信号处理-习题(答案)
(完整版)随机信号处理考题答案
填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
信号处理与测试技术习题及答案
第一章习题:一、填空题1、电量分为和,如电流、电压、电场强度和电功率属于;而描述电路和波形的参数,如电阻、电容、电感、频率、相位则属于。
2、传感器输出的经过加工处理后,才能进—步输送到记录装置和分析仪器中。
3、现代科学认为,、、是物质世界的三大支柱。
4、与三大支柱相对应,现代科技形成了三大基本技术,即、、。
5、传感技术是人的的扩展和延伸;通信技术是人的的扩展和延伸;计算机技术是人的的延伸。
6、、、技术构成了信息技术的核心。
二、简答题1、举例说明信号测试系统的组成结构和系统框图。
2、举例说明传感技术与信息技术的关系。
3、分析计算机技术的发展对传感测控技术发展的作用。
4、分析说明信号检测与信号处理的相互关系。
三、参考答案(-)填空题1、电能量、电参量、电能量、电参量2、电信号、信号调理电路3、物质、能量、信息4、新材料技术、新能源技术和信息技术5、感官(视觉、触觉)功能、信息传输系统(神经系统)、信息处理器官(大脑)功能6、传感、通信和计算机第二章习题:一、填空题1、确定性信号可分为和两类。
2、信号的有效值又称为,它反映信号的。
3、概率密度函数是在域,相关函数是在域,功率谱密度是在域上描述随机信号。
4、周期信号在时域上可用、和参数来描述。
5、自相关函数和互相关函数图形的主要区别是。
6、因为正弦信号的自相关函数是同频率的,因此在随机噪声中含有时,则其自相关函数中也必然含有,这是利用自相关函数检测随机噪声中含有的根据。
7、周期信号的频谱具有以下三个特点:_________、________、_________。
8、描述周期信号的数学工具是__________;描述非周期信号的数学工具是________。
9、同频的正弦信号和余弦信号,其相互相关函数是的。
10、信号经典分析方法是和。
11、均值E[x(t)]表示集合平均值或数学期望,反映了信号变化的,均方值反映信号的。
12、奇函数的傅立叶级数是,偶函数的傅立叶级数是。
数字信号处理教程课后习题及答案
6.试判断:
是否是线性系统?并判断(2),(3)是否是移不变系统?
分析:利用定义来证明线性:满足可加性和比例性, T [a1 x1 (n ) + a 2 x2 (n )] = a1T [ x1 (n )] + a2T [ x2 (n )] 移不变性:输入与输出的移位应相同 T[x(n-m)]=y(n-m)。
,
(2)x(n) = R3(n)
,
(3)x(n) = δ (n − 2) ,
(4)x(n) = 2n u(−n − 1) ,
h(n) = R5(n) h(n) = R4 (n) h(n) = 0.5n R3(n) h(n) = 0.5n u(n)
分析:
①如果是因果序列 y (n ) 可表示成 y (n ) ={ y (0) , y(1) , y(2) ……},例如小题(2)为
y1 (1) = ay1 (0) + x1 (1) = 0 y1 (2) = ay1 (1) + x1 (2) = 0
┇
8
y1(n) = ay1(n − 1) + x1(n) = 0 ∴ y1 (n) = 0 , n ≥ 0 ii) 向 n < 0 处递推,将原方程加以变换
y1(n + 1) = ay1(n) + x1(n + 1)
结果 y (n ) 中变量是 n ,
∞
∞
∑ ∑ y (n ) =
x ( m )h (n − m ) =
h(m)x(n − m) ;
m = −∞
m = −∞
②分为四步 (1)翻褶( -m ),(2)移位( n ),(3)相乘,
(完整word版)数字信号处理习题及答案
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1。
①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n ) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(—n )的波形图。
②尺度变换:已知x(n)波形,画出x (2n )及x(n/2)波形图.卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
信号处理基础课后练习题含答案
信号处理基础课后练习题含答案信号处理是一种重要的技术,涉及到音频、图像、视频等众多领域。
信号处理技术能够从原始信号中提取出有用的信息,帮助我们更好地理解和分析数据。
在学习信号处理时,我们必须进行实践,以加深对理论知识的理解。
下面是一些信号处理基础课后练习题及其答案。
问题1.对于给定的数字信号 $x[n] = \\{1, 2, 3, 4, 5\\}$,请计算其平均值和方差。
2.对于信号 $x(t) = 2\\sin(2\\pi f_1 t) + 3\\cos(2\\pi f_2 t +\\phi)$,请说明其频率和相位。
3.对于滤波器系统 $H(z) = \\frac{1}{1 - az^{-1}}$,请确定其系统函数的长度与阶数,说明其类型。
4.对于数字信号 $x[n] = \\{1, 2, 0, 4, 5, 1\\}$,请绘制其幅度谱和相位谱。
答案问题1数字信号 $x[n] = \\{1, 2, 3, 4, 5\\}$ 的平均值为:$$ \\mu = \\frac{1 + 2 + 3 + 4 + 5}{5} = 3 $$而方差为:$$ \\sigma^2 = \\frac{(1-3)^2 + (2-3)^2 + (3-3)^2 + (4-3)^2 + (5-3)^2}{5} = 2 $$问题2信号 $x(t) = 2\\sin(2\\pi f_1 t) + 3\\cos(2\\pi f_2 t + \\phi)$ 的频率为f1和f2,而相位为 $\\phi$。
问题3滤波器系统 $H(z) = \\frac{1}{1 - az^{-1}}$ 的系统函数长度为2,阶数为1,是一个一阶滤波器。
问题4数字信号 $x[n] = \\{1, 2, 0, 4, 5, 1\\}$ 的幅度谱和相位谱幅度谱幅度谱相位谱相位谱以上是信号处理基础课后练习题及其答案。
通过这些练习,我们可以更好地理解信号处理的基本概念和实践应用,以加深知识点的掌握。
数字信号处理(第三版)-课后习题答案全-(原题+答案+图)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
x(m)h(n-m)
m
第 1 章 时域离散信号和时域离散系统
题7图
第 1 章 时域离散信号和时域离散系统
y(n)={-2,-1,-0.5, 2, 1, 4.5, 2, 1; n=-2, -1, 0, 1, 2, 3, 4, 5}
信号处理习题及答案
2、关于传递函数的特点,下列叙述正确的是。( B )
A.与具体的物理结构有关 B.反映系统的传输和响应特性
C.与输入有关
D.不能反映了测试系统的动态特性
3、线性度表示静态标定曲线 A.接近真值 C.正反行程的不重合
B
的程度。
B.偏离理想曲线 D. 输出比输入
4、测试装置的频响函数是装置动态特性在
A.幅值域 B.时域 C.频率域
传递函数H(s)
、 、 h(t) 频率响应函数 H(ω) 脉冲响应函数
6、输入、输出,装置的脉冲响应函数,它们三者间 的关系是 y(t)=x(t)*h(t) 。 7、测试装置在稳态下,其输出信号的变化量与其输 入信号的变化量之比值,称为 灵敏度 。 8、相同测试条件下,当输入量由小增大和由大减小 时,所得输出量最大差值称为 回程误差 。 9、一阶系统的主要特征参数有 时间常数τ 。 10.二阶系统的主要特征参数有 固有频率 n 和 阻尼比 。
四、分析计算题 1、某测试装置为一线性系统,其传递函数为:
1 H ( s) 0.005s 1
求其对周期信号 x(t ) 0.5cos10t 0.2cos(100t 45) 的稳态响应y(t)。
线性系统具有叠加性和频率保持特性。
解:已知 则: 即:
H ( s)
1 1 0.005s
相位差 ( ) 43.03
四、简答题
1、什么是线性系统的频率保持特性?有何意义? 一个系统处于线性工作范围内,当其输入是正弦信号时, 它的稳态输出一定是与输入信号同频率的正弦信号,只 是幅值与相位有所变化。若系统的输出信号含有其他频 率成分时,可以认为是外界干扰的影响或系统内部噪声
等原因所致,可采用滤波等方法予以排除。
数字信号处理题库(附答案)
A.一个N阶IIR子系统和一个(M-N)阶的FIR子系统的并联
B.一个N阶IIR子系统和一个(M-N)阶的FIR子系统的级联
C.一个N阶IIR子系统和一个M阶的FIR子系统的级联
D.一个N阶IIR子系统和一个M阶的FIR子系统的并联
19.周期卷积是线性卷积的周期延拓。( Y )
20.DFT隐含周期性。( Y )
21.重叠保留法和重叠相加法的计算量差不多。( Y )
22.频率抽取法输出是自然顺序,输入是按照反转的规律重排。(N )
23.按频率抽取法与按时间抽取法是两种等价的FFT运算。( Y )
24.变动DFT的点数,使谱线变密,增加频域采样点数,原来漏掉的某些频谱就可能被检测出来。( Y )
33.阶数位N的Butterworth滤波器的特点之一是( C )。
A.具有阻带内最大平坦的幅频特性
B.具有通带内线性的相位特性
C.过度带具有频响趋于斜率为 的渐近线
D.过度带具有频响趋于斜率为 的渐近线
34.不是阶数为N的Chebyshev滤波器的特点之一是( D )。
A.逼近误差值在阻带内等幅地在极大值和极小值之间摆动
A.1024 B.1000 C.10000 D.1000000
21. 。( C )
A.0 B.2 C.4 D.6
22. 。( A )
A. B. C. D.
23. 。( A )
A. B. C. D.
24.重叠保留法输入段的长度为 , ,每一输出段的前( B )点就是要去掉的部分,把各相邻段流下来的点衔接起来,就构成了最终的输出。
以上为DFT部分的习题
数字信号处理试题和答案
数字信号处理试题和答案⼀. 填空题1、⼀线性时不变系统,输⼊为 x(n)时,输出为y(n);则输⼊为2x(n)时,输出为 2y(n) ;输⼊为x(n-3)时,输出为y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最⾼频率fmax 关系为: fs>=2fmax。
3、已知⼀个长度为N的序列x(n),它的离散时间傅⽴叶变换为X(e jw),它的N点离散傅⽴叶变换X(K)是关于X(e jw)的N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、⽤脉冲响应不变法进⾏IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产⽣的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中⼼是 (N-1)/2 。
7、⽤窗函数法设计FIR数字滤波器时,加矩形窗⽐加三⾓窗时,所设计出的滤波器的过渡带⽐较窄,阻带衰减⽐较⼩。
8、⽆限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、⽤窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,⽽周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列⽤xm (n)表⽰,其数学表达式为xm(n)=x((n-m))N RN (n)。
13.对按时间抽取的基2-FFT流图进⾏转置,并将输⼊变输出,输出变输⼊即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.⽤DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.⽆限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
数字信号处理-习题及答案
1.6自测题及参考答案1.自测题(1) 数字域频率ωπ2=所对应的信号的实际频率为 。
(2)序列)6sin()(1n n x π=的周期是 ,序列)6sin()4cos()(2n n n x ππ+=的周期是 。
(3)要使一个正弦序列 )sin()(ϕω+=n A n x 是周期序列,必须满足 条件。
(4) 采样信号的频谱是原模拟信号频谱的周期函数,其周期为 ,折叠频率为 。
(5)某线性时不变离散系统的单位脉冲响应为)(3)(n u n h n=,则该系统的因果性及稳定性分别为__________、__________。
(6) 已知某离散系统的输入输出关系是)2(2)1()(-+-=n x n x n y ,试判断系统的线性时不变和因果特性分别为 , , 。
(7) 已知系统的输入输出关系为8)(3)(+=n x n y ,则系统的线性性和时不变性分别为 及 。
(8) 有一连续信号)40cos()(t t x a π=,用采样间隔s T 02.0=对)(t x a 进行采样,则采样信号)(t x a 的表达式为=)(t x a_________;采样后所得时域离散信号)(n x 的周期为__________。
(9) 若一个理想采样及恢复系统,采样频率为π6=Ωs ,采样后经一个带宽为π3,增益为3/1的理想低通还原。
现有输入t t t t x a πππ5cos 2cos cos )(++=,输出信号)(t y 为 。
(10)如果截止频率为8/π的低通数字滤波器,采样频率为KHz T f s 10/1==,那么等效的模拟滤波器的截止频率是 。
2.参考答案(1)采样频率s f(2)12,244128)12,8gcd(128),gcd(2121=⨯=⨯==N N N N N(3)数字频率ω是π的函数(4)采样频率s Ω或s f ,2s Ω或2s f(5)因果非稳定(6)线性,时不变,因果 (7)非线性,时不变(8)∑∑∞-∞=∞-∞=-=-=n n aa n t n nT t nT xt x)02.0()8.0cos()()()(ˆδπδ,5=N (k 为2)(9)t t t y ππcos 22cos )(+= (10) 625Hz2.6 自测题及参考答案1.自测题(1) 对于稳定的因果系统,如果输入一个频率为0ω的复正弦序列nj en x 0)(ω=,则其输出为)(n y = ,设系统的频率响应)(ωj e H 已知。
信号处理-习题(答案)
页脚内容1数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么? 分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真; 因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即页脚内容2f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,页脚内容3若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
作业3 信号处理-答案
作业3 信号处理班级:姓名:学号:成绩:一、填空题1、直流电桥平衡的条件是R1 ⋅ R3=R2 ⋅ R4 _ ,交流电桥平衡的条件是|Z1|⋅|Z3|=|Z2|⋅|Z4|和φ1+ φ3=φ2 +φ4。
2、调幅是指时域信号与载波信号的乘积,同步解调是指调制后的时域信号与载波信号的再次乘积。
4、调幅过程在频域相当于频率(频谱)搬移过程,调幅装置实质上是一个乘法器,典型调幅装置是电桥。
5、RC低通滤波器中,RC称之为时间常数,其取值愈大,则上截止频率愈低。
6、RC微分电路实际上是一种高通滤波器,而RC积分电路实际上是一种低通滤波器。
7、巴塞伐尔定理表示在时域中计算的信号总能量,等于在频域中计算的信号总能量。
8、自相关函数能将淹没在噪声中周期信号提取出来,其频率保持不变,而丢失了相位信息。
9.A/D转换器是将模拟信号转换成数字信号的装置。
10.在数字信号处理中,采样时如果不满足采样定理,则会产生混叠;对信号进行截断时,则会产生能量泄漏。
11.对周期信号进行整周期截断,这是获得准确频谱的先决条件。
12.信号经截断后,其带宽将变为 无限带宽 ,因此,无论采样频率多高,将不可避免的发生 混叠 ,从而导致 失真(误差) 。
13、连续时间信号的离散傅里叶变换可概括为时域采样、时域截断和 频域采样 三个步骤。
14、离散傅里叶变换是适于 数字计算机 的傅里叶变换,信号经过 时域采样 、 时域截断 、 频域采样 ,使信号在时域和频域都是周期的、离散的。
二、选择题1.被测结构应变一定时,可以采用 B 方法使电桥输出增大。
A 多贴片B 使4个桥臂上都是工作应变片C 交流测量电桥D 电阻值最小的应变片2.差动半桥接法的灵敏度是单臂电桥灵敏度的 C 倍。
A 1/2B 1C 2D 33.为使调幅波能保持原来信号的频谱图形,不发生重叠和失真,载波频率f 0必须 C 原信号中的最高频率f m 。
A 等于B 低于C 高于D 接近4.在同步调制与解调中要求载波 B 。
数字信号处理复习题含答案
数字信号处理复习题含答案一、选择题1. 数字信号处理中,离散时间信号与连续时间信号的区别是什么?A. 离散时间信号是连续的B. 连续时间信号是离散的C. 离散时间信号是时间间隔固定的D. 连续时间信号是时间间隔不固定的答案:C2. 在数字信号处理中,傅里叶变换(FT)和离散傅里叶变换(DFT)的主要区别是什么?A. FT适用于连续信号,DFT适用于离散信号B. DFT是FT的逆变换C. FT是DFT的逆变换D. FT和DFT是相同的变换答案:A二、简答题1. 简述数字滤波器的基本概念和分类。
- 数字滤波器是一种对数字信号进行滤波处理的系统,它可以去除信号中的噪声或提取信号中的特定频率成分。
根据滤波器的特性,数字滤波器可以分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
2. 解释什么是快速傅里叶变换(FFT)及其在数字信号处理中的重要性。
- 快速傅里叶变换是一种高效的算法,用于计算离散傅里叶变换(DFT)。
它将DFT的计算复杂度从O(N^2)降低到O(NlogN),极大地提高了计算效率。
FFT在数字信号处理中广泛应用于频谱分析、滤波器设计和信号识别等领域。
三、计算题1. 给定一个离散时间信号 x[n] = {1, 2, 3, 4},请计算其周期为4的离散傅里叶变换(DFT)。
- 首先,我们需要应用DFT的定义公式:\[ X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn} \] - 将给定的信号 x[n] 代入公式,计算得到:\[ X[0] = 1 + 2 + 3 + 4 = 10 \]\[ X[1] = (1 - 2 + 3 - 4)e^{-j\frac{\pi}{2}} = 0 \]\[ X[2] = (1 - 2 - 3 + 4)e^{-j\pi} = 0 \]\[ X[3] = (1 + 2 - 3 - 4)e^{-j\frac{3\pi}{2}} = 0 \]- 因此,DFT结果为 X[k] = {10, 0, 0, 0}。
信号处理-习题(答案)
信号处理-习题(答案)数字信号处理习题解答第二章数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1)该信号的最小采样频率;(2)若采样频率f s =5000Hz ,其采样后的输出信号;分析:利用信号的采样定理及采样公式来求解。
○1采样定理采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号-???? ????? ??=?+???? ????? ??-???? ????? ??=????++???? ????? ??-+???? ????? ??=?+???? ????? ??+???? ????? ??=???====n n n n n n n n n n n f n x nT x t x n x s s nT t s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想内插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
数字信号处理习题集(附答案)
第一章数字信号处理概述简答题:1.在A/D变换之前和D/A变换之后都要让信号通过一个低通滤波器,它们分别起什么作用?答:在A/D变化之前为了限制信号的最高频率,使其满足当采样频率一定时,采样频率应大于等于信号最高频率2倍的条件。
此滤波器亦称为“抗混叠”滤波器。
在D/A变换之后为了滤除高频延拓谱,以便把抽样保持的阶梯形输出波平滑化,故又称之为“平滑”滤波器。
判断说明题:2.模拟信号也可以与数字信号一样在计算机上进行数字信号处理,自己要增加一道采样的工序就可以了。
()答:错。
需要增加采样和量化两道工序。
3.一个模拟信号处理系统总可以转换成功能相同的数字系统,然后基于数字信号处理理论,对信号进行等效的数字处理。
()答:受采样频率、有限字长效应的约束,与模拟信号处理系统完全等效的数字系统未必一定能找到。
因此数字信号处理系统的分析方法是先对抽样信号及系统进行分析,再考虑幅度量化及实现过程中有限字长所造成的影响。
故离散时间信号和系统理论是数字信号处理的理论基础。
第二章 离散时间信号与系统分析基础一、连续时间信号取样与取样定理计算题:1.过滤限带的模拟数据时,常采用数字滤波器,如图所示,图中T 表示采样周期(假设T 足够小,足以防止混叠效应),把从)()(t y t x 到的整个系统等效为一个模拟滤波器。
(a ) 如果kHz rad n h 101,8)(=π截止于,求整个系统的截止频率。
(b ) 对于kHz T 201=,重复(a )的计算。
解 (a )因为当0)(8=≥ωπωj e H rad 时,在数 — 模变换中)(1)(1)(Tj X Tj X Te Y a a j ωω=Ω=所以)(n h 得截止频率8πω=c 对应于模拟信号的角频率c Ω为8π=ΩT c因此 Hz Tf c c 6251612==Ω=π 由于最后一级的低通滤波器的截止频率为Tπ,因此对T8π没有影响,故整个系统的截止频率由)(ωj e H 决定,是625Hz 。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理习题解答 第二章 数据采集技术基础2.1 有一个理想采样系统,其采样角频率Ωs =6π,采样后经理想低通滤波器H a (j Ω)还原,其中⎪⎩⎪⎨⎧≥Ω<Ω=Ωππ30321)(,,j H a 现有两个输入,x 1(t )=cos2πt ,x 2(t )=cos5πt 。
试问输出信号y 1(t ),y 2(t )有无失真?为什么?分析:要想时域采样后能不失真地还原出原信号,则采样角频率Ωs 必须大于等于信号谱最高角频率Ωh 的2倍,即满足Ωs ≥2Ωh 。
解:已知采样角频率Ωs =6π,则由香农采样定理,可得 因为x 1(t )=cos2πt ,而频谱中最高角频率πππ32621=<=Ωh ,所以y 1(t )无失真;因为x 2(t )=cos5πt ,而频谱中最高角频率πππ32652=>=Ωh ,所以y 2(t )失真。
2.2 设模拟信号x (t )=3cos2000πt +5sin6000πt +10cos12000πt ,求:(1) 该信号的最小采样频率;(2) 若采样频率f s =5000Hz ,其采样后的输出信号; 分析:利用信号的采样定理及采样公式来求解。
○1采样定理 采样后信号不失真的条件为:信号的采样频率f s 不小于其最高频率f m 的两倍,即f s ≥2f m○2采样公式 )()()(s nT t nT x t x n x s===解:(1)在模拟信号中含有的频率成分是f 1=1000Hz ,f 2=3000Hz ,f 3=6000Hz∴信号的最高频率f m =6000Hz由采样定理f s ≥2f m ,得信号的最小采样频率f s =2f m =12kHz (2)由于采样频率f s =5kHz ,则采样后的输出信号⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛====n n n n n n n n n n n f n x nT x t x n x s s nTt s522sin 5512cos 13512cos 10522sin 5512cos 35112cos 105212sin 5512cos 3562cos 10532sin 5512cos 3)()()(πππππππππππ 说明:由上式可见,采样后的信号中只出现1kHz 和2kHz 的频率成分,即kHzf f f kHzf f f ss 25000200052150001000512211======,,若由理想插函数将此采样信号恢复成模拟信号,则恢复后的模拟信号()()t t t f t f t y ππππ4000sin 52000cos 132sin 52cos 13)(21-=-=可见,恢复后的模拟信号y (t ) 不同于原模拟信号x (t ),存在失真,这是由于采样频率不满足采样定理的要求,而产生混叠的结果。
第三章 傅里叶分析I. 傅里叶变换概述3.1 [习题3.2]设序列x (n )=δ(n-m ),求其频谱X (e j ω),并讨论其幅频和相频响应分析:求解序列的频谱有两种方法:○1先求序列的z 变换X (z ),再求频谱ωωj e z j z X e X ==)()(,即X (e j ω)为单位圆上的z 变换; ○2直接求序列的傅里叶变换 ∑∞-∞=-=n nj j en x e X ωω)()(解:对序列x (n )先进行z 变换,再求频谱,得m z m n ZT n x ZT z X -=-==)]([)]([)(δ则ωωωjm e z j e z X e X j -===)()(若系统的单位采样响应h (n )=x (n ),则系统的频率响应)}(exp{)(1)()(ωϕωωωωωj e H e e e X e H j jm jm j j ====--•故其幅频和相频响应(如图)分别为幅频响应 1)(=ωj e H 相频响应 ωωϕm -=)(由图可见,该系统的频率响应具有单位幅值以及线性相位的特点。
3.2 设x (n )的傅里叶变换为X (e j ω),试利用X (e j ω)表示下列序列的傅里叶变换:(1))1()1()(1n x n x n x --+-= (2) )]()([21)(2n x n x n x -+=*分析:利用序列翻褶后的时移性质和线性性质来求解,即)()(ωj e X n x ⇔,)()(ωj e X n x -⇔-)()(ωωj m j e X e n m x --⇔-解:(1)由于)()]([ωj e X n x DTFT =,)()]([ωj e X n x DTFT -=-,则)()]1([ωωj j e X e n x DTFT --=- )()]1([ωωj j e X e n x DTFT -=--故ωωωωωcos )(2])[()]([1j j j j e X e e e X n x DTFT ---=+= (2)由于)()]([ωj e X n x DTFT **=-故)](Re[2)()()]([2ωωωj j j e X e X e X n x DTFT =+=* 3.3 设X (e j ω)是如图所示的信号x (n )的傅里叶变换,不必求出X (e jω),试完成下列计算:(1))(0j e X(2)⎰-ππωωdeX j)((3)ωππωdeX j⎰-2)(分析:利用序列傅里叶变换的定义以及帕塞瓦定理来求解。
(1)序列的傅里叶变换公式为:正变换∑∞-∞=-=nnjj enxeXωω)()(反变换⎰-=ππωωωπdeeXnx n jj)(21)((2)帕塞瓦定理⎰∑-∞-∞==ππωωπdeXnx jn22)(21)(解:(1)由傅里叶正变换公式可知ω=0,则6)()()(00===∑∑∞-∞=∞-∞=⋅-n nnjj nxenxeX(2)由于e j0=1,则由傅里叶反变换公式可知n=0,故πππωωππωππω422)(2)()(0====⋅=--⎰⎰njjj nxdeeXdeX(3)由帕塞瓦定理,得ππωππω28)(2)(22==∑⎰∞-∞=-nj nxdeXII.周期序列的离散傅里叶级数(DFS)3.4 如图所示,序列x(n)是周期为6的周期性序列,试求其傅里叶级数的系数。
分析:利用DFS 的定义求解,即∑-===1)(~)](~[)(~N n kn N W n x n x DFS k X ,其中k = 0 ~ (N-1)解:已知N = 6,则由DFS 的定义得k jk jk j k j k j n nk j n kn eeee e en x W n x k X 5624623622626250625061068101214)(~)(~)(~ππππππ-----=-=+++++===∑∑对上式依次取k = 0 ~ 5,计算求得339)5(~33)4(~0)3(~33)2(~339)1(~60)0(~j X j X X j X j X X +=-==+=-==,,,, 3.5 设⎩⎨⎧≤≤+=n n n n x 其他,,0401)(,)2()(4-=n R n h令6))(()(~n x n x =,6))(()(~n h n h =,试求)(~n x 与)(~n h 的周期卷积。
分析:可以利用列表法求解,直观方便。
由于)(~)(~n x n y =○*∑-=-=1)(~)(~)(~N m m n h m x n h 只要将列表中对应于某个n 的一行中的)(~m n h -值和第一行中与之对应的)(~m x 值相乘,然后再将所有乘积结果相加,就得到此n 的)(~n y 值 解:注意:本题需要利用下一节中有限序列与周期序列的关系以及序.........................列循环移位的概念。
.........在一个周期(N =6)的计算卷积值)(~)(~n x n y =○*∑-=-=1)(~)(~)(~N m m n h m x n h 则)(~n x 与)(~n h 的周期卷积)(~n y 值(n =0~5)如下表所示: III. 离散傅里叶变换(DFT )3.6 已知x (n )如图所示,为{1,1,3,2},试画出序列x ((-n ))5,x ((-n ))6 R 6(n),x ((n ))3 R 3(n),x ((n ))6, x ((n-3))5R 5(n) 和x ((n ))7 R 7(n)的略图。
分析:此题需注意周期延拓的数值,也就是x ((n ))N 中N 的数值。
如果N 比序列的点数多,则需补零;如果N 比序列的点数少,则需将序列按N 为周期进行周期延拓,造成混叠相加形成新的序列。
解:各序列的略图如图所示。
3.7 试求下列有限长序列的N 点离散傅里叶变换(闭合形式表达式):(1))()(n R a n x N n = (2)N n n n n x <<-=000)()(,δ (3))()(n nR n x N = (4))()(2n R n n x N = 分析:利用有限长序列的DFT 的定义,即10)()(10-≤≤=∑-=N k W n x k X N n knN ,解:(1)因为)()(n R a n x N n =,所以k Nj N N n nk Njn N n knNn aea ea Wa k X ππ2121011)(--=--=--===∑∑(2)因为N n n n n x <<-=000)()(,δ,所以k n Nj n n knNN n knNeW W n n k X 002100)()(πδ-=-===-=∑(3)由)()(n nR n x N =,得∑-==1)(N n knN nW k X注意:为了便于求解,必须利用代数简化法消除掉上式中的变量.........................n .。
.∑-=+=10)1()(N n n k N kNnW k X W NW W N WN W N W N W W W N W W W nW nWW k X kNk N N n knNkNN N k N k N k N N k N k N k N k N N n n k N N n kn Nk N-=--+--=+--=-+-+++--++++=-=-∑∑∑-=---=+-=11)1()1(])1()2(2[])1(32[)1)((11)1(32)1(321)1(1则所以kNW Nk X --=1)( (4)注意:本题可利用上题的结论来进行化简。