2014大学物理作业下作业和附加题

合集下载

东北大学的大学的物理附加地的题目标准详解第4,14,5章作业标准详解.doc

东北大学的大学的物理附加地的题目标准详解第4,14,5章作业标准详解.doc

实用标准文案第 4章刚体的转动作业一、教材:选择填空题 1~4;计算题: 13, 27,31二、附加题(一)、选择题1、有两个半径相同,质量相等的细圆环 A 和 B . A 环的质量分布均匀, B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A和J B,则J A和J B的关系为[C]A、J A J BB、J A J BC、J A J BD、无法确定2、假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的[ A ]A、角动量守恒,动能也守恒; B 、角动量守恒,动能不守恒C、角动量不守恒,动能守恒; D 、角动量不守恒,动量也不守恒E、角动量守恒,动量也守恒3、花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为 J0,角速度为0 .然后她将两臂收回,使转动惯量减少为 1 J 0 .此时她转动的角速度变为[ D ]3A、1B 、1C、3 0 D、3 03 0 3 04、如图所示,一静止的均匀细棒,长为L 、质量为 M ,可绕通过棒的端点且垂直于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 1 ML2.一质量为 m 、速率为3 的子弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为1v, O2 俯视图则此时棒的角速度为[ B ]A、mvB 、 3mv C、5mv D、7mvML 2ML 3ML 4ML(二)、计算题1、质量分别为 m和 2m,半径分别为 r 和 2r 的两个均质圆盘,同轴地粘在一起,可绕通过盘心且垂直于盘面的水平1v 2v实用标准文案光滑轴转动,在大小盘边缘都绕有细绳,绳下端都挂一质量为 m 的重物,盘绳无相对滑动,如图所示,求: 1) 圆盘对水平光滑轴的转动惯量;2) 圆盘的角加速度。

解:( 1) J 1 mr 2 1 2m 2r 29mr22 22(2)T 2 mg ma 2mg T 1 ma 1T 2 2r T 2 r Ja 1 a 2 2g2rr19r2、一根长为 l ,质量为 M 的均质细杆,其一端挂在一个光滑的水平轴上,静止在竖直位置。

大学物理作业标准答案(下)

大学物理作业标准答案(下)

65.如图所示,几种载流导线在平面内分布,电流均为I ,求:它们在O 点的磁感应强度。

1 RIB 80μ=方向 垂直纸面向外2 R I R I B πμμ2200-= 方向 垂直纸面向里 3 RI R I B 4200μπμ+= 方向 垂直纸面向外 66.一半径为R 的均匀带电无限长直圆筒,电荷面密度为σ,该筒以角速度ω绕其轴线匀速旋转。

试求圆筒内部的磁感应强度。

解:如图所示,圆筒旋转时相当于圆筒上具有同向的面电流密度i , σωσωR R i =ππ=)2/(2作矩形有向闭合环路如图中所示.从电流分布的对称性分析可知,在ab 上各点B的大小和方向均相同,而且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,上各点0=B.应用安培环路定理 ∑⎰⋅=I l B 0d μ可得ab i ab B 0μ=σωμμR i B 00==圆筒内部为均匀磁场,磁感强度的大小为σωμR B 0=,方向平行于轴线朝右.67.在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a (如图)。

今在此导体内通以电流I ,电流在截面上均匀分布,求:空心部分轴线上O '点的磁感应强度的大小。

解:)(22r R IJ -=π10121r J B ⨯=μ20221r k J B ⨯-=μj Ja O O k J r r J B B 021********21)(21μμμ=⨯=-⨯=+=r R Ia)(2220-=πμ68.一无限长圆柱形铜导体,半径为R ,通以均匀分布的I 今取一矩形平面S (长为L ,宽为2R ),位置如图,求:通过该矩形平面的磁通量。

解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定律可得:)(220R r r R IB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr rL RI Rd 2020⎰π=μπ=40LIμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为)(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r IL R Rd 220⎰π=μ2ln 20π=ILμ 穿过整个矩形平面的磁通量21ΦΦΦ+=π=40LIμ2ln 20π+ILμ69.如图所示,载有电流I 1和I 2的无限长直导线相互平行,相距3r ,今有载有电流I 3的导线MN = r 水平放置,其两端M 、N 分别与I 1、I 2距离均为r ,三导线共面,求:导线MN 所受的磁场力的大小与方向。

大学物理上册作业题

大学物理上册作业题

大学物理上册作业题(总17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2014 ~2015学年第二学期 大学物理作业题第1章 质点运动学 作业一、教材:选择题1 ~ 4;计算题:9,13,14,17 二、附加题 (一)、选择题1、某物体的运动规律为d v /dt=-kv 2t ,式中的k 为大于零的常量.当t=0时,初速为v 0,则速度v 与时间t 的函数关系是[ ]A 、0221v kt v +=;B 、0221v kt v +-=;C 、02121v kt v +=;D 、02121v kt v +-=2、某质点作直线运动的运动学方程为x =3t-5t 3+6(SI),则该质点作[ ] A 、匀加速直线运动,加速度沿x 轴正方向 B 、匀加速直线运动,加速度沿x 轴负方向 C 、变加速直线运动,加速度沿x 轴正方向 D 、变加速直线运动,加速度沿x 轴负方向3、一质点在t=0时刻从原点出发,以速度v 0沿x 轴运动,其加速度与速度的关系为a =-kv 2,k 为正常数。

这个质点的速度v 与所经路程x 的关系是[ ] A 、kxe v v -=0;B 、)21(200v x v v -=;C 、201x v v -= ;D 、条件不足不能确定4、一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22+=(其中a 、b 为常量), 则该质点作[ ]A 、匀速直线运动B 、变速直线运动C 、抛物线运动D 、一般曲线运动(二)、计算题1一质点在一平面内做运动,其运动方程为: 2=+-r t ti t j()5(10)(SI)试求:(1)质点的轨道方程 (2)质点从t=0到t=5s这段时间的平均速度 (3)质点在第5s末的速度; (4)质点的加速度;2、已知质点沿x轴运动,其加速度和坐标的关系为a = 2+6x2 (SI),且质点在x= 0 处的速率为10m/s,求该质点的速度v与坐标x的关系。

大学物理作业2014(下)

大学物理作业2014(下)

大学物理作业2014(下)9-1一个沿x 轴作简谐振动的弹簧振子,振幅为A ,频率为υ,其振动方程用余弦函数表示。

若0t =时质点的状态分别是:(1)过平衡位置向正方向运动;(2)过平衡位置向负方向运动;(3) 过2A x =处向负方向运动;(4)过x =其相应的位置,并写出振动方程。

分析:根据旋转矢量法画出质点在x 轴的位置,计算出初相位,再写出振动方程。

解:根据已知条件,设振动方程为)2cos(?πν+=t A x(1)0=t 时,0=x ,0υ>,由图(1)得2π-=,振动方程为 c o s (2)2x A t ππν=- (2) 0=t 时,0=x ,0υ<,由图(2)得2π=,振动方程为 c o s (2)2x A t ππν=+ (3) 0=t 时,2A =x ,0υ<,由图(3)得3π?=,振动方程为 c o s (2)3x A t ππν=+ (4) 0=t 时,A 22=x ,0υ>,由图(4)得4π?-=,振动方程为 c o s (2)4x A t ππν=- 9-4一质点同时参与两个同方向同频率的简谐振动,它们的方程分别为:110cos 24x t π??=+ ??cm ,226cos 23x t π??=+cm ,求其合振动方程。

解:合振幅为912432120610A A 2A A A 2212212221.)cos()cos(=-++=-++=ππ??cm初相位11221122sin sin tan cos cos A A A A +=+326410326410ππππcoscos sinsin++==3.013 得21.255rad φπ==因此,合振动方程为2π图(1)图(2)4π图(4) 解8-1图图(3)212.9cos(2)5x t π=+9-5一弹簧振子作简谐振动,振幅A =0.20m ,如果弹簧的劲度系数k =2.0N/m ,所系物体的质量m =0.5kg ,(1) 当动能和势能相等时,物体的位移是多少?(2) 设t =0时,物体正在最大位移处,则达到动能和势能相等处所需的时间是多少(在一个周期内) ?分析:根据简谐振动的动能、势能计算公式求解。

大学物理下册练习与答案

大学物理下册练习与答案

I电磁学DC7・ 1 |如图所示,一电子经过Uo = 1 >10 7m / s o(1) 欲使这电子沿半圆自A 至C 运动,试求所需的磁场 大小和方向;(2) 求电子自A 运动到C 所需的时间。

9解:(1)电子所受洛仑兹力提供向心力 evoB = m —Rmv o 9.1 lx 10~ x IX 10 ?3_得出 B 二 = _i9= 1./10 TeR 1 .6X 10 - x 0 .05磁场方向应该垂直纸面向里。

(2) 所需的时间为 t =# =药-=兀0. 05 = 1 .6 X 10 rs22 vo l x 107血工地2.0怡2的一个正电子,射入磁感应强度B 二0.1T 的匀强磁场中,其速 度矢量与B 成89角,路径成螺旋线,其轴在B 的方向。

试求这螺旋线运动的周 期T 、螺距h 和半径r o解:正电子的速率为I /XX X X - v ==1 ------- 2~~10 ' 110 19 = 2 .6x 10 7 m/s* m *9.1 1X 10做螺旋运动的周期为2 Jim 2 K X 9.1 丈 1(T 31T = ---------- = -------------- --- --------- = 3 ,6X 10 SeB 1 .6X 10一 X 0.1螺距为 h = vcos 89 °T =2.6 * 10 7 X cos 89 0 :<3. 6 X 10 10 = 1 .6^ lO^m317ZX _X X X_丰径为 r = mv sin 89 = 9.11 ~F02 .6⑴ TO Sih 89 = 1 .5 ^103 Hlx — xeBL6 10'0.1磁力A 点时,具有速率V0 /0 10cmA h -----------------DC7・3加1图所示,一铜片厚为d二1.0mm,放在B=1.5T的磁场中,磁场方向与铜片表面垂直。

已知铜片里每立方厘米有8.4^ 1022个自由电子,每个电子的电荷C - = -1.6 19T,当铜片中有I=200A的电流流通时,(1)求铜片两侧的电势差Uaa' ;(2)铜片宽度b对Uaa,有无影响?为什么?/// B i ////Z/-------- 28 — = -2.23 X 10_ V,8/ 10X「1.6 ¥o f X 1 .0 X 10一负号表示『侧电势高。

大学物理(下)练习题及答案

大学物理(下)练习题及答案

xyoa•••a-(0,)P y qq-大学物理(下)练习题第三编 电场和磁场 第八章 真空中的静电场1.如图所示,在点((,0)a 处放置一个点电荷q +,在点(,0)a -处放置另一点电荷q -。

P 点在y 轴上,其坐标为(0,)y ,当y a ?时,该点场强的大小为(A) 204q y πε; (B) 202q y πε;(C)302qa y πε; (D)304qa y πε.[ ]2.将一细玻璃棒弯成半径为R 的半圆形,其上半部均匀分布有电量Q +, 下半部均匀分布有电量Q -,如图所示。

求圆心o 处的电场强度。

3.带电圆环的半径为R ,电荷线密度0cos λλφ=,式中00λ>,且为常数。

求圆心O 处的电场强度。

4.一均匀带电圆环的半径为R ,带电量为Q ,其轴线上任一点P 到圆心的距离为a 。

求P 点的场强。

5.关于高斯定理有下面几种说法,正确的是(A) 如果高斯面上E r处处为零,那么则该面内必无电荷;(B) 如果高斯面内无电荷,那么高斯面上E r处处为零;(C) 如果高斯面上E r处处不为零,那么高斯面内必有电荷;(D) 如果高斯面内有净电荷,那么通过高斯面的电通量必不为零; (E) 高斯定理仅适用于具有高度对称性的电场。

[ ]6.点电荷Q 被闭合曲面S 所包围,从无穷远处引入另一点电荷q 至曲面S 外一点,如图所示,则引入前后(A) 通过曲面S 的电通量不变,曲面上各点场强不变;(B) 通过曲面S 的电通量变化,曲面上各点场强不变;(C) 通过曲面S 的电通量变化,曲面上各点场强变化;(D) 通过曲面S 的电通量不变,曲面上各点场强变化。

[ ]7.如果将带电量为q 的点电荷置于立方体的一个顶角上,则通过与它不相邻的每个侧面的电场强度通量为xq g S Q g(A)06q ε; (B) 012q ε; (C) 024q ε; (D) 048q ε. [ ]8.如图所示,A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上的电荷面密度721.7718A C m σ--=-⨯⋅,B 面上的电荷面密度723.5418B C m σ--=⨯⋅。

东北大学大学物理附加题答案第4,14,5章作业答案-推荐下载

东北大学大学物理附加题答案第4,14,5章作业答案-推荐下载

在水平面内转动。今有一质量为 1 m 、速率为 v 的子弹在水平面内沿棒的垂直方 2
向射向棒的中点,子弹穿出时速率减为 1 v ,当棒转动后,设棒上单位长度受到 2
的阻力正比于该点的速率(比例系数为 k)试求:(1)子弹穿出时,棒的角速
度0 为多少?(2)当棒以 转动时,受到的阻力矩 M f 为多大?(3)棒从
以速度v0从杆的中点穿过,穿出速度为v, 求:1)杆开始转动时的角速度;
2)杆的最大摆角。
解:(1)碰撞前后角动量守恒
mv0
l 2

3m v0 v
2Ml
1 3
Ml 2
(2)碰撞后机械能守恒
1 J2 Mg l 1 cos
2


arccos 1
2

mv
3m2 v0 v2
匀速直线运动的乙测得时间间隔为 5 s,则乙相对于甲的运动速度是( c 表示真空
0
变为
1 2
0
时,经历的时间为多少?
解:(1)以子弹和棒组成的系统为研究对象。取子弹和棒碰撞中间的任一状态分析受力,
子弹与棒之间的碰撞力 f 、 f ' 是内力。一对相互作用力对同一转轴来说,其力矩之和为
零。因此,可以认为棒和子弹组成的系统对转轴的合外力矩为零,则系统对转轴的角动量
守恒。
mv 2

J 1 mL2 3
L 2

解上述两式得: 0
m 2

v 2

L 2


J0
3v 8L
(2)设在离转轴距离为 l 得取一微元 dl ,则该微元所受的阻力为: df kvdl kldl
该微元所受的阻力对转轴的力矩为:

(配合教材下册)大学物理学课后作业与自测题参考答案与部分解析

(配合教材下册)大学物理学课后作业与自测题参考答案与部分解析

x+R, R
令dФ=0,得Ф最大时 x=1( 5-1)R.
dx
2
24-4 答案 μ0 ·I2(R+d)(1+π)-RI1,方向⊙

R(R+d)
解析 圆电流产生的磁场 B1=μ20RI2,方向⊙,长直导线电流的磁场 B2=2μπ0IR2,方向⊙,导体管电流
第 1 页(共 15 页)
产 生 的 磁 场 , B3 = μ0I1 , 方 向 , 所 以 , 圆 心 O 点 处 的 磁 感 强 度 B = B1 + B2 - B3 = 2π(d+R)
B=2Sρgtan α≈9.35×10-3 T. I
26-4 答案 πkωBR5,方向在纸面内且垂直 B 向上 5
解析 在圆盘上取一个半径为 r、宽度为 dr 的圆环,其环上电荷为 dq=σ2πrdr,圆环以角速度ω旋 转,其圆电流为 dI=σrωdr,其磁矩大小为 dm=πr2dI=πr2(kr)ωrdr,则圆环上电流所受的磁力矩为
28-4 答案 0.01 T
28-4
解析
εi=|ddФt |,i=Rεi=R1|ddФt |,而
i=dq,得 dt
dq=idt=1|dФ|, R
Q dq =1
0
R
0
dФ,Q=1Ф, R
Ф=RQ=π×10-5 Wb,因为Ф=πr2B,所以 B=0.01 T.
答案 -μ0Ivln a+b,方向为 N→M,μ0Ivln a+b
dM=Bdm=πkωr4dr,所以,圆盘所受总磁力矩 M= dM = R πkωr4dr=πkωBR5,M 的方向在纸面
0
5
内且垂直 B 向上.
26-5 答案 (1)πa2BI0sin2 ωt;(2)1BI0ωπa2 2

大学物理期末练习附加部分答案

大学物理期末练习附加部分答案

大学物理期末练习有的答案看一下图片吧,不会打进去(我没有标准答案,只是每道题都问了老师,答案也就基本确定了) 一、填空题1.在静电场中,场强沿任意闭合路径的线积分等于0,即⎰=⋅L l d E 0,这表明静电场中的电场线 不闭合 (“闭合”或“不闭合”)。

2.右图所示,边长为a 的正六边形每个顶点处有一个点电荷,取无限远处作为电势零点,则o 点电势为 0 ,o 点的场强大小为 0 。

3.半径为r 的均匀带电球面1,带电量为1q ,其外有一同心的半径为R 的均匀带电球面2,带电量为2q ,则两球面间的电势差为 。

4.产生动生电动势的非静电力为 洛伦兹力 ,对应的非静电场表达式为 。

5.一金属球壳的内、外半径分别为1R 和2R ,带电荷为Q 。

在球心处oqqqq-q-q-有一电荷为q 的点电荷,则球壳内表面上的电荷面密度1R σ=____________6.一平行板电容器充电后切断电源,若使二极板间距离增加,则二极板间场强____不变_____,电容______减小_____.(填增大或减小或不变)7.真空中一载有电流I 的长直螺线管,单位长度的线圈匝数为n ,管内的磁感应强度为_0d NI LB l μ⋅=⎰_______。

8.半径为R 的金属球离地面很远,并用细导线与地相联,在与球心距离为2d R =处有一点电荷q +,则金属球上的感应电荷Q 为 。

二、单项选择题1. 两个均匀带电同心球面,半径分别为1R 和2R (12R R <),所带电量分别为1Q 和2Q ,则距球心为r 处的P 点(1r R <)的电势为(A ) A.1201024π4πQ Q R R εε+ B.120104π4πQ QR r εε+ C.120024π4πQ Q r R εε+ D.12004π4πQ Qr rεε+ 2.下列说法正确的是( B )+qd =2RRA.闭合曲面上各点电场强度都为零时,曲面内一定没有电荷;B.闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零;C.闭合曲面的电通量为零时,曲面上各点的电场强度必定为零;D.闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零。

大学物理(下)规范作业(阳光)01解答

大学物理(下)规范作业(阳光)01解答
( A) 0.04m,
(C ) 0.08m,
π
2
;
π π −2 xB = 2 ×10 sin(π − 5t ) = 2 ×10 cos − (π − 5t ) = 2 ×10 cos 5t − 2 2
−2 −2
分析:
2
;
2 π ( D) 0.08m, − 2
( B) 0.04m,
( A) T / 4 ,
( B) T / 6,
( C) T / 8 ,
( D) T / 12
x
分析: 当质点从二分之一最大位移处运动到最大 位移处时,旋转矢量转过的角度为:
Q ω∆t = ∆θ
∆θ
∆θ = 0 − ( − ) = 3 3
π
π
oπ3
∆θT T 得: ∆t = = = ω 2π 6
2
2.一弹簧振子作简谐振动,当其偏离平衡位置的位移的 一弹簧振子作简谐振动, 一弹簧振子作简谐振动 大小为振幅的1/4时 其动能为振动总能量的: 大小为振幅的 时,其动能为振动总能量的: (A)9/16 (B)11/16 (C)13/16 (D)15/16
;
A、B好为反相振动, 所以合振动的表达式为:
x = x A + xB = 6 ×10 − 2 ×10
(
−2
−2
)
π π −2 cos 5t + = 4 ×10 cos 5t + 2 2
4
二、填空题 1.一质点作简谐振动,其振动曲线如图所示。根据此图 一质点作简谐振动, 一质点作简谐振动 其振动曲线如图所示。 用余弦函数描述时, 可知,它的周期T= 3.43( s ) , ;用余弦函数描述时,其 可知,它的周期 − 2π 3 初位相为 。 分析: 由旋转矢量图可得: π 2π t = 0, ϕ = − , t = 2 s, ϕ = 3 2 因此从t=0到t=2的时间内旋转矢 量转过的角度为: t = 2 ϕ =π 2 1 2 7 ∆ϕ = π − − π = π 2 3 6 x o ∆ϕ 7π = Q ωt = ∆ϕ ∴ ω =

大学物理下作业答案

大学物理下作业答案

习题一、选择题1. 如图所示,半径为R 的圆环开有一小空隙而形成一圆弧,弧长为厶电荷均匀分布其上。

空隙长为4L(AL « R),则圆弧中心O 点的电场强度和电势分别为[ ]则圆弧产生的场强与空隙在圆心处产生的场强之和为0。

由于空隙"非常小,可视为点电荷,设它与圆弧电荷密度相同,则所带电荷为-QAL/L, 产生的场强为誅所以圆弧产生的场强为―卷八又根据电势叠加原理-Q4亦0尺2. 有两个电荷都是+ q的点电荷,相距为2d 。

今以左边的点电荷所在处为球心,以d 为 半径作一球形高斯面。

在球面上取两块相等的小面积S1和S2,其位置如图所示。

设通过 S1和S2的电场强度通量分别为卩和①2,通过整个球面的电场强度通量为①$,则[]强叠加原理,血=0也<0,所以①]=0.乌>0。

3. 半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r 的关(人、-2AL 弋-Q (A ) 一-— i,——;4亦0斤厶 4宓°R(C)卓亍" 4 亦°R_L 4亦°R(B)亠・、E7T £Q R-L 4 宓Q R(D)一Q'L 丫, -Q'L47T£Q R 2L 47T£O RL解:闭合圆环中心场强为o,(A )① 1 >% ①=/%; (c)①严①2’①s = q/q ; 答案:D 解:由高斯定理知①s=g/q o(B)①1 v ①三,①s=2q'£。

;(D)①]<O ,①$ =ql 仏 o由于面积S1和S2相等且很小,场强可视为均匀。

根据场 答案:B解:正方体中心到顶角处的距离心当。

,由点电荷的电势公式得u =-Q-= Q4叫・2A /3 Ti£Q a二、填空题1. 真空中两平行的无限长均匀带电直线,电荷线密度分别为 -兄和2,点P1和P2与两带电线共面,位置如图,取向右为 坐标正方向,则P1和P2两点的场强分别答案:E { =-^-1: E. - Tte^a " 3%d解:由高斯定理知均匀带电球体的场强分布为E = \Q R1 qZR),所以选(B)o(r > R)4.如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为。

大学物理学 下册习题与答案

大学物理学 下册习题与答案

习题九一、选择题9.1 关于高斯定理的理解有下面几种说法,其中正确的是:(A) 如果高斯面上E处处为零,则该面内必无电荷.(B) 如果高斯面内无电荷,则高斯面上E处处为零.(C) 如果高斯面上E处处不为零,则高斯面内必有电荷.(D) 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零.[A(本章中不涉及导体)、 D ] 9.2有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A)03εq . (B) 04επq (C) 03επq . (D) 06εq [D ]q题图9.19.3面积为S 的空气平行板电容器,极板上分别带电量q ±,若不考虑边缘效应,则两极板间的相互作用力为(A)S q 02ε (B)S q 022ε (C) 2022S q ε (D) 202Sq ε [B ]9.4 如题图9.2所示,直线MN 长为2l ,弧O C D 是以N 点为中心,l 为半径的半圆弧,N 点有正电荷q +,M 点有负电荷q -.今将一试验电荷0q +从O 点出发沿路径OCDP 移到无穷远处,设无穷远处电势为零,则电场力作功(A) A <0 , 且为有限常量. (B) A >0 , 且为有限常量.(C) A =∞. (D) A =0. [D ,0O V =]-题图9.29.5静电场中某点电势的数值等于 (A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能. (C)单位正电荷置于该点时具有的电势能.(D)把单位正电荷从该点移到电势零点外力所作的功. [C ]9.6已知某电场的电场线分布情况如题图9.3所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的?(A) 电场强度M N E E <. (B) 电势M N U U <.(C) 电势能M N W W <. (D) 电场力的功A >0.[C ] 二、计算题9.7 电荷为q +和2q -的两个点电荷分别置于1x m =和1x m =-处.一试验电荷置于x 轴上2q -0解:设试验电荷0q 置于x 处所受合力为零,根据电力叠加原理可得()()()()022220000(2)(2)ˆˆ0041414141q q q q q q i i x x x x εεεε⋅-⋅-+=⇒+=π-π+π-π+ 即:()()()()22221(2)0121011x x x x -+=⇒+--=-+()()22212210x x x x ++--+=2610(3x x x m -+=⇒=±。

第十章静电场中的导体与电介质2014版答案

第十章静电场中的导体与电介质2014版答案

第十章 静电场中的导体和电介质一.选择题[B ]1、(基训2) 一“无限大”均匀带电平面A ,其附近放一与它平行的有一定厚度的“无限大”平面导体板B ,如图所示.已知A 上的电荷面密度为+σ ,则在导体板B 的两个表面1和2上的感生电荷面密度为: (A) σ 1 = - σ, σ 2 = + σ. (B) σ 1 = σ21-, σ 2 =σ21+. (C) σ 1 = σ21-, σ 1 = σ21-. (D) σ 1 = - σ, σ 2 = 0. 【解析】 由静电平衡平面导体板B 内部的场强为零,同时根据原平面导体板B 电量为零可以列出σ 1S+σ 2S=0022202010=-+εσεσεσ[ C ]2、(基训3)在一个原来不带电的外表面为球形的空腔导体A 内,放有一带电量为+Q 的带电导体B ,如图10-5所示,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论:(A) U A = U B . (B) U A > U B . (C) U A < U B . (D) 因空腔形状不是球形,两者无法比较.【解析】由静电感应现象,空腔导体A 内表面带等量负电荷,A 、B 间电场线如图所示,而电场线总是指向电势降低的方向),因此U B >U A 。

[C ]3、(基训6)半径为R 的金属球与地连接。

在与球心O 相距d =2R 处有一电荷为q 的点电荷。

如图16所示,设地的电势为零,则球上的感生电荷q '为:(A) 0. (B) 2q . (C) -2q. (D) -q .【解析】利用金属球是等势体,球体上处电势为零。

球心电势也为零。

0442q o o dq qR R πεπε''+=⎰ R qR q d o q oo 244πεπε-='⎰'RqR q 2-=' 2qq -='∴[C ]4、(基训8)两只电容器,C 1 = 8 μF ,C 2 = 2 μF ,分别把它们充电到 1000 V ,然后将它们反接(如图10-8所示),此时两极板间的电势差为: (A) 0 V . (B) 200 V . (C) 600 V . (D) 1000 V AB+σσ1σ2OR dqC 1C2【解析】 C U C U C Q Q Q 32121106-⨯=-=-=V FC C C Q C Q U 600101106''5321=⨯⨯=+==-- [B ]5、(自测4)一导体球外充满相对介电常量为r ε的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度0σ为(A) E 0ε. (B) E r εε0 . (C) E r ε. (D) E r )(00εεε- 【解析】导体表面附近场强ro o E εεσεσ0==,E r o εεσ0=. [ B ]6、(自测7)一个大平行板电容器水平放置,两极板间的一半空间充有各向同性均匀电介质,另一半为空气,如图.当两极板带上恒定的等量异号电荷时,有一个质量为m 、带电荷为+q 的质点,在极板间的空气区域中处于平衡.此后,若把电介质抽去 ,则该质点(A) 保持不动. (B) 向上运动. (C) 向下运动. (D) 是否运动不能确定.【解析】在抽出介质前,相当于左右两半两个“电容器”并联,由于这两个“电容器”电压相等,而右半边的电容又小于左半边的,因此由q=CU 公式可知,右半边极板的带电量小于左半边的。

大学物理下册作业题

大学物理下册作业题

9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度. 解 根据上述分析2020π1)2/(2π41aqa q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为2204π1L r QεE -=(2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21Lr r QεE +=若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为rr qεe E 20d π41d '=整个带电体在点P 的电场强度⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a )所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L rqE 20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则()220022204π12/12/1π4d π41L r QεL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εqαE L d π4d sin 20⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度rελL r LQ r εE l 0220π2 /41/π21lim=+=∞→此结果与无限长带电直线周围的电场强度分布相同[图(b )].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅sQ E r S E 0i2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布. 解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ=假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ=R r >时, 302π34π4R E r ερ=考虑到电场强度沿径向朝外,带电球体外的电场强度为re rR E 2033ερ= 9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2.题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2=r >R 2,0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变00π2π2ΔεζrL εL λr ελE ===9-19 电荷面密度分别为+ζ和-ζ的两块“无限大”均匀带电的平行平板,如图(a )放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布.解 由“无限大” 均匀带电平板的电场强度i 02εζ±,叠加求得电场强度的分布,()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x 0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εζV x <<--=⋅=⎰ d 0l E ()a x a εζV -<=⋅+⋅=⎰⎰- d d 0a-axl E l E()a x a V >-=⋅+⋅=⎰⎰ d d 0a a x εσl E l E 电势变化曲线如图(b )所示.9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅VV d 1d 0ρεS E可求得电场分布E (r ),再根据电势差的定义()l E d ⋅=-⎰ba b a r V V并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E = 当r ≥R 时02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022=取棒表面为零电势,空间电势的分布有 当r ≤R 时()()22004d 2r R ερr εr ρr V R r-==⎰当r ≥R 时()rRεR ρr r εR ρr V R rln 2d 20202==⎰如图所示是电势V 随空间位置r 的分布曲线.9-22 一圆盘半径R =3.00 ×10-2m .圆盘均匀带电,电荷面密度ζ=2.00×10-5 C·m -2.(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d xr rr ζεV +=由电势叠加,轴线上任一点P 的电势的()x x R εζx r r r εζV R-+=+=⎰222202d 2 (1)(2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R xεζx V (2) 电场强度方向沿x 轴方向.(3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==ζR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεqV 1-20m V 5649π4⋅==xεqE 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过0.3%和0.8%,这已足以满足一般的测量精度.9-25 在一次典型的闪电中,两个放电点间的电势差约为109 V,被迁移的电荷约为30 C .(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg )(2) 假设每一个家庭一年消耗的能量为3 000kW·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量kg 1098.8Δ4⨯===LqU L E m即可融化约 90 吨冰.(2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qUE E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.10-8 一导体球半径为R 1 ,外罩一半径为R 2 的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0 .求此系统的电势和电场的分布.分析 若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=p p V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解 根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E r r E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为 r <R 1时, ()01=r E R 1<r <R 2 时,()202π4r εqr E = r >R 2 时, ()202π4rεqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2 时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2 时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3 也可以从球面电势的叠加求电势的分布: 在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2 )2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +== 得Q R R V R q 21010π4==ε于是可求得各处的电场强度和电势的分布:r <R 1时,01=E ;01V V =R 1<r <R 2 时,22012012π4r R εQ R r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2 时,220122013π4)(r R Q R R r V R E ε-+=;rR Q R R r V R V 2012013π4)(ε-+= 10-11 电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0 mm 2 ,两金属片之间的距离是0.600 mm .如果电路能检测出的电容变化量是0.250 pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析 按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解 按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC 按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=S C d Cd d d d ε10-14 人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2 ×10-9m ,两表面所带面电荷密度为±5.2 ×10 -3 C /m 2 ,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1) 细胞壁内的电场强度;(2) 细胞壁两表面间的电势差.解 (1)细胞壁内的电场强度V/m 108.960⨯==r εεζE ;方向指向细胞外. (2) 细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-17 如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1) 充足电后;(2) 然后平行插入一块面积相同、厚度为δ(δ <d )、相对电容率为εr 的电介质板;(3) 将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析 电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQ U r 00+-= 相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQ U -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷均会增加,而电势差保持不变.解 (1) 空气平板电容器的电容dS εC 00= 充电后,极板上的电荷和极板间的电场强度为U dS εQ 00= d U E /0=(2) 插入电介质后,电容器的电容C 1 为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSU εεU C C r r -+==011 介质内电场强度()δd εδU S εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3) 插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd S εC -=02 U δd S εQ -=02 导体中电场强度 02='E 空气中电场强度δd U E -=2 无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0.解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800= B 0 的方向垂直纸面向外.(b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-= B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR Ir μB = 在导线外r >R ,I I =∑,因而rI μB 2π0= 磁感强度分布曲线如图所示.11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度. 解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 21012πR Ir μB = R 1 <r <R 2I μr B 022π=⋅rI μB 2π02= R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πR Ir μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR==⎰ 11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dBU B E H H v 11-21 从太阳射来的速度为0.80×108 m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v 地磁北极附近的回转半径m 2322==eB m R v 12-7 载流长直导线中的电流以t I d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x IS B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===dd Id x x Id ΦΦμμ再由法拉第电磁感应定律,有tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dIΦμ=线圈与两长直导线间的互感为2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0 又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法.12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰l E v 来计算.由于对称性,导体OP旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-15 在半径为R 的圆柱形空间中存在着均匀磁场,B 的方向与柱的轴线平行.如图(a)所示,有一长为l 的金属棒放在磁场中,设B 随时间的变化率tB d d 为常量.试证:棒上感应电动势的大小为 2222d d ⎪⎭⎫ ⎝⎛-=l R l t B ξ题 12-15 图分析 变化磁场在其周围激发感生电场,把导体置于感生电场中,导体中的自由电子就会在电场力的作用下移动,在棒内两端形成正负电荷的积累,从而产生感生电动势.由于本题的感生电场分布与上题所述情况完全相同,故可利用上题结果,由⎰⋅=l k l E d ξ计算棒上感生电动势.此外,还可连接OP 、OQ ,设想PQOP 构成一个闭合导体回路,用法拉第电磁感应定律求解,由于OP 、OQ 沿半径方向,与通过该处的感生电场强度E k 处处垂直,故0d =⋅l E k ,OP 、OQ 两段均无电动势,这样,由法拉第电磁感应定律求出的闭合回路的总电动势,就是导体棒PQ 上的电动势.证1 由电磁感应定律,在r <R 区域,⎰⎰⋅-=⋅=S B tl E k d d d d ξ tB r E r k d d ππ22-=⋅ 解得该区域内感生电场强度的大小tB r E k d d 2= 设PQ 上线元dx 处,E k 的方向如图(b )所示,则金属杆PQ 上的电动势为 ()()222202/2d d d 2/d d 2d cos d l R l t B x r l R tB r xE l k k PQ -=-==⋅=⎰⎰θξx E 证2 由法拉第电磁感应定律,有22Δ22d d d d d d ⎪⎭⎫ ⎝⎛-==-==l R l t B t B S t ΦE E PQ 讨论 假如金属棒PQ 有一段在圆外,则圆外一段导体上有无电动势? 该如何求解?14-9 在双缝干涉实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d′=300mm.测得中央明纹两侧的两个第五级明条纹的间距为12.2 mm,求双缝间的距离.分析双缝干涉在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δx,则由中央明纹两侧第五级明纹间距x5-x-5=10Δx可求出Δx.再由公式Δx=d′λ/d即可求出双缝间距d.解根据分析:Δx=(x5-x-5)/10 =1.22×10-3 m双缝间距: d =d′λ/Δx=1.34 ×10-4 m14-10一个微波发射器置于岸上,离水面高度为d,对岸在离水面h高度处放置一接收器,水面宽度为D,且,D d D h,如图所示.发射器向对面发射波长为λ的微波,且λ>d,求接收器测到极大值时,至少离地多高?分析由发射器直接发射的微波与经水面反射后的微波相遇可互相干涉,这种干涉与劳埃德镜实验完全相同.形成的干涉结果与缝距为2d,缝屏间距为D的双缝干涉相似,如图(b)所示,但要注意的是和劳埃德镜实验一样,由于从水面上反射的光存在半波损失,使得两束光在屏上相遇产生的光程差为2/d ,而不是θd sin2.θsin2λ题14-10 图解由分析可知,接收到的信号为极大值时,应满足(),...2,12/sin 2==+k λk λθd()d k D D D h 412sin tan -=≈≈λθθ 取k =1 时,得dD h 4min λ=. 14-11 如图所示,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:(1)条纹如何移动?(2) 云母片的厚度t.题14-11图分析 (1)本题是干涉现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程相同,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干涉条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上某点P (明纹或暗纹位置),只要计算出插入介质片前后光程差的变化,即可知道其干涉条纹的变化情况.插入介质前的光程差Δ1 =r 1 -r 2 =k 1 λ(对应k 1 级明纹),插入介质后的光程差Δ2 =(n -1)d +r 1 -r 2 =k 1 λ(对应k 1 级明纹).光程差的变化量为Δ2 -Δ1 =(n -1)d =(k 2 -k 1 )λ式中(k 2 -k 1 )可以理解为移过点P 的条纹数(本题为5).因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有()λ51212=-=∆-∆d n将有关数据代入可得m 1074.4156-⨯=-=n d λ 14-12 白光垂直照射到空气中一厚度为380 nm 的肥皂膜上.设肥皂的折射率为1.32.试问该膜的正面呈现什么颜色?分析 这是薄膜干涉问题,求正面呈现的颜色就是在反射光中求因干涉增强光的波长(在可见光范围).解 根据分析对反射光加强,有(),...2,122==+k k ne λλ124-=k ne λ 在可见光范围,k =2 时,nm 8668.=λ(红光)k =3 时,nm 3401.=λ(紫光)故正面呈红紫色.14-13 利用空气劈尖测细丝直径.如图所示,已知λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干涉公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δx 除以(N -1).对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 ()m 107552125-⨯=∆-==.x n N L nb d λλ题14-13 图14-14 集成光学中的楔形薄膜耦合器原理如图所示.沉积在玻璃衬底上的是氧化钽(52O Ta )薄膜,其楔形端从A 到B 厚度逐渐减小为零.为测定薄膜的厚度,用波长λ=632.8nm 的He Ne - 激光垂直照射,观察到薄膜楔形端共出现11 条暗纹,且A 处对应一条暗纹,试求氧化钽薄膜的厚度.(52O Ta 对632.8 nm 激光的折射率为2.21)题14-14 图分析 置于玻璃上的薄膜AB 段形成劈尖,求薄膜厚度就是求该劈尖在A 点处的厚度.由于25Ta O 对激光的折射率大于玻璃,故从该劈尖上表面反射的光有半波损失,而下表面没有,因而两反射光光程差为Δ=2ne +λ/2.由反射光暗纹公式2ne k +λ/2 =(2k +1)λ/2,k =0,1,2,3,…,可以求厚度e k .又因为AB 中共有11 条暗纹(因半波损失B 端也为暗纹),则k 取10即得薄膜厚度.解 根据分析,有2ne k +2λ=(2k +1)λ/2 (k =0,1,2,3,…) 取k =10,得薄膜厚度e 10 =n210λ=1.4 ×10-6m . 14-16 如图(a)所示的干涉膨胀仪,已知样品的平均高度为 3.0 ×10-2m ,用λ=589.3 nm 的单色光垂直照射.当温度由17 ℃上升至30 ℃时,看到有20 条条纹移过,问样品的热膨胀系数为多少?题14-16 图分析 温度升高ΔT =T 2 -T 1 后,样品因受热膨胀,其高度l 的增加量Δl =lαΔT .由于样品表面上移,使在倾角θ 不变的情况下,样品与平板玻璃间的空气劈的整体厚度减小.根据等厚干涉原理,干涉条纹将整体向棱边平移,则原k 级条纹从a 移至a′处,如图(b )所示,移过某一固定观察点的条纹数目N 与Δl 的关系为2λN l =∆,由上述关系可得出热膨胀系数α.解 由题意知,移动的条纹数N =20,从分析可得T l N ∆=αλ2则热膨胀系数 5105112-⨯=∆=.Tl N λα K 1- 14 -18 如图所示,折射率n 2 =1.2 的油滴落在n 3 =1.50 的平板玻璃上,形成一上表面近似于球面的油膜,测得油膜中心最高处的高度d m =1.1 μm ,用λ=600 nm 的单色光垂直照射油膜,求(1) 油膜周边是暗环还是明环? (2) 整个油膜可看到几个完整的暗环?题14-18 图分析 本题也是一种牛顿环干涉现象,由于n 1 <n 2 <n 3 ,故油膜上任一点处两反射相干光的光程差Δ=2n 2d .(1) 令d =0,由干涉加强或减弱条件即可判断油膜周边是明环.(2) 由2n 2d =(2k +1)λ/2,且令d =d m 可求得油膜上暗环的最高级次(取整),从而判断油膜上完整暗环的数目.解 (1) 根据分析,由()()(),...2,1,0 212 22=⎪⎩⎪⎨⎧+=k k k d n 暗条纹明条纹λλ 油膜周边处d =0,即Δ=0 符合干涉加强条件,故油膜周边是明环.(2) 油膜上任一暗环处满足。

大学物理下册课后题答案完整版

大学物理下册课后题答案完整版

大学物理下册课后习题答案习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解? 解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos rp E r εθ= 垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题8-5图 题8-6图8-6 长l =15.0cm AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 2220)(d π4d x a xE E ll P P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2) 2220d d π41d +=x xE Q λε 方向如题8-6图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπR E y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021lr E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220lr ll r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220lr rl r l r l E +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan =α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r < 0,0==∑E q(2) 21R r R <<λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+= n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ=' ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6Cd=0.2cm ,把这电偶极子放在1.0×105N ·C-1解: ∵ 电偶极子p在外场E 中受力矩E p M⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r rq q r F A εε )11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C点,求移动过程中电场力作的解: 如题8-16图示0π41ε=O U 0)(=-R q R q 0π41ε=O U )3(R q R q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图)解: (1)点电荷 rqU 0π4ε=题 8-20 图 ∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR qU +=ε ∴ ()i xR qxi x U E 2/3220π4+=∂∂-=ε (3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql l l r q U εθθθε=+--= ∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有 0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图 (1)∵ AB ACU U =,即∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A= 得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计(1) (2) *(3) 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =',小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 S q261==σσS qd U 2032-=-=εσσSqd U 2054+=-=εσσ所以CB 间电场 Sqd U E 00422εεσ+== )2d(212d 02Sq U E U U CB C ε+===注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2UU C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求:(1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε (3)金属球的电势r d r d 221⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=222020π44πdrR R R r r Qdrr Q εεε)11(π4210R R Q r r -+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E ==∴ r D Dεσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容.解: 取半径为r 的同轴圆柱面)(Srd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2= (1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ C Q W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε= 但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V ? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C += 8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4rrQ E ε = 3R r >时 302π4r rQ E ε =∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r rQ E ε =,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B的方向?解: 在同一磁感应线上,各点B的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B的方向.题9-2图9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)? (2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B=∑⎰==-=⋅0d 021I bc B da B l B abcd μ∴ 21B B= (2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B方向相反,即21B B≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管 外面环绕一周(见题9-4图)的环路积分⎰外B L·d l =0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ·d l =I 0μ 这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μ外,与⎰⎰=⋅=⋅Ll l B 0d 0d外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B 的轴向分量为零,而垂直于轴的圆周方向分量rI B πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发 生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m -2x 轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S BΦWb(2)通过befc 面积2S 的磁通量 022=⋅=S BΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S BΦWb (或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB 产生 01=BCD 产生RIB 1202μ=,方向垂直向里CD 段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里.9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则 02)1.0(220=-+rIr I πμπμ解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度. 解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。

第十一章 恒定电流的磁场(一) 作业及参考答案 2014

第十一章 恒定电流的磁场(一) 作业及参考答案 2014

一.选择题:1.(基础训练1)[D ]载流的圆形线圈(半径a1)与正方形线圈(边长a2 )通有相同电流I.若两个线圈的中心O1、O2处的磁感强度大小相同,则半径a1与边长a2之比a1∶a2为(A) 1∶1 (B) π2∶1(C) π2∶4 (D) π2∶8提示()82,,22135cos45cos244,2212212121ππμπμμ===-⨯⨯⨯==aaBBaIaIBaIBoooo得由2.(基础训练3)[B ].有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度B的大小为(A))(2baI+πμ.(B)bbaaI+πln2μ.(C)bbabI+πln2μ.(D))2(baI+πμ.提示:bbaaIrdraIrrdIdBdraIdIabb+======⎰⎰⎰+ln222dIBBB,BdB,2P,)(drrPπμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离3. .(基础训练4)[D ]如图,两根直导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感强度B沿图中闭合路径L的积分⎰⋅LlBd(A) I0μ.(B) I031μ.(C) 4/Iμ.(D) 3/2Iμ.提示⎰∑⎰=⋅∴=-==∴===⋅LLIl dBIIslIIslIslIIIl dB32322)(RRRIRI11122112122111Lμρρρμμ得为两条支路的电阻。

,,其中,而内4. 自测提高7[C ]如图,正方形的四个角上固定有四个电荷量均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 =21B 2. (D) B 1 = B 2 /4. 提示: 设正方形边长为a ,)22(a b b OC AO ===式中, 两种情况下正方形旋转时的角速度ω 相同,所以每个点电荷随着正方形旋转时形成的等效电流相同, 为 πω2q I =当正方形绕AC 轴旋转时,一个点电荷在O 点产生的磁感应强度的大小为bIB 20μ=,实际上有两个点电荷同时绕AC 旋转产生电流,在O 点产生的总磁感应强度的大小为b IbIB B 001222μμ=⨯==同理,当正方形绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为bIb IB B 0022244μμ=⨯== 故有122B B =5. 附录C 2[ B ]有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数为2=N 的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感应强度和磁矩分别是原来的:(A) 4倍和1/8 (B) 4倍和1/2 (C) 2倍和1/4 . (D) 2倍和1/2提示:由半径为R 的单匝线圈弯成匝数为2=N 的线圈以后,每一个线圈的半径变为R r 21=,故磁感应强度变为原来的4倍,磁矩变为原来的1/2,总的变化为4倍和1/2二. 填空题6.(基础训练11)均匀磁场的磁感强度B与半径为r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成封闭面如所示.则通过S 面的磁通量Φ = απcos 2B r -。

大学物理附加题答案

大学物理附加题答案

9-1 一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x = 0.06m ,且向x 轴正向运动.求: (1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度; 答(1)0.12cos 3x t ππ⎛⎫=- ⎪⎝⎭m (2)0.12sin 3v t πππ⎛⎫=--⎪⎝⎭m/s 20.12cos 3a t πππ⎛⎫=-- ⎪⎝⎭m/s 2t = T /4时 0.12c o s 630.106x π==≈m 0.12sin0.060.196v πππ=-=-≈- m/s20.12cos0.06 1.026a πππ=-=-≈- m/s 29-2一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = 2.0s .当t = 0时,物体的位移x 0= -5cm ,且向x 轴负方向运动.求: (1)简谐运动方程;(2)t = 0.5s 时,物体的位移;(3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处? 答(1)20.1cos 3x t ππ⎛⎫=+⎪⎝⎭m (2)t = 0.5s 时,270.1cos 0.1cos 0.087236x πππ⎛⎫=+=≈-⎪⎝⎭m (3)利用旋转矢量法,第一次运动到x = 5cm 处,相位是15233t πππ=+ 所以 11t =s(3)利用旋转矢量法,第二次运动到x = 5cm 处,相位是27233t πππ=+所以 253t =s 215210.6733t t t s ∆=-=-==10-1 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m )的振动方程为0.03cos(4)2A y t ππ=-(m).求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程.答(1)()0.050.03cos 40.03cos 450.20.222x y t t x ππππ⎛⎫⎛⎫⎛⎫=-+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ m (2)x = -0.05m 30.03cos 42y t ππ⎛⎫=+⎪⎝⎭m 10-2 两相干波源S 1与S 2相距5m ,其振幅相等,频率都是100Hz ,位相差为π;波在媒质中的传播速度为400m·s -1,试以S 1S 2连线为坐标轴x ,以S连线中点为原点,求S 1S 2之间因干涉而静止的各点的坐标.1s 1 2.5c o s x y A t u u ωϕ⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭2s 2 2.5c o s x y A t u u ωϕπ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭ 驻波方程:12 2.5 2.5cos cos x x y y y A t A t u u u u ωϕωϕπ⎛⎫⎛⎫⎛⎫⎛⎫=+=--+++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22252coscos 22x u t u A ωπωϕπω--++-=2 2.52cos cos 22x A t u u πνππωωϕ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭ 因干涉而静止的点满足2cos 02x uπνπ⎛⎫+= ⎪⎝⎭ 所以()()2210,1, 2 (22)x k k u πνππ+=+=±±,即()20,1, 2...2ux kk k ν===±±S 1S 2之间因干涉而静止的各点的坐标为 -2 0 2 1s 振动方程 ()1cos y A t ωϕ=+ x 点相位 ()2 2.5t x πωϕλ+-+ 2s 振动方程 ()2cos y A t ωϕπ=++ x 点相位()2 2.5t x πωϕπλ++--S 1 2相位差()()4210,1, 2...x k k πϕππλ∆=+=+=±± uλν=即()20,1, 2...2ux kk k ν===±±相干减弱S 1S 2之间因干涉而静止的各点的坐标为 -2 0 210-3 一观察者站在铁路旁,听到迎面驶来的火车汽笛声的频率为440 Hz ,当火车驰过他身旁之后,他听到的汽笛声的频率为392 Hz ,则火车行驶的速度为多大?已知空气中的声速为330 m/s 答:440su u v νν'==- 392s u u v νν''==+ 392440s su v u v νν''-=='+ 330u =m/s 解得19s v = m/s 11-1 用某透明介质盖在双缝干涉装置中的一条缝,此时,屏上零级明纹移至原来的第5条明纹处,若入射光波长为589.3nm ,介质折射率n = 1.58,求此透明介质膜的厚度.答 多出的光程差为 ()15n d λ-=965589.3105.1101.581d m --⨯⨯==⨯- 11-2 折射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长λ = 5004nm 的单色光垂直入射,产生等厚干涉条纹.当劈尖内充满n = 1.40的液体时,相邻明纹间距比劈尖内是空气时的间距缩小Δl = 0.1mm ,求劈尖角θ应是多少?答 空气劈尖 θλ21=b液体劈尖 33122101.02101.02--⨯-=⨯-==θλθλb n b rad 31015.7-⨯=θ11-3 一玻璃片(n = 1.50)表面附有一层油膜(n = 1.30),今用一波长可连续变化的单色光束垂直照射油膜上,观察到当波长为λ1 = 400nm 时,反射光干涉相消;当波长增加到λ2 = 560nm 时,反射光再次干涉相消,中间无其他波长的反射光消失,求油膜的厚度.答 ()21221λ+=k nd ()()211222λ+-=k nd()()21221221λλ-=+k k 3=k97740010 5.41022 1.3d m --⨯⨯==⨯⨯⨯11-4 两偏振片组装成起偏和检偏器,当两偏振片的偏振化方向夹角成30º时,观察一普通光源,夹角成60º时观察另一普通光源,两次观察所得的光强相等,求两光源光强之比.答 20201211cos 30cos 6022I I =3121=I I 11-5 三个偏振片堆叠在一起,第一块与第三块偏振化方向互相垂直,第二块与第一块的偏振化方向互相平行,现令第二块偏振片以恒定的角速度ω0绕光传播方向旋转,如图所示.设入射自然光的光强为I 0,求此自然光通过这一系统后透射光强 I 随时间 t 的变化关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 振动 作 业一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题 (一)、选择题1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π34,则t =0时,质点的位置在: (A)过A x 21=处,向负方向运动; (B) 过A x 21=处,向正方向运动; (C) 过A x 21-=处,向负方向运动; (D) 过A x 21-=处,向正方向运动。

2、一质点作简谐振动,振动方程为:x =A cos(ωt +φ )在t=T/2(T 为周期)时刻,质点的速度为:(A) sin A ωϕ-. (B) sin A ωϕ. (C) cos A ωϕ-. (D) cos A ωϕ.3、一质点沿x 轴做简谐运动,振动方程为:21410cos(2)3x t ππ-=⨯+。

从t = 0时刻起,到x =-2cm 处,且向x 轴正方向运动的最短时间间隔为: (A) 1s 8. (B) 1s 4. (C) 1s 2. (D) 1s 3. (E) 1s 6.(二)、计算题1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x 0= 0.06m ,且向x 轴正向运动.求:(1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度;2、一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = 2.0s .当t = 0时,物体的位移x 0= -5cm ,且向x 轴负方向运动.求:(1)简谐运动方程;(2)t = 0.5s 时,物体的位移;(3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处?3、若简谐振动方程为m ]4/20cos[1.0ππ+=t x ,求: (1)振幅、频率、角频率、周期和初相; (2)t =2s 时的位移、速度和加速度.4、如图所示,质量为10g 的子弹以1000m .s -1 的速度射入木块并嵌在木块中,并使弹簧压缩从而作简谐振动,若木块质量为4.99kg ,弹簧的劲度系数31810N m -⨯⋅,求振动的振幅。

5、一物体沿x 轴作简谐振动,振幅为0.06m ,周期为2.0s ,当t =0时位移为0.03m ,且向轴正方向运动,求:(1)t =0.5s 时,物体的位移、速度和加速度;(2)物体从m 03.0-x =处向x 轴负方向运动开始,到达平衡位置.至少需要多少时间?第10章 波动 作 业一、教材:选择填空题 1~5;计算题:12,13,14, 21,30 二、附加题 (一)、选择题1、一平面简谐波的波动方程为y = 0.1cos(3πt -πx+π) (SI). t = 0时的波形曲线如图所示,则:(A) O 点的振幅为-0.1m (B) 波长为3m (C) a 、b 两点间相位差为π/2 .(D) 波速为9m/s 。

2、某平面简谐波在t = 0.25s 时波形如图所示,则该波的波函数为: (A) y = 0.5cos[4π (t -x /8)-π/2] (cm) . (B) y = 0.5cos[4π (t + x /8) + π/2] (cm) . (C) y = 0.5cos[4π (t + x /8)-π/2] (cm) . (D) y = 0.5cos[4π (t -x /8) + π/2] (cm) .3、一平面简谐波在0=t 时刻的波形曲线如图所示 ,则O 点的振动初位相为:πππ23)(;)(;21)(;0)(D C B A4、一平面简谐波 ,其振幅为A ,频率为v ,波沿x 轴正方向传播 ,设t t =0时刻波形如图所示 ,则x=0处质点振动方程为:;])(2cos[)(;]2)(2cos[)(];2)(2cos[)(;]2)(2cos[)(0000ππππππππ+-=--=+-=++=t t v A y D t t v A y C t t v A y B t t v A y A5、关于产生驻波的条件,以下说法正确的是: (A) 任何两列波叠加都会产生驻波; (B) 任何两列相干波叠加都能产生驻波; (C) 两列振幅相同的相干波叠加能产生驻波;(D) 两列振幅相同,在同一直线上沿相反方向传播的相干波叠加才能产生驻波.(二) 计算题1、如图所示 ,一平面简谐波沿Ox 轴传播 ,波动方程为])(2cos[ϕλπ+-=x vt A y ,求:1)P2)该质点的速度表达式与加速度表达式 。

2、一列简谐波沿x 轴正向传播,在t 1 = 0s ,t 2 = 0.25s 时刻的波形如图所示.求:(1)P 点的振动表达式;(2)波动方程;)3(选择题)4(选择题3、 一平面简谐波在媒质中以速度为u = 0.2m·s -1沿x 轴正向传播,已知波线上A 点(x A = 0.05m)的振动方程为0.03cos(4)2A y t ππ=-(m)求:(1)简谐波的波动方程;(2)x = -0.05m 处质点P 处的振动方程。

4、如图,一平面波在介质中以波速u=20m/s 沿x 轴负方向传播,已知A 点的振动方程为y=3×10-2cos4πt (SI)。

(1)以A 点为坐标原点写出波方程;(2)以距A 点5m 处的B 点为坐标原点,写出波方程。

5、一行波在媒质中传播,波速v =103m/s ,振幅为41.010m -⨯,频率为103Hz ,若该媒质密度为3800kg/m ρ=,试求:(1)波的平均能流密度;(2) 一分钟内,通过波传播方向上面积42410m S -=⨯的总能量是多少? (提示:(1)2212I A ρω=v (2)E=I t S )6、火车以u =30m/s 的速度行驶,汽笛的频率为0ν=650Hz.在铁路近旁的公路上坐在汽车里的人在下列情况听到火车鸣笛的声音频率分别是多少? (1)汽车静止;(2)汽车以v =45km/h 的速度与火车同向行驶.(设空气中声速为v =340m/s )第11章 光学 作 业一、教材:选择填空题 1~6;计算题:12,14,21,22,25(问题(1)、(2)),26,32 二、附加题 (一)、选择题1、 一束波长为λ的单色光由空气入射到折射率为n 的透明薄膜上, 要使透射光得到加强, 则薄膜的最小厚度应为:u题图4(A) λ/2 (B) λ/2n (C) λ/4 (D) λ/4n2、波长λ = 500nm 的单色光垂直照射到宽度b = 0.25 mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦面上放置一屏幕,用以观测衍射条纹,今测得屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为d = 12 mm , 则凸透镜的焦距为(A) 2m (B) 1m (C) 0.5m (D) 0.2m (E) 0.1m3、一束由自然光和线偏光组成的复合光通过一偏振片,当偏振片转动时,最强的透射光是最弱的透射光光强的16倍,则在入射光中,自然光的强度I 1和偏振光的强度I 2之比I 1:I 2为(A) 2:15 (B) 15:2 (C) 1:15 (D) 15:1(二)、计算题1、如图所示,一束平行光线以入射角θ射入折射率为n 、置于空气中的透明圆柱棒的端面,试求:光线在圆柱棒内发生全反射时,折射率n 应满足的条件。

2、如图所示,一玻璃棒(n=1.5)长50cm ,两端面均为半球面,半径分别为5cm 和10cm ,一小物高0.1cm ,垂直位于左端球面顶点之前20cm 处的轴线上。

问:(1) 小物经玻璃棒成像在何处?(2)整个玻璃棒的横向放大率为多少?3、一竖立玻璃板的折射率为1.5,厚度为10cm ,观察者在玻璃板后10cm 处沿板的法向方向观察置于同一法线上10cm 处的一个小物体时,它的像距离观察者有多远?4、在双缝干涉实验中,单色光源S 到两缝S 1、S 2的距离分别为l 1、l 2,并且λλ,321=-l l 为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D ,如图,求:(1) 零级明纹到屏幕中央O 点的距离;(2) 相邻明条纹间的距离。

5、在杨氏双缝实验中,设两缝之间的距离为0.2mm .在距双缝1m 远的屏上观察干涉条纹,若入射光是波长为400nm 至760nm 的白光,问屏上离零级明纹20mm 处,哪些波长的光最大限度地加强?6、波长为λ的单色光垂直照射到折射率为n 2的劈形膜上,如图所示,图中n 1<n 2<n 3,观察反射光形成的干涉条纹;(1) 从劈形膜顶部O 开始向右数起,第五条暗纹中心所对应的薄膜厚度e 5是多少? (2) 相邻的二明纹所对应的薄膜厚度之差是多少?7、某种单色平行光垂直入射在单缝上,单缝宽b =0.15mm ;缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧第三级暗条纹之间的距离为8.0mm ,求入射光的波长。

8、用一束含有两种波长的平行光垂直入射在光栅上,其中λ1=600 nm ,λ2=400nm ,实验发现距中央明纹5cm 处λ1光的第k 级主极大和λ2光的第(k +1)级主极大相重合,设放置在光栅与屏幕之间的透镜的焦距f = 50cm ,试求:(1)上述k =?(2)光栅常数题图63O第12章气体动理论作业一、教材:选择填空题1,2,4 计算题:14,16,20,21二、附加题(一)、选择题1、某种理想气体,体积为V,压强为p,绝对温度为T,每个分子的质量为m,R 为普通气体常数,N0为阿伏伽德罗常数,则该气体的分子数密度n为(A) pN0/(RT). (B) pN0/(RTV). (C) pmN0/(RT). (D)mN0/(RTV).2、若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻耳兹曼常量,R为摩尔气体常量,则该理想气体的分子数为:(A)pV/m. (B) pV/ (kT) . (C) pV /(RT) . (D) pV/(mT) .3、两瓶质量密度相等的氮气和氧气(氮气和氧气视为理想气体),若它们的方均根速率也相等,则有:(A) 它们的压强p和温度T都相等.(B) 它们的压强p和温度T都都不等.(C) 压强p相等,氧气的温度比氮气的高.(D) 温度T相等, 氧气的压强比氮气的高.(二)、计算题1、一容器中储有氧气,测得其压强为1atm,温度为300K。

试求:(1)单位体积内的氧分子数;(2)氧气的密度;(3)氧分子的质量;(4) 氧分子的平均平动动能。

2、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为6.21×10-21J,求: (1) 氧气分子的平均平动动能和方均根速率; (2) 氧气的温度。

相关文档
最新文档