式; 2) 判断点2,5是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2yx px q 的图象是以3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x mm 的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2yax bxc 与y 轴交于点A (0,2),它的对称轴是1x ,那么ac b4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2yax bx c (0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x 和3x 时,函数值相同;3)40a b ;4)当2y 时,x 的值只能为0;其中正确的是 8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b 中,若0a b ,则它的图象必经过点( )A 1,1B 1,1C 1,1 D1,110、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( ) A .4个 B .3个 C .2个 D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④ 14、二次函数2y ax bx c 的最大值是3a ,且它的图象经过1,2,1,6两点,求a 、b 、c15、试求抛物线2yax bx c 与x 轴两个交点间的距离(240b ac )练习八 二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1,当0x 时,1y ,它的图象的对称轴为1x ,则函数的关系式为 4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3(3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过1,1、2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.练习九 二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( )A 、0B 、-1C 、2D 、41 6、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3B 、x =-2C 、x =-1D 、x =17、已知二次函数2y x px q 的图象与x 轴只有一个公共点,坐标为1,0,求,p q 的值8、画出二次函数322--=x x y 的图象,并利用图象求方程0322=--x x 的解,说明x 在什么范围时0322≤--x x .9、如图:(1) 求该抛物线的解析式;(2) 根据图象回答:当x 为何范围时,该函数值大于0.10、二次函数c bx ax y ++=2的图象过A(-3,0),B(1,0),C(0,3),点D 在函数图象上,点C 、D 是二次函数图象上的一对对称点,一次函数图象过点B 、D ,求(1)一次函数和二次函数的解析式,(2)写出使一次函数值大于二次函数值的x 的取值范围.y x mx m.11、已知抛物线22(1)求证此抛物线与x轴有两个不同的交点;y x mx m与x轴交于整数点,求m的值;(2)若m是整数,抛物线22(3)在(2)的条件下,设抛物线顶点为A,抛物线与x轴的两个交点中右侧交点为B.若M为坐标轴上一点,且MA=MB,求点M的坐标.练习十二次函数解决实际问题1、某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年种蔬菜的销售价格进行了预测,预测情况如图,图中的抛物线表示这种蔬菜销售价与月份之间的关系.观察图像,你能得到关于这种蔬菜销售情况的哪些信息?(至少写出四条)2、某企业投资100万元引进一条农产品生产线,预计投产后每年可创收33万元,设生产线投产后,从第一年到第x 年维修、保养费累计..为y(万元),且y=ax2+bx,若第一年的维修、保养费为 2 万元,第二年的为 4 万元.求:y 的解析式.3、校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m) 与水平距离x (m) 之间的函数关系式为y=-112x2+23x+53,求小明这次试掷的成绩及铅球的出手时的高度.4、用6m 长的铝合金型材做一个形状如图所示的矩形窗框,应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?5、商场销售一批衬衫,每天可售出 20 件,每件盈利 40 元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价 1 元,每天可多售出 2 件. ① 设每件降价 x 元,每天盈利 y 元,列出 y 与 x 之间的函数关系式; ② 若商场每天要盈利 1200 元,每件应降价多少元?③ 每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?6、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为 4m ,跨度为 10m ,如图所示,把它的图形放在直角坐标系中.①求这条抛物线所对应的函数关系式.②如图,在对称轴右边 1m 处,桥洞离水面的高是多少?7、 有一座抛物线形拱桥,正常水位时桥下水面宽度为20m ,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求出该抛物线的解析式.(2)在正常水位的基础上,当水位上升h(m)时,桥下水面的宽度为d(m),试求出用d 表示h 的函数关系式;(3)设正常水位时桥下的水深为2m ,为保证过往船只顺利航行,桥下水面的宽度不得小于18m ,求水深超过多少米时就会影响过往船只在桥下顺利航行?3.50.5 027月份千克销售价(元)8、某一隧道内设双行线公路,其截面由一长方形和一抛物线构成,如图所示,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5m,若行车道总宽度AB为6m,请计算车辆经过隧道时的限制高度是多少米?(精确到0.1m).练习一 二次函数参考答案1:1、22t s =;2、⑤,-1,1,0;3、≠2,3,1;6、(2,3);7、D ;8、),2150(2254S 2<<+-=x x 189;9、x x y 72+=,1;10、22-=x y ;11、,244S 2x x +-=当a<8时,无解,168<≤a 时,AB=4,BC=8,当16≥a 时,AB=4,BC=8或AB=2,BC=16.练习二 函数2ax y =的图象与性质参考答案2:1、(1)x=0,y 轴,(0,0),>0,,<0,0,小,0; (2)x=0,y 轴,(0,0),<,>, 0,大,0;2、④;3、C ;4、A ;5、B ;6、-2;7、3-;8、021<<y y ;9、(1)2或-3,(2)m=2、y=0、x>0,(3)m=-3,y=0,x>0;10、292x y =练习三 函数c ax y +=2的图象与性质参考答案3:1、下,x=0,(0,-3),<0,>0;2、2312-=x y ,1312+=x y ,(0,-2),(0,1);3、①②③;4、322+=x y ,0,小,3;5、1;6、c.练习四 函数()2h x a y -=的图象与性质参考答案4:1、(3,0),>3,大,y=0;2、2)2(3-=x y ,2)32(3-=x y ,2)3(3-=x y ;3、略;4、2)2(21-=x y ;5、(3,0),(0,27),40.5;6、2)4(21--=x y ,当x<4时,y 随x 的增大而增大,当x>4时,y 随x 的增大而减小;7、-8,-2,4.练习五 ()k h x a y +-=2的图象与性质参考答案5:1、略;2、1;3、>1;4、左、下;5、342-+-=x x y ;6、C ;7、(1)下,x=2,(2,9),(2)2、大、9,(3)<2、>2,(4)( 32-,0)、( 32+,0)、 32,(5)(0,-3);(6)向右平移2个单位,再向上平移9个单位;8、(1)上、x=-1、(-1,-4);(2)(-3,0)、(1,0)、(0,-3)、6,(3)-4,当x>-1 时,y 随x 的增大而增大;当x<-1 时,y 随x 的增大而减小,(4) 2)1(-=x y ;(5)向右平移1个单位,再向上平移4个单位或向上平移3个单位或向左平移1个单位;(6)x>1或x<-3、-3<x<1练习六 c bx ax y ++=2的图象和性质参考答案6:1、x=-2;2、上、(3,7);3、略;4、2)1(2+-x ;5、5)1(212+--=x y ;6、(-2,0)(8,0);7、大、81;8、C ;9、A ;10、(1)1)2(212--=x y 、上、x=2、(2,-1),(2)310)34(32+--=x y 、下、34=x 、(310,34),(3)3)2(412---=x y 、下、x=2、(2,-3);11、有、y=6;12、(2,0)(-3,0)(0,6);13、y=-2x 、否;14、定价为3000元时,可获最大利润125000元练习七 c bx ax y ++=2的性质参考答案7:1、1162+-=x x y ;2、(-4,-4);3、1;4、-3;5、>、<、>、>;6、二;7、②③;8、-7;9、C ;10、D ;11、B ;12、C ;13、B ;14、4422++-=x x y ;15、a ac b 42- 练习八 二次函数解析式参考答案8:1、31-、32、1;2、1082++=x x y ;3、1422+-=x x y ;4、(1)522-+=x x y 、(2)3422---=x x y 、(3)41525452--=x x y 、(4)253212+-=x x y ;5、9194942+-=x x y ;6、142-+-=x x y ;7、(1)25482582582++-=x x y 、5;8、322++-=x x y 、y=-x-1或y=5x+5练习九 二次函数与方程和不等式参考答案9:1、47-≥k 且0≠k ;2、一;3、C ;4、D ;5、C ;6、C ;7、2,1;8、31,3,121≤≤-=-=x x x ;9、(1)x x y 22-=、x<0或x>2;10、y=-x+1,322+--=x x y ,x<-2或x>1;11、(1)略,(2)m=2,(3)(1,0)或(0,1)练习十 二次函数解决实际问题参考答案10:1、①2月份每千克3.5元 ②7月份每千克0.5克 ③7月份的售价最低④2~7月份售价下跌;2、y =x 2+x ;3、成绩10米,出手高度35米;4、23)1(232+--=x S ,当x =1时,透光面积最大为23m 2;5、(1)y =(40-x) (20+2x)=-2x 2+60x +800,(2)1200=-2x 2+60x +800,x 1=20,x 2=10 ∵要扩大销售 ∴x 取20元,(3)y =-2 (x 2-30x)+800=-2 (x -15)2+1250 ∴当每件降价15元时,盈利最大为1250元;6、(1)设y =a (x -5)2+4,0=a (-5)2+4,a =-254,∴y =-254 (x -5)2+4,(2)当x =6时,y =-254+4=3.4(m);7、(1)2251x y -=,(2)h d -=410,(3)当水深超过2.76m 时;8、)64(6412≤≤-+-=x x y ,x =3,m y 75.3496=-=,m 2.325.35.075.3≈=-,货车限高为3.2m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-2 2
二次函数基础练习题
1.抛物线)0(2
≠++=a c bx ax y 过第二、三、四象限,则a 0,b 0,c 0. 2. 抛物线)0(2
≠++=a c bx ax y 过第一、二、四象限,则a 0,b 0,c 0. 3.已知抛物线c x ax y ++=22
与x 轴的交点都在原点的右侧,则点M (c a ,)在第 象限.
4.二次函数c bx ax y ++=2
的图象如图所示,则a 0, b 0, c 0, b 2
-4ac 0,a +b +c 0,a -b +c 0;
5. 二次函数y ax bx c =++2的图象如图所示,则a 0, b 0, c 0
6.二次函数c bx ax y ++=2
的图象如图所示,那么下列四个结论: ①a <0 ;②c >0 ; ③ac b 42
->0 ;④a
b
<0中, 正确的结论有( )个
7. 已知:抛物线 (a <0)经过点(-1,0),且满足4a +2b +c >0.以下结论: ①a +b >0;②a +c >0;③-a +b +c >0;④
> 0 .其中正确的个数有( )个 8.已知二次函数c bx ax y ++=2
中0,0,0<><c b a ,则此函数的图象不经过第 象限 9.已知二次函数c bx ax y ++=2中0,0,0><>c b a ,则此函数的图象不经过第 象限 10.已知二次函数c bx ax y ++=2中0,0,0<<<c b a ,则此函数的图象只经过第 象限
11.如图,函数c bx ax y ++=2的图象中函数值0>y 时,对应x 的取值范围是 函数值0<y 时,对应x 的取值范围是
12.如图,函数c bx ax y ++=2的图象中函数值0<y 时, 对应x 的取值范围是
13. 二次函数c bx x y ++=2的图象如图所示,则函数值0<y 时,对应x 的取值范围是 。

14. 已知抛物线 经过三点A (2,6),B (-1,2),C (0,1),那么它的解析式是 ,
15. 已知二次函数图象经过(-1,10)(2,7)和(1,4)三点,这个函数的解析式是 16. 若抛物线与x 轴交于点(-1,0)和(3,0),且过点(0, )
,那么抛物线的解析式
-5 1
c bx ax y ++=223
c bx ax y ++=2
ac b 22
-

17. 已知抛物线经过三个点A (2,6),B (-1,0),C (3,0),那么二次函数的解析式是 ,它的顶点坐标是
18. 抛物线与x 轴的两个交点的横坐标是-3和1,且过点(0, ),此抛物线的解析式是 19. 已知抛物线的顶点是A(-1,2),且经过点(2,3),其表达式是 。

21. 顶点为(-2,-5)且过点(1,-14)的抛物线的表达式为 . 22. 抛物线 的顶点是(2,4),则b = ,c = ; 23. 二次函数y=ax 2
+bx+c 的对称轴为x =3,最小值为-2,且过(0,1),此函数的解析式是 24. 对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 . 25. 对称轴是直线x =1且过点A (2,3)、点B (-1,6)的抛物线的解析式为 . 26. 已知二次函数的图象顶点坐标(2,1),且与x 轴相交两点的距离为2,则其表达式为 27. 抛物线的顶点为(-1,-8),它与x 轴的两个交点间的距离为4,此抛物线的解析式 28.函数2
y ax =的图象若是一条不经过一、二象限的抛物线。

则a 0 29.函数2mx y -=开口向上,则 m ;
30.二次函数c bx ax y ++=2的值永远为负值的条件是a 0,ac b 42
- 0.
31.对于)0(2
≠=a ax y 的图象下列叙述正确的是 ( ) A .a 的值越大,开口越大 B .a 的值越小,开口越小 C.a 的绝对值越小,开口越大 D.a 的绝对值越小,开口越小
32.在同一直角坐标系中,函数b ax y +=2
与)0(≠+=ab b ax y 的图象大致如图 ( )
33.直线)0(≠+=ab b ax y 不经过第三象限,那么bx ax y +=2
的图象大致为 ( )
34.二次函数c
bx ax y ++
=2
的图象如图所示,则abc ,ac
b 42
-,b a
+2,
c b a ++这四个式子中,值为正数的有( )
A .4个
B .3个
C
.2个
D .1个
35.如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于A (-1,0)、 点B (3,0)和点C (0,-3),一次函数的图象与抛物线交于B 、C 两点。

⑴二次函数的解析式为 .
⑵当自变量x 时,两函数的函数值都随x 增大而增大. ⑶当自变量 时,一次函数值大于二次函数值. ⑷当自变量x 时,两函数的函数值的积小于0.
O
x
y
-1
1
23
c bx x y ++=2
扬州
36. 二次函数y=ax 2
+bx+c 的对称轴为x=3,最小值为-2,,且过(0,1),求此函数的解析式。

37.二次函数c bx ax y ++=2的图像与x 轴交于B 、C 两点,与y 轴交于A 点. 1)根据图像确定a 、b 、c 的符号,并说明理由;
2)如果点A 的坐标为(0,-3),∠ABC =45°,∠ACB =60°,求这个二次函数的解析式.
38.已知点A (1,2)和B (–2,5).试写出两个二次函数,使它们的图象都经过A 、B 两点。

39.试写出一个开口方向向上,对称轴为直线x = 2,且与y 轴的交点坐标为(0,3)的抛物线的解析_________; 40.若二次函数c ax y +=2
,当x 取1x 、2x (1x ≠2x )时,函数值相等,则当x 取1x +2x 时,函数值为( )(A ) a +c (B ) a -c (C )-c (D )c
41.已知 a <- 1,点(a -1,1y )、(a ,2y )(a +1,3y )都在函数2
x y =的图象上,则( ) (A )1y <2y <3y (B )1y <3y <2y (C )3y <2y <1y (D )2y <1y <3y
42.已知抛物线C 1的解析式是5422
+-=x x y 抛物线C 2与抛物线C 1关于x 轴对称,求抛物线C 2的解析式.
43.如图,抛物线的对称轴是直线1x =,它与x 轴交于A 、B 两点,
与y 轴交于C 点.点A 、C 的坐标分别是(1,0)-、(0,)3
 2
. (1) 求此抛物线对应的函数解析式;
(2) 若点P 是抛物线上位于x 轴上方的一个动点,求△ABP 面积的最大值.
44.已知抛物线c bx ax y ++=2
开口向下,并且经过A (0,1)和M (2,-3)两点。

(1)若抛物线的对称轴为直线x =-1,求此抛物线的解析式; (2)如果抛物线的对称轴在y 轴的左侧,试求a 的取值范围;
(3)如果抛物线与x 轴交于B 、C 两点,且∠BAC =90°,求此时a 的值。

P。

相关文档
最新文档