泛函分析读书笔记

合集下载

学习泛函分析心得

学习泛函分析心得

学习泛函分析心得学院:数计院班别:10数本1班学号:2010224315(25)姓名:侯月容转眼间,就进入到大四的生活了,时间为什么就过得这么快呢。

四年的大学生活即将要结束了。

进入到大四,总感觉自己的心不是很定,想的事情也特别多了,即将要面临找工作的事,现在就开始有些担心了。

但这学期还有课要上的,其中重要的一门课是泛函分析,下面说说我学习泛函分析的一些感受。

邓老师,上个学期就开始听你上课了,之前就听师兄说实变函数挺难的。

刚开始的时候我觉得还好,还能大概听懂。

可是慢慢地,发现越来越难,很多都听不懂,有的时候自己不小心走神一下,等我清醒过来再继续听,就完全听不懂了。

总感觉自己真差劲,脑子也没有其它同学好,不够别的同学勤奋。

有的同学平时不怎么听课,考试却考的很好。

有的时候我努力了,却学习效果不好。

还记得上个学期的期中考试,我也很认真努力地复习,看书,也许是重点没抓住,期中却考了个刚好及格,60分而已。

当时传阅成绩的时候,一看到自己这个分数,突然就心里特别伤心,不想说话。

然后就暗下决心,期末我一定要努力复习考好,不能补考。

而这学期还要上和实变函数差不多的泛函分析,一开始拿到课本,心里就很担心,这门课我真的觉得好难,比数学分析还要难,以前学习数学分析还挺好的,大部分都能听懂。

但是数学分析学了好久了,感觉学厌了。

对于泛函分析,还是挺新奇的,课本不算厚。

刚开始上课的时候,也还能听懂很多,比如老师说的一些概念,定理,自己都能理解的。

感觉并没有想象中难。

可是上了两节课之后,自己感觉越来越吃力了,听不懂,看不明白。

特别是一些例子,根本不知道为什么是这样解,为什么要这样做,心中有很多很多的疑问。

上课时,很认真地听老师上课,看着黑板。

可是看着看着就走神了,不知道听到哪里去了。

有的时候,有些地方是听懂了,可是到自己要做题的时候,完全不知道怎么下手,不知道怎么去想,好像和老师上课讲的,和课本的又联系不上。

所以每次课后老师都会布置作业,让我们巩固知识。

《泛函分析讲义》(上)读书报告

《泛函分析讲义》(上)读书报告

《泛函分析讲义》(上)读书报告《泛函分析讲义》(上)读书报告泛函分析是一门较新的数学分支,是数学专业研究生两门专业基础课之一,是偏微分方程方向研究生为研究偏微必备的数学知识。

它把具体分析的问题抽象到一种更加纯粹的代数、拓扑结构的形式中进行研究,因此逐步形成了种种综合运用代数、几何的手段处理分析问题的新方法。

本门课以张恭庆、林源渠编著的《泛函分析讲义》(上)为教材蓝本,由安徽大学数学科学学院教授王良龙主讲,就简避烦,深入浅出,针对数学专业研究生的现实需要所开的一门课。

本册书共四章,分别为度量空间、线性算子与线性泛函、广义函数与索伯耶夫空间、紧算子与Fredholm算子,其中度量空间、线性算子与线性泛函以及线性算子的谱理论是我们掌握的重点。

度量空间又称距离空间,它是一种拓扑空间,其上的拓扑由指定的一个距离决定,这个距离必须满足正定性,对称性和三角不等式性。

引进距离空间的目的是刻画收敛,在收敛的基础上来叙述闭集、基本列和距离空间的完备性。

在这里我要强调度量空间的完备性与紧性,应该说这两种性质是我们解决空间问题绕不开的话题。

完备性是度量空间中重要的性质,并不是每个度量空间都具有完备性。

为了使某些度量空间完备,我们引入完备化这个概念,在不完备的度量空间中添加“理想元素”使之“扩充”为一个完备空间。

度量空间的完备性也是我们经常论证的问题,针对这一点,我们还是要理解完备空间的定义,适当构造基本列,使其成为收敛列。

压缩映像原理为解决常微分方程的初值问题的局部存在性的唯一性提供一种新的方法,在解决此问题的过程中,我们从中完全可以体会到泛函分析的巨大作用,也是我们偏微分方程方向的学生第一次感受到泛函在方程中的应用。

紧性也是度量空间中另一重要性质。

为什么要提出紧性?是因为并不是每个度量空间的任意点列都有收敛子列。

有限维的欧式空间可以做到这一点,但是其他空间却不能推广。

在紧性这一部分我们必须要明白几点:1.列紧、准紧、相对紧的概念等价;2.什么时候子集是准紧,是紧集;3.距离空间中紧的与自列紧的等价关系(他们分别从有限开覆盖与收敛自列的角度描绘了同一种概念,对于我们理解距离空间的紧性有很大的帮助)距离空间只有拓扑结构,对于许多分析问题只考虑拓扑结构不考虑代数结构是不够用的,因为分析中常遇到的函数空间,不但要考查收敛而且要考虑到元素间的代数运算。

泛函分析学习心得

泛函分析学习心得

泛函分析学习心得在我学习泛函分析的过程中,我认为泛函分析是数学中非常重要的一个分支,它不仅有着广泛的应用,还对于理解数学的基本概念和思想有着重要的贡献。

下面是我在学习泛函分析的心得体会。

首先,泛函分析是研究无穷维空间中的向量和函数的性质和行为的数学学科。

相比于有限维空间,无穷维空间更为复杂和抽象,因此泛函分析需要引入一些新的概念和工具来描述和研究无穷维空间中的对象。

其中最基本的概念就是线性空间和赋范空间。

线性空间是指满足一定线性运算规则的集合,赋范空间是指在线性空间的基础上引入了范数的空间。

了解这些基本概念是理解泛函分析的核心,可以帮助我们更好地把握和理解泛函分析的核心思想。

其次,泛函分析的主要研究对象是泛函。

泛函是将一个向量或者函数映射到一个实数的映射。

通过研究泛函,我们可以了解和描述向量或者函数的性质和行为。

在泛函分析中,我们主要关注线性泛函和连续线性泛函。

线性泛函是指满足一定线性性质的泛函,连续线性泛函是指在赋范空间上满足一定连续性质的线性泛函。

学习泛函分析的关键就是理解和研究泛函的性质和行为,利用泛函来描述和分析无穷维空间中对象的特点。

此外,在泛函分析中还有一些重要的概念和工具,例如:内积、正交、完备性、紧算子、谱理论等。

这些概念和工具在泛函分析中起着关键作用,可以帮助我们深入理解和分析无穷维空间中的对象。

例如,内积可以用来定义向量的长度和角度,正交关系可以用来描述向量的互相垂直的关系,完备性可以用来刻画向量空间的完整性等等。

学习和掌握这些概念和工具对于理解泛函分析的基本原理和思想非常重要。

最后,在学习泛函分析过程中,练习和实践也非常重要。

泛函分析是一个非常抽象和理论性很强的学科,对于我们来说可能有一定的难度。

但是通过练习和实践,我们可以更好地理解和运用所学的知识。

可以通过做一些练习题、阅读一些经典的参考书籍、参加研讨会等方式来提升自己的泛函分析水平。

在实践中我们还可以体会到泛函分析的应用,并且可以与其他学科进行交叉的思考,提高自己的综合能力。

应用泛函分析读书报告范文

应用泛函分析读书报告范文

应用泛函分析读书报告范文泛函分析是现代数学的一个重要分支,是研究无穷维线性空间上的泛函数与算子理论的一门分析数学。

无穷维线性空间是描述具无限多自由度的物理系统的数学工具。

因此,泛函分析是研究具有无穷多自由度的物理系统的有力工具。

控制科学与工程是一门研究控制的理论、方法、技术及其工程应用的学科。

它是20世纪最重要的科学理论和成就之一,控制科学以控制论、信息论、系统论为基础,研究各领域内独立于具体对象的共性问题,即为了实现某些目标,应该如何描述与分析对象与环境信息,采取何种控制与决策行为。

在《控制论与科学方法论》中谈到,所谓控制,便是研究确定事物发展的可能性空间,并通过一定的人为干预把可能性空间锁定或者缩小到期望的范围。

控制理论的研究对象是系统,所谓的控制是指对系统的控制。

对系统的研究,主要有研究系统状态的运动规律和改变这种运动规律的可能性和方法,建立和揭示系统结构、参数、行为和性能之间的关系,既是对系统进行分析和综合,以按照期望的性能和方式对系统进行控制。

然而,不管是对系统进行分析还是综合,首要前提就是建立起系统的数学模型,对系统的主要属性进行数学描述,利用适当的数学工具对系统属性间的关系进行定量描述和分析。

随着控制理论的发展,所用的数学工具也随着变化。

可以说,具体学科的发展为数学的发展提供了素材,而数学的发展,也为具体学科的发展提供了更为有力的工具。

控制科学作为具体的工程科学,基本的研究对象是自然界的物理系统。

所谓物理系统的自由度,是指用于完全描述系统行为的一组无关量的个数。

经典的数学分析是与经典力学的成就密切相关的,主要用来描述和分析物质作有限自由度连续运动的各种特性。

在此,主要研究一元函数或多元函数的性态,诸如单调性、连续性、可微性和可积性等,对连续函数建立了各种微积分运算。

数学的抽象把三维立体空间中向量的概念,推广到任意有限维线性空间;同时把力学中简单的坐标变换,推广到一般的线性变换,并且由此引出矩阵对线性变换的表示,以及矩阵的运算等,这些都是线性代数的研究内容。

学习泛函分析心得

学习泛函分析心得

学习泛函分析心得我在学习泛函分析时,深刻理解到对于数学中的函数空间,通常要考虑的是函数与函数之间的关系,而泛函分析正是研究这种关系的一门学科。

在泛函分析中,将函数看作向量,函数空间称为向量空间。

然而,这个向量空间与我们平常接触的欧几里得空间有所不同。

在欧几里得空间中,我们通常使用内积来定义空间中向量的长度、角度等性质,而泛函分析中,我们在向量空间上定义了一种新的线性映射:泛函。

泛函将函数映射到实数或复数,从而使得函数也可以看作向量空间中的元素。

同时,泛函也可以看作将向量空间中的向量映射到一个标量。

泛函分析中一个核心的概念是范数。

范数是一种将向量空间中的向量映射到非负实数的函数,可以看作在数学上定义了向量的长度。

泛函分析中的范数并不局限于欧几里得空间中常用的2-范数,我们可以定义各种各样的范数,根据不同的需求来选择合适的范数。

另一个很重要的概念是完备性。

一个向量空间是完备的,意味着空间中的任何柯西序列都可以收敛到该空间中的一个元素。

在欧几里得空间中我们已经很熟悉了柯西序列与收敛的概念,但在一般的向量空间中,柯西序列可能并不收敛,这就需要考虑向量空间的完备性。

泛函分析有很多应用,其中比较重要的一类是微积分方程。

通过泛函分析的分析工具,可以求解各种各样的微积分方程,比如把微分方程转化为积分方程。

同时,泛函分析也被应用于量子力学、图像处理、信号处理等很多学科中。

总之,学习泛函分析可以让我们从一个完全不同的角度来看待函数空间、向量空间等数学概念,提供了一个更加广阔的数学视角。

同时,泛函分析也是一个重要的研究领域,有着广泛的应用前景。

泛函分析读书笔记(上)(可编辑修改word版)

泛函分析读书笔记(上)(可编辑修改word版)

第一部分线性代数第一章 线性空间第一节 线性空间一、基本概念1、 定义:数域P =复数子集+四则运算封闭2、 定义:线性空间=•+),;;(P V 数域P 上的线性空间V =线性空间V ⑴、解释:=V 非空集合⑵、解释:V V V →⨯=+【加法,加法保持封闭】 ⑶、解释:V V P →⨯=•【数乘,数乘保持封闭】 ⑷、解释:=•+),(线性运算【满足8条规则】3、 8条规则加法规则:⑴、交换律:αββα+=+⑵、结合律:)()(γβαγβα++=++⑶、零元素:V ∈∃0,对于V ∈∀α,都有αα=+0⑷、负元素:对于V ∈∀α,V ∈∃β,使得0=+βα【记为:α-】数乘规则:⑸、αα=1⑹、αα)()(kl l k =加法数乘规则:⑺、βαβαk k k +=+)(⑻、αααl k l k +=+)(二、基本性质1、 性质⑴、性质:零元素唯一⑵、证明:假设:V ∈∃10,对于V ∈∀α,都有αα=+10 V ∈∃20,对于V ∈∀α,都有αα=+20 对于V ∈∀α,都有⇒=+αα10特别:212000=+对于V ∈∀α,都有⇒=+αα20特别:121000=+12120000+=+【交换律】2100=⇒ ⑶、性质:负元素唯一2、 性质⑴、性质:ααα-=-==)1(0000,,k⑵、证明:ααααααα==+=+=+1)10(100【规则5+规则8】 )()(]0[0αααααααα-+=-++⇒=+⇒αααααααα000)]([0)(]0[=+=-++=-++⇒【结合律】0)(=-+αα【负元素的定义】00=⇒α第二节 线性无关一、基本概念1、 概念:线性组合(线性表出)如果:r r k k k αααα+++=Λ2211则称:向量α是向量组r ααα,,,Λ21的一个线性组合 或称:向量α可由向量组r ααα,,,Λ21线性表出2、 概念:线性相关如果:存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性相关3、 概念:线性无关如果:不存在不全为0的P k k k r ∈,,,Λ21 使得:02211=+++r r k k k αααΛ则称:向量组r ααα,,,Λ21线性无关 4、 关键:00212211====⇒=+++r r r k k k k k k ΛΛααα二、基本性质1、 性质⑴、性质:向量组r ααα,,,Λ21线性相关 ⇔其中某一向量可由其余向量线性表出 ⑵、证明:必要性:r r r r k kk k k k k αααααα)()(0121212211-++-=⇒=+++ΛΛ 充分性:0)()(221221=-++-+⇒++=r r r r k k k k ααααααΛΛ2、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:可由向量组s βββ,,,Λ21线性表出 则有:s r ≤⑵、证明:∑∑===⇒=⇒+++=sj j ji i sj j j s s t tt t t 111112211111βαβαβββαΛ∑∑∑∑∑=======⇒=+++s j ri j ji i ri sj j jiiri iir r t k tk k k k k 111112211][][0ββααααΛ⎪⎪⎩⎪⎪⎨⎧⇒=+++=+++=+++⇒000221122222111122111sr r s s rr r r t k t k t k t k t k t k t k t k t k ΛΛΛΛs 个方程,r 个未知数⇒如果s r >,则方程存在非零解r k k k ,,,Λ21 ⇒向量组r ααα,,,Λ21线性相关⇒矛盾3、 等价⑴、概念:两个向量组等价【互相线性表出】⑵、性质:两个等价的线性无关向量组,必定含有相同数目的向量⑶、证明:假设:向量组r ααα,,,Λ21线性无关 向量组s βββ,,,Λ21线性无关4、 性质⑴、性质:如果:向量组r ααα,,,Λ21线性无关 并且:向量组βααα,,,,r Λ21线性相关 那么:β可由向量组r ααα,,,Λ21线性表出,并且表法唯一 ⑵、证明:向量组βααα,,,,r Λ21线性相关 ⇒存在不全为0的P k k k k r ∈β,,,,Λ21 使得:02211=++++βαααβk k k k r r Λr r k kk k k k k αααβββββ)()()(02221-++-+-=⇒≠⇒Λ 假设:r r k k k αααβ+++=Λ2211r r l l l αααβ+++=Λ22110)()()(222111=-++-+-⇒r r r l k l k l k αααΛ⇒===⇒r r l k l k l k ,,,Λ2211表法唯一第三节 维数、基和坐标1、 定义:n 维线性空间V :恰好存在n 个线性无关的向量2、 定义:n 维线性空间V 的一组基:n 个线性无关的向量n εεε,,,Λ213、定义:坐标:对于V ∈∀α,向量组n εεε,,,Λ21线性无关 向量组n a εεε,,,,Λ21线性相关【否则1+n 维】 n n a a a εεεα+++=⇒Λ2211⇒坐标)(21n a a a ,,,Λ=4、 定理⑴、定理:如果:向量组n ααα,,,Λ21线性无关 并且:线性空间V 中的任意向量,均可由它们线性表出那么:V 的维数n =,并且n ααα,,,Λ21是V 的一组基 ⑵、证明:假设:V 的维数1+=n⇒121+n βββ,,,Λ线性无关,可由向量组n ααα,,,Λ21线性表出 ⇒n n ≤+1⇒矛盾第四节 极大线性无关组1、 定义:极大线性无关组:一个向量组的一部分组称为极大线性无关组 如果:该部分组线性无关并且:添加任一向量均线性相关2、 性质⑴、性质:极大线性无关组与向量组本身等价⑵、证明:假设:向量组r k αααα,,,,,ΛΛ21= 极大线性无关组k ααα,,,Λ21= k ααα,,,Λ21⇒可由r k αααα,,,,,ΛΛ21线性表出 对于}{21r k ααααβ,,,,,ΛΛ∈∀ βααα,,,,k Λ21⇒线性相关【否则与极大线性无关组矛盾】 β⇒可由k ααα,,,Λ21线性表出3、 性质⑴、性质:向量组的极大线性无关组,含有相同个数的向量 ⑵、证明:向量组与极大线性无关组1等价 向量组与极大线性无关组2等价⇒极大线性无关组1与极大线性无关组2等价【等价的传递性】第五节 线性子空间1、 定义:),;;(•+P W 是线性空间),;;(•+P V 的一个子空间 =W 是数域P 上的线性空间V 的一个子空间 =W 是线性空间V 的一个子空间如果:⑴、V W =的非空子集⑵、两种运算封闭:W W W ∈+∈∀∈∀βαβα,, W k W P k ∈∈∀∈∀αα,,2、 )(21r L ααα,,,Λ ⑴、性质:如果:∈r ααα,,,Λ21线性空间V 那么:所有可能的线性组合r r k k k ααα+++Λ2211构成V 的一个子空间称为:由r ααα,,,Λ21生成的子空间 记为:)(21r L ααα,,,Λ ⑵、证明:非空子集+两种运算封闭3、 性质⑴、性质:)()(2121s r L L βββααα,,,,,,ΛΛ= ⇔向量组r ααα,,,Λ21与向量组s βββ,,,Λ21等价⑵、证明:①:充分性:∑==+++=⇒∈∀ri ii r r r k k k k L 1221121)(αααααααααΛΛ,,,∑∑===⇒=+++=sj j ji i s j j j s s i t t t t t 1111221111βαββββαΛ∑∑∑∑∑========⇒s j ri j ji i r i sj j jiir i ii t k tk k 11111][][ββαα)()()(212121s r s L L L βββαααβββα,,,,,,,,,ΛΛΛ⊂⇒∈⇒ ②:必要性:)()(2121s i r i L L βββααααα,,,,,,ΛΛ∈⇒∈ i α⇒可由向量组s βββ,,,Λ21线性表出4、 性质⑴、性质:如果:W 是n 维线性空间V 的一个m 维子空间并且:m ααα,,,Λ21是W 的一组基 那么:m ααα,,,Λ21可以扩充为线性空间V 的一组基 ⑵、证明:V ∈∃β,使得βααα,,,,m Λ21线性无关 反证法:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒线性空间V 的维数⇒=m 矛盾第六节 子空间的交与和1、 定义:}|{22112121V V V V ∈∈+=+αααα,2、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V I 也是线性空间V 的子空间 ⑵、证明:=21V V I 非空子集【至少都包含零元素】 2121V V V V ∈∈⇒∈∀ααα,I 2121V V V V ∈∈⇒∈∀βββ,I2121V V V V I ∈+⇒∈+∈+⇒βαβαβα,3、 性质⑴、性质:如果:21V V ,是线性空间V 的两个子空间 那么:21V V +也是线性空间V 的子空间 ⑵、证明:22112121V V V V ∈∈+=⇒+∈∀αααααα,, 22112121V V V V ∈∈+=⇒+∈∀ββββββ,, 222111V V ∈+∈+⇒βαβα,2122112121)()()()(V V +∈+++=+++=+⇒βαβαββααβα4、 维数公式⑴、公式:维+1V 维=2V 维+)(21V V I 维)(21V V +⑵、证明:假设:m αα,,Λ1是21V V I 的一组基 111n m ββαα,,,,,ΛΛ是1V 的一组基 211n m γγαα,,,,,ΛΛ是2V 的一组基证明:21111n n m γγββαα,,,,,,,,ΛΛΛ是21V V +的一组基①、线性无关:022********=++++++++n n n n m m q q p p k k γγββααΛΛΛ2211111111n n n n m m q q p p k k γγββααα---=+++++=ΛΛΛm m l l V V V V αααααα++=⇒∈⇒∈-∈⇒ΛI 112121, m m n n m m l l p p k k ααββαα++=+++++ΛΛΛ11111111 01111====⇒n m m p p l k l k ,,m m n n l l q q ααγγ++=++ΛΛ11221100211=====⇒n m q q l l ,Λ②、21V V +∈∀α,均可由21111n n m γγββαα,,,,,,,,ΛΛΛ线性表出第七节 子空间的直和1、 直和⑴、定义:=+21V V 直和⇔任何元素的分解式唯一⑵、分析:22112121V V V V ∈∈+=⇒+∈∀αααααα,,唯一2、 性质⑴、性质:=+21V V 直和⇔零元素的分解式唯一⑵、证明:充分性:假设:22112121V V V V ∈∈+=⇒+∈αααααα,,221121V V ∈∈+=ββββα,,)()()()(022112121βαβαββαα-+-=+-+=⇒ 2211βαβα==⇒,3、 性质⑴、性质:=+21V V 直和}0{21=⇔V V I⑵、证明:充分性:22112121V V V V ∈∈+=⇒+∈∀αααααα,,2211210V V ∈∈+=⇒αααα,,1221221121V V V V ∈∈∈∈⇒-=⇒αααααα,,, 021212211==⇒∈∈⇒ααααV V V V I I , 必要性:212121V V V V V V ∈-∈⇒∈∈⇒∈∀ααααα,,I 00)(=⇒=-+ααα4、 性质⑴、引理:⇔=}0{V 维0=V⑵、证明:必要性:向量0线性相关⇒不存在线性相关的向量组 充分性:假设:线性空间V 至少包括一个非零向量α ⇒≠⇒0α向量α线性无关α⇒可以扩充为线性空间V 的一组基⇒维1≥V ⇒矛盾⑶、性质:=+21V V 直和⇔维+1V 维=2V 维)(21V V +第八节 线性空间的同构1、 定义:同构如果:=W V ,线性空间并且:存在W V →的双射σ【双射=一一映射=满射+单射】并且:σ满足两条性质:①)()()(βσασβασ+=+②)()(ασασk k = 则称:V 和W 同构,=σ同构映射2、 基本性质⑴、性质:数域P 上的n 维线性空间V 与n P 同构⑵、证明:①、=•+)(,,;P P n线性空间【两种运算封闭+满足8条性质】 n n n n P b b b P a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα )(2211n n b a b a b a +++=+⇒,,,Λβα n n P a a a P k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ②、构造nP V →的双射σ【向量到坐标的双射】假设:V n =εεε,,,Λ21的一组基 )()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα ③、σ满足两条性质)()(212211n n n a a a a a a V ,,,ΛΛ=⇒++=⇒∈∀ασεεεαα )()(212211n n n b b b b b b V ,,,ΛΛ=⇒++=⇒∈∀βσεεεββn n n b a b a b a εεεβα)()()(222111+++++=+⇒Λ)()()()(2211βσασβασ+=++++=+⇒n n b a b a b a ,,,Λ3、 性质群1⑴、性质:)()()()(22112211r r r r k k k k k k ασασασααασ+++=+++ΛΛ ⑵、证明:σ的两条性质⑶、性质:r ααα,,,Λ21线性无关)()()(21r ασασασ,,,Λ⇔线性无关 ⑷、证明:必要性:假设:0)()()(2211=+++r r k k k ασασασΛ0)(2211=+++⇒r r k k k ααασΛ由于0)0(=σ,并且=σ双射00212211====⇒=+++⇒r r r k k k k k k ΛΛααα⑸、性质:r ααα,,,Λ21线性相关)()()(21r ασασασ,,,Λ⇔线性相关 ⑹、证明:反证法⑺、性质:同构的线性空间同维⑻、证明:假设:线性空间V 和W 同构,并且维n V =)(,维m W =)(维⇒=n V )(存在n 个线性无关的向量组V n ∈ααα,,,Λ21 ⇒存在n 个线性无关的向量组W n ∈)()()(21ασασασ,,,Λ ⇒维n m W ≥=)( 同理:n m n m =⇒≤4、 性质群2⑴、性质:如果:1V 是线性空间V 的一个子空间那么:}|)({)(11V V ∈=αασσ是线性空间)(V σ的子空间 ⑵、证明:①、=1V 非空子集=⇒)(1V σ非空子集②、两种运算封闭假设:111*)()(*)(*V V ∈=⇒=⇒∈∀-αασασασα【双射】 111*)()(*)(*V V ∈=⇒=⇒∈∀-ββσβσβσβ111*)(*)(V ∈+⇒--βσασ【运算封闭】)(*)](*)([111V σβσασσ∈+⇒--【定义】【σ的两条性质】***)]([*)]([*)](*)([1111βαβσσασσβσασσ+=+=+----)(**1V σβα∈+⇒⑶、性质:=-στσ、1同构映射 ⑷、证明:①、=-1σ双射②、1-σ的两条性质)]([)]([)]([111βσσασσβασσβαβα---+=+⇒+=+ )]()([)]([111βσασσβασσ---+=+⇒【σ的两条性质】)()()(111βσασβασ---+=+⇒第二章 欧几里得空间第一节 实线性空间1、 定义:实线性空间)(•+=,;;R R n⑴、两种运算:①、向量加法n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα)(2211n n b a b a b a +++=+⇒,,,Λβα ②、向量数乘n n R a a a R k ∈=∀∈∀)(21,,,,Λα)(21n ka ka ka k ,,,Λ=•⇒α ⑵、两种运算封闭+满足8条性质第二节 欧几里得空间一、基本概念1、 定义:内积==)(βα,内积的4条性质 ⑴、交换:)()(αββα,,= ⑵、数乘:)()(βαβα,,k k =⑶、分解:)()()(γβγαγβα,,,+=+ ⑷、正定:0)(≥αα,,00)(=⇔=ααα,2、 欧几里得空间【欧氏空间】⑴、定义:欧几里得空间+•+=)(,;;R V 内积⑵、分析:未确定因素;③,;②①•+V 内积⑶、典例:=nE 实线性空间+•+)(,;;R R n内积 ⑷、分析:①、nR V =;②、=•+,向量加法+向量数乘;③、内积:n n n n R b b b R a a a ∈=∀∈=∀)()(2121,,,,,,,ΛΛβα n n b a b a b a +++=⇒Λ2211)(βα,【满足内积的4条性质】3、 基本概念⑴、概念:向量长度)(||ααα,== ⑵、概念:单位向量||αα=⑶、概念:向量距离)(||)(βαβαβαβα--=-==,,d ⑷、概念:夹角||||)(cos 1βαβαβα,,->==<二、柯西不等式1、 基本公式⑴、公式:|||||)(|βαβα≤,⑵、证明:①0)(0||0==⇒=βαββ,, ②⇒≠0β令βαγt +=022≥++=++=⇒),(),(),(),(),(βββαααβαβαγγt t t t04]2[2≤-=∆⇒),)(,(),(ββααβα【开口向上+单根或者无根】),)(,(),(ββααβα≤⇒2][③等号成立条件:βαβαγγγt t -=⇒=+⇒=⇒=000),(),(),(βββα-=-=a b t 2【单根】 βαββββαα、),(),(⇒=⇒线性相关2、 推论⑴、推论:||||||βαβα+≤+⑵、证明:),(),(),(),(βββαααβαβα++=++2 222|]||[|||||||2||βαββαα+=++≤⑶、推论:||||||γββαγα-+-≤-⑷、证明:令γαβαγβββαα-=+⇒-=-=,【代入上式】第三节 标准正交基1、 基本概念⑴、定义:两个向量正交【如果0)(=βα,,则称βα、正交,记为βα⊥】⑵、性质:n 维欧几里得空间V 的内积∑∑====n j ni jiji b a 11)()(εεβα,,⑶、证明:假设:V n =εεε,,,Λ21的一组基 n n a a a V εεεαα+++=⇒∈∀Λ2211n n b b b V εεεββ+++=⇒∈∀Λ22112、 基本概念⑴、定义:正交向量组=两两正交的非零向量组⎩⎨⎧≠==≠==ji ji j i 00)(αα,⑵、定义:正交基=正交向量组+基⑶、定义:标准正交基=正交基+单位向量3、 基本性质⑴、性质:正交向量组线性无关⑵、证明:假设:=r ααα,,,Λ21正交向量组 02211=+++++⇒r r i i k k k k ααααΛΛ0)()(2211==+++++⇒i i i i r r i i k k k k k ααααααα,,ΛΛ 0=⇒i k4、 定理⑴、定理:任何一个正交向量组,可以扩充为一组正交基⑵、证明:①假设:=m ααα,,,Λ21线性空间V 的正交向量组 V ∈∃β,使得βααα,,,,m Λ21线性无关 否则:βαααβ,,,,,m V Λ21∈∀线性相关 β∀⇒可由m ααα,,,Λ21线性表出 ⇒维V ⇒=m 矛盾 ②∑=+-=mj jj m k 11αβαm i k i mj j j i m ,,,,,,Λ21)()(11=-=⇒∑=+ααβαα0))1=-=-=∑=),(,(),(,(i i i i i mj j j i k k αααβαααβ),(,(i i i i k αααβ)=⇒5、 定理⑴、定理:如果:V n =εεε,,,Λ21的一组基 那么:可以找到一组标准正交基n ηηη,,,Λ21 并且:)()(2121n n L L ηηηεεε,,,,,,ΛΛ= ⑵、证明:①||111εεη=②假设:已经找到一组单位正交向量m ηηη,,,Λ21 使得:)()(2121m m L L ηηηεεε,,,,,,ΛΛ= ∑=+++-=⇒mj j j m m m 1111)(ηηεεγ,m i i mj j j m m i m ,,,,,,,Λ21))(()(1111=-=⇒∑=+++ηηηεεηγ))(()())(()(11111i i i m i m i mj j j m i m ηηηεηεηηηεηε,,,,,,++=++-=-=∑0))(()(11=-=++i i i m i m ηηηεηε,,, ||111+++=⇒m m m γγη ③∑=++++-=nj j j m m m m 11111)(||ηηεεγη,1+⇒m η可由121+m εεε,,,Λ线性表出 1+m ε可由121+m ηηη,,,Λ线性表出121+⇒m εεε,,,Λ与121+m ηηη,,,Λ等价 )()(121121++=⇒m m L L ηηηεεε,,,,,,ΛΛ第四节 正交补1、 基本概念⑴、定义:V ⊥α:如果V ∈∀β,都有0)(=βα,则称V 、α正交,记为V ⊥α⑵、定义:W V ⊥:如果W V ∈∀∈∀βα,,都有0)(=βα,则称W V 、正交,记为W V ⊥⑶、定义:正交补:假设:=21V V ,线性空间V 的两个子空间 如果:V V V V V =+⊥2121,则称:12V V =的正交补,记为:⊥=12V V2、 性质⑴、性质:如果:s V V V ,,,Λ21两两正交 那么:=+++s V V V Λ21直和 ⑵、证明:假设:i i s V ∈+++=αααα,Λ21000)(0)(21=⇒=⇒=+++⇒i i i i s ααααααα,,Λ3、 性质⑴、性质:任何子空间的正交补,存在并且唯一⑵、证明:假设:=1V 线性空间V 的一个子空间,⊥=12V V ①、V V V =⇒=21}0{②、1211}0{V V m =⇒≠εεε,,,Λ的一组正交基 ⇒可以扩充为=n m εεε,,,,ΛΛ1V 的一组正交基 )(12n m L V εε,,Λ+=⇒⊥=⇒12V V 【证明集合相等】【根据定义证明正交】③、假设:21V V ⊥,并且V V V =+2131V V ⊥,并且V V V =+313311312222V V V V ∈∈+=⇒∈∀⇒∈∀ααααααα,,00((111131112=⇒=⇒+=⇒ααααααααα),),(),),( 32323323V V V V ⊂⇒∈⇒∈=⇒αααα, 同理可证:3223V V V V =⇒⊂第三章 线性变换一、线性变换的定义1、 定义:线性变换假设:=T 线性空间),;;(•+P V 的一个变换 如果:T 满足两个条件⑴、V T T T ∈∀+=+βαβαβα,,)()()( ⑵、V P k kT k T ∈∀∈∀=ααα,,)()(则称:=T 线性变换2、 等价条件⑴、性质:T 的两个条件等价于V P k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(⑵、证明:①必要性:)()()()()(212121βαβαβαT k T k k T k T k k T +=+=+②充分性:)()()(121βαβαT T T k k +=+⇒==)()(021ααkT k T k k k =⇒==,二、线性变换的运算1、 线性变换的乘积⑴、定义:V T T T T ∈=ααα,))(())((2121 ⑵、性质:线性变换的乘积,仍是线性变换⑶、证明:①))(())(())((2212121βαβαβα()T T T T T T T +=+=+))(())(())(())((21212121βαβαT T T T T T T T +=+=②)))ααααα)(()(()(())(())((2121212121T T k T kT kT T k T T k T T ====2、 线性变换的加法⑴、定义:V T T T T ∈+=+αααα,)()())((2121 ⑵、性质:线性变换的加法,仍是线性变换 ⑶、证明:同上类似三、线性变换的矩阵1、 定理:⑴、定理:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 =n a a a ,,,Λ21任意一组向量那么:存在唯一的一个线性变换T使得:n i a T i i ,,,,Λ21==ε ⑵、证明:存在性和唯一性2、 唯一性⑴、性质:如果:n i T T i i ,,,,Λ2121==εε 那么:21T T =⑵、证明:n n x x x x V x εεε+++=⇒∈∀Λ2211n n n n T x T x T x x x x T x T εεεεεε1212111221111)(+++=+++=⇒ΛΛ x T x x x T T x T x T x n n n n 2221122222121)(=+++=+++=εεεεεεΛΛ3、 存在性⑴、性质:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基=n a a a ,,,Λ21任意一组向量那么:存在一个线性变换T使得:n i a T i i ,,,,Λ21==ε⑵、证明:①变换T :∑==+++=⇒∈∀ni ii n n x x x x x V x 12211εεεεΛ∑==+++=⇒ni ii n n ax a x a x a x Tx 12211Λ②线性变换T :假设:∑∑===⇒∈∀=⇒∈∀ni ii ni i i z z V z y y V y 11εε,∑∑===+=+⇒ni i i ni i i iky ky z yz y 11)(εε,Tz Ty a z a y a z yz y T ni i i n i i i ni i i i+=+=+=+⇒∑∑∑===111)()(kTy a y k aky ky T ni i i ni ii ===⇒∑∑==11)(③证明i i a T =ε:n i i εεεεε010021+++++=ΛΛi n i a a a a a T =+++++=⇒0100221ΛΛε4、 定义:如果:=V 数域P 上的n 维线性空间),;;(•+=P V V n =εεε,,,Λ21的一组基 V T =的一个线性变换那么:⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=⇒nnn n n n n n n n a a a T a a a T a a a T εεεεεεεεεεεεΛΛΛΛ22112222112212211111 )()(2121222211121121n nn n n n n n T T T a a a a a a a a a εεεεεε,,,,,,ΛΛΛΛΛΛΛΛΛ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇒ )()(2121n n T T T A εεεεεε,,,,,,ΛΛ=⇒ 则称:=A 线性变换T 在n εεε,,,Λ21下的矩阵⑵、性质:如果:取定一组基并且:=ϕ线性变换n n T ⨯→矩阵的一个映射那么:=ϕ双射⑶、证明:①单射:假设:2211)()(A T A T ==ϕϕ,212121T T T T A A i i =⇒=⇒=εε【唯一性】②满射:i i ni i i i a T a a a a A =⇒=⇒ε)(21,,,Λ【存在性】5、 定理⑴、线性变换的加法,对应于矩阵的加法⑵、线性变换的乘积,对应于矩阵的乘积⑶、线性变换的数乘,对应于矩阵的数乘⑷、线性变换的逆,对应于矩阵的逆第二部分泛函分析第一章 度量空间第一节 度量空间一、度量空间1、 符号约定:),;;(),;;(•+⇒•+F R P V2、 定义:距离ρρ==),(y x 的两条性质⑴、正定:R y x y x y x y x ∈∀=⇔=≥,;),(,),(00ρρ⑵、三角不等式:R z y x z y z x y x ∈∀+≤,,);,(),(),(ρρρ3、 定义:度量空间)ρ,(R =【距离空间】⑴、解释:=R 非空集合⑵、解释:=ρ距离【满足ρ的两条性质】4、 对称性⑴、性质:),(),(x y y x ρρ= ⑵、证明:),(),(),(z y z x y x ρρρ+≤),(),(),(),(),(x y y x x y x x y x ρρρρρ≤⇒+≤⇒同理可证:),(),(),(),(x y y x y x x y ρρρρ=⇒≤二、基本概念1、 子空间⑴、性质:度量空间的任何子空间,仍是度量空间⑵、证明:假设:=)ρ,(R 度量空间, =)ρ,(M 度量空间的子空间证明:=M 非空子集,ρ的两条性质仍然满足2、 一致离散:如果:0>∃α使得:y x R y x ≠∈∀,,;都有:αρ>),(y x则称:=R 一致离散的度量空间3、 等距映射和等距同构⑴、定义:等距映射:假设:=))11ρρ,,(,(R R 度量空间;1R R →=ϕ的映射 如果:),(),(y x y x ϕϕρρ1= 则称:1R R →=ϕ的等距映射⑵、性质:1R R →=ϕ的等距映射1R R →=⇒ϕ的单射⑶、证明:y x y x y x y x ϕϕϕϕρρ≠⇒≠⇒≠⇒≠001),(),(⑷、定义:等距同构:假设:1R R →=ϕ的等距映射如果:1)(R R =ϕ则称:=))11ρρ,,(,(R R 等距同构【双射】 ⑸、性质:11)(R R R R →=⇒=ϕϕ的满射三、极限1、 极限⑴、定义:假设:=R 度量空间,R x n x n ∈=,,,)21(Λ 如果:0)(lim =∞→x x n n ,ρ则称:点列}{n x 按距离收敛于x记为:x x n →【x x n n =∞→lim 】 并称:=}{n x 收敛点列,}{n x x =的极限⑵、归纳:0)(lim lim =⇔=⇔→∞→∞→x x x x x x n n n n n ,ρ2、 性质⑴、性质:收敛点列的极限唯一⑵、证明:假设:0)(lim =⇒→∞→x x x x n n n ,ρ 0)(lim =⇒→∞→y x y x n n n ,ρ )()()(0y x x x y x n n ,,,ρρρ+≤≤⇒【三角不等式】0)]()([lim )(0=+≤≤⇒∞→y x x x y x n n n ,,,ρρρ【夹逼原则】 y x y x =⇒=⇒0)(,ρ3、 性质⑴、性质:如果:00y y x x n n →→,那么:)()(lim 00y x y x n n n ,,ρρ=∞→【y x y x ,,=)(ρ的连续函数】 ⑵、证明:0)(lim 00=⇒→∞→x x x x n n n ,ρ 0)(lim 00=⇒→∞→y y y y n n n ,ρ )()()()(0000n n n n y y y x x x y x ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()()()(0000y y y x x x y x n n n n ,,,,ρρρρ++≤)()()()(0000y y x x y x y x n n n n ,,,,ρρρρ+≤-⇒)()(|)()(|00000y y x x y x y x n n n n ,,,,ρρρρ+≤-≤⇒0)]()([lim |)()(|lim 00000=+≤-≤⇒∞→∞→y y x x y x y x n n n n n n ,,,,ρρρρ )()(lim 00y x y x n n n ,,ρρ=⇒∞→4、 定义:开球})(|{)(00R x r x x x r x O ∈<==,,,ρ其中:=R 度量空间,R x ∈0,+∞<<r 0【=r 有限正数】5、 定义:有界集:假设:=R 度量空间,R M =中的点集如果:M 包含在某个开球)(0r x O ,中则称:R M =中的有界集6、 性质⑴、性质:如果=}{n x 收敛点列,那么=}{n x 有界集⑵、证明:=}{n x 收敛点列0lim x x n n =⇒∞→ 0>∃⇒N ,使得当N n >时,都有1)(0<x x n ,ρ1)1)()(m ax (001+=⇒,,,,,x x x x r N ρρΛ }{n x ⇒包含在开球)(0r x O ,中四、常见的度量空间1、 欧氏空间nE =,其中:)()(y x y x y x --=,,ρ【内积】2、 函数空间==][b a C ,区间][b a ,上的连续函数的全体其中:|)()(|max )(][t y t x y x b a t -=∈,,ρ第二节 范数一、范数1、 定义:R 上的实值函数)(x P 的4个条件【范数的4个条件】⑴、正定1:R x x P ∈∀≥,0)(⑵、齐次性:R x F x P x P ∈∀∈∀=,,ααα)(||)(⑶、三角不等式:R y x y P x P y x P ∈∀+≤+,,)()()(⑷、正定2:00)(=⇔=x x P2、 定义:范数:假设:=•+),;;(F R 实数域F 上的线性空间如果:R 上的实值函数)(x P 满足范数的4个条件则称:x x P =)(的范数记为:x x =||||的范数【)(||||x P x =】并称:=R 赋范线性空间【赋范空间】3、 性质⑴、定义:半范数:如果满足范数的前3个条件⑵、性质:范数的第4个条件可以简化为:00)(=⇒=x x P⑶、证明:0)0(0)(|0|)0()0(00=⇒===⇒=P x P x P P x4、 典例:函数空间][b a C ,⑴、性质:如果:][|)(|max ||||][b a C f x f f b a x ,,,∈∀=∈ 那么:=][b a C ,赋范线性空间⑵、证明:①=][b a C ,线性空间),;;(•+F R 定义:=+向量加法,=•向量数乘⇒两种运算封闭+满足8个条件②范数的4个条件正定1:0|)(|max ||||][≥=∈x f f b a x , 齐次性:||||*|||)(|max |||)(|max ||||][][f x f x f f b a x b a x αααα===∈∈,, 三角不等式:|)()(|max ||||][x g x f g f b a x +=+∈, |||||||||)(|max |)(|max ][][g f x g x f b a x b a x +=+≤∈∈,, 正定2:0)(0|)(|max 0||||][=⇒=⇒=∈x f x f f b a x ,5、 典例:n 维向量空间n R⑴、范数1:n n ni i R x x x x x x x x x ∈=∀===∑=)()(||||||2112,,,,,Λ ⑵、范数2:∑==n i ix x 1|||||| ⑶、范数3:||max ||||1i ni x x ≤≤=二、范数和距离1、 性质⑴、性质:利用范数可以定义距离:||||)(y x y x -=,ρ⑵、证明:距离的两个条件①正定:0||||)(≥-=y x y x ,ρy x y x y x =⇔=-⇔=0||||0)(,ρ②三角不等式:||||||||||||y x y x +≤+y x y x y z y z x x -=+⇒-=-=,||||||||||||||||||||z y z x y z z x y x -+-=-+-≤-⇒)()()(z y z x y x ,,,ρρρ+≤⇒⑶、归纳:赋范线性空间+利用范数定义距离⇒度量空间【线性空间+范数+距离】2、 极限⑴、定义:假设:=R 赋范线性空间,R x n x n ∈=,,,)21(Λ 如果:0||||lim =-∞→x x n n 则称:点列}{n x 按范数收敛于x记为:x x n →【x x n n =∞→lim 】 ⑵、归纳:0||||lim lim =-⇔=⇔→∞→∞→x x x x x x n n n n n3、 性质⑴、性质:如果0x x n →,那么||||||||lim 0x x n n =∞→【x x =||||的连续函数】 ⑵、证明:0||||lim 00=-⇒→∞→x x x x n n n ||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||||||||||||0000x x x x x x x x n n n n -≤-⇒+-≤||||||||||||||000x x x x n n -≤-≤⇒0||||lim |||]||||[|||lim 000=-≤-≤⇒∞→∞→x x x x n n n n ||||||||lim 0||]||||[||lim 0||||||||||lim 000x x x x x x n n n n n n =⇒=-⇒=-⇒∞→∞→∞→4、 性质⑴、性质:利用范数定义距离,必然满足两个条件①、)0()(,,y x y x -=ρρ②、)0(||)0(,,x x ρααρ=⑵、证明:①、||||)(y x y x -=,ρ||||||0||)0(y x y x y x -=--=-,ρ②、||||*||||||||0||)0(x x x x ααααρ==-=,||||*||||0||*||)0(||x x x ααρα=-=,5、 性质⑴、性质:如果:)(y x ,ρ满足两个条件那么:可以利用距离定义范数:)0(||||,x x ρ=⑵、证明:范数的4个性质①正定1:0)0(||||≥=,x x ρ②齐次性:||||*||)0(||)0(||||x x x x αρααρα===,,③三角不等式:),(),(),(z y z x y x ρρρ+≤ ),(),(),(),(),(),(00000y x y x y x y x ρρρρρρ+≤-⇒+≤⇒ ),(),(),(00|1|0y y y ρρρ=-=- ),(),(),(),(),(),(000000y x y x y x y x ρρρρρρ+≤+⇒-+≤-⇒ ||||||||||||y x y x +≤+⇒④正定2:00)0(0||||=⇒=⇒=x x x ,ρ6、 定理⑴、利用范数,可以定义距离⑵、利用函数,可以定义距离+满足两个条件⑶、利用距离+满足两个条件,可以定义范数⑷、利用距离,不一定可以定义范数【反例】第二章 有界线性算子第一节 度量空间中的点集1、 基本概念⑴、概念:0x 的-ε环境})(|{)(00R x x x x x O ∈<==,,,ερε⑵、概念:A x =0的内点:如果存在0x 的一个-ε环境A x O ⊂=)(0ε,⑶、概念:=A 开集:如果A 的每一个点都是内点⑷、概念:0x 的环境==)(0x O 包含0x 的开集2、 基本性质⑴、性质:)(00ε,x O x ∈,)(00ε,x O x =的内点【ερ<=0)(00x x ,】【2*εε=】⑵、性质:)(00x O x ∈,)(00x O x =的内点【定义】3、 重要性质⑴、性质:=)(0ε,x O 开集⑵、证明:ερε<⇒∈∀)()(00x z x O z ,,)(*0)(000x z x z ,,ρεερε-<<⇒-<⇒*)(*)(ερε<⇒∈∀z x z O x ,, ερερρρ<+<+≤⇒)(*)()()(000z x z x z x x x ,,,,)(*)()(00εεε,,,x O z O x O x ⊂⇒∈⇒)(0ε,x O z =⇒的内点=⇒)(0ε,x O 开集4、 重要性质⑴、性质:0x 的任何一个-ε环境)(0ε,x O =,都是0x 的环境⑵、意义:-ε环境=环境的特殊情况⑶、证明:=∈)()(000εε,,,x O x O x 开集⑷、性质:A x =0的内点⇔存在0x 的一个环境A x O ⊂=)(0⑸、意义:利用环境定义内点⑹、证明:①:A x =0的内点⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,⇒存在0x 的一个环境A x O ⊂=)(0②:存在0x 的一个环境A x O ⊂=)(0)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒存在0x 的一个-ε环境A x O ⊂=)(0ε,A x =⇒0的内点5、 定理⑴、定理:⇔→0x x n对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⑵、意义:利用环境定义收敛点列⑶、证明:①:任取0x 的一个环境)(0x O =)(00x O x =⇒的内点⇒存在0x 的一个-ε环境)()(00x O x O ⊂=ε,⇒→0x x n 对于0>ε,存在0>N ,当N n >时,ερ<)(0x x n ,)()(00x O x x O x n n ∈⇒∈⇒ε,②:对于0x 的任何环境)(0x O =,存在0>N ,当N n >时,)(0x O x n ∈⇒对于0x 的任何一个-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈00)(x x x x n n →⇒<⇒ερ,⑷、推论:⇔→0x x n对于0x 的任何-ε环境)(0ε,x O =,存在0>N ,当N n >时,)(0ε,x O x n ∈ ⑸、意义:利用-ε环境定义收敛点列第二节 连续映射1、 函数)(x f 在0x 点连续⑴、传统描述:对于00>∃>∀δε,,当δ<-||0x x 时,ε<-|)()(|0x f x f⑵、环境描述:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈2、 映射f 在0x 点连续【双重扩展】⑴、定义:假设:=Y X ,度量空间,X D =的一个子空间,Y D f →=的映射如果:对于)(0x f 的任何环境Y x f O ⊂=))((0存在0x 的一个环境D x O ⊂=)(0当)(0x O x ∈时,))(()(0x f O x f ∈则称:映射f 在0x 点连续⑵、定义:如果:映射f 在D 上的每一点都连续则称:D f =上的连续映射3、 等价定理⑴、定理:①:映射f 在0x 点连续②:对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个-δ环境)(0δ,x O =当)(0δ,x O x ∈时,))(()(0ε,x f O x f ∈③:)()(00x f x f x x n n →⇒→⑵、证明:①⇒②映射f 在0x 点连续⇒对于)(0x f 的任何环境))((0x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0x f O x f ∈【定义】⇒对于)(0x f 的任何-ε环境))((0ε,x f O =存在0x 的一个环境)(0x O =当)(0x O x ∈时,))(()(0ε,x f O x f ∈【-ε环境=环境的特殊情况】 )(00x O x =的内点⇒存在0x 的一个-δ环境)()(00x O x O ⊂=δ,⇒结论【全局满足则局部满足】⑶、证明:②⇒③⇒→0x x n 对于0>∀δ,存在0>N ,当N n >时,)(0δ,x O x n ⊂ N 由δ决定,δ由ε决定⇒N 由ε决定⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈)()(0x f x f n →⇒⑷、证明:③⇒①反证法:映射f 在0x 点不连续⇒存在)(0x f 的一个环境))((0x f O =对于0x 的任何环境)(0x O =存在)(0x O x ∈,))(()(0x f O x f ∉⇒对于0x 的任何环境)1(0nx O ,=,存在)(0x O x n ∈,))(()(0x f O x f n ∉ 0)(lim 1)(0)(000=⇒<<⇒∈∞→x x nx x x O x n n n n ,,ρρ【夹逼定理】 )()(00x f x f x x n n →⇒→⇒【条件】⇒对于0>∀ε,存在0>N ,当N n >时,))(()(0ε,x f O x f n ∈ ))(()(00x f O x f =的内点⇒存在)(0x f 的一个-*ε环境))((*))((00x f O x f O ⊂=ε,⇒对于0*>ε,存在0>N ,当N n >时,))((*))(()(00x f O x f O x f n ⊂∈ε, ⇒存在0>N ,当N n >时,))(()(0x f O x f n ∈⇒矛盾【N 由*ε决定,*ε由))((0x f O 决定】第三节 线性算子1、 算子⑴、定义:算子=映射⑵、定义:泛函=取值于实数域或者复数域的算子2、 线性算子⑴、定义:假设:=Y X ,实数域F 上的线性空间X D =的子空间Y D T →=的映射如果:T 满足条件:D F k k T k T k k k T ∈∀∈∀+=+βαβαβα,,,,212121)()()(则称:=T 线性算子并称:T D =的定义域,T D x Tx TD =∈=}|{的值域⑵、定义:如果:=T 线性算子并且:F TD ⊂则称:=T 线性泛函第四节 线性算子的有界性与连续性一、有界算子1、 连续定理⑴、定理:线性算子一点连续,处处连续⑵、描述:假设:=Y X ,赋范线性空间,X D =的一个子空间,Y D T →=的线性算子 如果:T 在D x ∈0连续那么:D T =上的连续算子⑶、证明:①:假设:x x D x n →∀⇒∈∀②:x x n →⇒对于0>∀ε,存在0>N ,当N n >时,ερ<)(x x n ,||||)(x x x x n n -=,ρ【=X 赋范线性空间】||||)(00x x x x x x n n -=+-,ρ⇒对于0>∀ε,存在0>N ,当N n >时,ερ<+-)(00x x x x n ,00x x x x n →+-⇒③:T 在0x 点连续00)(Tx x x x T n →+-⇒【等价定理①⇒③】00Tx Tx Tx Tx n →+-⇒【=T 线性算子】Tx Tx n →⇒【=Y 赋范线性空间】T ⇒在x 点连续【+∀n x 等价定理③⇒①】T ⇒在D 上处处连续【x ∀】。

小波,泛函分析学习感悟,超详细汇总

小波,泛函分析学习感悟,超详细汇总

小波,泛函分析学习感悟,超详细汇总泛函分析知识总结与举例、应用学习感悟一、度量空间和赋范线性空间〔一〕度量空间度量空间在泛函分析中是最根本的概念,它是n维欧氏空间R〔有限维空间〕的推广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X是一个集合,假设对于X中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足以下条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y 〔非负性〕 2°d(x,y)= d(y,x) 〔对称性〕3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) 〔三点不等式〕那么称d(x,y)是x、y之间的度量或距离〔matric或distance〕,称为(X,d)度量空间或距离空间(metric space)。

〔这个定义是证明度量空间常用的方法〕注意:⑴定义在X中任意两个元素x,y确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量〞这个名称已由现实生活中的意义引申到一般情况,它用来描述X中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵度量空间中由集合X和度量函数d所组成,在同一个集合X上假设有两个不同的度量函数d1和d2,那么我们认为(X, d1)和(X, d2)是两个不同的度量空间。

⑶集合X不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点〞,例如假设x?X,那么称为“X中的点〞。

⑷在称呼度量空间(X,d)时可以省略度量函数d,而称“度量空间X〞。

1.1举例1.11离散的度量空间:设X是任意的非空集合,对X中任意两点x,y∈X,令 n?1,当x?y,那么称〔X,d〕为离散度量空间。

d?x,y?=??0,当x=y11.12 序列空间S:S表示实数列〔或复数列〕的全体,d(x,y)=1?i??i; ?ii?121??i??i?1.13 有界函数空间B(A):A是给定的集合,B(A)表示A上有界实值〔或复值〕函数全体,对B(A)中任意两点x,y,定义d(x,y)=supx(t)?y(t)t?A1.14 可测函数空间M(X):M(X)为X上实值〔或复值〕的L可测函数全体。

非线性泛函分析笔记_钱佳威

非线性泛函分析笔记_钱佳威

1.非线性算子:1.1基本定义:一致连续:略过例子。

全连续算子:1.2.一些引理:集合测度的非负性和单侧性。

可测函数证明:一个函数满足如下条件x的集合为可测集的话,则为可测函数依测度收敛传递性。

证明f(S)为Lp2(G)中的有界集即可。

重点!:1.3.把数学分析中的全微分和方向导数概念推广到巴拿赫空间上的算子(抽象函数)中去。

抽象函数积分定义:用积分的任意划分定义。

抽象导数定义:附带几个定理:正题:两种算子介绍是数学分析中全微分(及其算子)的推广证明中喜欢用:证明其可该微分记住如下证明:巴拿赫空间下抽象函数的复合函数求导:特别重要的一般算子中值定理不成立:因为根据多元微分学向量表示法和代数方程组解变量的个数的时候不一定有公共解。

反证法,设A’(无穷)不连续。

其泰勒公式:证明用变参的方法,将其变到m(t)一个数学分析函数,然后对其泰勒展开换回F,让t取得特定值的时候就是上述泰勒公式。

部分与F微分的关系,重点!:F强于G微分关键性在于:所以存在略,所以说只要让h支离破碎,就算t是满足导数定义的,则为处处有界线性G微分但不可以F微分。

2.拓扑度理论:2.1.Brouwer度重点引理:Deg的重要定义:2.2不过要注意:PS:一些引理:用borsuk定理证明。

重点!:拓扑度乘积定理不动点定理与其相关:重点!核心:原则:反证法。

固有值和固有元以及歧点。

注意:歧点的定义非紧性测度:因为是有限个所以是松的,如果不能表现成有限的话可能就会是紧的。

解释第一个为0,则为强迫单点压缩从而导致有限的也能紧。

3.非线性算子方程正解:仅记录部分作用:AX=X的正解。

根据代数的集合关系构建的形状模型,数学家们给出了锥这个集合形状概念,类似于凸包的定义过程。

其中,引入的是半序集。

Ps:3.2增减与凹凸算子类似于函数增减和凹凸。

4.多解定理与单调映像重点定义:希尔伯特投影定义单调映像:MINIMAX原理重要的前提:最后的一个简单掌握需要:一. 名词解释弱收敛:弱*收敛:, 0()k pW :强制:Gateaux可微:Frechet可微:紧映射:正则点:临界点,正则值,临界值:2C映射的Brouwer度全连续场全连续场的Leray-Schauder度二. 举例说明无穷维空间中的有界闭集不是紧集。

泛函分析报告知识的总结

泛函分析报告知识的总结

泛函分析报告知识的总结泛函分析是数学中的一个重要分支领域,它研究的是无穷维空间上的函数及其性质。

泛函分析的应用广泛,包括函数空间、傅里叶分析、偏微分方程等等。

下面是我对泛函分析的一些知识进行总结。

首先,泛函分析的基础是线性代数和实分析。

线性代数研究的是向量空间及其线性关系,实分析则研究的是实数空间上的函数性质,例如收敛性、极限、连续性等等。

这两个基础学科为泛函分析的理论及应用打下了坚实的基础。

其次,泛函分析的核心是函数空间的研究。

函数空间是指一组函数的集合,其中的函数可以是有界函数、可积函数、连续函数等等。

泛函分析研究的是函数空间上的线性算子及其性质,例如范数、内积、完备性等等。

常见的函数空间有Lp空间、C(X)空间、Sobolev空间等等。

然后,泛函分析的重要工具是算子理论。

算子理论研究的是线性算子的性质和作用。

在泛函分析中,线性算子可以将一个函数映射到另一个函数,例如导数、积分等。

算子理论主要研究线性算子的性质,例如有界算子、紧算子、自伴算子等等。

算子理论在解析、几何等问题中有着广泛的应用。

此外,泛函分析也研究了拓扑结构及度量空间的性质。

拓扑结构是用来描述集合上点的邻域关系的概念,是泛函分析中重要的概念。

度量空间是带有度量函数的拓扑空间,度量函数可以度量空间中两个点之间的距离。

拓扑结构和度量空间的研究为泛函分析提供了一种统一的框架。

最后,泛函分析的应用广泛,特别是在数学的其他分支领域中。

在偏微分方程中,泛函分析可以用来研究问题的存在性、唯一性和稳定性;在概率论中,泛函分析可以用来研究随机过程的性质和收敛性;在图像处理中,泛函分析可以用来研究图像的压缩和恢复等等。

总之,泛函分析在数学及其应用领域中具有重要的地位和作用。

总结起来,泛函分析研究的是无穷维空间上的函数及其性质,它的基础是线性代数和实分析。

泛函分析的核心是函数空间的研究,它的重要工具是算子理论及拓扑结构和度量空间的性质。

泛函分析的应用非常广泛,涉及到数学的各个分支领域。

泛函分析读书笔记

泛函分析读书笔记

《泛函分析》读书笔记课程题目:泛函分析任课教师:高云兰博士学生姓名:崔继峰学生学号:200810582008年12月10日《泛函分析》读书笔记Reading Notes about Functional Analysis崔继峰所谓的泛函呢,就是一般函数,泛函分析当然就是一般函数的分析研究。

在学习泛函之前,需要有扎实的《实变函数》知识。

大学期间,曾用半年时间学过由南开大学刘炳初教授编著,科学出版社出版的《泛函分析》,讲课的是哈尔滨工业大学的包革军教授,他讲泛函的最大特点是把泛函与几何图形有机结合,把艰深的纯理论讲的惟妙惟肖。

在进入研究生学习阶段,《泛函分析》作为计算数学研究生的基础理论课程,是必选的。

我们选用的教材是由武汉大学刘培德教授主编,武汉大学出版社出版的《泛函分析(第二版)》,该教材是面向本科生的,系里之所以考虑选择此教材,是由于考虑到有些学生在本科阶段没有或者很粗浅的认识了《泛函分析》这门课程,主讲该课程的是高云兰博士,她的方向就是算子方面的研究,所以讲解该课程那是轻车熟路了。

课时大约是48学时(粗略估计)。

由于以下两方面的原因:1)对于《泛函分析》认识很粗浅;2)第一次写读书笔记(尤其是专业课类),不知道如何从略。

所以读书笔记可能从在诸多问题,希望老师见谅!下面我从几个方面写本学期学习《泛函分析》的感受和认识。

我本着这样态度写该笔记:1)了解泛函是什么,泛函的发展(很多教材把这个从略)2)把空间的理论知识系统学习,对于其他理论的学习作抛砖引玉之用。

3)学习泛函的实际作用(也就是附录里的滤波器理论的应用)。

泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

它是20世纪30年代形成的。

从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。

一、泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。

泛函分析学习心得

泛函分析学习心得

泛函分析学习心得10数本6 *** 2010224216泛函分析是数学系基础数学专业的一门重要必修基础课程。

是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。

也由于它研究的对象导致它是一门比较抽象的课程,不像我们以前所学习的知识那样容易理解而有实体,所以,如果我们要学好这门课,那就必须讲究学习方法。

除此之外,泛函分析也是数分与高代综合的抽象,所以想学好泛函分析就要有良好的基础,而作为上册的实变也是其中起着关键作用的基础。

泛函分析的特点是它的抽象化,把概念和方法几何化。

比如,课本中第一章讲的距离空间,如章前引导的,解微分方程所引发的各种疑问促使人们将函数集合作为一个整体看待,在其上引入线性运算、距离等概念,从而得到抽象的距离空间,也就是把不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。

它既包含了以前讨论过的几何对象,也包括了不同的函数空间。

由于这门课程比较抽象,所以要学好这门课程,对于我们来说,还是有点难度的。

但是,只要我们掌握了好的学习方法,我们还是一样可以吧这门课程学好的。

那怎样的学习方法才能让我们学好这门抽象的课程呢?下面,我就说说我的看法。

首先,我们一定要适应大学的教学模式,尽快进入角色,毕竟大学跟我们中小学的课堂教学模式是完全不一样的。

大学是以学生自学为主,老师指导为辅。

要想学好泛函分析这门课,更多的是需要我们学习的自主性。

其次,就是我们的课前预习。

我们要对课本的相关教材熟悉,初步把握好教材内容的重难点。

在上课的时候,带着问题就听老师讲课,这样对于我们的课堂效率就能有很大的提升。

我们也能很轻松的跟着老师节奏走,对于泛函分析的抽象问题,我们也就比较容易想象它的模型,消化起来自然也就相对轻松很多。

再次,在课堂上,我应该根据老师课程的讲解,参与老师的互动。

虽然大学的课堂有点“满堂灌”的形式,但是,在老师给我们讲解的时候,我们是可以跟着老师讲课的节奏,主动思考,适当的提出自己的疑问,以及自己对这节课知识内容的理解的想法。

泛函分析学习心得体会

泛函分析学习心得体会

泛函分析学习心得体会院系:班别:姓名:学号:泛函分析是继实变函数论后的一门课程,是实变函数论的后继,主要涉及赋范空间,有界线性算子、泛函、内积空间、泛函延拓、一致有界性以及线性算子的谱分析理论等内容。

可以说数字到数字的映射产生函数,而函数到函数的映射产生泛函,因此泛函分析是一门十分抽象的课程,学起来比较吃力。

在本学期上半阶段我们主要跟邓博士学习了第一章距离空间和第二章Banach空间上的有界线性算子。

在距离空间里最主要是掌握距离空间的定义。

定义:设X是一集合,是x × x到R n的映射,满足:(1) (非负性) (x,y)≥0 且 (x,y)=0,当且仅当x=y(2) (对称性) (x,y)= (y,x)(3) (三角不等式) (x,z)≤ (x,y)+ (y,z)则称X为距离空间,记为(X, ),有时简记为X。

由距离空间可以进一步定义出线性距离空间,线性赋范空间,接着进一步研究距离空间的完备性,其中度量空间、赋范线性空间、巴拿赫空间之间关系弄清楚了那么本节课也就掌握了;度量空间、赋范线性空间、巴拿赫空间的区别与联系。

赋范线性空间一定是度量空间,反之不一定成立。

度量空间按照加法和数乘运算成为线性空间,而且度量空间中的距离如果是由范数导出的,那么这个度量空间就是赋范线性空间。

赋范线性空间与巴拿赫空间的联系与区别:完备的赋范线性空间是巴拿赫空间。

巴拿赫空间一定是赋范线性空间,反之不一定成立。

巴拿赫空间一定是度量空间,反之不一定成立。

巴拿赫空间满足度量空间的所有性质。

巴拿赫空间由范数导出距离,而且满足加法和数乘的封闭性。

满足完备性,则要求每个柯西点列都在空间中收敛。

度量空间中距离要满足三个性质:非负线性、对称性、三点不等式,因此距离 (x,y)的定义是重点。

赋范线性空间中范数要满足:非负性、正齐性、三角不等式,距离定义和范数的定义是关键。

在第一章中还有两个重要的空间,内积空间和希尔伯特空间,内积空间是特殊的线性赋范空间,而完备的内积空间被称为希尔伯特空间,其上的范数由一个内积导出。

泛函分析读书笔记

泛函分析读书笔记

泛函分析读书笔记在学习泛函分析之前,就听说泛函是大学里最难学的一门课,却也是很重要而不得不学的!泛函分析结课之际,利用上课所做的笔记,加上课外阅读,简单谈谈我对泛函分析的了解。

泛函分析是20世纪30年代形成的数学分科,是从变分问题,积分方程和理论物理的研究中发展起来的。

它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的泛函,算子和极限理论。

它可以看作无限维向量空间的解析几何及数学分析。

泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。

近十几年来,泛函分析在工程技术方面有获得更为有效的应用。

它还渗透到数学内部的各个分支中去,起着重要的作用。

泛函分析是现代数学的一个分支,隶属于分析学,其研究的主要对象是函数构成的空间。

泛函分析是由对函数的变换(如傅立叶变换等)的性质的研究和对微分方程以及积分方程的研究发展而来的。

泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。

比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。

它既包含了以前讨论过的几何对象,也包括了不同的函数空间。

这是泛函分析的发展、应用、研究对象以及特点。

由于泛函分析源自研究各种函数空间,在函数空间里函数列的收敛有不同的类型(比如逐点收敛、一致收敛、弱收敛等),这说明函数空间里有不同的拓扑。

而函数空间一般是无穷维线性空间。

所以抽象的泛函分析研究的是一般的(无穷维的)带有一定拓扑的线性空间。

拓扑线性空间的定义就是一个带有拓扑结构的线性空间,使得线性空间的加法和数乘都是连续映射的空间。

泛函中存在诸多空间,这里对于几个重要的空间予以认识。

1. 度量空间(距离空间)定义:设X 是一个集合,,x y X ∀∈,若能定义实函数(),x y ρ,使距离满足: (1) 非负性:(),0x y ρ≥ (2) 对称性:()(),=x y y x ρρ,(3) 三角不等式:()()(),x y x z z ρρρ≤+,y , z X ∀∈ 则称X 为度量空间。

泛函分析读书笔记(下)

泛函分析读书笔记(下)

第一章 预备知识第一节 极限点和闭集一、极限点1、 定义:极限点:假设:=R 度量空间,R A =中的点集,R x ∈0 如果:对于0x 的任何一个-ε环境)(0ε,x O都有:∅≠-A x x O I }){)((00ε,则称:A x =0的极限点2、 性质⑴、性质:内点是极限点,孤立点不是极限点⑵、证明:A x =0的内点0x ∃⇒的一个-*ε环境A x O ⊂*)(0ε,对于0x 的任何一个-ε环境)(0ε,x O①如果*εε≥:A x x O A x x O I I }){*)((}){)((0000-⊃-εε,,∅≠-=}{*)(00x x O ε,②如果*εε<:∅≠-=-}{)(}){)((0000x x O A x x O εε,,I⑶、归纳:点=内点+边缘点+孤立点,极限点=内点+边缘点3、 等价定理⑴、定理:假设:=R 度量空间,R A =中的点集,R x ∈0①、A x =0的极限点②、00x x x x A x n n n →≠∈∃,,③、∃各不相同的00x x x x A x n n n →≠∈,,④、对于0x 的任何一个环境)(0x O ,含有A 的无穷多个点⑵、证明:②①⇒A x =0的极限点⇒对于0x 的任何一个-ε环境)(0ε,x O ,都有∅≠-A x x O I }){)((00ε,⇒对于0x 的任何一个-ε环境)1(0n x O ,,都有∅≠-A x nx O I }){)1((00, A x nx O x n I }){)1((00-∈∃⇒, A x x x nx O x n n n ∈≠∈∃⇒,,,00))1(( 在度量空间中,0lim 00=⇔→∞→),(x x x x n n n ρ 00x x x x A x n n n →≠∈∃⇒,,⑶、证明:③②⇒00x x x x A x n n n →≠∈∃,,反证法:假设}{n x 含有有限多个不同的点00x x x n ∃⇒≠的一个-ε环境)(0ε,x O ,)(0ε,x O x n ∉【剔除有限个点】 但是⇒→0x x n 对于00>∃>∀N ,ε,当N n >时,)(0ε,x O x n ∈⇒矛盾}{n x ⇒含有无穷多个不同的点∃⇒各不相同的子点列}{k n x⑷、证明:④③⇒∃各不相同的00x x x x A x n n n →≠∈,,对于0x 的任何一个环境)(0x O)(00x O x =⇒的内点0x ∃⇒的一个-ε环境)()(00x O x O ⊂ε,⇒→0x x n 对于00>∃>∀N ,ε,当N n >时,)(0ε,x O x n ∈ N ∃⇒,当N n >时,)()(00x O x O x n ⊂∈ε,)(0x O ⇒含有无穷多个n x )(0x O ⇒含有A 的无穷多个点【A x n ∈】⑸、证明:①④⇒对于0x 的任何一个环境)(0x O ,含有A 的无穷多个点⇒0x 的任何一个-ε环境)(0ε,x O ,含有A 的无穷多个点⇒}{)(00x x O -ε,,含有A 的无穷多个点∅≠-⇒A x x O I }){)((00ε,二、闭集1、 基本概念⑴、定义:A A ='的导集A =的所有极限点 ⑵、定义:A A =的闭包'A A Y =⑶、定义:=A 闭集,如果A A ⊂'2、 分析⑴、=A 内点+边缘点+∈)(A 孤立点⑵、='A 内点+边缘点=内点+边缘点+∈)(A 边缘点)(A ∉ ⑶、=A 内点+边缘点+孤立点3、 等价定理⑴、定理:假设:=R 度量空间,R A =中的点集,R x ∈0 ①、A x ∈0②、对于0x 的任何一个环境)(0x O ,含有A 的点③、0x x A x n n →∈∃,⑵、证明:②①⇒A x A A x A x ∈⇒∈⇒∈000'Y 或者'0A x ∈如果:⇒∈A x 0对于0x 的任何一个环境)(0x O ,含有A 的点 如果:A x A x =⇒∈00'的极限点⇒对于0x 的任何一个环境)(0x O ,含有A 的无穷多个点⑶、证明:③②⇒对于0x 的任何一个环境)(0x O ,含有A 的点⇒对于0x 的任何一个-ε环境)(0ε,x O ,含有A 的点⇒对于0x 的任何一个-ε环境)1(0nx O ,,含有A 的点 )1(0nx O x A x n n ,,∈∈∃⇒ 0x x A x n n →∈∃⇒,⑷、证明:①③⇒0x x A x n n →∈∃,如果:A x A x ∈⇒∈00如果:000x x x x A x A x n n n →≠∈∃⇒∉,,A x =⇒0的极限点A x A x ∈⇒∈⇒00'4、 核心定理⑴、定理:=A 闭集A x x x A x n n ∈⇒→∈∀⇔00,⑵、证明:①必要性:反证法:假设A x ∉0000x x x x A x A x n n n →≠∈⇒∉,,A x =⇒0的极限点'0A x ∈⇒=A 闭集A A ⊂⇒'⇒∈⇒A x 0矛盾②充分性:反证法:假设≠A 闭集≠A 闭集A x A x A A ∉∈∃⇒⊄⇒,''A x A x =⇒∈'的极限点x x x x A x n n n →≠∈∃⇒,,⇒⊂⇒A x 矛盾5、 性质 ⑴、性质:=A A ,'闭集⑵、证明:='A 闭集')''(00A x A x =⇒∈∀的极限点⇒对于0x 的任何一个-ε环境)(0ε,x O ,都有∅≠-'}){)((00A x x O I ε, ')('}){)((0000A y x y x O y A x x O y ∈≠∈∃⇒∅≠-∈∃⇒,,,,εεI A y A y =⇒∈'的极限点⇒对于y 的任何一个-δ环境)(δ,y O ,∅≠-A y y O I }){)((δ,构造))0()0(min(y x y x ,,,ρερδ-=y ⇒的-δ环境)(δ,y O 满足: ①:)()(0εδ,,x O y O ⊂②:)(0δ,y O x ∉③:∅≠-A y y O I }){)((δ,A x y x y O x A y y O x ∈≠∈∃⇒∅≠-∈∃⇒,,,,)(}){)((δδI ∅≠-⇒∈≠∈∃⇒A x x O A x x x x O x I }){)(()(0000εε,,,,A x =⇒0的极限点=⇒⊂⇒∈⇒')''(''0A A A A x 闭集 ⑶、证明:=A 闭集:证明同上6、 性质⑴、性质:⊂A 闭集F A F ⊂⇒⑵、证明:①:首先证明:⊂A 闭集''F A F ⊂⇒A x A x =⇒∈∀'的极限点⇒对于x 的任何一个-ε环境)(ε,x O ,都有∅≠-A x x O I }){)((ε,⇒对于x 的任何一个-ε环境)(ε,x O ,都有∅≠-F x x O I }){)((ε, F x =⇒的极限点'''F A F x ⊂⇒∈⇒②:=F 闭集F F ⊂⇒'F A A F A A F A ⊂⇒⊂⇒⊂⇒Y Y ''⑶、推论:=A 包含A 的最小闭集⑷、证明:假设:=*A 包含A 的最小闭集=A 闭集,⇒⊂A A =A 包含A 的闭集A A ⊂⇒*【最小】=*A 包含A 的闭集=⇒*A 闭集,**A A A A ⊂⇒⊂【定理】 A A =⇒*7、 性质⑴、性质:=A 闭集A A =⇔⑵、证明:①必要性:=A 闭集A A A A A A A A ⊂⇒⊂⇒⊂⇒Y Y '' A A A A A ⊂⇒='YA A =⇒ ②充分性:=⇒⊂⇒=⇒=A A A A A A A A ''Y 闭集8、 基本概念⑴、定义:如果:=R 赋范线性空间,R A =中的点集则称:==)()(A span A L 由A 张成的线性子空间A =中向量的所有可能的线性组合 ⑵、定义:==)()(A span A L 由A 张成的闭线性子空间第二节 Holder 不等式和Minkowski 不等式1、 定义:共轭指标:如果:1>q p ,并且:111=+qp 则称:=q p ,一对共轭指标2、 引理 ⑴、公式:q p b qa p ab 11+≤ 其中:=q p ,一对共轭指标,1>b a , ⑵、证明:1)1)(1(111=--⇒+=⇒=+q p q p pq qp 假设:1111---==⇒=q p p y yx x y q p b q a p b q a p dy y dx x ab 110101+=+≤⇒⎰⎰--3、 Holder 不等式 ⑴、公式:qnk q k pnk pk nk kky x yx 11111)||()||(||∑∑∑===≤其中:=q p ,一对共轭指标,)n 21(,,,,Λ=∈k R y x k k 【实数点列】⑵、证明: ①:如果:0||1=∑=nk pkx或者0||1=∑=nk q k y 0=⇒k x 或者⇒=0k y 结论成立②:否则:令qnk q k k k pn k p k k k y y b x x a 1111)||(||)||(||∑∑====,∑∑∑∑====+=+=⇒nk q k qk n k p k p k q k p k qn k q k p n k p k k k k k y y qx x p b q a p y x y x b a 111111||||1||||111)||()||(||, ∑∑∑∑====+≤⇒nk q k qk n k p k p k q n k q k p n k p k k k y y q x x p y x y x 111111||||1||||1)||()||(||111||||1||||1)||()||(||111111111=+=+≤⇒∑∑∑∑∑∑∑=======qp yy qx x py x yx nk qknk qkn k pk nk pkqnk q k pnk p k nk kkqnk q k pnk pk n k k k y x y x 11111)||()||(||∑∑∑===≤⇒4、 Minkowski 不等式 ⑴、公式:pnk pk pnk pk pnk pk ky x y x111111)||()||()||(∑∑∑===+≤+其中:1>p ,)n 21(,,,,Λ=∈k R y x k k⑵、证明:令p q =的共轭指标∑∑∑∑=-=-=-=+++≤++=+nk p k k k nk p k k k nk p k k k k nk pk ky x y y x x y x y x y x1111111||||||||||||||qnk q k pnk p k nk kky x yx 11111)||()||(||∑∑∑===≤qnk p k k pnk pk qnk p q k k pnk pk nk p k k k y x x y x x y x x 111111)1(1111)||()||()||()||(||||∑∑∑∑∑===-==-+=+≤+⇒qnk p k k pnk p k qnk p q k k pnk p k nk p k k ky x y y x y y x y111111)1(1111)||()||()||()||(||||∑∑∑∑∑===-==-+=+≤+qnk p k k pnk p k qnk p k k pnk p k nk pk k y x y y x x y x 111111111)||()||()||()||(||∑∑∑∑∑=====+++≤+⇒pnk p k pnk p k qn k p k k nk pk ky x y x y x1111111)||()||()||(||∑∑∑∑====+≤++⇒pnk pk pnk pk pnk pk k y x y x 111111)||()||()||(∑∑∑===+≤+⇒5、 积分形式的Holder 不等式和Minkowski 不等式⑴、Holder 不等式qbaq pbapb adx x g dx x f dx x g x f 11)|)(|()|)(|(|)()(|⎰⎰⎰≤⑵、Minkowski 不等式pbap pbap bapp dx x g dx x f dx x g x f 111)|)(|()|)(|()|)()(|(⎰⎰⎰+≤+第三节 ][b a L p,和pl一、定义1、 定义:}|)(||)({][+∞<=⎰bappdx x f x f b a L ,2、 定义:}|||{1+∞<=∑+∞=n p nn pxx l二、线性空间1、 性质:=][b a L p,线性空间⑴、思路:①:定义加法:函数相加,定义数乘:函数数乘②:两种运算保持封闭 ③:满足8条规则⑵、证明:加法封闭:][)()(][)()(b a L x g x f b a L x g x f pp,,,∈+⇒∈∀⎰⎰≤+bap bap dx x g x f dx x g x f |)])(|)(m ax (|2[|)()(|,⎰⎰+≤=bap ppba p pdx x g x f dx x g x f ]|)(||)([|2|)])(|)([m ax (|2,+∞≤+≤⎰⎰b ap p b ap p dx x g dx x f |)(|2|)(|22、 性质:=pl 线性空间⑴、思路:定义加法:数列相加,定义数乘:数列数乘 ⑵、证明:同上三、赋范线性空间1、 性质:=][b a L p,赋范线性空间⑴、定义:pba pp dx x f f 1)|)(|(||||⎰=⑵、证明:满足范数的3条性质①:齐次性:p pbappbapp f dx x f dx x f f ||||*||)|)(|(||)|)(|(||||11αααα===⎰⎰②:三角不等式:p p p g f g f ||||||||||||+=+【Minkowski 不等式】③:正定性:0)|)(|||||1≥=⎰pbapp dx x f f0)(0)|)(|(0||||1=⇔=⇔=⎰x f dx x f f pb ap p2、 性质:=pl 赋范线性空间 ⑴、定义:pn p nn xx 11)||(||||∑∞+==⑵、证明:同上四、Banach 空间1、性质:=ppl b a L 、,][Banach 空间 2、证明:详见夏道行P61五、Hilbert 空间1、 性质:=][2b a L ,Hilbert 线性空间 ⑴、定义:⎰>=<ba dx x g x f x g x f )()()()(,⑵、证明:满足内积的3条性质 ①:共轭对称性:><==>=<⎰⎰)()()()()()()()(x f x g dx x f x g dx x g x f x g x f baba,,②:第一变元的线性:⎰+>=+<badx x z x g x f x z x g x f )()]()([)()()(βαβα,⎰⎰+=babadx x z x g dx x z x f )()()()(ββα><+><=)()()()(x z x g x z x f ,,βα③:正定性:0|)(|)()()()(2≥=>=<⎰⎰babadx x f dx x f x f x f x f ,0)(0|)(|0)()(2=⇔=⇔>=<⎰x f dx x f x f x f ba,2、 性质:=2l Hilbert 线性空间 ⑴、定义:∑+∞=>=<1n n nn n y xy x ,⑵、证明:同上3、 性质:)2(][≠p l b a L pp 、,不是Hilbert 空间第二章 Hilbert 空间第一节 极限和连续性1、 度量空间⑴、定义:0)(lim 00=⇔→→∞x x x x n n n ,ρ⑵、性质:距离)(y x ,ρ的连续性:)()(lim 0000y x y x y y x x n n n n n ,,,ρρ=⇒→→∞→2、 赋范线性空间⑴、定义:0||||lim 00=-⇔→∞→x x x x n n n⑵、性质:范数||||x 的连续性:||||lim ||||lim 00x x x x n n n n ∞→∞→=⇒→3、 内积空间⑴、定义:0||||lim 00=-⇔→∞→x x x x n n n 【利用内积定义范数,再利用范数定义极限】⑵、性质:内积)(y x ,的连续性:)()(lim 0000y x y x y y x x n n n n n ,,,=⇒→→→∞第二节 投影定理一、正交和投影1、 基本概念⑴、定义:0)(=⇔⊥y x y x ,⑵、定义:⇔⊥M x 对于0)(=∈∀y x M y ,,⑶、定义:⇔⊥N M 对于0)(=∈∀∈∀y x N y M x ,,, ⑷、定义:=⊥M 所有与M 正交的向量2、 基本性质:M x M x ⊥⇔∈⊥3、 性质⑴、性质:x y y x ⊥⇒⊥⑵、证明:x y x y y x y x ⊥⇒=⇒=⇒⊥0)(0)(,,⑶、性质:0=⇒⊥x H x⑷、证明:00)(=⇒=⇒∈⊥x x x H x H x ,,⑸、性质:⊥⊥⊂⇒⊂M N N M⑹、证明:⇒⊥⇒∈∀⊥N x N x 对于0)(=∈∀y x N y ,,⇒⊂N M 对于⊥∈⇒⊥⇒=∈∀M x M x y x M y 0)(,,⑺、性质:{0}=⊥MM I⑻、证明:00)(=⇒=⇒∈∈⇒∈∀⊥⊥x x x M x M x M M x ,,I⑼、性质:勾股定理:222||||||||||||y x y x y x +=+⇒⊥⑽、证明:)()()()()(||||2y y x y y x x x y x y x y x ,,,,,+++=++=+ 0)(0)(==⇒⊥x y y x y x ,,,222||||||||)()(||||y x y y x x y x +=+=+⇒,,4、 正交补定理⑴、定理:⊂M 内积空间H H M =⇒⊥的闭线性子空间⑵、证明:①:=⊥M 线性子空间 两种运算封闭:⊥⊥∈+⇒∈∀M y x M y x ,0)(=⇒∈∈∀⊥z x Mx M z ,,0)(=⇒∈⊥z y M y ,⊥∈+⇒⊥+⇒⊥+⇒=+⇒M y x M y x z y x z y x 0)(,②:=⊥M 闭集假设:0x x M x n n →∈∀⊥,⇒⊥⇒∈∀⊥M x M x n n 对于0)(=∈∀y x M y n ,,根据内积的连续性0)()(lim 0==⇒∞→y x y x n n ,,=⇒∈⇒⊥⇒⊥⇒⊥⊥M M x M x y x 000闭集⑶、推论:⊂M 内积空间H ⊥⊥=⇒M M span )( ⑷、证明:①:⊥⊥⊂⇒⊂M M span M span M )()(②:⊥⊥⊥⊂⇒⊂⇒∈∀}{}{x M M x Mx⊥⊂⇒}{)(x M span 【=⊥}{x 线性子空间,线性运算封闭】⊥⊂⇒}{)(x M span 【=⊥}{x 闭集,最小闭集】⊥⊥⊥⊥⊂⇒∈⇒⊂⇒)()()(}{M span M M span x M span x5、 投影⑴、定义:投影:假设:=M 内积空间H 的线性子空间如果:对于H x ∈,存在:⊥∈∈M x M x 10,使得:10x x x +=, 则称:x x =0在M 上的投影⑵、关键:投影投在线性子空间⑶、性质:x x =0在M 上的投影⊥∈-∈⇒M x x M x 00,⑷、性质:投影不一定存在,如果存在必定唯一⑸、证明:假设:x x =0在M 上的投影⊥∈-∈⇒M x x M x 00,x x ='0在M 上的投影⊥∈-∈⇒M x x M x ''00,=M 线性子空间M x x ∈-⇒'00=⊥M 闭线性子空间⊥⊥∈-⇒∈---⇒M x x M x x x x ')'()(0000'0)''(000000x x x x x x =⇒=--⇒,6、 最佳逼近⑴、定理:假设:=M 内积空间H 的线性子空间 如果:H x ∈,x x =0在M 上的投影 那么:||||||||inf 0x x y x My -=-∈并且:M x =0上使等式成立的唯一向量⑵、思想:①:利用M 上的变元y ,来逼近H 中的x②:如果存在投影,则最佳逼近等于投影⑶、证明:①x x =0在M 上的投影M x x M x ⊥-∈⇒00, y x x x M y x M x M y -⊥-⇒∈-⇒∈∈∀0000,2020200||||||||||||y x x x y x x x -+-=-+-⇒【勾股定理】 20202||||||||||||y x x x y x -+-=-⇒||||||||inf ||||||||||||||||00202x x y x x x y x x x y x My -≥-⇒-≥-⇒-≥-⇒∈②唯一性:假设:M y =0上使等式成立的向量 ||||||||00x x y x -=-⇒0020020200||||||||||||x y y x x x y x =⇒=-⇒-=-⇒二、投影定理1、 变分引理【极值可达】⑴、定义:x 到M 的距离||||inf )(y x M x d d My -===∈,⑵、性质:完备⇔闭集,线性子空间⇒凸集⑶、定理:假设:=M 内积空间H 的完备凸集如果:H x ∈那么:存在唯一的M x ∈0,使得d x x =-||||0 ⑷、关键:①:x 到M 的距离②:完备凸集则极值可达⑸、证明:①:点列||||inf y x d My -=∈⇒存在点列M x n ⊂}{,d x x n n =-∞→||||lim②:基本点列平行四边形公式:2222||||2||||2||||||||y x y x y x +=-++2222||2||2||2||2||||||||x x x x x x x x x x x x n m n m n m +--+-+-=-+-⇒2222||2||2||2||2||||||||n m n m n m x x x x x x x x x -+-+=-+-⇒2222||2||2||||||||||2||2x x x x x x x x x nm n m n m -+--+-=-⇒=M 凸集d x x x M x x nm n m ≥+-⇒∈+⇒||2||222222||||||||||2||2d x x x x x x n m n m --+-≤-⇒22222||||lim ||||lim ||2||2lim 0d x x x x x x n m n m m n n m m n --+-≤-≤⇒∞→∞→∞→,,,⇒=-⇒∞→0||||lim 2n m m n x x ,=}{n x 基本点列③:收敛点列=M 完备=⇒}{n x 收敛点列0x x n →⇒④:存在性=M 完备⇒=M 闭集,M x n ∈,M x x x n ∈⇒→00根据范数的连续性d x x x x n n =-=-⇒∞→||||||||lim 0⑤:唯一性假设存在M y ∈0,使得d y x =-||||0构造点列:}{}{0000Λ,,,,y x y x z n = =⇒=-⇒=-⇒∞→}{||||lim ||||n n n n z d z x d z x 基本点列【证明同上】0||||lim 0||||lim 0||||lim 001=-⇒=-⇒=-⇒∞→+∞→∞→y x z z z z n n n n m n m n ,00000||||x y y x =⇒=-⇒2、 投影引理⑴、定理:假设:=M 内积空间H 的线性子空间 H x ∈,M x ∈0 如果:d x x =-||||0 那么:M x x ⊥-0 ⑵、思想:极值可达点正交⑶、证明:⇒∈≠∀M z 0对于λ∀,M z x ∈+λ0220220||||||)(||d z x x d z x x ≥--⇒≥+-⇒λλ )(||||0020z x x z x x z x x λλλ----=--,22020||||||)}(Re{2||||z z x x x x λλ+---=, 令2020||||)(||||)(z z x x z z x x ,,-=⇒-=λλ 2202002020||||||||)(||||)()(||||)(2||||z z z x x z z x x z x x z z x x x x ,,,,--+----⇒ 22020||||||)(||||||z z x x x x ,---= 0||||||)(||||||||)(||||||220222020=-⇒≥---⇒z z x x d z z x x x x ,, M x x z x x z x x ⊥-⇒⊥-⇒=-⇒0000)(,3、 投影定理⑴、定理:如果:=M 内积空间H 的完备线性子空间 那么:对于H x ∈∀存在:M x M x ⊥∈10,,使得:10x x x +=⑵、思想:任意向量x 在M 上的投影,存在并且唯一⑶、证明:①存在性:变分引理M x ∈∃⇒0,使得d x x =-||||0 投影引理M x x ⊥-⇒0 构造01x x x -=M x ⊥⇒1②唯一性:参见变分引理4、 推论⑴、推论:如果:=M 内积空间H 的完备线性子空间 那么:⊥⇒≠M H M 含有非零元素 ⑵、证明:M x H x M H x H M ∉∈∃⇒-∈∃⇒≠,投影定理⇒投影存在⇒假设x x =0在M 上的投影⊥∈-⇒M x x 0000≠-⇒∈∉⇒x x M x M x ,第三节 就范正交系一、级数1、 基本概念 ⑴、定义:级数:∑∞=++++=121i i iu u u uΛΛ⑵、定义:部分和:∑==ni in us 1【将级数转换为数列】⑶、定义:收敛级数:如果s s n n =∞→lim ,则称∑∞=1i iu收敛2、 基本性质 ⑴、性质:∑∞=1i iu收敛s s u un n ni i n i i===⇒∞→=∞→∞=∑∑lim lim 11⑵、性质:∑∞=1i iu收敛0lim =⇒∞→i n u 【1--=i i i s s u 】⑶、性质:Cauchy 收敛原理∑∞=1i iu收敛⇔对于00>∃>∀N ,ε,当N m n >,时,ε<∑=||mni iu二、有限正交系1、 基本概念⑴、定义:正交系:假设:=F 内积空间H 的一族非零向量 如果:对于F y x ∈∀,,都有:0)(=y x , 则称:=F 正交系⑵、定义:就范正交系:如果:=F 正交系并且:对于F x ∈∀,都有:1||||=x 则称:=F 就范正交系2、 基本性质⑴、性质:假设:=}{21n e e e ,,,Λ内积空间H 中的就范正交系 如果:H x ∈,∑==ni iie e x x 10)(,那么:)()(0i i e x e x ,,=⑵、证明:)())(())(())(((10iiiiiiinj ijji e x e e e x e e e x e e e x e x ,,,,,,,),====∑=3、 定理⑴、定理:假设:=}{21n e e e ,,,Λ内积空间H 中的就范正交系 如果:H x ∈,∑==ni iie e x x 10)(,,}{21ne e e span M ,,,Λ= 那么:x x =0在M 上的投影 并且:∑==ni ie x x 1220|)(|||||,,20202||||||||||||x x x x -+=⑵、证明:①:M x ∈0②:∑==⇒∈⇒∈∀ni i i n e y e e e span y M y 121}{α,,,Λ0)()()(10100=-=-=-⇒∑∑==ni i i ni i i e x x e x x y x x ,,,ααM x x y x x ⊥-⇒⊥-⇒00x x =⇒0在M 上的投影 ③:))(()(||||100020∑===ni i i e e x x x x x ,,,21110|)(|)()()()(∑∑∑======ni i ni i i ni i i e x e x e x e x e x ,,,,,④:0000x x x M x x M x ⊥-⇒⊥-∈,【勾股定理】20202002||||||||||||||||x x x x x x x -+=-+=⇒4、 推论⑴、性质:如果:=}{21n e e e ,,,Λ就范正交系,H x ∈ 那么:∑=≥ni i e x x 122|)(|||||, ⑵、证明:∑==≥⇒-+=ni ie x x x x x x x 1220220202|)(|||||||||||||||||||||,⑶、性质:如果:=}{21n e e e ,,,Λ就范正交系,H x ∈ 那么:对于i α∀,||)(||||||11∑∑==-≥-ni iin i ii e e x x e x ,α⑷、证明:假设:∑==ni iie e x x 10)(,,}{21ne e e span M ,,,Λ= x x =⇒0在M 上的投影假设:M y ey ni ii ∈⇒=∑=1α根据最佳逼近定理||||||||inf 0x x y x My -=-⇒∈||||||||0x x y x -≥-⇒||)(||||||11∑∑==-≥-⇒ni i i n i i i e e x x e x ,α三、无限正交系1、 Bessel (贝塞尔)不等式⑴、定理:如果:=∈}|{N i e i 内积空间H 中的就范正交系 那么:对于H x ∈∀,∑∞=≥122|)(|||||i ie x x ,⑵、证明:=∈}|{N i e i 就范正交系⇒对于n ∀,=}{21n e e e ,,,Λ就范正交系 ∑=≥⇒ni i e x x 122|)(|||||,【单调递增,必有极限】∑∑∞==∞→≥⇒≥⇒122122|)(||||||)(|lim ||||i i n i i n e x x e x x ,,2、 性质⑴、性质:如果:=∈}|{N i e i 内积空间H 中的就范正交系 那么:对于H x ∈∀,0)(lim =∞→i i e x ,⑵、证明:对于H x ∈∀,⇒≥∑∞=122|)(|||||i ie x x ,∑∞=12|)(|i i e x ,收敛0)(lim 0|)(|lim 2=⇒=⇒∞→∞→i i i i e x e x ,,四、完备正交系1、 定义:完备正交系:假设:=∈}|{N i e i 内积空间H 中的就范正交系 如果:对于H x ∈∀,都有:∑∞==122|)(|||||i ie x x ,则称:=∈}|{N i e i 完备正交系2、 性质 ⑴、性质:∑∞=1i i i e α收敛y s e en n ni i i n i ii ===⇔∞→=∞→∞=∑∑lim lim 11αα⑵、性质:=⇒∞<∑∑=∞=}{||112ni i i i ie αα基本点列⑶、证明:假设:∑==ni ii n es 1α||||||||1∑+==-⇒mn i i i n m e s s α2111212||)(||||||||∑∑∑∑+=+=+=+====-⇒mn i imn i i i mn i i i mn i ii n m e e e s s αααα,=⇒∞<∑∑∞=∞=1212||||i i i iαα收敛级数=⇒∑=}||{12ni i α基本点列⇒对于00>∃>∀N ,ε,当N m n >,时,εα<∑+=||||12mn i i⇒对于00>∃>∀N ,ε,当N m n >,时,ε<-||||||2n m s s=⇒}{n s 基本点列3、 定义:傅里叶级数:如果:=∈}|{N i e i 就范正交系,H x ∈ 则称:==∑∞=1)(i iiee x x ,傅里叶级数4、 定义:=∈}|{N i e span i 由}|{N i e i ∈张成的线性子空间}|{N i e i ∈=的所有可能的有限个向量的线性组合5、 等价定理⑴、定理:如果:=∈}|{N i e i 就范正交系,}|{N i e span E i ∈= 那么:①E x ∈;②∑∞==122|)(|||||i ie x x ,;③∑∞==1)(i iie e x x ,⑵、证明:②①⇒反证法:假设:∑∞=≠122|)(|||||i ie x x ,E x ∈∃⇒,)0(0|)(|||||2122>>=-∑∞=ααi i e x x , x x N i e span x N i e span x E x n i n i →∈∈∃⇒∈∈⇒∈,}|{}|{∑==⇒∈∈ni i i n i n e x N i e span x 1}|{α0||||lim 2=-⇒→∞→x x x x n n n⇒对于00>∃>∀N ,ε,当N n >时,ε<-||||x x n⇒对于00>∃>N ,α,当N n >时,α<-||||x x n212122||)(||||||||||||||∑∑==-≥-=->⇒<-ni i i ni i i n n e e x x e x x x x x ,ααα⇒=-≥-=∑∑∞==2212212|)(||||||)(|||||αi i ni i e x x e x x ,,矛盾③②⇒ 21221|)(|||||||)(||∑∑==-=-ni i ni iie x x e e x x ,,]|)(|||[||lim ||)(||lim 21221∑∑=∞→=∞→-=-⇒ni i n ni i i n e x x e e x x ,,212121||)(||||)(lim ||||)(||lim ∑∑∑∞==∞→=∞→-=-=-i i i n i i i n ni iin e e x x e e x x e e x x ,,,0|)(|||||]|)(|||[||lim 212212=-=-=∑∑∞==∞→i i ni i n e x x e x x ,,∑∑∞=∞==⇒=-⇒121)(0||)(||i i i i iie e x x e e x x ,,①③⇒假设:∑==ni iin e e x x 1)(,n n ni i i n i i i x e e x e e x x ∞→=∞→∞====⇒∑∑lim )(lim )(11,,=⇒E 闭集,E x x x E x n n ∈⇒→∈,第四节 Banach 空间的共轭算子一、)(Y X →和)(Y X B →1、 )(Y X →⑴、定义:Y X Y X →=→)(的全体线性算子,其中:=Y X 、线性空间 ⑵、性质:=•+→))((,;;P Y X 线性空间⑶、证明:①:定义加法:)()())((x B x A x B A +=+ 定义数乘:)())((x A x A αα=②:两种运算封闭:)()())((y x B y x A y x B A βαβαβα+++=++)()()()()()()()(y B x B y A x A y B x B y A x A βαβαβαβα+++=+++= ))(())(()()()()(y B A x B A y B y A x B x A +++=+++=βαββαα2、 )(Y X B →⑴、定义:Y X Y X B →=→)(的全体有界线性算子,其中:=Y X 、赋范线性空间 ⑵、性质:=•+→))((,;;P Y X B 赋范线性空间⑶、证明:①:定义算子范数:||||||||sup||||0x Tx T x ≠= ②:算子范数满足范数的3条性质【齐次性,三角不等式,正定性】3、 定理⑴、定理:如果:=X 赋范线性空间,=Y Banach 空间 那么:=→)(Y X B Banach 空间 ⑵、证明:①:假设:)(}{Y X B T n →=的基本点列⇒对于00>∃>∀N ,ε,当N m n >,时,ε≤-||||m n T T⇒对于00>∃>∀∈∀N X x ,,ε,当N m n >,时,||||||||*||||||)(||||||x x T T x T T x T x T m n m n m n ε<-≤-=-【=n T 有界】 =⇒}{x T n 基本点列【固定x 】=⇒}{x T n 收敛点列【=Y 完备】②:定义:算子T :x T Tx n n ∞→=limY X T →=的算子:=Y 闭集,Y Tx Tx x T Y x T n n ∈⇒→∈,Y X T →=的线性算子:21212121lim lim )(lim )(Tx Tx x T x T x x T x x T n n n n n n +=+=+=+∞→∞→∞→Y X T →=的有界线性算子:||||||||||||||||lim ||||||||x Tx x T x x T x T x x T x T n m n m m n εεε<-⇒<-⇒<-∞→)()()(Y X B T Y X B T Y X B T T n n →∈⇒→∈→∈-⇒,③:εεε<-=-⇒<-⇒<-≠||||||||sup ||||||||||||||||||||0x Tx x T T T x Tx x T x Tx x T n x n n n=⇒→⇒=-⇒∞→n n n n T T T T T 0||||lim 收敛点列二、共轭空间1、 共轭空间⑴、定义:如果:=X 赋范线性空间,X X =*上的全体连续线性泛函则称:X P X =•+)*(,;;的共轭空间⑵、性质:=•+)*(,;;P X 赋范线性空间【实数域=赋范线性空间】2、 二次共轭空间⑴、定义:如果:=*X 赋范线性空间,***X X =上的全体连续线性泛函则称:X P X =•+)**(,;;的二次共轭空间⑵、性质:=•+)**(,;;P X 赋范线性空间3、 基本概念⑴、定义:**x :)()*(*x f f x =其中:***X x =上的泛函,X x X f ∈∈,*⑵、定义:保范算子:假设:=Y X ,赋范线性空间,Y X U →=的算子 如果:对于X x ∈∀,都有:||||||||x Ux = 则称:Y X U →=的保范算子4、 基本性质⑴、性质:***X x =上的线性泛函⑵、证明:))(()*(*22112211x f k f k f k f k x +=+)*(*)*(*)()(22112211f x k f x k x f k x f k +=+=⑶、性质:***X x =上的有界泛函 ⑷、证明:||||*||||||)(||||)*(*||x f x f f x ≤=⑸、性质:||||||**||x x ≤⑹、证明:||||||||||)*(*||sup ||**||||||||||||)*(*||||||*||||||)*(*||0x f f x x x f f x x f f x f ≤=⇒≤⇒≤≠⑺、性质:***X x =上的保范线性算子 ⑻、证明:未能证明三、共轭算子1、 定义:共轭算子:假设:=Y X ,赋范线性空间,)(Y X B A →∈ 如果:存在***X Y A →=使得:对于*Y h X x ∈∀∈∀,,都有:)())(*(Ax h x h A = 则称:A A =*的共轭算子2、 共轭定理⑴、定理:如果:=Y X ,赋范线性空间那么:对于)(Y X B A →∈∀,共轭算子存在并且唯一 ⑵、证明:①定义:对于*Y h A x ∈∀∈∀,定义X Ax h x A =→=)('上的泛函)()('Ax h x A =⇒②线性:)]()([)]([)('212121x A x A h x x A h x x A +=+=+)(')(')]([)]([2121x A x A x A h x A h +=+=③有界:||||*||||*||||||||*||||||)(||||)('||x A h Ax h Ax h x A ≤≤= ④存在:='A 有界线性泛函*'X A ∈⇒定义**'*X Y A h A →=→=的算子'*A h A =⇒)())(*()()(''*Ax h x h A Ax h x A A h A =⇒==,⑤唯一:假设:)())(()())((*2*1Ax h x h A Ax h x h A ==,))(())((*2*1x h A x h A =⇒【*Y h A x ∈∀∈∀,】*2*1*2*1A A h A h A =⇒=⇒第五节 Hilbert 空间的共轭算子一、连续线性泛函的表示1、 定理⑴、定理:如果:=X 赋范线性空间,X F =上的线性泛函那么:=F 连续F ⇔的零空间===}0)(|{x F x M 闭线性子空间 ⑵、证明:①必要性:假设:x x M x n n →∈∀,=→F x x n ,连续)()(x F x F n →⇒=⇒∈⇒==⇒∞→M M x x F x F n n 0)(lim )(闭集②充分性:反证法:≠F 有界∞=⇒=|)(|sup 1||||x F x⇒存在点列}{n x ,n x F x n n ≥=|)(|1||||, ⇒构造点列}{n y ,M y y F x F xx F x y n n n n n ∈⇒=⇒-=0)()()(11 )()()()(1111n nn n n n x F x x F x y x F x x F x y =+⇒-=|)(|1||)(||||)(||11n n n n x F x F x x F x y ==+⇒ )(0|)(|1lim ||)(||lim 1111x F xy x F x F x y n n n n n -→⇒==+⇒∞→∞→ =M 闭集,M x F xx F x y M y n n ∈-⇒-→∈)()(1111, 但是⇒∉≠-=-M x F x F 01))((11矛盾2、 性质⑴、性质:如果:)()(y x x F y ,=【固定H x H y ∈∀∈,】 那么:=y F 由y 导出的有界线性泛函 并且:||||||||y F y =⑵、证明:①线性:)()(22112211y x k x k x k x k F y ,+=+)()()()(22112211x F k x F k y x k y x k y y +=+=,,②有界:||||*||||||)(||||)(||y x y x x F y ≤=,【固定H y ∈】 ③公式:||||||||)(sup||||||||)(||||*||||||)(||0y x x F F y x x F y x x F y x y y y ≤=⇒≤⇒≤≠||||||||)(||||)()()()(2y y y F y y y y F y x x F y y y =⇒==⇒=,,||||||||y F y =⇒3、 Riesz 定理⑴、定理:如果:=H Hilbert 空间,H F =上的连续线性泛函 那么:存在唯一的H y ∈使得:对于H x ∈∀,都有:)()(y x x F ,= 并且:||||||||y F =⑵、证明:①存在性:假设:}0)(|{==x F x M00=⇒=y FM x H x x F H x F ∉∈∃⇒≠∈∃⇒≠,,0)(0⊥⇒≠⇒M H M 含有非零元素⊥∈≠∃⇒M z z ,0 0)(}0{≠⇒∉⇒=⊥z F M z M M I⇒对于M z z F x F x z z F x F x F H x ∈-⇒=-∈∀)()(0))()((, 2||||)()()()()()(0))()((z z F x F z z z F x F z x z z z F x F x ==⇒=-⇒,,, z z z F y z z z F x z x z z F x F 222||||)()||||)(()(||||)()(=⇒==⇒,, ②唯一性:假设:H y ∈∃,对于H x ∈∀,都有)()(y x x F ,=H z ∈∃,对于H x ∈∀,都有)()(z x x F ,=⇒对于H x ∈∀,z y z y x =⇒=-0)(,否则⇒≠--⇒≠-⇒≠0)(0z y z y z y z y ,矛盾二、共轭算子1、 定理⑴、定理:如果:=H Hilbert 空间,=G 内积空间,)(G H B A →∈ 那么:存在唯一的)(H G B B →∈使得:对于G y H x ∈∀∈∀,,都有:)()(By x y Ax ,,= ⑵、证明:①定义:)()(y Ax x y ,=ϕ【固定H x G y ∈∀∈,】线性:)()()()())(()(21212121x x y Ax y Ax y x x A x x y y y ϕϕϕ+=+=+=+,,, 有界:||||*||||*||||||||*||||||)(||||)(||y x A y Ax y Ax x y ≤≤=,ϕ ||||*||||||||||)(||sup||||||||*||||||||||)(||0y A x x y A x x y x y y ≤=⇒≤⇒≠ϕϕϕH y Ax x y ==⇒)()(,ϕ上的有界线性泛函⇒根据Riesz 定理:存在唯一的H z ∈,使得)()()(z x y Ax x y ,,==ϕ,并且||||||||z y =ϕ②定义:H G z y B →=→=的算子z By =⇒【给定一个y ,得到一个z 】 线性:))(()(2121y y B x y y Ax +=+,,)()()()()()(21212121By By x By x By x y Ax y Ax y y Ax +=+=+=+,,,,,,⇒对于H x ∈∀,21212121)(0))((By By y y B By By y y B x +=+⇒=--+,有界:||||*||||||||||||||||||||||||y A z z By z By y y ≤==⇒=ϕϕ,,||||||||||||sup ||||||||||||||||||||*||||||||0A y By B A y By y A By y ≤=⇒≤⇒≤⇒≠③唯一:假设:)()()()(21y B x y Ax y B x y Ax ,,,,,==2121210)(0))((B B y B B y B B x =⇒=-⇒=-⇒,【G y H x ∈∀∈∀,】2、 共轭算子⑴、定义:假设:=G H ,内积空间,)(*)(H G B A G H B A →∈→∈, 如果:对于G y H x ∈∀∈∀,,都有:)*()(y A x y Ax ,,= 则称:A A =*的共轭算子(伴随算子)⑵、定理:如果:=H Hilbert 空间,=G 内积空间那么:对于)(G H B A →∈∀,存在唯一的)(*H G B A →∈3、 Banach 空间与Hilbert 空间中的共轭算子⑴、性质:在Banach 空间中,**)*(B A B A βαβα+=+ ⑵、证明:)())(*(Ax h x h A =)()()))((())(*)((Bx h Ax h x B A h x h B A βαβαβα+=+=+⇒))(*)*(())(**())(*())(*(x h B A x h B h A x h B x h A βαβαβα+=+=+=⑶、性质:在Hilbert 空间中,**)*(B A B A βαβα+=+ ⑷、证明:)*()(y A x y Ax ,,=)()())(()*)((y Bx y Ax y x B A y B A x ,,,,βαβαβα+=+=+⇒ )*)*(()**()*()*(y B A x y B y A x y B x y A x βαβαβα+=+=+=,,,,4、 性质:假设:=K H ,Hilbert 空间,=G 内积空间 )()(H K B C G H B B A →∈→∈,, ⑴、性质:A A =*)*(⑵、证明:A A Ax y x y A y A x y Ax **)()()*()*()(⇒=⇒=,,,,⑶、性质:||||*||||||||B A AB ≤⑷、证明:||||*||||*||||||||*||||||||x B A Bx A ABx ≤≤||||*||||||||||||sup ||||||||*||||||||||||0B A x ABx AB B A x ABx x ≤=⇒≤⇒≠⑸、性质:)*()(y A Cx y ACx ,,=⑹、证明:)*()()*()(y A Cx y ACx Cx z y A z y Az ,,,,,=⇒==⑺、性质:||*||||||||*||22A A A A ==⑻、证明:①:根据共轭定理:||||||*||||||||||A A A B ≤⇒≤||*||||||||*|||*)*(||||||A A A A A =⇒≤=⇒②:2||||||*||*||||||*||A A A AA =≤对于)*()(||||1||||2x Ax A Ax Ax Ax x H x ,,,==⇒=∈∀ ||*||||||*||*||||*||||||*||*||||||2A A x A A Ax A x Ax A Ax =≤=≤⇒||*||||||sup ||||21||||2A A Ax A x ≤=⇒=复习和重点归纳第一章 预备知识第一节 极限点和闭集1、 极限点⑴、定义:A x =0的极限点∅≠-⇔A x x O I }){)((00ε, ⑵、定理:A x =0的极限点00x x x x A x n n n →≠∈∃⇔,,2、 闭集⑴、定义:导集'A 、闭包A 、=A 闭集⑵、定理:=A 闭集A x x x A x n n ∈⇒→∈∀⇔00, ⑶、性质:①:=A A ,'闭集 ②:=A 包含A 的最小闭集 ③:=A 闭集A A =⇔3、 定义:)()(A span A L =,)()(A span A L =第二节 Holder 不等式和Minkowski 不等式1、 Holder 不等式:qnk q k pnk pk nk kky x yx 11111)||()||(||∑∑∑===≤2、 Minkowski 不等式:pnk p k pnk p k pnk p k ky x y x111111)||()||()||(∑∑∑===+≤+第三节 ][b a L p,和pl1、 =ppl b a L ,,][赋范线性空间⑴、定义范数:pba pp dx x f f 1)|)(|(||||⎰=⑵、定义范数:pn pnn xx 11)||(||||∑∞+==2、 =22][l b a L ,,Hilbert 空间 ⑴、定义内积:⎰>=<badx x g x f x g x f )()()()(,⑵、定义内积:∑+∞=>=<1n n nn n y xy x ,第二章 Hilbert 空间一、投影定理1、 归纳:极限和连续⑴度量空间⑵赋范线性空间⑶内积空间2、 正交:⑴:定义:①y x ⊥②M x ⊥③N M ⊥④⊥M⑵:性质:①M x Mx ⊥⇔∈⊥②⊥⊥⊂⇒⊂M N N M③勾股定理④0=⊥MM I⑶:正交补定理①=⊥M 闭线性子空间②⊥⊥=M M span )(3、投影:⑴:投影的定义和性质⑵:最佳逼近:如果:=M 线性子空间,H x ∈,x x =0在M 上的投影那么:||||||||inf 0x x y x My -=-∈⑶:变分引理:如果:=M 完备凸集,H x ∈那么:存在唯一的M x ∈0,使得d x x =-||||0 ⑷:投影引理:如果:=M 线性子空间,M x H x ∈∈0, 那么:M x x d x x ⊥-⇒=-00|||| ⑸:投影定理:如果:=M 完备线性子空间,H x ∈∀那么:⊥∈∃∈∃M x M x 10,,使得10x x x +=,分解式唯一 ⑹:推论:⊥⇒≠M H M 含有非零元素二、就范正交系1、 基本概念:⑴正交系⑵就范正交系⑶完备正交系2、 有限正交系:定理:假设:=}{21n e e e ,,,Λ内积空间H 中的就范正交系 如果:H x ∈,∑==ni iie e x x 10)(,,}{21ne e e span M ,,,Λ= 那么:x x =0在M 上的投影 并且:∑==ni ie x x 1220|)(|||||,,20202||||||||||||x x x x -+=3、 无限正交系:⑴:Bessel 不等式:∑∞=≥122|)(|||||i ie x x ,⑵:等价定理:①E x ∈②∑∞==122|)(|||||i ie x x ,③∑∞==1)(i iie e x x ,三、Banach 空间的共轭算子1、 )(Y X →和)(Y X B →⑴、性质:如果:Y X Y X →=→)(的全体线性算子,其中=Y X 、线性空间那么:=•+→))((,;;P Y X 线性空间⑵、性质:如果:Y X Y X B →=→)(的全体有界线性算子,其中=Y X 、赋范线性空间那么:=•+→))((,;;P Y X B 赋范线性空间⑶、性质:如果:=X 赋范线性空间,=Y Banach 空间 那么:=→)(Y X B Banach 空间2、 二次共轭空间⑴、概念:共轭空间⇒二次共轭空间⇒⇒**x 保范算子⑵、性质:***X x =上的连续有界泛函***||||||**||X x x x =⇒≤⇒上保范线性算子3、 共轭算子⑴、概念:共轭算子⑵、定理:对于)(Y X B A →∈∀,共轭算子存在并且唯一。

泛函分析学习心得

泛函分析学习心得

泛函分析学习心得学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度.在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习:第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念:1.距离空间(或度量空间)的定义:设X 为一集合,ρ是X X ⨯到n R 的映射,使得使得X z y x ∈∀,,,均满足以下三个条件:(1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性)(2))()(x y y x ,,ρρ=(对称性)(3))()()(z y y x z x ,,,ρρρ+≤(三角不等式),则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离.学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连续函数空间],[b a C ,有界数列空间∞l ,p 次幂可和的数列空间p l ,p 次幂可积函数空间],[b a L p )1(≥p ,均满足距离空间的性质.2.距离空间的完备性设)(ρ,X 是距离空间(或赋范空间),如果X 中的点列{}n x 满足()0,→m n x x ρ ()∞→m n ,则称{}n x 是X 中的基本列(或Cauchy 列),若X 中任意基本列都在X 中收敛,则称)(ρ,X 是完备的距离空间(或赋范空间).在上学期学习《实变函数论》时我们已讨论过P L ()∞<≤ρ1空间的完备性,除此之外,我们可知道[]()b a C ,按距离()()()t y t x y x bt a -=≤≤max ,ρ是完备的、p l ()∞≤≤ρ1是完备的.第一章第三节的内容是内积空间,与高等代数中的欧式空间类似,但又不一样,在n 维欧式空间中,向量的“夹角”是利用内积来定义的.两个向量v u ,的夹角指的是()v u v u ⋅=,arccosθ,其中()v u ,是u 与v 的内积,u 是u 的模或长度,它等于()v u ,.如果抛开n R 中内积的具体形式,将其性质抽象出来,就可得到抽象空间上的内积概念: 设X 是复数域上的线性空间,)(⋅⋅,是X X ⨯到复数域C 的二元函数,使得对任意C X z y x ∈∈α及,,满足:(1)()()00,,0,==≥x x x x x 当且仅当且(2)()()()z y z x z y x ,,,+=+(3)()()y x y x ,,αα=(4)()()x y y x ,,=则称)(⋅⋅,为X 上的内积,称X 为具有内积)(⋅⋅,的内积空间,也记为()()⋅⋅,,X .在学习了内积空间的定义后,我们知道若在()E L 2上定义()()()dx x g x f g f E ⎰=, ()()E L g f 2,∈则()E L 2是内积空间.还有其他的内积空间需要我们去探究和研究.以上是我对本学期学习的《泛函分析》的一小部分内容的理解,学习了《泛函分析》后发现这是一门很值得学习和研究的课程,同时是一门相对比较深奥的课程,需要我们更用心去学习.这门课程与其他数学学科有密切的联系,但又有本质的区别,我会在日后更加努力认真学习,去研究和探究其与其他学科的联系与区别,希望能运用《泛函分析》的知识和观点去解决其他学科的问题.。

泛函分析绪论笔记

泛函分析绪论笔记

泛函分析绪论笔记1、泛函分析课程的主要学习目标是什么?了解和掌握空间理论(包括距离空间、赋范空间、内积空间)和线性算子理论(包括线性算子空间、线性算子谱分析)中的基本概念和基本理论;运用全新的、现代数学的视点审视和处理数学基础课程的内容和问题。

本课程努力使学生从全新的视点审视和处理数学基础课程(例如数学分析、线性代数、解析几何、微分方程)。

2、泛函分析的研究对象主要有哪些?主要的研究方法是什么?主要研究对象:1)映射2)运算(算子)微分、积分是线性运算.运算也是一种映射3)无穷维空间主要研究方法:1)综合分析、代数、几何的观点和方法研究无穷维空间上的函数、算子和极限理论,处理和解决数学研究中最关心的一些基本问题.2)几何化泛函分析的特点是把古典分析的基本概念和方法一般化、几何化.3、无穷维空间作为泛函分析的一个主要研究对象,与数学分析和高等代数中大家非常熟悉的有限维空间有什么本质的区别,为什么在研究无穷维空间时还是需要首先研究其中收敛(极限)的问题?无穷维空间与有限维空间本质区别:(一)相同点:讨论线性空间.(二)不同点:1、讨论无穷维。

有限维空间处理方法搬到无穷维2、收敛性有无极限,无穷维求和是一个极限过程研究收敛性的需要:无穷维求和是一个极限过程,加法与无穷级数的区别4、研究无穷维空间时的类比和联想主要是指哪些方面?通过“类比和联想”,把有限维空间处理问题的这种方式推广到更一般的空间(无穷维空间),复杂问题简单化。

1)无穷维空间的几何结构;2)线性算子的特征和结构;特别是:线性算子T能不能分解?3)无穷维空间的坐标分解解决问题的模式进行类比,泛函分析正是从这些类似的东西中探寻一般的、真正属于本质的东西,把它们抽象化并加以统一处理.类比建立空间框架.从分析、代数中的问题出发,引出泛函分析研究的思想方法。

比如三维(实数)和n维欧几里得空间的向量分解一、无穷维空间线性算子与坐标系我们再把无穷维空间的线性算子(微分运算)与有限维空间的线性算子相对照,进而研究线性算子的分解问题.不同的对称矩阵可以产生不同的正交系.问题:在Fourier级数展开中,这个正交坐标系(1, cosx,sinx, ... ,cos kx, sin kx,...)是否也可以是一些运算(算子)的特征函数?二、无穷维空间线性算子性质上的差别微分和积分是高等数学研究的主要对象.共同点:它们都是线性运算;不同点:粗略地说微分可能把函数放大,积分可能把函数“变小”.三、数学分析、线性代数、微分方程在处理问题.上有许多相似的方法(以上述例子为例)1、问题和元素更一般化(抽象化),空间中的元素(向量)可以是函数或运算(矩阵运算、微分运算、积分运算,级数(极限)运算).2、建立一种空间的框架,把元素(可以是函数或运算)进行坐标分解.我们希望通过类比等方法把它们推广到(结果可能会有差异)泛函分析的研究中去.3、应用几何、代数和分析的综合手段研究解决问题,研究无限维线性空间.上的泛函和算子理论.四、本书的主要内容:(1)第一到第三章,首先引入空间,极限这些概念,讨论它们的性质.i.距离空间;线性赋范空间;内积空间.(2)第四到第五章,研究线性算子(线性算子空间)的性质.有界线性算子,有界线性算子的重要性质;共轭空间;特别是Hilbert空间的共轭空间和共轭算子.重要定理包括:一致有界原则;开映射定理、逆算子定理;闭图像定理;线性泛函的延拓定理(Hahn- Banach定理).这是最核心也是最难的部分.(3)最后两章是线性算子的谱理论.谱分解从结构上展示了线性算子的基本运算特征,特别是紧的自共轭算子的谱分解和有限维空间对称矩阵的分解十分相似.五、目标:(1)理解为什么会有泛函分析,明白泛函分析在做什么;最基本的概念(概念的来源和背景);数学研究的基本方法:化归、类比、归纳、联想;一定的抽象思维的能力;概念清楚,思维清晰(2)努力感悟数学的美学结构.注意:1.要从整体上了解数学.2.要从具体的实例中感悟数学的思想方法.。

研究生泛函分析总结

研究生泛函分析总结

研究生泛函分析总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和函数空间的理论。

它的应用涉及到许多领域,如量子力学、信号处理、图像处理等。

在研究生阶段,我们对泛函分析进行了深入学习和研究,下面是我对泛函分析的总结:一、泛函的概念和基本理论:1.泛函的定义:泛函是定义在一个函数空间上的函数,它将函数映射到实数集上。

2.泛函的性质:线性、有界、正则。

3.泛函的例子:函数的积分、导数、极大极小值等都可以视作泛函。

4.函数空间的定义:函数空间是一组满足一定性质的函数的集合。

5.多个函数空间的关系:包含关系、并集、交集等。

二、线性算子和函数空间:1.线性算子的定义:线性算子是将一个函数空间映射到另一个函数空间的线性变换。

2.线性算子的性质:线性、有界、正则。

3.压缩映射定理:压缩映射在完备度量空间上具有不动点,且不动点唯一4.单正则线性算子:定义、性质、例子。

三、Hilbert空间:1. Hilbert空间的定义:Hilbert空间是一个完备的内积空间。

2.内积的定义和性质:正定性、对称性、线性性等。

3. Hilbert空间的例子:L2空间、离散函数空间等。

4.切比雪夫不等式:内积的有界性和L2空间中的函数收敛性。

5. 基映射和完备性:基映射是将元素展开为基函数的系数,Hilbert 空间的完备性意味着可以用无限维的元素表示。

四、广义函数和分布理论:1.广义函数的定义:广义函数是泛函的推广,它是一种对一般函数进行推广的概念。

2.分布的性质:线性、有界、正则。

3. 分布的例子:Dirac函数、Heaviside函数等。

4.分布的导数和积分:广义函数的导数和积分的定义和性质。

五、Sobolev空间:1. Sobolev空间的定义:Sobolev空间是一组定义在Lp空间中,具有弱导数的函数的集合。

2. Sobolev空间的性质:线性、有界、正则。

3. Sobolev空间的例子:H1空间、H2空间等。

泛函分析知识点范文

泛函分析知识点范文

泛函分析知识点范文泛函分析是数学中的一门学科,研究向量空间上的函数和函数空间的性质,涉及到实数或复数域上的向量空间。

泛函分析包括线性代数、实变函数分析和拓扑学等多个学科的内容,因此具有广泛的应用领域,如物理、工程、经济等。

泛函分析的核心内容包括线性空间、拓扑空间和连续映射等概念、线性算子和泛函的基本性质以及泛函分析中的基本定理等。

1.线性空间:泛函分析的基础是线性空间,也就是向量空间。

线性空间满足线性组合和分配律等性质,例如实数域或复数域上的向量空间。

线性空间中的向量可以是函数、矩阵等不同的对象。

2.拓扑空间:泛函分析中的向量空间往往是赋予了拓扑结构的空间,即拓扑向量空间。

拓扑空间是一种具有连续性质的空间,它引入了开集、闭集和收敛性等概念。

拓扑空间的拓扑结构可以通过开集、闭集、邻域、基等方式来定义。

3.连续映射:泛函分析中的重要概念是映射的连续性。

连续映射是保持拓扑结构的映射,即对于拓扑空间中的开集,其原像仍然是开集。

连续映射可以用来描述泛函和线性算子的性质。

4.线性算子和泛函:线性算子是线性空间之间的映射,它可以是有界算子或无界算子。

线性算子的基本性质包括线性性、有界性、闭图像性等。

泛函是线性空间到数域的映射,它可以看作是线性算子的特殊情况。

泛函的基本性质包括线性性、有界性、连续性等。

5. Hahn-Banach定理:Hahn-Banach定理是泛函分析中的基本定理,它是关于泛函延拓的定理。

该定理说明了任意线性子空间上的有界泛函可以延拓到整个空间上,并且保持原有泛函的范数不变。

6.可分性:可分性是拓扑空间的一个重要性质,它指的是拓扑空间中存在可数稠密子集。

可分性保证了拓扑空间中存在足够多的元素,使得在拓扑空间上可以进行良定义的运算。

7.反射空间:反射空间是泛函分析中的一类特殊线性空间,它是线性空间和拓扑空间的交叉概念。

反射空间具有良好的性质,例如有界闭集外包性、扩张定理等。

8.紧算子和迹类算子:紧算子是对有界算子的一种推广,它在泛函分析中具有重要的地位。

泛函分析笔记

泛函分析笔记

泛函分析笔记作者:邝雪冰 笔记题目:纲与开映像定理纲与开映像定理报告人:邝雪冰作者简介:邝雪冰 性别:女,硕士研究生 学号:14110011020 导师:李应求教授 研究方向:概率论与数理统计摘要:本节对有界线性算子的逆算子的有界性问题是在本节中做了初步的讨论,首先从引入疏集的概念,开映射,空间的完备性开始.其次,讲述三个重要的定理:开映像定理,闭图像定理,共鸣定理.有界线性算子是开映射的充分条件[1].闭图像定理主要是研究算子的连续性与闭性的关系.共鸣定理又称算子族的一致有界原理,其含义是在一定条件下由算子族的点点有界可得出范数有界[2]. 一、知识背景对于解方程的问题从泛函分析的角度来看,就是对给定算子:T X Y →,求x X ∈,使得Tx y = (3.1)解的存在性表达成算子T 有右逆1r T -:1r TT I -= (I 表示恒同算子)若令1r x T y -=,则有1r Tx TT y y -==;而解的唯一性表达成算子T 有左逆1l T -:1l T T I -=由Tx y =及1l T -存在,得11l l x T Tx T y --==,所以解x 唯一地被y 决定.也就是说解存在且唯一,当且仅当线性算子T 即既有左逆又有右逆.如果算子T 左右逆同时存在,则它们一定相等,即()()11111111l l l r l r r r T T I T TT T T T IT T --------=====所以这时称算子T 有逆,并记此逆为1T -.设f 是由集合A 到集合B 的映射,如果,x y A ∈,且x y ≠等价于()()f x f y ≠,则称f 为由A 到B 的单射.设f 是从集合A 到集合B 的映射,若()f A B =,即B 中任一元素b 都是A 中某元素的像,则称f 为A 到B 上的满射.换句话来说就是,设,X Y 都是B 空间,(),T L X Y ∈,算子T 称为是单射,是指T 是1-1的,算子T 称为是满射,是指()T x y =.若映射f 既是单射,又是满射,则称映射f 为A 到B 的双射. 注 (i )设,X Y 是线性空间,线性算子:A X Y →,如果1A -存在,则1A -也是线性算子;(ii )设,X Y 是*B 空间,(),A L X Y ∈,如果1A -存在,()R A Y =且1A -是有界线性算子,那么称A 是正则算子;(iii )设,X Y 是*B 空间,(),A L X Y ∈有界,A 是双射,那么1A -是Y 在X 上的线性算子.一般来说,1A -未必是有界算子.一、 主要内容 3.1纲与纲推理定义 3.1.1 设(),X ρ是一个度量空间,集E X ⊂,则称E 是疏的,如果E 的内点是空.命题 3.1.2 设(),X ρ是一个度量空间,为了E X ⊂是疏集必须且仅须:∀球()()()001100,,,,B x r B x r B x r ∃⊂,使得()11,E B x r φ= . 证明:必要性因为E 无内点,所以E 不能包含任一球()00,B x r .从而()100,x B x r ∈,使得1x E ∉.又由E 是闭,所以10ε∃>,使得()11,B x E εφ= .取()()110010min ,,r r x x ερ<<-便有()()()110011,,,,B x r B x r E B x r φ⊂= 充分性若E 不疏,既E 有内点,则()00,B x r E ∃⊂.但由假设()()1100,,B x r B x r ∃⊂,使得()11,B x r E φ= .一方面有()()1111,,B x r E B x r = ;另一方面()11,B x r E φ= 即得矛盾.定义3.1.3 在距离空间(),X ρ上,集合E 称为第一纲的,如果1n n E E ∞== ,其中nE 是疏集.不是第一纲的集合是第二纲集.定理3.1.4 (Baire )完备度量空间(),X ρ是第二纲集. 证: 反证法倘若X 是第一纲集,即存在疏集{}n E ,使得1n n X E ∞== (3.2)对任意球()()()()0011001,,,,1B x r B x r B x r r ∃⊂<,使得()111,B x r E φ= ;对()()()11221121,,,,2B x r B x r B x r r ⎛⎫∃⊂< ⎪⎝⎭,使得()()2212,B x r E E φ= ;如此继续下去,对()()()11111,,,,n n n n n n n B x r B x r B x r r n ----⎛⎫∃⊂< ⎪⎝⎭,使得(),n n n B x r E φ= ,从而()1,n n n i i B x r E φ=⎛⎫= ⎪⎝⎭()n ∀∈ (3.3)于是我们得到()()()1122,,,n n B x r B x r B x r ⊃⊃⊃而()1,n p n n x x r nρ+≤< ()n ∀∈ (3.4)由此可见{}n x 是基本列,从而x X ∃∈,使得lim n n x x →∞=.另一方面在(3.4)式中令p →∞得(),n n x x r ρ≤,从而(),n n x B x r ∈ ()n ∀∈ (3.5)联合(3.3)和(3.5)式,有1n n x E ∞=∉ ,这与(3.2)式矛盾.3.2开映像定理如果T 是一个单射,则定义1T -,它是线性的.但它的定义域不一定是全空间Y ,当且它是一个满射时,1T -才是Y 到X 的一个线性算子,此时,我们讨论1T -是不是连续的.定义3.2.1 设,X Y 为两个Banach 空间,T 为X 到Y 的映射,若对于X 中的任意开集G ,G 的像()T G 为Y 中的开集,则称T 为开映射[3](把开集映射为开集). 定理3.2.2 (Banach )设,X Y 是B 空间,若(),T L X Y ∈,它既是单射又是满射,那么()1,T L X Y -∈.证明 根据定理3.2.3证明中的第(3)段,已知()1,1,U TB θθδ⎛⎫⊂ ⎪⎝⎭即()11,1,T U B θθδ-⎛⎫⊂ ⎪⎝⎭或11T y δ-< (),1y Y y ∀∈<.特别地由模的齐次性,y Y ∀∈,0ε∀>,有()11T y y εδ-+<.令0ε→得11T y y δ-<()y Y ∀∈.从而()1,TL X Y -∈.这一定理有一个更一般的形式,也就是定理3.2.3.定理 3.2.3 设,X Y 是B 空间,若(),T L X Y ∈是一个满射,则T 是开映像 证明 用()0,B x a ,()0,U y b 分别表示,X Y 中的开球.(1) 证明是T 开映射,即∀开集W ,()T W 是开集,必须且仅须证明:0δ∃>使得()(),1,TB U θθδ⊃ (3.6)必然性是显然的. 充分性由于T 是线性,条件(3.6)等价于()()00,,TB x r U Tx r δ⊃ ()0,0x X r ∀∈∀>()0y T W ∀∈,按定义0x W ∃∈,使得00y Tx =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《泛函分析》读书笔记Reading Notes about Functional Analysis崔继峰所谓的泛函呢,就是一般函数,泛函分析当然就是一般函数的分析研究。

在学习泛函之前,需要有扎实的《实变函数》知识。

大学期间,曾用半年时间学过由南开大学刘炳初教授编著,科学出版社出版的《泛函分析》,讲课的是哈尔滨工业大学的包革军教授,他讲泛函的最大特点是把泛函与几何图形有机结合,把艰深的纯理论讲的惟妙惟肖。

在进入研究生学习阶段,《泛函分析》作为计算数学研究生的基础理论课程,是必选的。

我们选用的教材是由武汉大学刘培德教授主编,武汉大学出版社出版的《泛函分析(第二版)》,该教材是面向本科生的,系里之所以考虑选择此教材,是由于考虑到有些学生在本科阶段没有或者很粗浅的认识了《泛函分析》这门课程,主讲该课程的是高云兰博士,她的方向就是算子方面的研究,所以讲解该课程那是轻车熟路了。

课时大约是48学时(粗略估计)。

由于以下两方面的原因:1)对于《泛函分析》认识很粗浅;2)第一次写读书笔记(尤其是专业课类),不知道如何从略。

所以读书笔记可能从在诸多问题,希望老师见谅!下面我从几个方面写本学期学习《泛函分析》的感受和认识。

我本着这样态度写该笔记:1)了解泛函是什么,泛函的发展(很多教材把这个从略)2)把空间的理论知识系统学习,对于其他理论的学习作抛砖引玉之用。

3)学习泛函的实际作用(也就是附录里的滤波器理论的应用)。

泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。

它是20世纪30年代形成的。

从变分法、微分方程、积分方程、函数论以及量子物理等的研究中发展起来的,它运用几何学、代数学的观点和方法研究分析学的课题,可看作无限维的分析学。

一、泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段。

这就是,由于对欧几里德第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论。

这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件。

本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽。

随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究。

到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念。

由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方。

比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似。

这种相似在积分方程论中表现得就更为突出了。

泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方。

因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西。

非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响。

这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性。

这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间。

这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系。

现代数学的发展却是要求建立两个任意集合之间的某种对应关系。

这里我们先介绍一下算子的概念。

算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子。

研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析。

在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了。

二、泛函分析的特点和内容泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了。

比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念。

它既包含了以前讨论过的几何对象,也包括了不同的函数空间。

泛函分析对于研究现代物理学是一个有力的工具。

n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统。

比如梁的震动问题就是无穷多自由度力学系统的例子。

一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统。

现代物理学中的量子场理论就属于无穷自由度系统。

正如研究有穷自由度系统要求n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容。

因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学。

古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中。

泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论。

他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了。

半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展。

它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一。

今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一。

泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用。

近十几年来,泛函分析在工程技术方面有获得更为有效的应用。

它还渗透到数学内部的各个分支中去,起着重要的作用。

三、《泛函分析》空间知识认识泛函中存在诸多空间,这里对于几个重要的空间予以认识。

1. 度量空间我们在作物理、化学、生物等实验时,通过观察会得到很多值,但总是近似的,这时自然要考虑近似值与准确值的接近程度,反映在数学上这是一个极限问题。

数学分析中定义R 中点列n x 的极限是x 时,我们是用||x x n -来表示n x 和x 的接近程度,事实上,||x x n -可表示为数轴上n x 和x 这两点间的距离,那么实数集R 中点列n x 收敛于x 也就是指n x 和x 之间的距离随着∞→n 而趋于0,即0),(lim =∞→x x d n n 。

于是人们就想,在一般的点集X 中如果也有“距离”,那么在点集X 中也可借这一距离来定义极限,而究竟什么是距离呢?1.1度量空间的定义Definition 1.1设X 为一非空集合。

若存在二元函数R X X d →⨯:,使得X z y x ∈∀,,,均满足以下三个条件:(1),0),(≥y x d 且y x y x d =⇔=0),((非负性)(2)),(),(x y d y x d =(对称性)(3)),(),(),(z y d y x d z x d +≤(三角不等式),则称d 为X 上的一个距离函数,(d X ,)为度量空间或距离空间,),(y x d 为y x ,两点间的距离。

Notes : 若(d X ,)为度量空间,Y 是X 的一个非空子集,则(d Y ,)也是一个度量空间,称为(d X ,)的子空间。

我们可以验证:欧式空间n R ,离散度量空间,连续函数空间],[b a C ,有界数列空间∞l ,p 次幂可和的数列空间p l ,p 次幂可积函数空间],[b a L p )1(≥p ,均满足距离空间的性质。

Appendix :p 次幂可积函数空间],[b a L p )1(≥p 介绍}L b][a,|)(| |)({],[可积上在p p t f t f b a L =,在],[b a L p 中,我们把几乎处处相等的函数视为同一函数。

],[b a L p 有下列重要性质:(1)对线性运算是封闭的。

即若],[,b a L g f p ∈,则],[],,[b a L g f b a L f p p ∈+∈α,其中α是常数。

(2))1](,[],[≥⊂p b a L b a L p 。

设],[b a L f p ∈,令)1|(|≥=f E A ,],[),1|(|b a E f E B =<=,则dm f dm f dm f B A ba ⎰⎰⎰+=||||||)(||a b dm f Ap-+≤⎰ +∞<-+≤⎰)(||a b dm f pb a 故),(b a L f ∈。

(3)],[,b a L g f p ∈∀,定义=),(g f d p pp b a dm t g t f 1|)()(|⎪⎭⎫ ⎝⎛-⎰ (2.6) 则p d 是一个距离函数。

称)],,[(p p d b a L 为p 次幂可积函数空间,简记为],[b a L p 。

1.2度量空间有重要的定理Theory 1 对度量空间),(d X 有(1)任意个开集的并集是开集; 有限个开集的交集是开集;(2)任意个闭集的交集是闭集; 有限个闭集的并集是闭集;(3)X 与Φ既是开集又是闭集.Theory 2设),(d X 是度量空间,X E X x ⊂∈,0,则0x 是E 的聚点的充要条件是存在E 中点列{})(0x x x n n ≠,使)(0),(0∞→→n x x d n .Theory 3 设),(d X 是度量空间,E x X E ∈⊂,,则下面的三个陈述是等价的: (1) E x ∈;(2) x 的任一邻域中都有E 的点;(3)有点列E x n ∈,使)(0),(0∞→→n x x d n .Theory 4 设),(d X 是度量空间, E 是X 的非空子集,则E 为闭集的充要条件是E E ⊂'.要比较透彻的研究度量空间,不得不提到一下内容:2. 映射的连续与一致连续性Definition 2.1 设X ,Y 是距离空间,f 是X 到Y 的一个映射。

X x ∈0如果对任何0>ε,存在0>δ当δρ<),(0x x 时,有ερ<),(0fx fx 则称f 在0x 连续。

又若f 在X 中每一点都有连续,则称f 是X 上的连续映射。

若对任何0>ε,存在0)(>=εδδ,只要X x x ∈21 ,,且δ<),(21x x d ,就有ερ<))(),((21x f x f 成立,则称f 在X 上一致连续。

Example 1 ),(0x x ρ是距离空间X 上的连续函数,其中0x 是X 的一固定点。

proof: 任取x '∈X 。

因为对X x ∈,),(),(),(),(),(0000x x x x x x x x x x '-'+'≤'-ρρρρρ=),(x x 'ρ),(),(),(),(),(0000x x x x x x x x x x ρρρρρ-+'≤-'=),(x x 'ρ所以 ),(),(),(00x x x x x x '≤'-ρρρ.于是任给0>ε,只要取εδ=,当δρ<'),(x x 时,就有ερρ<'-),(),(00x x x x ,因此,),(0x x ρ是X 上的连续函数。

相关文档
最新文档