解析几何问题的题型与方法
高考复习中解析几何题型分析及解法梳理
一、解析几何题型分析:
1. 直线问题:主要考察直线的性质及其特征,如平行、垂直、中心弦定理等。
2. 圆形问题:主要考察圆形的性质及其特征,如圆心角定理、外切内接定理等。
3. 正多面体问题:主要考察正多面体的性质及其特征,如三角形内心定理、四面体最大最小化原理等。
4. 三角形问题:主要考察三角形的性质及其特征,如勾股定理、海伦-泰勒斯定理等。
5. 几何评价法问题: 主要是透过几何图型来评价各部分之间的大小或者数量上的差异,例如由于不同图彩之间存在一些明显差异,所以能够根据这些差异来作出正确判断或者作出正确估测。
二、解法收拾:
1. 第一步应该是将所有信息数字化,即将所有信息由文字表述方式数字化;
2. 第二步应该是根据所数字化后的信息来选用适合的几何方法;
3. 第三步应该是根据前两部中所使用方法来进行相应的代数或者几何运算;
4. 最后一步应该是核对并汇总前三部中所得到的信息,然后作出最合适书写样子上呈上。
高考数学:解析几何常考题型及解题方法汇总(含详解),
相信很多同学都知道,解析几何其实并不难,解题思路也相对简单,但是它却折磨着大多数的考生们!
为什么?因为它的计算量实在是太大了,想找个简单快捷的方法去做都是很不容易的一件事。
在高考数学中,解析几何属于必考题,而且其所占的分值和函数也相差不大,都是在3 0分左右,但是它并没有像函数压轴题一样,让人看了就想放弃。
但是只要找对方法,你会发现其实解析几何也没有想象中的那么折磨人,而且出乎意料的简单。
今天,学长就为同学们整理了高考数学中解析几何的热点常考题和解题方法的汇总,希望同学们好好把握,在高考中取得一个更好的成绩!
需要电子打印版的同学可以私信发送,解析几何,就可以打印出来了!用起来超方便!!!。
高中数学平面解析几何的常见题型及解答方法
高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。
平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。
下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。
一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。
常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。
这里我们以已知直线上的两点,求直线方程为例进行说明。
例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。
解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。
根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。
解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。
3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。
通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。
二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。
常见的题型有直线与圆的切线问题、直线与圆的交点问题等。
这里我们以直线与圆的切线问题为例进行说明。
例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。
解题思路:首先,我们需要确定直线与圆是否有交点。
当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。
当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。
解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。
2.求解二次方程,得到x的值。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
题型:1、求曲线方程(类型确定、类型未定);2、直线与圆锥曲线的
交点题目(含切线题目);3、与曲线有关的最(极)值题目;4、与曲线有关
的几何证实(对称性或求对称曲线、平行、垂直);5、探求曲线方程中几
何量及参数间的数目特征。
解题方法:
1、紧密结合代数知识解题:“求到两定点的距离之比等于常数的点
的轨迹”问题的求解过程中,取平面直角坐标系,使两定点的连线为x轴,且连线段的中点为原点,并设两定点的距离为2b,则两定点分别为M(b,0)N(-b,0),N(x,y)是轨迹上任意一点,常数为n,最终得到轨迹
方程(n2-1)(x2+y2)+2b(n2+1))x+b2(n2-1)=0。
2、充分利用几何图形性质简化解题过程:在对曲线轨迹方程求解的
过程中,通过几何条件,可以对轨迹的曲线类型进行判断,然后通过待定
系数法来求解。
3、用函数(变量)的观点来解决问题:对于解析几何问题而言,由
于线或点发生改变,从而导致图形中其他量的改变,这样类型的题目,往
往可以使用函数的观点来求解。
例如,在次全国高中数学竞赛题中,已知
抛物线y2=6x上的2个动点A(x1,y1)和B(x2,y2),其中x1≠x2且
1+2=4。
线段AB的垂直平分线与x轴交于点C,求AABC面积的最大值。
数学解析几何的常见题型解析
数学解析几何的常见题型解析解析几何是数学中的分支学科,通过运用代数和几何的知识,以方程和不等式为工具,研究几何对象的性质和关系。
解析几何的题型主要包括直线方程、曲线方程、平面方程和空间曲面方程等。
本文将对解析几何的常见题型进行解析。
一、直线方程的解析1. 一般式方程直线的一般式方程为Ax + By + C = 0,其中A、B、C是常数,且A和B不同时为0。
2. 斜截式方程直线的斜截式方程为y = kx + b,其中k是直线的斜率,b是直线与y轴的截距。
3. 点斜式方程直线的点斜式方程为(y - y₁) = k(x - x₁),其中(x₁,y₁)是直线上的一点,k是直线的斜率。
二、曲线方程的解析1. 圆的方程圆的标准方程为(x - a)² + (y - b)² = r²,其中(a,b)是圆心的坐标,r是圆的半径。
2. 椭圆的方程椭圆的标准方程为(x/a)² + (y/b)² = 1,其中a和b分别是椭圆在x轴和y轴上的半轴长度。
3. 双曲线的方程双曲线的标准方程为(x²/a²) - (y²/b²) = 1,其中a和b分别是双曲线在x轴和y轴上的半轴长度。
三、平面方程的解析1. 一般式方程平面的一般式方程为Ax + By + Cz + D = 0,其中A、B、C和D是常数,且A、B和C不同时为0。
2. 法向量和点的关系式平面的法向量为(A,B,C),平面上一点为(x₁,y₁,z₁),则平面方程为A(x - x₁) + B(y - y₁) + C(z - z₁) = 0。
四、空间曲面方程的解析1. 球的方程球的标准方程为(x - a)² + (y - b)² + (z - c)² = r²,其中(a,b,c)是球心的坐标,r是球的半径。
2. 圆锥曲线的方程圆锥曲线的方程根据不同类型的圆锥曲线而不同,比如椭圆锥的方程为(x²/a²) + (y²/b²) - (z²/c²) = 0,双曲锥的方程为(x²/a²) + (y²/b²) - (z²/c²)= 1等。
初中解析几何题型及解题方法
初中解析几何题型及解题方法解析几何是初中数学中的一个重要部分,主要涉及直线、圆、抛物线、双曲线等图形的性质和特点。
以下是一些常见的初中解析几何题型及解题方法:1. 求直线的方程题型描述:给定直线上两点或一点及斜率,要求求出直线的方程。
解题方法:+ 两点式:$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$+ 点斜式:$y - y_1 = m(x - x_1)$2. 求圆的方程题型描述:给定圆上的三点或两点及半径,要求求出圆的方程。
解题方法:$(x - h)^2 + (y - k)^2 = r^2$,其中 $(h, k)$ 是圆心,$r$ 是半径。
3. 直线与圆的位置关系题型描述:给定直线和圆的方程,要求判断直线与圆的位置关系(相交、相切、相离)。
解题方法:计算圆心到直线的距离,与半径比较。
4. 求抛物线的方程题型描述:给定抛物线上的两点或一点及焦点,要求求出抛物线的方程。
解题方法:标准方程为 $y = ax^2 + bx + c$。
如果知道焦点和准线,则可以求出 $a$ 和 $b$ 的值。
5. 求最值问题题型描述:在给定的图形中,求某一点的坐标或某条线段的长度,使得该值最大或最小。
解题方法:使用配方法、顶点式、导数等方法求最值。
6. 实际应用题题型描述:给定生活中的实际问题,如最短路径、最大面积等,要求用解析几何知识求解。
解题方法:建立数学模型,转化为几何问题,然后使用解析几何的知识求解。
在解决解析几何问题时,除了掌握上述方法外,还需要培养自己的空间想象能力和逻辑推理能力。
同时,多做练习题也是提高解题能力的有效途径。
高考专题:解析几何常规题型及方法
高考专题:解析几何常规题型及方法一、高考风向分析:高考解析几何试题一般共有3--4题(1--2个选择题, 0--1个填空题, 1个解答题), 共计20多分, 考察的知识点约为20个左右,其命题一般紧扣课本, 突出重点, 全面考察。
选择题和填空题考察直线, 圆, 圆锥曲线中的根底知识,大多概念性较强,小巧灵活,思维多于计算;而解答题重点考察圆锥曲线中的重要知识点及其综合运用,重在考察直线与圆锥曲线的位置关系、轨迹方程,以向量为载体,立意新颖,要求学生综合运用所学代数、三角、几何的知识分析问题,解决问题。
二、本章节处理方法建议:纵观历年全国各省市文、理高考试卷,普遍有一个规律:占解几分值接近一半的填空、选择题难度不大,中等及偏上的学生能将对应分数收入囊中;而占解几分值一 半偏上的解答题得分很不理想,其原因主要表达在以下几个方面:〔1〕解析几何是代数与几何的完美结合,解析几何的问题可以涉及函数、方程、不等式、三角、几何、数列、向 量等知识,形成了轨迹、最值、对称、围、参系数等多种问题,因而成为高中数学综合 能力要求最高的容之一〔2〕解析几何的计算量相对偏大〔3〕在大家的"拿可拿之分〞 的理念下,大题的前三道成了兵家必争之地,而排放位置比拟为难的第21题或22题〔有 时20题〕就成了很多人遗忘的角落,加之时间的限制,此题留白的现象比拟普遍。
鉴于解几的特点,建议在复习中做好以下几个方面.1.由于高考中解几容弹性很 大。
有容易题,有中难题。
因此在复习中基调为狠抓根底。
不能因为高考中的解几解答题 较难,就拼命地去搞难题,套新题,这样往往得不偿失;端正心态:不指望将所有的题攻 下,将时间用在稳固根底、对付"跳一跳便可够得到〞的常规题上,这样复习,高考时就 能保证首先将选择、填空题拿下,然后对于大题的第一个小问争取得分,第二小题能拿几 分算几分。
三、高考核心考点1、准确理解根本概念〔如直线的倾斜角、斜率、距离、截距等〕2、熟练掌握根本公式〔如两点间距离公式、点到直线的距离公式、斜率公式、定比分点的坐标公式、到角公式、夹角公式等〕3、熟练掌握求直线方程的方法〔如根据条件灵活选用各种形式、讨论斜率存在和不存在的各种情况、截距是否为0等等〕4、在解决直线与圆的位置关系问题中,要善于运用圆的几何性质以减少运算5、了解线性规划的意义及简单应用6、熟悉圆锥曲线中根本量的计算7、掌握与圆锥曲线有关的轨迹方程的求解方法〔如:定义法、直接法、相关点法、参数法、交轨法、几何法、待定系数法等〕8、掌握直线与圆锥曲线的位置关系的常见判定方法,能应用直线与圆锥曲线的位置关系解决一些常见问题四、常规题型及解题的技巧方法A:常规题型方面〔1〕中点弦问题具有斜率的弦中点问题,常用设而不求法〔点差法〕:设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。
解析几何题型及解题方法总结
解析几何题型及解题方法总结
几何是小学、中学数学的基础内容,对理解和掌握数学有着重要的作用,而解析几何就是从图形出发,把它们构成的性质表示出来。
随着数学应用范围的不断扩大,解析几何也变得越来越重要。
一般来说,解析几何题型包括:直线、线段、圆、三角形、椭圆、正方形等。
在解析这些几何题型时,有一些总体的解题思路与解题方法。
首先,把问题翻译成几何模型,也是解题的第一步。
其次,通过绘图的方法,让图形的性质更加清晰,即确定结构。
最后,运用相关的几何知识、定理,进行计算、判断和证明。
举例来说,解决一道给定两线段判断是否相交的问题,可以这样做:首先,用两个不同的色彩表示这两条线段,绘出它们的图形;其次,利用类似两线段角平分线定理的几何原理,计算出两线段的角平分线,判断它们是否相交。
此外,解决解析几何问题还需要熟练掌握和推导各种常见的几何定理,如勾股定理、等腰三角形定理、角平分线定理等,并且应该能够根据情况,判断出此类定理的使用范围。
另外,还要深入理解几何中角度、边长之间的各种关系:一条线段所围成的角的几何关系,一个三角形的边长与其垂直边、对边角的几何关系,一个椭圆的边长与其顶点角的几何关系等。
最后,解析几何中突出的一般性知识,:平行线、垂直线、对称中心、交点、垂足等,也要熟练掌握,这样方便在解决具体问题时正
确使用正确的几何知识。
解析几何题型及解题方法
解析几何题型及解题方法
解析几何是数学中的一个重要分支,主要研究空间中点、线、面等几何对象在坐标系中的表示和性质。
以下是一些常见的解析几何题型及其解题方法:
1. 求轨迹方程:给定一些条件,求动点的轨迹方程。
解题方法包括直接法、参数法、代入法等。
2. 判断位置关系:判断两条直线、两个圆、两条圆锥曲线等是否相交、相切、相离。
解题方法包括联立方程组消元法、判别式法、一元二次方程根的判别式法等。
3. 求弦长、面积、体积等:给定一个几何对象,求其长度、面积、体积等。
解题方法包括公式法、参数法、极坐标法等。
4. 求最值:给定一个几何对象,求其长度的最大值、最小值等。
解题方法包括导数法、不等式法、极坐标法等。
5. 证明不等式:通过几何图形证明不等式。
解题方法包括构造法、极坐标法、数形结合法等。
6. 探索性问题:通过观察、猜想、证明等方式探索几何对象的性质。
解题方法包括归纳法、反证法、构造法等。
以上是一些常见的解析几何题型及其解题方法,掌握这些方法可以帮助我们更好地解决解析几何问题。
同时,需要注意题目中的条件和限制,以及图形的位置和形状,以便更准确地解决问题。
解析几何的常见题型解题方法
解析几何的常见题型解题方法几何学是数学的一个分支,研究与形状、大小、位置等相关的问题。
在解析几何中,常见的题型包括直线方程、平面方程、距离公式、中点公式、向量运算等。
本文将从这些常见题型出发,介绍解析几何的解题方法。
1. 直线方程直线方程是解析几何中常见的题型之一。
一条直线可以用斜率截距法、两点法或点斜式等多种方式表示。
例如,已知直线过点A(2,3)且斜率为2,求直线的方程。
解法如下:首先,利用点斜式可以得到直线的方程为y-3=2(x-2)。
进一步化简,得到直线方程为y=2x-1。
2. 平面方程平面方程是解析几何中另一个常见的题型。
平面可以用点法、法向量法或截距法表示。
例如,已知平面过点A(2,3,4)、B(1,2,3)和C(3,4,5),求平面的方程。
解法如下:首先,利用两个向量来确定平面的法向量。
设AB和AC两向量,则平面的法向量可以通过叉积运算得到。
即AB×AC=(-1,1,1)。
进一步,利用点法可得平面的方程为-1(x-2)+1(y-3)+1(z-4)=0。
化简可得-x+y+z-5=0,即平面的方程为x-y-z+5=0。
3. 距离公式在解析几何中,我们常需要计算两点之间的距离。
两点间的距离可以通过距离公式来计算。
例如,已知点A(2,3)和点B(4,5),求AB两点间的距离。
解法如下:根据距离公式,AB的距离可以表示为√[(x2-x1)²+(y2-y1)²]。
带入坐标可得√[(4-2)²+(5-3)²],化简后得√8。
因此,点A(2,3)和点B(4,5)之间的距离为√8。
4. 中点公式中点公式是解析几何中常见的一个定理,用来求线段的中点坐标。
例如,已知线段AB的两个端点A(2,3)和B(4,5),求线段AB的中点坐标。
解法如下:根据中点公式,线段AB的中点坐标可以表示为[(x1+x2)/2,(y1+y2)/2]。
带入坐标可得[(2+4)/2, (3+5)/2],化简后得(3,4)。
2024高考数学解析几何知识点总结与题型分析
2024高考数学解析几何知识点总结与题型分析随着时间的推移,我们离2024年的高考越来越近。
数学作为高考的一门重要科目,解析几何是其中的一个重点内容。
为了帮助同学们更好地复习解析几何,并在高考中取得好成绩,本文将对2024高考数学解析几何的知识点进行总结与题型分析。
1. 直线与平面1.1 直线的方程直线的一般方程为Ax + By + C = 0,其中A、B、C为常数。
根据直线的特点,我们可以将其方程转化为其他形式,如点斜式、两点式、截距式等,以便于解题。
1.2 平面的方程平面的一般方程为Ax + By + Cz + D = 0,其中A、B、C、D为常数。
类似于直线的情况,根据平面的性质,我们可以将其方程转化为点法式、截距式等形式。
2. 空间几何体2.1 球球是解析几何中的一个重要概念。
其方程为(x-a)^2 + (y-b)^2 + (z-c)^2 = r^2,其中(a, b, c)为球心坐标,r为半径长度。
2.2 圆锥曲线圆锥曲线包括圆、椭圆、双曲线和抛物线。
通过对几何体的方程进行适当的变化,可以得到不同类型的圆锥曲线方程。
掌握其特点和方程形式,对于解析几何的学习非常重要。
3. 空间几何关系3.1 直线与直线的位置关系直线与直线的位置关系包括相交、平行、重合等情况。
根据两条直线的方程,我们可以通过求解方程组或直线的斜率等方式,判断它们之间的空间位置关系。
3.2 直线与平面的位置关系直线与平面的位置关系包括相交、平行、重合等情况。
根据直线的方程和平面的方程,我们可以通过代入求解或者检验点的方法,判断它们之间的位置关系。
4. 解析几何的常见题型4.1 直线与平面的交点求解给定直线和平面的方程,我们需要求解它们的交点。
通过将直线方程代入平面方程中,可以得到关于未知变量的方程组,进而求解出交点的具体坐标。
4.2 距离计算在解析几何中,我们常常需要计算点、直线或平面之间的距离。
对于给定的两点,我们可以利用距离公式进行计算;对于直线和平面,我们可以利用点到直线/平面的距离公式进行计算。
解答题题型归纳之解析几何(解析版)
专题五 解答题题型归纳之解析几何题型归纳一、中点弦、轨迹方程考点1.中点弦——点差法1.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),离心率为√22.直线l 过点F且不平行于坐标轴,l 与C 有两交点A ,B ,线段AB 的中点为M . (Ⅰ)求椭圆C 的方程;(Ⅱ)证明:直线OM 的斜率与l 的斜率的乘积为定值;【分析】(Ⅰ)由题可知,c =1,e =ca =√22,再结合a 2=b 2+c 2,解出a 和b 的值即可得解;(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2),联立直线l 的方程和椭圆的方程,消去y 得到关于x 的一元二次方程,写出两根之和与系数的关系;由于M 为线段AB 的中点,利用中点坐标公式可用k 表示点M 的坐标,利用k OM =y Mx M可求出直线OM 的斜率,进而得解;【解答】解:(Ⅰ)由题意可知,c =1,e =c a =√22, ∵a 2=b 2+c 2,∴a =√2,b =1,∴椭圆的方程为x 22+y 2=1.(Ⅱ)设直线l 的方程为y =k (x ﹣1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 联立{y =k(x −1)x 22+y 2=1,消去y 得,(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0, 则x 1+x 2=4k22k 2+1,∵M 为线段AB 的中点,∴x M =x 1+x 22=2k 22k 2+1,y M =k(x M −1)=−k 2k 2+1,∴k OM =yM x M=−12k ,∴k OM ⋅k l =−12k ×k =−12为定值.2.已知中心在原点,一焦点为F (0,√50)的椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12.(1)求此椭圆的方程;(2)过定点M (0,9)的直线与椭圆有交点,求直线的斜率k 的取值范围.【分析】(1)设椭圆为x 2b 2+y 2a 2=1,由已知条件推导出a 2=b 2+50,6b 2a 2+9b 2=12,由此能求出椭圆.(2)设过定点M (0,9)的直线为l ,若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);若斜率k 存在,直线l 的方程为:y =kx +9,k ≠0,代入椭圆方程,由△≥0,能求出直线的斜率k 的取值范围. 【解答】解:(1)∵椭圆中心在原点,一焦点为F (0,√50),∴设椭圆为x 2b 2+y 2a 2=1,(a >b >0),a 2=b 2+c 2=b 2+50,① 把y =3x ﹣2代入椭圆方程,得 a 2x 2+b 2(3x ﹣2)2=a 2b 2,(a 2+9b 2)x 2﹣12b 2x +4b 2﹣a 2b 2=0,∵椭圆被直线l :y =3x ﹣2截得的弦的中点横坐标为12,∴6b 2a 2+9b 2=12,整理,得a 2=3b 2,②由①②解得:a 2=75,b 2=25,∴椭圆为:x 225+y 275=1.(2)设过定点M (0,9)的直线为l ,①若斜率k 不存在,直线l 方程为x =0,与椭圆交点是椭圆的上顶点(0,5√3)和下顶点(0,﹣5√3);②若斜率k =0,直线l 方程为y =9,与椭圆无交点; ③若斜率k 存在且不为0时,直线l 的方程为:y =kx +9,k ≠0 联立{y =kx +9x 225+y 275=1,得(3+k 2)x 2+18kx +6=0,△=(18k )2﹣24(3+k 2)≥0,解得k ≥√65或k ≤−√65.综上所述:直线的斜率k 的取值范围k ≥√65或k ≤−√65或k 不存在.考点2.轨迹方程——定义法、相关点法3.已知O 为坐标原点,圆M :x 2+y 2﹣2x ﹣15=0,定点F (﹣1,0),点N 是圆M 上一动点,线段NF 的垂直平分线交圆M 的半径MN 于点Q ,点Q 的轨迹为C . (Ⅰ)求曲线C 的方程;【分析】(Ⅰ)推导出动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆,由此能求出曲线C 的方程.【解答】解:(Ⅰ)由题意知|MQ |+|FQ |=|MN |=4, 又|MF |=2<4,∴由椭圆定义知动点Q 的轨迹为以M 、F 为焦点、长轴长为4的椭圆, 故2a =4,2c =2,∴曲线C 的方程是x 24+y 23=1.4.从抛物线y 2=36x 上任意一点P 向x 轴作垂线段,垂足为Q ,点M 是线段PQ 上的一点,且满足PM →=2MQ →.(1)求点M 的轨迹C 的方程;【分析】(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).利用向量关系,推出{x 0=x ,y 0=3y .,代入已知条件即可得到点M 的轨迹C 的方程.【解答】解:(1)设M (x ,y ),P (x 0,y 0),则点Q 的坐标为(x 0,0).因为PM →=2MQ →,所以(x ﹣x 0,y ﹣y 0)=2(x 0﹣x ,﹣y ),(2分) 即{x 0=x ,y 0=3y .,(3分) 因为点P 在抛物线y 2=36x 上,所以y 02=36x 0,即(3y )2=36x .所以点M 的轨迹C 的方程为y 2=4x . (5分)题型归纳二、弦长、面积考点1.弦长问题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点P (√3,12)在椭圆E 上. (Ⅰ)求椭圆E 的方程;(Ⅱ)设不过原点O 且斜率为12的直线l 与椭圆E 交于不同的两点A ,B ,线段AB 的中点为M ,直线OM 与椭圆E 交于C ,D ,证明:|MA |•|MB |=|MC |•|MD | 【解答】(Ⅰ)解:如图,由题意可得{a =2ba 2=b 2+c 23a 2+14b 2=1,解得a 2=4,b 2=1, ∴椭圆E 的方程为x 24+y 2=1;(Ⅱ)证明:设AB 所在直线方程为y =12x +m , 联立{y =12x +mx 24+y 2=1,得x 2+2mx +2m 2﹣2=0.∴△=4m 2﹣4(2m 2﹣2)=8﹣4m 2>0,即−√2<m <√2. 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0), 则x 1+x 2=−2m ,x 1x 2=2m 2−2, |AB |=√1+14|x 1−x 2|=√54√(x 1+x 2)2−4x 1x 2=√54√4m 2−4(2m 2−2)=√10−5m 2.∴x 0=﹣m ,y 0=12x 0+m =m2,即M (−m ,m2),则OM 所在直线方程为y =−12x ,联立{y =−12x x 24+y 2=1,得{x =−√2y =√22或{x =√2y =−√22. ∴C (−√2,√22),D (√2,−√22). 则|MC |•|MD |=(2√2)⋅(2√2)=√(54m 2+52−52√2m)⋅(54m 2+52+52√2m)=√(52−54m 2)2=52−54m 2.而|MA |•|MB |=(12|AB|)2=14(10﹣5m 2)=52−5m 24.∴|MA |•|MB |=|MC |•|MD |. 2.已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t =4,|AM |=|AN |时,求△AMN 的面积; (Ⅱ)当2|AM |=|AN |时,求k 的取值范围.【解答】解:(Ⅰ)方法一、t =4时,椭圆E 的方程为x 24+y 23=1,A (﹣2,0),直线AM 的方程为y =k (x +2),代入椭圆方程,整理可得(3+4k 2)x 2+16k 2x +16k 2﹣12=0,解得x =﹣2或x =−8k 2−63+4k 2,则|AM |=√1+k 2•|2−8k 2−63+4k 2|=√1+k 2•123+4k 2, 由AN ⊥AM ,可得|AN |=√1+(−1k )2•123+4⋅(−1k)2=√1+k 2•123|k|+4|k|,由|AM |=|AN |,k >0,可得√1+k 2•123+4k 2=√1+k 2•123k+4k,整理可得(k ﹣1)(4k 2+k +4)=0,由4k 2+k +4=0无实根,可得k =1,即有△AMN 的面积为12|AM |2=12(√1+1•123+4)2=14449;方法二、由|AM |=|AN |,可得M ,N 关于x 轴对称,由MA ⊥NA .可得直线AM 的斜率为1,直线AM 的方程为y =x +2, 代入椭圆方程x 24+y 23=1,可得7x 2+16x +4=0,解得x =﹣2或−27,M (−27,127),N (−27,−127), 则△AMN 的面积为12×247×(−27+2)=14449;(Ⅱ)直线AM 的方程为y =k (x +√t ),代入椭圆方程, 可得(3+tk 2)x 2+2t √t k 2x +t 2k 2﹣3t =0, 解得x =−√t 或x =−t √tk 2−3√t 3+tk 2,即有|AM |=√1+k 2•|t √tk 2−3√t 3+tk 2−√t |=√1+k 2•6√t3+tk 2,|AN |═√1+1k2•6√t3+tk2=√1+k 2•6√t 3k+t k,由2|AM |=|AN |,可得2√1+k 2•6√t3+tk 2=√1+k 2•6√t3k+t k,整理得t =6k 2−3k k 3−2,由椭圆的焦点在x 轴上,则t >3,即有6k 2−3k k 3−2>3,即有(k 2+1)(k−2)k 3−2<0,可得√23<k <2,即k 的取值范围是(√23,2). 考点2.面积问题3.已知点A (0,﹣2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,F 是椭圆的右焦点,直线AF 的斜率为2√33,O 为坐标原点.(Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.【解答】解:(Ⅰ) 设F (c ,0),由条件知2c=2√33,得c =√3,又ca=√32, 所以a =2,b 2=a 2﹣c 2=1,故E 的方程x 24+y 2=1.….(5分)(Ⅱ)依题意当l ⊥x 轴不合题意,故设直线l :y =kx ﹣2,设P (x 1,y 1),Q (x 2,y 2) 将y =kx ﹣2代入x 24+y 2=1,得(1+4k 2)x 2﹣16kx +12=0, 当△=16(4k 2﹣3)>0,即k 2>34时,x 1,2=8k±2√4k 2−31+4k 2从而|PQ|=√k 2+1|x 1−x 2|=4√k 2+1⋅√4k 2−31+4k 2又点O 到直线PQ 的距离d =√k 2+1,所以△OPQ 的面积S △OPQ =12d|PQ|=4√4k 2−31+4k 2,设√4k 2−3=t ,则t >0,S △OPQ =4tt 2+4=4t+4t≤1,当且仅当t =2,k =±√72等号成立,且满足△>0,所以当△OPQ 的面积最大时,l 的方程为:y =√72x ﹣2或y =−√72x ﹣2.…(12分)4.设圆x 2+y 2+2x ﹣15=0的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明|EA |+|EB |为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【解答】解:(Ⅰ)证明:圆x 2+y 2+2x ﹣15=0即为(x +1)2+y 2=16, 可得圆心A (﹣1,0),半径r =4,由BE ∥AC ,可得∠C =∠EBD , 由AC =AD ,可得∠D =∠C , 即为∠D =∠EBD ,即有EB =ED , 则|EA |+|EB |=|EA |+|ED |=|AD |=4>|AB |, 故E 的轨迹为以A ,B 为焦点的椭圆,且有2a =4,即a =2,c =1,b =√a 2−c 2=√3, 则点E 的轨迹方程为x 24+y 23=1(y ≠0);(Ⅱ)椭圆C 1:x 24+y 23=1,设直线l :x =my +1,由PQ ⊥l ,设PQ :y =﹣m (x ﹣1),由{x =my +13x 2+4y 2=12可得(3m 2+4)y 2+6my ﹣9=0, 设M (x 1,y 1),N (x 2,y 2), 可得y 1+y 2=−6m3m 2+4,y 1y 2=−93m 2+4,则|MN |=√1+m 2•|y 1﹣y 2|=√1+m 2•√36m 2(3m 2+4)2+363m 2+4 =√1+m 2•√36(4m 2+4)3m 2+4=12•1+m 23m 2+4,A 到PQ 的距离为d =√1+m 2=√1+m 2,|PQ |=2√r 2−d 2=2√16−4m 21+m 2=4√3m 2+4√1+m 2,则四边形MPNQ 面积为S =12|PQ |•|MN |=12•4√3m 2+4√1+m 2•12•1+m 23m 2+4=24•√1+m 2√3m 2+4=24√13+11+m 2,当m =0时,S 取得最小值12,又11+m 2>0,可得S <24•√33=8√3,即有四边形MPNQ 面积的取值范围是[12,8√3).题型归纳三、定值、定点、定直线考点1.定值问题1.设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB . 【解答】解:(1)c =√2−1=1, ∴F (1,0), ∵l 与x 轴垂直, ∴x =1,由{x =1x 22+y 2=1,解得{x =1y =√22或{x =1y =−√22,∴A (1.√22),或(1,−√22), ∴直线AM 的方程为y =−√22x +√2,y =√22x −√2, 证明:(2)当l 与x 轴重合时,∠OMA =∠OMB =0°,当l 与x 轴垂直时,OM 为AB 的垂直平分线,∴∠OMA =∠OMB , 当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x ﹣1),k ≠0, A (x 1,y 1),B (x 2,y 2),则x 1<√2,x 2<√2, 直线MA ,MB 的斜率之和为k MA ,k MB 之和为k MA +k MB =y 1x 1−2+y 2x 2−2, 由y 1=kx 1﹣k ,y 2=kx 2﹣k 得k MA +k MB =2kx 1x 2−3k(x 1+x 2)+4k (x 1−2)(x 2−2), 将y =k (x ﹣1)代入x 22+y 2=1可得(2k 2+1)x 2﹣4k 2x +2k 2﹣2=0,∴x 1+x 2=4k 22k 2+1,x 1x 2=2k 2−22k 2+1, ∴2kx 1x 2﹣3k (x 1+x 2)+4k =12k 2+1(4k 3﹣4k ﹣12k 3+8k 3+4k )=0 从而k MA +k MB =0,故MA ,MB 的倾斜角互补, ∴∠OMA =∠OMB , 综上∠OMA =∠OMB . 2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,直线2x +y −6√3=0与直线MN 垂直,垂足为B 点,且点N 是线段MB 的中点. (1)求椭圆C 的方程;(2)如图,若直线l :y =kx +m 与椭圆C 交于E ,F 两点,点G 在椭圆C 上,且四边形OEGF 为平行四边形,求证:四边形OEGF 的面积S 为定值.【解答】解:(1)由题意知,椭圆C 的左顶点M (﹣a ,0),上顶点N (0,b ),直线MN 的斜率k =b a=12,得a =2b ,因为点N 是线段MB 的中点,∴点B 的坐标是B (a ,2b ), 由点B 在直线2x +y −6√3=0上,∴2a +2b =3√2,且a =2b , 解得b =√3,a =2√3, ∴椭圆C 的方程为x 212+y 23=1.(2)证明:设E (x 1,y 1),F (x 2,y 2),G (x 0,y 0),将y =kx +m 代入x 212+y 23=1,消去y 并整理得(1+4k 2)x 2+8kmx +4m 2﹣12=0, 则x 1+x 2=−8m1+4k 2,x 1⋅x 2=4m 2−121+4k 2, ∴y 1+y 2=k (x 1+x 2)+2m =2m1+4k 2, ∵四边形OEGF 为平行四边形, ∴OG →=OE →+OF →=(x 1+x 2,y 1+y 2), 得G(−8km1+4k 2,2m1+4k 2),将G 点坐标代入椭圆C 方程得m 2=34(1+4k 2),点O 到直线EF 的距离为d =√1+k 2,EF =√1+k 2|x 1−x 2|,∴平行四边形OEGF 的面积为S =d •|EF |=|m ||x 1﹣x 2|=|m|√(x 1+x 2)2−4x 1x 2 =4|m|√3−m 2+12k 21+4k 2=4|m|√3m 21+4k 2=4√3m 21+4k 2=3√3.故平行四边形OEGF 的面积S 为定值3√3.考点2.定点问题3.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),点M (2√63,﹣1)在椭圆上,椭圆C 的离心率为12.(1)求椭圆的方程;(2)设点A 为椭圆长轴的左端点,P ,Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP ,AQ 斜率分别为k 1,k 2,若k 1k 2=−14,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.【解答】解:(1)由已知可得:{83a 2+1b 2=1c a =12a 2=b 2+c 2,解得a 2=4,b 2=3, 所以椭圆的方程为x 24+y 23=1;(2)因为A (﹣2,0),设P (x 1,y 1),Q (x 2,y 2), 当直线的斜率存在时,设直线PQ 的方程为:y =kx +m ,联立方程组{y =kx +m x 24+y 23=1,消去y 可得:(3+4k 2)x 2x 2+8mkx +4m 2﹣12=0,所以x1+x2=−8mk3+4k2,x1x2=4m2−123+4k2,因为k1k2=−14,所以k1k2=y1x1+2⋅y2x2+2=(kx1+m)(kx2+m)(x1+2)(x2+2)=k2x1x2+mk(x1+x2)+m2 x1x2+2(x1+x2)+4=−14所以4m 2k2−12k2−8k2m2+3m2+4m2k24m2−12−16mk+12+16k2=−14,所以m2﹣mk﹣2k2=0,所以(m﹣2k)(m+k)=0,所以m=2k或m=﹣k,当m=2k时,PQ:y=k(x+2),此时直线过定点(﹣2,0)不符合题意,当m=﹣k时,PQ:y=k(x﹣1),此时过定点(1,0),当直线的斜率不存在时,PQ的方程为:x=1,所以P,Q的坐标为(1,32),(1,−32),所以k AP⋅k AQ=321−(−2)⋅−321−(−2)=−14,满足要求,综上可知:直线PQ过定点(1,0).4.已知点F1(−√2,0),圆F2:(x−√2)2+y2=16,点M是圆上一动点,MF1的垂直平分线与MF2交于点N.(1)求点N的轨迹方程;(2)设点N的轨迹为曲线E,过点P(0,1)且斜率不为0的直线l与E交于A,B 两点,点B关于y轴的对称点为B′,证明直线AB′过定点,并求△P AB′面积的最大值.【解答】解:(1)由已知得:|NF1|=|NM|,∴|NF1|+|NF2|=|MN|+|NF2|=|4,又|F1F2|=2√2,∴点N的轨迹是以F1,F2为焦点,长轴长等于4的椭圆,∴2a =4,2c =2√2,即a =2,c =√2, ∴b 2=a 2﹣c 2=4﹣2=2, ∴点N 的轨迹方程是x 24+y 22=1.证明:(2)设直线AB :y =kx +1,(k ≠0),设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则B ′(﹣x 2,y 2), 联立直线AB 与椭圆得{x 2+2y 2=4y =kx +1,得(1+2k 2)x 2+4kx ﹣2=0, 显然△=8(1+4k 2)>0, ∴x 1+x 2=−4k 1+2k 2,x 1x 2=−21+2k 2 ∴k AB ′=y 1−y2x 1+x 2,∴直线AB ′:y ﹣y 1=y 1−y2x 1+x 2(x ﹣x 1),∴令x =0,得y =x 1y 2+x 2y 1x 1+x 2=x 1(kx 2+1)+x 2(kx 1+1)x 1+x 2=2kx 1x 2x 1+x 2+1=2,∴直线AB ′过定点Q (0,2), ∴△P AB ′的面积S =12|x 1+x 2|=2|k|1+2k 2=21|k|+2|k|≤√22, 当且仅当k =±√22时,等号成立. ∴△P AB ′的面积的最大值是√22.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两焦点在x 轴上,且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形. (Ⅰ)求椭圆的方程;(Ⅱ)过点S(0,−13)的动直线l 交椭圆C 于A 、B 两点,试问:在坐标平面上是否存在一个定点Q ,使得以AB 为直径的圆恒过点Q ?若存在求出点Q 的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)由椭圆两焦点与短轴的一个端点的连线构成等腰直角三角形,得b =c ,又斜边长为2,即2c =2,解得c =1,故a =√2c =√2,所以椭圆方程为x 22+y 2=1.(Ⅱ)当l 与x 轴平行时,以AB 为直径的圆的方程为x 2+(y +13)2=169; 当l 为y 轴时,以AB 为直径的圆的方程为x 2+y 2=1,由{x 2+(y +13)2=169x 2+y 2=1⇒{x =0y =1, 故若存在定点Q ,则Q 的坐标只可能为Q (0,1).下证明Q (0,1)为所求:若直线l 斜率不存在,上述已经证明.设直线l :y =kx −13,A(x 1,y 1),B(x 2,y 2),由{y =kx −13x 2+2y 2−2=0⇒(9+18k 2)x 2−12kx −16=0,△=144k 2+64(9+18k 2)>0,x 1+x 2=12k18k 2+9,x 1x 2=−1618k 2+9, QA →=(x 1,y 1−1),QB →=(x 2,y 2−1),QA →⋅QB →=x 1x 2+(y 1−1)(y 2−1)=(1+k 2)x 1x 2−4k3(x 1+x 2)+169=(1+k 2)−169+18k 2−4k 3⋅12k9+18k 2+169=0,∴QA →⊥QB →,即以AB 为直径的圆恒过点Q (0,1).6.已知直线l 1是抛物线C :x 2=2py (p >0)的准线,直线l 2:3x ﹣4y ﹣6=0,且l 2与抛物线C 没有公共点,动点P 在抛物线C 上,点P 到直线l 1和l 2的距离之和的最小值等于2.(Ⅰ)求抛物线C 的方程;(Ⅱ)点M 在直线l 1上运动,过点M 做抛物线C 的两条切线,切点分别为P 1,P 2,在平面内是否存在定点N ,使得MN ⊥P 1P 2恒成立?若存在,请求出定点N 的坐标,若不存在,请说明理由.【解答】解:(Ⅰ)作P A ,PB 分别垂直l 1和l 2,垂足为A ,B ,抛物线C 的焦点为F(0,p2), 由抛物线定义知|P A |=|PF |,所以d 1+d 2=|P A |+|PB |=|PF |+|PB |, 显见d 1+d 2的最小值即为点F 到直线l 2的距离,故d =|−2p−6|5=2⇒p =2,所以抛物线C 的方程为x 2=4y .(Ⅱ)由(Ⅰ)知直线l 1的方程为y =﹣1,当点M 在特殊位置(0,﹣1)时,显见两个切点P 1,P 2关于y 轴对称,故要使得MN ⊥P 1P 2,点N 必须在y 轴上.故设M (m ,﹣1),N (0,n ),P 1(x 1,14x 12),P 2(x 2,14x 22),抛物线C 的方程为y =14x 2,求导得y ′=12x ,所以切线MP 1的斜率k 1=12x 1,直线MP 1的方程为y −14x 12=12x 1(x −x 1),又点M 在直线MP 1上,所以−1−14x 12=12x 1(m −x 1),整理得x 12−2mx 1−4=0, 同理可得x 22−2mx 2−4=0,故x 1和x 2是一元二次方程x 2﹣2mx ﹣4=0的根,由韦达定理得{x 1+x 2=2m x 1x 2=−4,P 1P 2→⋅MN →=(x 2−x 1,14x 22−14x 12)⋅(−m ,n +1)=14(x 2−x 1)[﹣4m +(n +1)(x 2+x 1)]=14(x 2−x 1)[−4m +2m(n +1)]=12m(x 2−x 1)(n −1),可见n =1时,P 1P 2→⋅MN →=0恒成立,所以存在定点N (0,1),使得MN ⊥P 1P 2恒成立.考点3.定直线问题7.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点M(√2,1),且左焦点为F 1(−√2,0) (Ⅰ)求椭圆C 的方程;(Ⅱ)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段AB 上取点Q ,满足|AP →|•|QB →|=|AQ →|•|PB →|,证明:点Q 总在某定直线上. 【解答】解:(Ⅰ)由题意得{c 2=22a 2+1b 2=1c 2=a 2−b 2,解得a 2=4,b 2=2, 所以椭圆C的方程为x 24+y 22=1.(Ⅱ)设点Q 、A 、B 的坐标分别为(x ,y ),(x 1,y 1),(x 2,y 2). 由题设知|AP →|,|PB →|,|AQ →|,|QB →|均不为零,记λ=|AP →||PB →|=|AQ →||QB →|,则λ>0且λ≠1又A ,P ,B ,Q 四点共线,从而AP →=−λPB →,AQ →=λQB →于是4=x 1−λx 21−λ,1=y 1−λy 21−λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ从而x 12−λ2x 221−λ2=4x①,y 12−λ2y 221−λ2=y②,又点A 、B 在椭圆C 上,即x 12+2y 12=4 ③,x 22+2y 22=4 ④, ①+②×2并结合③、④得4x +2y =4, 即点Q (x ,y )总在定直线2x +y ﹣2=0上.8.已知抛物线C 1:x 2=2py (p >0)和圆C 2:(x +1)2+y 2=2,倾斜角为45°的直线l 1过C 1的焦点且与C 2相切. (1)求p 的值;(2)点M 在C 1的准线上,动点A 在C 1上,C 1在A 点处的切线l 2交y 轴于点B ,设MN →=MA →+MB →,求证:点N 在定直线上,并求该定直线的方程. 【解答】解:(1)依题意设直线l 1的方程为y =x +p2,由已知得:圆C 2:(x +1)2+y 2=2的圆心C 2(﹣1,0),半径r =√2, 因为直线l 1与圆C 2相切, 所以圆心到直线l 1:y =x+p2的距离d=|−1+p 2|√12+(−1)2=√2,即|−1+p2|√2=√2,解得p =6或p =﹣2(舍去).所以p =6;(2)解法一:依题意设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y , 所以y =x 212,所以y ′=x6,设A(x 1,y 1),则以A 为切点的切线l 2的斜率为k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1.令x =0,y =−16x 12+y 1=−16×12y 1+y 1=−y 1,即l 2交y 轴于B 点坐标为(0,−y 1),所以MA →=(x 1−m ,y 1+3),(9分)MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3).设N 点坐标为(x ,y ),则y =3, 所以点N 在定直线y =3上.解法二:设M (m ,﹣3),由(1)知抛物线C 1方程为x 2=12y ,① 设A(x 1,y 1),以A 为切点的切线l 2的方程为y =k(x −x 1)+y 1②,联立①②得:x 2=12[k(x −x 1)+112x 12],因为△=144k 2−48kx 1+4x 12=0,所以k =x 16, 所以切线l 2的方程为y =16x 1(x −x 1)+y 1. 令x =0,得切线l 2交y 轴的B 点坐标为(0,−y 1), 所以MA →=(x 1−m ,y 1+3),MB →=(−m ,−y 1+3), ∴MN →=MA →+MB →=(x 1﹣2m ,6),∴ON →=OM →+MN →=(x 1−m ,3),设N 点坐标为(x ,y ),则y =3,所以点N 在定直线y =3上.题型归纳四、探索性问题考点1.是否存在定值1.如图,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率是√22,点P (0,1)在短轴CD 上,且PC →•PD →=−1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA →•OB →+λPA →•PB →为定值?若存在,求λ的值;若不存在,请说明理由.【解答】解:(Ⅰ)根据题意,可得C (0,﹣b ),D (0,b ),又∵P (0,1),且PC →•PD →=−1, ∴{1−b 2=−1c a=√22a 2−b 2=c 2,解得a =2,b =√2,∴椭圆E 的方程为:x 24+y 22=1;(Ⅱ)结论:存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3. 理由如下:对直线AB 斜率的存在性进行讨论:①当直线AB 的斜率存在时,设直线AB 的方程为y =kx +1, A (x 1,y 1),B (x 2,y 2),联立{x 24+y 22=1y =kx +1,消去y 并整理得:(1+2k 2)x 2+4kx ﹣2=0, ∵△=(4k )2+8(1+2k 2)>0, ∴x 1+x 2=−4k1+2k 2,x 1x 2=−21+2k 2,从而OA →•OB →+λPA →•PB →=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)] =(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1 =(−2λ−4)k 2+(−2λ−1)1+2k 2=−λ−11+2k 2−λ﹣2.∴当λ=1时,−λ−11+2k 2−λ﹣2=﹣3,此时OA →•OB →+λPA →•PB →=−3为定值;②当直线AB 的斜率不存在时,直线AB 即为直线CD ,此时OA →•OB →+λPA →•PB →=OC →⋅OD →+PC →⋅PD →=−2﹣1=﹣3;故存在常数λ=1,使得OA →•OB →+λPA →•PB →为定值﹣3.2.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)短轴长为2,F 是C 的左焦点,A ,B 是C 上关于x轴对称的两点,△ABF 周长的最大值为8. (1)求椭圆C 的标准方程;(2)斜率为k 且不经过原点O 的直线l 与椭圆C 交于M ,N 两点,若直线OM ,ON 的斜率分别为k 1,k 2,且k 2=k 1k 2,求直线l 的斜率,并判断|OM |2+|ON |2的值是否为定值?若为定值,试求出此定值;否则,说明理由.【分析】(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意可得|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,进而可得△ABF 周长取最大值4a =8,解得a ,b ,进而可得椭圆C 的标准方程. (2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),联立直线l 与椭圆的方程,可得关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,在化简k 2=k 1k 2,解得k ,再计算|OM |2+|ON |2,即可得答案.【解答】解:(1)设AB 与x 轴的交点为H ,右交点为F 2.由题意|AH |≤|AF 2|,则|AF 1|+|AH |≤|AF 1|+|AF 2|=2a ,当AB 过右焦点F 2时,△ABF 周长取最大值4a =8,∴a =2, 且b =1,∴椭圆C 的标准方程为x 24+y 2=1.(2)设直线l 的方程为y =kx +m (m ≠0),M (x 1,y 1),N (x 2,y 2),由{x 24+y 2=1y =kx +m,得(1+4k 2)x 2+8kmx +4(m 2﹣1)=0,∴x 1+x 2=−8km 1+4k2,x 1x 2=4(m 2−1)1+4k2,由题知k 2=k 1k 2=y 1y 2x 1x 2=(kx 1+m)(kx 2+m)x 1x 2=k 2+km(x 1+x 2)+m 2x 1x 2, ∴km(x 1+x 2)+m 2=0,∴−8k 2m 21+4k 2+m 2=0,∵m 2=0(舍去)或k 2=14, 此时(x 1+x 2)2=(−8km 1+4k2)2=4m 2,x 1x 2=4(m 2−1)1+4k2=2(m 2−1),则|OM|2+|ON|2=x 12+y 12+x 22+y 22=x 12+1−x 124+x 22+1−x 224=34(x 12+x 22)+2=34[(x 1+x 2)2−2x 1x 2]+2=34[4m 2−4(m 2−1)]+2=5, 故直线l 的斜率为k =±12,|OM |2+|ON |2=5. 考点2.是否存在定点3.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l过点(m3,m),延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.【解答】解:(1)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),将y=kx+b代入9x2+y2=m2(m>0),得(k2+9)x2+2kbx+b2﹣m2=0,则判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,则x1+x2=−2kb9+k2,则x M=x1+x22=−kb9+k2,y M=kx M+b=9b9+k2,于是直线OM的斜率k OM=y Mx M =−9k,即k OM•k=﹣9,∴直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.∵直线l过点(m3,m),∴由判别式△=4k2b2﹣4(k2+9)(b2﹣m2)>0,即k2m2>9b2﹣9m2,∵b=m−k3m,∴k2m2>9(m−k3m)2﹣9m2,即k2>k2﹣6k,即6k>0,则k>0,∴l不过原点且与C有两个交点的充要条件是k>0,k≠3,由(1)知OM 的方程为y =−9kx ,设P 的横坐标为x P , 由{y =−9k x9x 2+y 2=m 2得x P 2=k 2m 29k 2+81,即x P =3√9+k 2将点(m3,m )的坐标代入l 的方程得b =m(3−k)3,即l 的方程为y =kx +m(3−k)3,将y =−9k x ,代入y =kx +m(3−k)3,得kx +m(3−k)3=−9k x 解得x M =k(k−3)m 3(9+k 2),四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即x P =2x M , 于是3√9+k2=2×k(k−3)m 3(9+k 2),解得k 1=4−√7或k 2=4+√7, ∵k i >0,k i ≠3,i =1,2,∴当l 的斜率为4−√7或4+√7时,四边形OAPB 能为平行四边形.4.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,焦距为2c ,直线bx ﹣y +√2a =0过椭圆的左焦点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线bx ﹣y +2c =0与y 轴交于点P ,A ,B 是椭圆C 上的两个动点,∠APB 的平分线在y 轴上,|P A |≠|PB |.试判断直线AB 是否过定点,若过定点,求出定点坐标;若不过定点,请说明理由.【分析】(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,又因为离心率为√22,从而求出b =2,又因为a 2=b 2+c 2,求出a 的值,从而求出椭圆C 的标准方程;(Ⅱ)先求出点P 的坐标,设直线AB 的方程为y =kx +m ,联立方程组,利用根与系数的关系,设A (x 1,y 1),B (x 2,y 2),得到k 1+k 2=8k(m−1)m 2−4,又因为∠APB 的平分线在y轴上,所以k 1+k 2=0,从而求出m 的值,得到直线AB 的方程为y =kx +1过定点坐标. 【解答】解:(Ⅰ)因为直线bx ﹣y +√2a =0过椭圆的左焦点,故令y =0,得x =−√2ab=−c ,∴ca=√2b =√22,解得b =2, 又∵a 2=b 2+c 2=b 2+12a 2,解得a =2√2, ∴椭圆C 的标准方程为:x 28+y 24=1;(Ⅱ)由(Ⅰ)得c =√22a =2,∴直线bx ﹣y +2c =0的方程为2x ﹣y +4=0, 令x =0得,y =4,即P (0,4), 设直线AB 的方程为y =kx +m ,联立方程组{y =kx +mx 28+y 24=1,消去y 得,(2k 2+1)x 2+4kmx +2m 2﹣8=0, 设A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1,则直线P A 的斜率k 1=y 1−4x 1=k +m−4x 1, 则直线PB 的斜率k 2=y 2−4x 2=k +m−4x 2, 所有k 1+k 2=2k +(m−4)(x 1+x 2)x 1x 2=2k +(m−4)(−4km)2m 2−8=8k(m−1)m 2−4,∵∠APB 的平分线在y 轴上,∴k 1+k 2=0,即8k(m−1)m 2−4=0,又|P A |≠|PB |,∴k ≠0,∴m =1,∴直线AB 的方程为y =kx +1,过定点(0,1). 考点3.是否存在圆5.已知抛物线C :x 2=2py (p >0)的焦点为F ,M (﹣2,y 0)是C 上一点,且|MF |=2. (Ⅰ)求C 的方程;(Ⅱ)过点F 的直线与抛物线C 相交于A ,B 两点,分别过点A ,B 两点作抛物线C 的切线l 1,l 2,两条切线相交于点P ,点P 关于直线AB 的对称点Q ,判断四边形P AQB 是否存在外接圆,如果存在,求出外接圆面积的最小值;如果不存在,请说明理由. 【解答】解:(Ⅰ)抛物线C :x 2=2py (p >0)的焦点为F (0,p2),准线方程为y =−p2,M (﹣2,y 0)是C 上一点,且|MF |=2,可得4=2py 0,y 0+p2=2, 解得p =2,即抛物线的方程为x 2=4y ; (Ⅱ)由F (0,1),设l AB :y =kx +1, 代入x 2=4y 中,得x 2﹣4kx ﹣4=0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=4k ,x 1•x 2=﹣4.所以|AB|=√1+k2•|x1﹣x2|=√1+k2•√16k2+16=4(k2+1).因为C:x2=4y,即y=x 24,所以y′=12x.所以直线l1的斜率为k1=12x1,直线l2的斜率为k2=12x2.因为k1k2=x1x24=−1,所以P A⊥PB,即△P AB为直角三角形.点P关于直线AB的对称点Q,即有QA⊥QB,即四点Q,A,B,P共圆.四边形P AQB存在外接圆,所以外接圆的圆心为线段AB的中点,线段AB是直径.因为|AB|=4(k2+1),所以当k=0时线段AB最短,最短长度为4,此时圆的半径最小,且为2,面积最小,最小面积为4π.6.已知平面内一个动点M到定点F(3,0)的距离和它到定直线l:x=6的距离之比是常数√22.(Ⅰ)求动点M的轨迹T的方程;(Ⅱ)若直线l:x+y﹣3=0与轨迹T交于A,B两点,且线段AB的垂直平分线与T交于C,D两点,试问A,B,C,D是否在同一个圆上?若是,求出该圆的方程;若不是,说明理由.【分析】(Ⅰ)设M的坐标,由题意得出等式,化简得M的轨迹方程;(Ⅱ)由题意求出A,B的坐标,进而求出AB的中垂线方程,与椭圆联立求出C,D的坐标,进而求出CD的中点E的坐标,求出EA,EB,CD之间的关系,进而求出A,B,C,D是在同一个圆上,且圆心,半径都可以求出.【解答】解:(Ⅰ)设动点M (x ,y ),由题意知:√(x−3)2+y 2|x−6|=√22,整理得:x 218+y 29=1,所以动点M 的轨迹T 的方程为:x 218+y 29=1;(Ⅱ)将直线与椭圆联立:{x +y −3=0x 218+y 29=1,解得:A (0,3),B (4,﹣1),所以AB 的中点N (2,1),k CD =1,∴AB 的中垂线CD 的方程为:x ﹣y ﹣1=0,设C (x ,y ),D (x ',y '), 联立直线CD 与椭圆的方程整理:3x 2﹣4x ﹣16=0,x +x '=43,xx '=−163,∴CD =√1+12√(x +x ′)2−4xx′=√2⋅√(43)2−4⋅(−163)=4√263, 设CD 的中点为E ,则|DE |=|CE |=12|CD|,又x E =x+x′2=23,y E =x E ﹣1=−13,所以E (23,−13),∴|EA |=√(23)2+(−13−3)2=2√263=12|CD|=|EB|,所以A ,B ,C ,D 是在同一个圆上,且以E 为圆心,以2√263为半径的圆上, 此时圆的方程:(x −23)2+(y +13)2=1049.考点4.是否存在直线7.已知抛物线y 2=2px (p >0)过点P (m ,2),且P 到抛物线焦点的距离为2,直线l 过点Q (2,﹣2),且与抛物线相交于A ,B 两点. (1)求抛物线的方程;(2)若点Q 恰为线段AB 的中点,求直线l 的方程;(3)过点M (﹣1,0)作直线MA 、MB 分别交抛物线于C ,D 两点,请问C ,D ,Q 三点能否共线?若能,求出直线l 的斜率k ;若不能,请说明理由.【解答】解:(1)抛物线y 2=2px (p >0)过点P (m ,2),可得2pm =4,即pm =2, P 到抛物线焦点的距离为2,可得√(m −p2)2+4=2,即m =p2, 解得p =2,m =1,则抛物线方程为y 2=4x ;(2)直线l 过点Q (2,﹣2),可设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0, 设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k,由点Q (2,﹣2)恰为线段AB 的中点,可得4k=−4,即k =﹣1,满足△>0,可得直线l 的方程为y =﹣x ;(3)设(y 124,y 1),B (y 224,y 2),C (y 324,y 3),D (y 424,y 4),设直线l 的方程为y +2=k (x ﹣2),即y =kx ﹣2k ﹣2, 代入y 2=4x ,消去x ,可得ky 2﹣4y ﹣8k ﹣8=0,y 1+y 2=4k,y 1y 2=−8k+8k,由M ,A ,C 三点共线可得y1y 124+1=y 3−y 1y 324−y 124=4y3+y 1,化为y 1y 3=4,即y 3=4y 1,同理可得y 4=4y 2,假设C ,D ,Q 三点共线,可得y 3+2y 324−2=y 4−y 3y 424−y 324即y 3y 4+2(y 3+y 4)+8=0,可得2y 1y 2+y 1+y 2y 1y 2+1=0,即k−4k−4+1−2k−2+1=0,解得k =−23,所以当直线l 的斜率为−23,C ,D ,Q 三点共线.8.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦距为2,且过点(1,√22).(1)求椭圆C 的方程;(2)设椭圆C 的上顶点为B ,右焦点为F ,直线l 与椭圆交于M ,N 两点,问是否存在直线l ,使得F 为△BMN 的垂心,若存在,求出直线l 的方程;若不存在,说明理由.【分析】(1)由题意知焦距和过的点的坐标及a ,b ,c 之间的关系求出椭圆的方程;(2)由(1)可得B ,F 的坐标假设存在这样的直线满足体积设直线方程,求出两根之和及两根之积,由垂心可得垂直关系,即数量积为0求出直线l 的方程.【解答】解:(1)由题意知:2c =2,1a 2+12b 2=1,a 2=b 2+c 2,解得:a 2=2,b 2=1, 所以椭圆的方程为:x 22+y 2=1;(2)假设存在这样的直线l ,使得F 为△BMN 的垂心,由(1)得B (0,1),F (1,0),∴k BF =﹣1,由题意可得l ⊥BF ,NF ⊥BM ,设直线l 的方程为:y =x +m ,M (x ,y ),N (x ',y '), 联立直线与椭圆的方程整理得:3x 2+4mx +2m 2﹣2=0,∴△=16m 2﹣4×3×(2m 2﹣2)>0,可得m 2<3,即−√3<m <√3,且x +x '=−4m 3,xx '=2m 2−23,yy '=xx '+m (x +x ')+m 2 ∵FN →⋅BM →=(x '﹣1,y ')(x ,y ﹣1)=xx '﹣x +yy '﹣y '=xx '+yy '﹣x ﹣(x '+m )=2xx '+(m ﹣1)(x +x ')+m 2﹣m =2•2m 2−23−(m ﹣1)⋅4m 3+m 2﹣m =3m 2+m−43, 因为NF ⊥BM ,所以NF →⋅BM →=0,所以3m 2+m ﹣4=0,解得:m =1或m =−43,当m =1过了B 点,所以舍去所以存在直线l:y=x−43符合F为△BMN的垂心.。
解析几何题型方法归纳(配例题)
解析几何解题方法归纳一.求轨迹方程(常出现在小题或大题第一问): 1.【待定系数法】(1)已知焦点在x 轴上的椭圆两个顶点的坐标为(4,0±),离心率为12,其方程为 .2211612x y += 提示:2a c =,且24,2,12a c b =∴==.(2)已知椭圆中心在原点,焦距为2倍,则该椭圆的标准方程是 .提示:已知2222242,16b a b c a a b c⎧⎧===⎪⎪⇒⇒⇒⎨⎨=-=⎪⎪⎩⎩221164x y +=与221416x y +=为所求. (3)已知双曲线12222=-b y a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23求双曲线的方程; 解:∵(1),332=a c 原点到直线AB :1=-by a x 的距离.3,1.2322==∴==+=a b c ab b a ab d .故所求双曲线方程为 .1322=-y x2. 【定义法】由动点P 向圆221x y +=引两条切线PA 、PB ,切点分别为A 、B ,60APB ∠=︒,则动点P 的轨迹方程为 .解:设(,)P x y ,连结OP ,则90,30PAO APO ∠=︒∠=︒, 所以22OP OA ==. 3.【几何性质代数化】与圆2240x y x +-=外切,且与y 轴相切的动圆圆心的轨迹方程是____________.y 2=8x (x >0)或y =0(x <0) 提示:若动圆在y 轴右侧,则动圆圆心到定点(2,0)与到定直线x =-2的距离相等,其轨迹是抛物线;若动圆在y 轴左侧,则动圆圆心轨迹是x 负半轴.4.【相关点法】P 是抛物线2210x y -+=上的动点,点A 的坐标为(0,1-),点M 在直线PA 上,且2PM MA =,则点M 的轨迹方程为解:设点(,)M x y ,由2PM MA =,()3,32P x y ∴+,代入2210x y -+=得22(3)3210x y --+=即218310x y --=5.【参数法】一元二次函数22()(21)1()f x x m x m m R =+++-∈的图象的顶点的轨迹方程是提示:设22(21)1()y x m x m m R =+++-∈顶点坐标为(,)x y ,则22211224(1)(21)544m x m m m y m +⎧=-=--⎪⎪⎨--+⎪==--⎪⎩,消去m ,得顶点的轨迹方程34x y -= 二.常见几何关系转化与常见问题类型 (1)中点问题:韦达定理、点差法变式:A 、B 、C 、D 共线且AB =CD 问题,可以转化为共中点问题,或者弦长相等; 例1:已知双曲线中心在原点且一个焦点为F,0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 。
解析几何问题的题型与解题方法
解析几何问题的题型与解题方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法. 5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例1 以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是 (A )26 (B )23(C )3(D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是(A)0k <<(B)0k <<(C)0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.若=,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m km MQ QF x m y km +-⨯-=-==-==--- 当时.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).2e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA 与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若AF FB,求l 在y 轴上截距的变化范围.解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x OB OA .41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x.41143||||),cos(-=⋅=OB OA OB OA 所以与夹角的大小为.41143arccos -π(Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ 即⎩⎨⎧-=-=-.1212),1(1y y x x λλ由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③ 联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或 当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或 由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴,431234,341243-≤--≤-≤-≤λλλλ 直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的。
【高考数学】高考解析几何解答题题型分析及解答策略(学生).doc
高考解析几何解答题题型分析及解答策略。
©归纳・・1.定点问题(1)解析几何中直线过定点或曲线过定点问题是指不论直线或曲线中的参数如何变化,直线或曲线都经过某一个定点.(2)定点问题是在变化中所表现出来的不变的点,那么就可以用变量表示问题中的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变量所影响的某个点,就是要求的定点.2.定值问题解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不随参数的变化而变化,而始终是一个确定的值.3.最值问题圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法, 即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数,然后利用函数方法、不等式方法等进行求解.4.圆锥曲线中的范围问题(1)解决这类问题的基本思想是建立目标函数和不等关系.(2)建立目标函数的关键是选用一个合适的变量,其原则是这个变量能够表达要解决的问题;建立不等关系的关键是运用圆锥曲线的几何特征、判别式法或基本不等式等灵活处理.5.圆锥曲线中的存在性问题(1)所谓存在性问题,就是判断满足某个(某些)条件的点、直线、曲线(或参数)等几何元素是否存在的问题.(2)这类问题通常以开放性的设问方式给出,若存在符合条件的几何元素或参数值,就求出这些几何元素或参数值;若不存在,则要求说明理由.6.圆锥曲线中的证明问题圆锥曲线中的证明问题,主要有两类:一类是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上、某直线经过某个点、某两条直线平行或垂直等;另一类是证明直线与圆锥曲线中的一些数量关系(相等或不等).7.圆锥曲线与三角、向量的交汇问题8.圆锥曲线与数列、不等式的交汇问题9.圆锥曲线与函数、导数的交汇问题.(1)求椭圆E的方程;(2)过椭圆E的左顶点A作两条互相垂直的直线分别与椭圆E交.于(不同于点A的)M, N两点,试判断直线与x轴的交点是否为定点,若是,求出定点坐标;若不是,请说明理由.[例2].已知椭圆C:务+相=1(泓>0)的离心率e=斗,左、右焦点分别为Fi,F2,点F(2, 茶),点%在线段PF1的中垂线上.(1)求椭圆。
空间解析几何圆锥面的常见题型及解题思路
空间解析几何圆锥面的常见题型及解题思路空间解析几何中,圆锥面是经常出现的对象。
在学习空间解析几何的过程中,掌握圆锥面的基础知识和解题方法是非常重要的。
本文将介绍常见的圆锥面题型及解题思路。
1. 圆锥的方程圆锥的方程形式有两种:一种是顶点在原点,另一种是顶点不在原点。
顶点在原点的圆锥的一般方程为:$$Ax^2+By^2+Cz^2=0, space (A,B,Ceq 0)$$其中,A,B,C是圆锥的参数。
顶点不在原点的圆锥的一般方程为:$$Ax^2+By^2+Cz^2+2Dx+2Ey+2Fz+G=0, space (A,B,Ceq 0)$$其中,D,E,F是圆锥的参数,G是圆锥的常数项。
2. 圆锥的分类根据圆锥的参数,可以将圆锥分为以下几类:(1)椭圆锥:A、B、C的符号一致。
(2)双曲面锥:A、B、C的符号不全相同。
(3)抛物面锥:A、B的符号相同,C为0。
3. 圆锥的投影圆锥的投影法是解决空间解析几何圆锥面问题的重要方法之一。
圆锥的投影分为正射投影和斜投影两种。
正射投影可以分为三种:平行于坐标面的正射投影,平面投影和斜投影。
其中平行于坐标面的正射投影最为常见。
在平行于坐标面的正射投影中,圆锥面的方程可以通过对圆锥的参数进行坐标系变换得到。
斜投影法也可以解决圆锥面的问题,但需要进行更加复杂的计算。
4. 圆锥的截面圆锥面的截面问题是空间解析几何中常见的问题之一。
圆锥的截面可以分为三类:平面截圆锥,平面截双曲面锥和平面截抛物面锥。
在平面截圆锥问题中,需要根据平面与圆锥的位置关系,来确定截面的类型和方程。
在平面截双曲面锥问题中,需要判断平面是否过锥的两条母线,来确定截面类型。
在平面截抛物面锥问题中,需要先求出抛物线的方程,再确定截面类型。
5. 圆锥的旋转圆锥的旋转是一种重要的解决空间解析几何圆锥面问题的方法。
圆锥的旋转可以分为三种:绕坐标轴旋转,绕给定轴旋转和绕空间直线旋转。
在绕坐标轴旋转的问题中,需要根据旋转轴的位置关系来确定旋转的类型和方程。
(完整版)解析几何七种常规题型及方法
解析几何七种常规题型及方法常规题型及解题的技巧方法 A :常规题型方面 一、一般弦长计算问题:例1、已知椭圆()2222:10x y C a b a b +=>>,直线1:1x yl a b-=被椭圆C 截得的弦长为3e =,过椭圆C 2l 被椭圆C 截的弦长AB, ⑴求椭圆的方程;⑵弦AB 的长度。
思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解.解析:⑴由1l 被椭圆C 截得的弦长为,得228a b +=,………①又e =,即2223c a =,所以223a b =………………………….②联立①②得226,2a b ==,所以所求的椭圆的方程为22162x y +=.⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x -, 代入椭圆C 的方程,化简得,251860x x -+= 由韦达定理知,1212186,55x x x x +==从而12x x -==由弦长公式,得12AB x =-==,即弦AB 的长度为5点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式.二、中点弦长问题:具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数.典型例题 给定双曲线x y 2221-=。
过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。
分析:设P x y 111(,),P x y 222(,)代入方程得x y 121221-=,x y 222221-=。
两式相减得()()()()x x x x y y y y 12121212120+--+-=.又设中点P(x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x yy y x x ---=·。
高考中解析几何问题的题型与方法
解析几何问题的题型与方法例1、椭圆22221(,0)x y a b a b+=>的两个焦点F 1、F 2,点P 在椭圆C 上,且P F 1⊥F 1F 2,,| P F 1|=34,,| P F 2|=314.(I )求椭圆C 的方程;(II )若直线L 过圆x 2+y 2+4x-2y=0的圆心M 交椭圆于A 、B 两点,且A 、B 关于点M 对称,求直线L的方程。
解法一:(Ⅰ)因为点P 在椭圆C 上,所以6221=+=PF PF a ,a=3. 在Rt △PF 1F 2中,,52212221=-=PF PF F F 故椭圆的半焦距c =5,从而b 2=a 2-c 2=4,所以椭圆C 的方程为4922y x +=1. (Ⅱ)设A ,B 的坐标分别为(x 1,y 1)、(x 2,y 2). 由圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 从而可设直线l 的方程为 y =k (x +2)+1, 代入椭圆C 的方程得 (4+9k 2)x 2+(36k 2+18k )x +36k 2+36k -27=0.因为A ,B 关于点M 对称. 所以.29491822221-=++-=+kk k x x 解得98=k , 所以直线l 的方程为,1)2(98++=x y 即8x -9y +25=0. (经检验,符合题意) 解法二:(Ⅰ)同解法一.(Ⅱ)已知圆的方程为(x +2)2+(y -1)2=5,所以圆心M 的坐标为(-2,1). 设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2).由题意x 1≠x 2且,1492121=+yx① ,1492222=+yx②由①-②得.04))((9))((21212121=+-++-y y y y x x x x③因为A 、B 关于点M 对称,所以x 1+ x 2=-4, y 1+ y 2=2,代入③得2121x x y y --=98,即直线l 的斜率为98, 所以直线l 的方程为y -1=98(x+2),即8x -9y +25=0.(经检验,所求直线方程符合题意.) 例2、 直线1:+=kx y l 与双曲线12:22=-y x C 的右支交于不同的两点A 、B .(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆恰好过双曲线的右焦点F ?若存在,求出k 的值;若不存在,说明理由.解:(I )由方程组⎩⎨⎧=-+=12122y x kx y 消去y 得022)2(22=++-kx x k . 设),,(),,(2211y x B y x A 由题意,直线l 与双曲线C的右支交于不同两点,⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>--=+>--=∆≠-∴0220220)2(8)2(02221221222k x x k k x x k k k ).2,2(--∈⇒k(II )假设存在实数k ,使得以线段AB 为直径的圆恰好过)0,(c F ,则FB FA ⊥,0=⋅∴,))((2121=+--∴y y c x c x ,即)1)(1())((2121=+++--kx kx c x c x ,整理得01))(()1(221212=+++-++c x x c k x x k .将26=c 及22221--=+k k x x ,22221-=k x x 代入并化简可得066252=-+k k .解得566--=k 或566+-=k (舍去). 故存在566--=k 满足题意. 例 3 设经过点),0(m Q 且倾斜角为4π的直线l 与椭圆4422=+y x 交于不同的两点A 、B ,O 为坐标原点.(I )若QB AQ 23-=,求m 的值;(II )当AOB ∆的面积最大时,求m 的值.解:(I )直线l 的方程为m x y +=,由⎩⎨⎧=++=4422y x m x y 得0)1(48522=-++m mx x .由题意,0)1(80)8(22>--=∆m m ,∴55<<-m .设),,(),,(2211y x B y x A 则有5821mx x -=+①,5)1(4221-=m x x ②.由23-=可得,2123x x -=-③.由①②③联解可得291455±=m ,且满足0>∆.故m 的值为291455±. (II )结合图形可知AOB ∆的面积21221124)(121x x x x m x x m S AOB -+⋅⋅=-⋅⋅=∆ 5)1(16)58(2122---⋅⋅=m m m )5(5222m m -= 24552m m +-=.易知当252=m 时,AOB S ∆取得最大值, 此时m 的值为210±. (注:求AOB S ∆的表达式时,题解中用的是图形的割补思想,若用点O 到直线AB 的距离2m d =及弦长122x x AB -=来处理,可得到同样的结果.)例4 已知椭圆1222=+y x .(I)求斜率为2的平行弦中点的轨迹方程;(II)过)1,2(N 的直线l 与椭圆相交,求被l 截得的弦的中点轨迹方程;(III)求过点)21,21(P 且被P 点平分的弦所在直线的方程.解:设弦的两端点为),(),,(2211y x B y x A ,中点为),(00y x M ,则有210212,2y y y x x x =+=+.由122121=+y x ,122222=+y x 两式作差得:1))((2))((12121212=+-++-y y y y x x x x ,00121212122)(2y x y y x x x x y y -=++-=--∴.即002y xk AB -=.①I )设弦中点为),(y x M ,由①式,yx22-=,∴04=+y x .故所求的轨迹方程为04=+y x (在已知椭圆的内部). (II )不妨设l 交椭圆于A 、B ,弦中点为),(y x M .由①式,yxk k AB l 2-==,又∵12--==x y k k MN l ,122--=-∴x y y x .整理得,04222=--+y x y x 此即所求的轨迹方程. (III )由①式,弦所在的直线的斜率21200-=-=y x k ,故其方程为)21(2121--=-x y ,即0342=-+y x .例5、设双曲线C :线222x -y =1(a>0)与直l:x+y =1a相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① .120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,).2e a a e e e ==<<≠∴>≠+∞ 即离心率的取值范围为例6、已知双曲线12222=-by a x 的离心率332=e ,过),0(),0,(b B a A -的直线到原点的距离是.23(1)求双曲线的方程; (2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值. 解:∵(1),332=a c 原点到直线AB :1=-b y a x 的距离.3,1.2322==∴==+=a b c abb a ab d .故所求双曲线方程为 .1322=-y x(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k . 设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则.11,315531152002002210k x y k k kx y k k x x x BE -=+=-=+=⋅-=+= ,000=++∴k ky x即7,0,03153115222=∴≠=+-+-k k k kk k k 又故所求k=±7. 例7、O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足||||AC AB ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB ACAB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()AB ACOP OA AP AB ACλ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。
平面解析几何13个模块题型归纳
模块一 直线的方程1.当直线l 与x 轴相交时,把x 轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线l 的倾斜角,并规定:直线l 与x 轴平行或重合时倾斜角为0°,因此倾斜角α的范围是0°≤α<180°.2.当倾斜角α≠90°时,tan α表示直线l 的斜率,常用k 表示,即k =tan α.当α=90°时,斜率不存在.当直线过P 1(x 1,y 1),P 2(x 2,y 2)且x 1≠x 2时,k =2121y y x x --.3.直线方程的几种形式考点1 直线的斜率与倾斜角【例】(1)已知两点A (-1,-5)、B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求l 的斜率. (2)直线2x cos α-y -3=0的倾斜角的取值范围是 .(3)直线l 过点P (1,0),且与以A (2,1),B (0为端点的线段有公共点,则直线l 斜率的范围为 . 【解析】(1)设直线l 的倾斜角为α.则直线AB 的倾斜角为2α,由题意可知:tan2α=2(5)33(1)4---=--,∴22tan 31tan 4αα=-,整理得3tan 2α+8tanα-3=0,解得1tan 3α=或tanα=-3,∵3tan 204α=>,∴0°<2α<90°,∴0°<α<45°,∴tanα>0,故直线l 的斜率为13.(2),43ππ⎡⎤⎢⎥⎣⎦.直线2x cos α-y -3=0的斜率k =2cos α,因为α∈,63ππ⎡⎤⎢⎥⎣⎦,所以1cos 2α≤≤,因此k =2cos α∈.设直线的倾斜角为θ,则有tan θ∈.又θ∈[0,π),所以θ∈,43ππ⎡⎤⎢⎥⎣⎦,即倾斜角的取值范围是,43ππ⎡⎤⎢⎥⎣⎦.(3) (,[1,)-∞+∞ .如图,∵k AP =1021--=1,k BP =001=-k ∈(,[1,)-∞+∞. 巩固1.若过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为_______. 【解析】题意得412m m-=--,解得m =1.巩固2.(2018·南京名校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________. 【解析】设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)),因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知,θ的取值范围为30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭巩固3.经过两点(1,1)-的直线的倾斜角为 __.【解析】因为经过两点(1,1)-的直线的斜率为1k ==,所以倾斜角为45. 考点2 直线方程【例】根据所给条件求直线的方程: (1)过点P (-2,4)且斜率k =3的直线l 的方程;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12;【解析】 (1)由题设知,该直线可采用点斜式.直线l 的方程为y -4=3[x -(-2)],即3x -y +10=0.(2)由题设知直线在平面直角坐标系中的横、纵截距均不为0,故可设直线方程为112x y a a+=-.因为直线过点(-3,4),所以34112a a-+=-,解得a =-4或9.故所求直线方程为4x -y +16=0或x +3y -9=0. 巩固1.倾斜角为120°,在x 轴上的截距为-1的直线方程是________.【解析】由于倾斜角为120°,故斜率k =又直线过点(-1,0),所以直线方程为1)y x =+,即0y ++=巩固2.求经过点A (-5,2),且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程.【解析】当直线不过原点时,设所求直线方程为12x y a a +=,将(-5,2)代入所设方程,解得a =12-,所以直线方程为x +2y +1=0;当直线过原点时,设直线方程为y =kx ,则-5k =2,解得25k =-,所以直线方程为25y x =-,即2x +5y =0.故所求直线方程为2x +5y =0或x +2y +1=0.巩固3.直线l 过点(5,10),且到原点的距离为5,则直线l 的方程是【解析】当斜率不存在时,所求直线方程为x -5=0.当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5),即kx -y +(10-5k )=0.由点到直线的距离公式,5=,解得34k =.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0.巩固4.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为________. 【解析】若直线过原点,则直线方程为3x +2y =0;若直线不过原点,则斜率为1,方程为y +3=x -2,即为x -y -5=0,直线为3x +2y =0或x -y -5=0考点3 直线方程的综合问题【例】(1) 已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.(2)已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.【解析】(1)由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积22112(2)2(2)422S a a a a =⨯⨯-+⨯⨯+=-+2115()24a =-+,当12a =时,四边形的面积最小.(2)方法一 设直线方程为1(0,0)x ya b a b+=>>,把点P (3,2)代入得321a b +=≥ab ≥24, 从而S △AOB =12ab ≥12,当且仅当32a b=时等号成立,这时23b k a =-=-,从而所求直线的方程为2x +3y -12=0.方法二 由题意知,直线l 的斜率k 存在且k <0, 则直线l 的方程为y -2=k (x -3)(k <0),且有2(3,0)A k-,B (0,2-3k ),∴12141(23)(3)12(9)1222()2OABS k k k k ∆⎡⎡⎤=--=+-+≥+⎢⎢⎥-⎣⎦⎣ 1(1212)122=⨯+=当且仅当49k k -=-,即23k =-时,等号成立. 即△ABO 的面积的最小值为12.故所求直线的方程为2x +3y -12=0.巩固1.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为____________.【解析】 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形的面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意; ③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得22x k=-,依题意有122222k ⨯-⨯=,即111k -=,解得12k =,所以直线m 的方程为12(2)2y x -=-,即x -2y +2=0. 综上可知,直线m 的方程为x -2y +2=0或x =2. 巩固2.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S ,求S 的最小值并求此时直线l 方程.【解析】 (1)证明:直线l 的方程可以变形为k(x +2)+(1-y)=0,令⎩⎪⎨⎪⎧x +2=0,1-y =0,解得⎩⎪⎨⎪⎧x =-2,y =1,∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k≠0时,直线在x 轴上的截距为-1+2kk,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧-1+2k k ≤-2,1+2k≥1,解得k>0;当k =0时,直线为y =1,符合题意.故k≥0. (3)由l 的方程得A(-1+2kk,0)B(0,1+2k).依题意得k>0.∵S =12|OA|·|OB|=12|1+2k k |·|1+2k|=12·(1+2k )2k =12(4k +1k +4)≥12×(2×2+4)=4,当且仅当k>0且4k =1k ,即k =12时,等号成立,S =4,此时l :x -2y +4=0.巩固3.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若直线l 在两坐标轴上的截距相等,求l 的方程; (2)若直线l 不经过第二象限,求实数a 的取值范围.【解析】 (1)当a =-1时,直线l 的方程为y +3=0,不符合题意;当a ≠-1时,直线l 在x 轴上的截距为a -2a +1,在y 轴上的截距为a -2,因为l 在两坐标轴上的截距相等,所以a -2a +1=a -2,解得a =2或a =0,所以直线l 的方程为3x +y =0或x +y +2=0.(2)将直线l 的方程化为y =-(a +1)x +a -2,所以⎩⎪⎨⎪⎧-(a +1)>0a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0a -2≤0,解得a ≤-1.综上所述,a ≤-1.巩固4.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°,过点P (1,0)作直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.【解析】 由题意可得k OA =tan 45°=1,k OB =tan (180°-30°)=-33,所以直线l OA :y =x ,l OB :y =-33x .设A (m ,m ),B (-3n ,n ),所以AB 的中点C (m -3n 2,m +n 2).由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n2m -0m -1=n -0-3n -1,解得m =3,所以A (3,3).又P (1,0),所以k AB =k AP =33-1=3+32,3+3所以l AB:y=2(x-1),即直线AB的方程为(3+3)x-2y-3-3=0.模块二 两条直线的位置关系1.有斜率的两条直线平行与垂直若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则__l 1∥l 2__⇔k 1=k 2,b 1≠b 2; __l 1⊥l 2__⇔k 1·k 2=-1;l 1与l 2重合⇔__k 1=k 2,b 1=b 2__. 2.直线的一般式方程中的平行与垂直条件若直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(其中A 1,B 1不同时为0,A 2,B 2不同时为0),则l 1∥l 2⇔__A 1B 2=A 2B 1且A 1C 2≠A 2C 1__;l 1⊥l 2⇔__A 1A 2+B 1B 2=0__. 3.两直线的交点直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组11122200A x B y C A x B y C ++=⎧⎨++=⎩的解一一对应.(1)__相交__⇔方程组有一组解;(2)__平行__⇔方程组无解;(3)__重合__⇔方程组有无数组解. 4.已知两点P 1(x 1,y 1),P 2(x 2,y 2),则两点间的距离为d5.设点P (x 0,y 0),直线l :Ax +By +C =0(A ,B 不同时为0),则点P 到直线l 的距离为d6.两条平行直线l 1:Ax +By +C 1=0与l 2:Ax +By +C 2=0(A ,B 不同时为0)之间的距离d.考点4 两条直线平行、垂直关系【例】已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0. (1)当l 1∥l 2时,求a 的值;(2)当l 1⊥l 2时,求a 的值.【解析】(1)解法1: 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2; 当a ≠1且a ≠0时,两直线可化为l 1:32a y x =--,l 2:1(1)1y x a a=-+-, l 1∈l 2∈ 1213(1)aa a ⎧-=⎪-⎨⎪-≠-+⎩解得a =-1,综上可知,当a =-1时,l 1∈l 2.解法2: 由A 1B 2-A 2B 1=0,得a (a -1)-1×2=0,由A 1C 2-A 2C 1≠0,得a (a 2-1)-1×6≠0,∈l 1∈l 2∈2(1)120(1)160a a a a --⨯=⎧⎨--⨯≠⎩∈2220(1)6a a a a ⎧--=⎪⎨-≠⎪⎩可得a =-1,故当a =-1时,l 1∈l 2. (2) 解法1: 当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1与l 2不垂直,故a =1不成立; 当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不垂直于l 2,故a =0不成立; 当a ≠1且a ≠0时,l 1:32a y x =--,l 2:1(1)1y x a a =-+-由1121a a⎛⎫-⋅=- ⎪-⎝⎭,得a =23. 解法2: 由A 1A 2+B 1B 2=0,得a +2(a -1)=0,可得a =23. 巩固1.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =________. 【解析】直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有21432m m +=≠-,故m =2或-3. 巩固2.两条直线12:(3)253,:4(5)16l m x y m l x m y ++=-++=,且1l 与2l 平行,则m = 【解析】因为1l 与2l 平行,所以(3)(5)24m m +⨯+=⨯,解得1m =-或7m =-. 当1m =-时,12:228,:4416l x y l x y +=+=重合,不成立,舍去; 当7m =-时1:4226l x y -+=,2:4216l x y -=,成立.所以7m =-.巩固3.已知两条直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,求满足下列条件的a ,b 的值. (1)l 1⊥l 2,且l 1过点(-3,-1);(2)l 1∥l 2,且坐标原点到这两条直线的距离相等. 【解析】 (1)由已知可得l 2的斜率存在,且k 2=1-a .若k 2=0,则1-a =0,a =1.∈l 1∈l 2,直线l 1的斜率k 1必不存在,即b =0.又∈l 1过点(-3,-1),∈-3a +4=0,即a =43(矛盾),∈此种情况不存在, ∈k 2≠0,即k 1,k 2都存在且不为0.∈k 2=1-a ,k 1=ab,l 1∈l 2,∈k 1k 2=-1,即ab(1-a )=-1.(*)又∈l 1过点(-3,-1),∈-3a +b +4=0.(**)由(*)(**)联立,解得a =2,b =2.(2)∈l 2的斜率存在,l 1∈l 2,∈直线l 1的斜率存在,k 1=k 2,即ab=1-a ,∈ 又∈坐标原点到这两条直线的距离相等,且l 1∈l 2,∈l 1,l 2在y 轴上的截距互为相反数,即4b=b ,∈ 联立∈∈,解得22a b =⎧⎨=-⎩或232a b ⎧=⎪⎨⎪=⎩∈a =2,b =-2或a =23,b =2.考点5 直线的交点【例】下面三条直线l 1:4x +y -4=0,l 2:mx +y =0,l 3:2x -3my -4=0不能构成三角形,求实数m 【解析】 (1)三条直线交于一点时:由4400x y mx y +-=⎧⎨+=⎩,解得l 1和l 2的交点A 的坐标44(,)44mm m ---,由A在l 3上可得4423()444m m m m -⨯-⨯=--,解得m =23或m =-1. (2)至少两条直线平行或重合时:l 1、l 2、l 3至少两条直线斜率相等,当m =4时,l 1∥l 2;当m =16-时,l 1∥l 3;若l 2∥l 3,则需有123m m =-,m 2=23-不可能.综合(1)、(2)可知,m =-1,16-,23,4时,这三条直线不能组成三角形,因此m 的取值集合是{-1,16-,23,4}.巩固1.求证:无论k 取任何实数,直线(1+4k )x -(2-3k )y +2-14k =0必经过一个定点,并求出定点坐标.【解析】 原直线方程可以转化成k (4x +3y -14)+(x -2y +2)=0,联立43140220x y x y +-=⎧⎨-+=⎩,解得22x y =⎧⎨=⎩,即直线必经过一个定点,且此定点的坐标为(2,2). 巩固2.已知直线y =kx +2k +1与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是________. 【解析】由方程组21122y kx k y x =++⎧⎪⎨=-+⎪⎩解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, (若2k +1=0,即k =12-,则两直线平行) ∴交点坐标为2461(,)2121k k k k -+++.又∵交点位于第一象限,∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩解得1162k -<<.巩固3.已知平面上三条直线1l :x +2y -1=0,2l :x +1=0,3l :x +ky =0,如果这三条直线将平面划分为六个部分,则实数k 的取值集合________.【解析】若三条直线有两条平行,另外一条与这两条直线相交,,当1l //3l 时,2k =,当2l //3l 时,k =0;若三条直线交于一点,也符合要求,此时k =1, 故实数k 的取值集合为{0,1,2}.考点6 距离公式【例】 已知点P (2,-1).(1)求过点P 且与原点距离为2的直线l 的方程.(2)求过点P 且与原点距离最大的直线l 的方程,并求出最大距离.(3)是否存在过点P 且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由.【解析】 (1)过点P 的直线l 与原点距离为2,而P 点坐标为(2,-1),可见过P (2,-1)垂直于x 轴的直线满足条件.此时l 的斜率不存在,其方程为x =2.若斜率存在,设l 的方程为y +1=k (x -2),即 kx -y -2k -1=0.2=,解得34k =.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2) 过点P 与原点O 距离最大的直线是过点P 且与PO 垂直的直线,由l ⊥OP ,得k l k OP =-1.所以 k l =1OPk -=2.由直线的点斜式方程得y +1=2(x -2),即2x -y -5=0,即直线2x -y -5=0是过P 点且与原点O=(3)由(2)可知,过P 点不存在与原点距离超过的直线,因此不存在过P 点且与原点距离为6的直线. 巩固1.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为___________. 【解析】当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0.=,即|3k -1|=|-3k -3|,∴k =13-. ∴直线l 的方程为y -2=13-(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意.巩固2.在平面内,已知直线l 1∥l 2,点A 是l 1,l 2之间的定点,点A 到l 1,l 2的距离分别为3和2,点B 是l 2上的一个动点,若AC AB ⊥,且AC 与l 1交于点C ,则ABC ∆面积的最小值为 .【解析】以A 为坐标原点,平行于l 1的直线为x 轴,建立直角坐标系,设(,2),(,3)B a C b - ∈AC AB ⊥,∈60ab -=,即6b a=.∈Rt ABC ∆的面积6S ===≥=, ∈Rt ABC ∆的面积的最小值是6.巩固3.若动点P 1(x 1,y 1),P 2(x 2,y 2)分别在直线l 1:x -y -5=0,l 2:x -y -15=0上移动,求P 1P 2的中点P 到原点的距离的最小值.【解析】由题意得P 1P 2的中点P 的轨迹方程是x -y -10=0,则原点到直线x -y -10=0的距离为d ==P到原点距离的最小值为巩固4.在平面直角坐标系xOy 中,直线l 1:kx -y +2=0与直线l 2:x +ky -2=0相交于点P ,则当实数k 变化时,点P 到直线x -y -4=0的距离的最大值为______. 【解析】当k =0时,点P (2,2)到直线x -y -4=0的距离为当k ≠0时,解方程组2020kx y x ky -+=⎧⎨+-=⎩,得两直线交点P 的坐标为222222,11k k k k -+⎛⎫⎪++⎝⎭, 所以点P 到直线x -y -4=0=,为求得最大值,考虑正数k ,则有211112k k k k=≤++,当且仅当k =134⨯≤= 巩固5.三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是10(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12; ③点P 到l 1的距离与点P 到l 3若能,求点P 的坐标;若不能,请说明理由.【解析】 (1)直线l 2:2x -y -12=0,所以两条平行直线l 1与l 2间的距离为10d ==,所以10d ==,即1722a +=,又a >0,解得a =3. (2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =012=,即132c =或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P=, 即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得00312x y =-⎧⎪⎨=⎪⎩ (舍去);联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得00193718x y ⎧=⎪⎪⎨⎪=⎪⎩;所以存在点P 137,918⎛⎫⎪⎝⎭同时满足三个条件.考点7 对称问题【例】如图,已知A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是________.(2)已知直线l :2x -3y +1=0,求直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.【解析】(1) 直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为CD=(2)在直线m 上任取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上.设对称点M ′(a ,b ),则2023102202123a b b a ⎧++⎛⎫⎛⎫⨯-⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨-⎪⨯=-⎪-⎩解得6133013a b ⎧=⎪⎪⎨⎪=⎪⎩, ∴630(,)1313M '. 设直线m 与直线l 的交点为N ,则由23103260x y x y -+=⎧⎨--=⎩得N (4,3).又∵直线m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0.巩固1.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点________.【解析】由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).巩固2.已知△ABC 的两个顶点A (-1,5)和B (0,-1),若∠C 的平分线所在的直线方程为2x -3y +6=0,则BC 边所在直线的方程为_____________.【解析】设A 点关于直线2x -3y +6=0的对称点为A ′(x 1,y 1),则1111152360225312x y y x -+⎧⋅-⋅+=⎪⎪⎨-⎪=-+⎪⎩∴111123503270x y x y --=⎧⎨+-=⎩ ,解得113113113x y ⎧=⎪⎪⎨⎪=-⎪⎩,即A ′ 311(,)1313-,∵角平分线是角的两边的对称轴,∴A ′点在直线BC 上.∴直线BC 的方程为1(1)13(1)31013y x ---=--,整理得12x -31y -31=0.模块三 圆的方程1.圆心为C (a ,b ),半径为r 的圆的标准方程为 (x -a )2+(y -b )2=r 2.2.形如x 2+y 2+Dx +Ey +F =0的二元二次方程:当D 2+E 2-4F >0时,叫做圆的一般式方程,圆心坐标为(,)22D E --,当D 2+E 2-4F =0时,方程表示一个点,该点坐标为(,)22D E--;当D 2+E 2-4F <0时,该方程不表示任何图形.3.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是220040A C B D E F ⎧=≠⎪=⎨⎪+->⎩;而A =C ,B =0是方程表示圆的必要不充分条件.4.以两个不同点A (x 1,y 1)和B (x 2,y 2)为直径的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 . 5.点与圆的位置关系有三种:点在圆上、点在圆外、点在圆内.具体内容如下: 设圆的标准方程为(x -a )2+(y -b )2=r 2,点M 的坐标为(x 0,y 0). (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2<r 2.考点8 圆的方程的求解问题【例】(1)圆心在直线4y x =-上,且与直线10x y +-=相切于点(3,2)P -的圆的标准方程为 .(2)过点(0,2)A 且与圆()()223318x y +++=切于原点的圆方程是 .【例】(1)法一: ∵圆与直线10x y +-=相切于点(3,2)P -,∴过点(3,2)P -且与直线10x y +-=垂直的直线为50x y --=,由450y x x y =-⎧⎨--=⎩得14x y =⎧⎨=-⎩,则半径r ==,则圆的方程是()()22148x y -++=.法二 :∵圆心在直线4y x =-上,设圆心(,4)C a a -,又∵圆与直线10x y +-=相切于点(3,2)P -,则4213PC a k a-==-,∴1a =,也即圆心为(1,4)-.则半径r ==()()22148x y -++=.(2)圆22:(3)(3)18C x y +++=的圆心(3,3)C --,根据两圆相切于原点,设所求的圆的圆心为M ,可以得M O C 、、共线,所以圆心M 在直线y x =上.又因为圆C 过点(0,2)A 和原点O ,所以C 在OA 的中垂线1y =上,由1y xy =⎧⎨=⎩解得圆心为(1,1)C , 所以所求圆的方程是()()22112x y -+-=.巩固1.过点A (1,-1),B (-1,1),且圆心在直线20x y +-=上的圆的方程是 .网【解析】AB 的中垂线为y x =,所以20y xx y =⎧⎨+-=⎩解得圆心为(1,12=,所以圆的方程为22(1)(1)4x y -+-=.巩固2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为________________. 【解析】由题意可知A (-4,-5),B (6,-1),则以线段AB 为直径的圆的圆心为 点(1,-3)=故以线段AB 为直径的圆的方程是(x -1)2+(y +3)2=29.巩固3.经过三点A (1,12),B (7,10),C (-9,2)的圆的标准方程为________. 【解析】 法一 设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则1144120491007100814920D E F D E F D E F ++++=⎧⎪++++=⎨⎪+-++=⎩解得D =-2,E =-4,F =-95, ∴所求圆的方程为x 2+y 2-2x -4y -95=0,即圆的标准方程为:(x -1)2+(y -2)2=100. 法二 由A (1,12),B (7,10),得A 、B 的中点坐标为(4,11),k AB =13-,则AB 的中垂线方程为:3x -y -1=0.同理得AC 的中垂线方程为x +y -3=0联立31030x y x y --=⎧⎨+-=⎩,得12x y =⎧⎨=⎩即圆心坐标为(1,2),半径r 10=.∴所求圆的标准方程为:(x -1)2+(y -2)2=100.巩固4.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R )相切的所有圆中,半径最大的圆的标准方程为________.【解析】直线mx -y -2m -1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r =故所求圆的标准方程为(x -1)2+y 2=2.考点9 与圆有关的最值问题【例】 若实数x ,y 满足x 2+y 2+2x -4y +1=0,求下列各式的最大值和最小值.(1)4yx -;(2)3x -4y ;(3)x 2+y 2. 【解析】 (1)方法一:令4yx -=k ,则kx -y -4k =0.因为x ,y 满足x 2+y 2+2x -4y +1=0,所以圆心(-1,2)到直线kx -y -4k =0的距离不大于圆的半径2,2≤,解得20021k -≤≤,所以4yx -的最大值为0,最小值为2021-. 方法二:令4yx -=k ,则y =k (x -4)代入圆的方程,整理得(1+k 2)x 2+(2-4k -8k 2)x +16k 2+16k +1=0,因为上述方程有实数根,所以Δ=(2-4k -8k 2)2-4(1+k 2)·(16k 2+16k +1)≥0,化简整理得21k 2+20k ≤0,解得20021k -≤≤,所以4yx -的最大值为0,最小值为2021-. (2)设3x -4y =k ,则3x -4y -k =0,圆心(-1,2)2≤,解得-21≤k≤-1,所以3x -4y 的最大值为-1,最小值为-21. (3)先求出原点与圆心之间的距离d ==x2+y 2的最大值为)229=+)229=-巩固1.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为________.【解析】两圆的圆心均在第一象限,先求|PC 1|+|PC 2|的最小值,作点C 1关于x 轴的对称点1(2,3)C '-,则(|PC 1|+|PC 2|)min =12C C '=,所以(|PM |+|PN |)min=(13)4+=.巩固2.设P (x ,y )是圆(x -2)2+y 2=1上的任意一点,则(x -5)2+(y +4)2的最大值为 .【解析】 (x -5)2+(y +4)2表示点P (x ,y )到点(5,-4)的距离的平方.点(5,-4)到圆心(2,0)的距离5d==.则点P(x,y)到点(5,-4)的距离最大值为6,从而(x-5)2+(y+4)2的最大值为36.巩固3.已知点P(x,y)是圆(x+2)2+y2=1上任意一点.(1)求P点到直线3x+4y+12=0的距离的最大值和最小值;(2)求x-2y的最大值和最小值;(3)求21yx--的最大值和最小值.【解析】(1)圆心C(-2,0)到直线3x+4y+12=0的距离为65d==.∴P点到直线3x+4y+12=0的距离的最大值为611155d r+=+=,最小值为61155d r-=-=.(2)设t=x-2y,则直线x-2y-t=0与圆(x+2)2+y2=11≤.∴22t≤≤.∴t max2,t min=2.即x-2y2.最小值为2.(3)设21ykx-=-,则直线kx-y-k+2=0与圆(x+2)2+y2=1有公共点,∴1≤ .∴k≤≤∴k maxk min.即21yx--.巩固4.(2018·南通模拟)已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是________.【解析】圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线的距离342955d---==,故点N 到点M的距离的最小值为d-1=45.巩固5.(2018·徐州期初)若直线l:ax+by+1=0(a≥0,b≥0)始终平分圆M:x2+y2+4x+2y+1=0的周长,则a2+b2-2a-2b+3的最小值为________.【解析】因为直线ax+by+1=0始终平分圆x2+y2+4x+2y+1=0的周长,所以圆心(-2,-1)在直线ax +by+1=0上,从而2a+b-1=0.a2+b2-2a-2b+3=(a-1)2+(b-1)2+1,而(a-1)2+(b-1)2表示点(1,1)与直线2a+b-1=0上任一点的距离d的平方,其最小值22min45d==,所以a2+b2-2a -2b+3的最小值为49155+=.考点10 与圆有关的轨迹问题【例】)已知ABC ∆中,AB AC =,ABC ∆所在平面内存在点P 使得22233PB PC PA +==,则ABC∆面积的最大值为 ▲ .【解析】以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立坐标系,设(,0),(,0)(0)B a C a a ->,则A ,(,)P x y ,则(,)P x y 点满足2222()()3x a y x a y +++-+=,和22(1x y +=, 即(,)P x y 点为圆22232x y a +=-和圆22(1x y +=的交点.则11≤=223016a <≤, ∴ABC ∆面积为122S a =⨯== ∵22330162a <≤<,∴当22316a =时S有最大值16. 巩固1.设定点M (-3,4),动点N 在圆x 2+y 2=4上运动,以OM ,ON 为邻边作平行四边形MONP ,求点P 的轨迹.【解析】如图所示,设P (x ,y ),N (x 0,y 0),则线段OP 的中点坐标为,22x y ⎛⎫⎪⎝⎭,线段MN 的中点坐标为0034,22x y -+⎛⎫⎪⎝⎭.由于平行四边形的对角线互相平分,故0322x x -=,0422y y +=.从而0034x x y y =+⎧⎨=-⎩ 又N (x +3,y -4)在圆上,故(x +3)2+(y -4)2=4.因此所求轨迹为圆:(x +3)2+(y -4)2=4.但应除去两点912,55⎛⎫- ⎪⎝⎭和2128,55⎛⎫- ⎪⎝⎭(点P 在直线OM 上时的情况).巩固2.已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程.【解析】 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0.因为AC ⊥BC ,所以k AC ·k BC =-1, 又1AC y k x =+,3BC y k x =-,所以113y yx x ⋅=-+-,化简得x 2+y 2-2x -3=0. 因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).(2) 设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得032x x +=,002y y +=,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得 (2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0). 巩固3.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是________________.【解析】设圆上任一点坐标为(x 0,y 0),22004x y +=,连线中点坐标为(x ,y ),则002422x x y y =+⎧⎨=-⎩,解得002422x x y y =-⎧⎨=+⎩,代入22004x y +=中,得(x -2)2+(y +1)2=1. 巩固4.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程; (3)设点T (t,0)满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围. 【解析】圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5. (1)由圆心N 在直线x =6上,可设N (6,y 0).因为圆N 与x 轴相切,与圆M 外切,所以0<y 0<7,圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.圆N 标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为40220-=-. 设直线l 的方程为y =2x +m ,即2x -y +m =0,则圆心M 到直线l的距离d ==.因为BC OA ===2222BC MC d ⎛⎫=+ ⎪⎝⎭,所以()252555m +=+,解得m =5或m =-15 故直线l 的方程为2x -y +5=0或2x -y -15=0.(3)设P (x 1,y 1),Q (x 2,y 2).因为A (2,4),T (t,0),TA TP TQ +=,所以212124x x ty y =+-⎧⎨=+⎩ ①因为点Q 在圆M 上,所以(x 2-6)2+(y 2-7)2=25.②,将①代入②,得(x 1-t -4)2+(y 1-3)2=25.于是点P (x 1,y 1)既在圆M 上,又在圆[x -(t +4)]2+(y -3)2=25上,从而圆(x -6)2+(y -7)2=25与圆[x -(t +4)]2+(y -3)2=25有公共点,所以5555-≤≤+,解得22t -≤≤+因此,实数t的取值范围是22⎡-+⎣.模块四 直线与圆的位置关系1. 直线与圆的位置关系:设直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2,则圆心到直线l 的距离d =||Aa +Bb +C A 2+B 2.若l 与圆C 相离⇔d >r ;l 与圆C 相切⇔d =r ;l 与圆C 相交⇔d <r .若通过直线方程与圆的方程所组成的方程组,根据解的个数来研究,若有两解,即Δ>0,则相交;若有一解,即Δ=0,则相切;若无解,即Δ<0,则相离.2.圆的弦和切线:圆的半径为r ,直线l 与圆相交于A 、B ,圆心到l 的距离为d ,则|AB |=2r 2-d 2.过圆 x 2+y 2=r 2上一点M (x 0,y 0)的切线方程为x 0x +y 0y =r 2.3.直线与圆的方程的应用包括在平面几何中的应用以及在实际生活中的应用. 4.坐标法解决平面几何问题的“三步曲”第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.5.过圆外一点求圆的切线,应该有两个结果,若只求出一个结果,应该考虑切线斜率不存在的情况.考点11 直线与圆的位置关系【例】 已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点. (1)求k 的取值范围;(2)直线l 能否将圆C 分割成弧长之比为13的两段弧?若能,求出直线l 的方程;若不能,请说明理由.【解析】 (1)法一:将y =kx 代入圆C 的方程x 2+(y -4)2=4.得(1+k 2)x 2-8kx +12=0.∵直线l 与圆C 交于M ,N 两点,∴Δ=(-8k)2-4×12(1+k 2)>0,得k 2>3,(*)∴k 的取值范围是(-∞,-3)∪(3,+∞). 法二:求圆心到直线的距离d<r 即可.(2)假设直线l 将圆C 分割成弧长的比为13的两段弧,则劣弧MN 所对的圆心角∠MCN =90°,由圆C :x 2+(y -4)2=4知圆心C(0,4),半径r =2.在Rt △MCN 中,可求弦心距d =r·sin 45°=2,故圆心C (0,4)到直线kx -y =0的距离||0-41+k2=2,∴1+k 2=8,k =±7,经验证k =±7满足不等式(*),故l 的方程为y =±7x .因此,存在满足条件的直线l ,其方程为y =±7x .巩固1.在平面直角坐标系xOy 中,A (-12,0),B (0,6),点P 在圆O :x 2+y 2=50上,若·≤20,则点P 的横坐标的取值范围是____.【解析】设P (x ,y ),由·≤20,易得2x -y +5≤0,由⎩⎪⎨⎪⎧2x -y +5=0x 2+y 2=50,可得M :⎩⎪⎨⎪⎧x =-5y =-5或N :⎩⎪⎨⎪⎧x =1y =7,由2x -y +5≤0得P 点在圆左边弧MN 上,结合限制条件-52≤x ≤52,可得点P 横坐标的取值[]-52,1. 巩固2.已知直线l :x +3y -2=0与圆C :x 2+y 2=4交于A ,B 两点,则弦AB 的长为________. 【解析】∵圆心C (0,0)到直线l 的距离d =|0+3×0-2|1+3=1,∴AB =24-1=23,故弦AB 的长为2 3.巩固3.已知过点M (-1,-1)的直线l 与圆x 2+y 2-2x +6y +6=0相交,则直线l 的斜率的取值范围____. 【解析】 设过点M (-1,-1)的直线l 的方程为y +1=k (x +1),将圆x 2+y 2-2x +6y +6=0改写成(x -1)2+(y +3)2=4,则圆心坐标为(1,-3),若直线与圆相交,则圆心到直线的距离小于半径,故圆心到直线l :y +1=k (x +1)的距离可知||k (1+1)-1+31+k 2<2,解得k <0.巩固4.已知圆C :(x -2)2+(y -2)2=4及直线l :(2m +1)x +(m +1)y =7m +4(m ∈R ),则直线l 与圆C 的位置关系是____.【解析】 注意到直线(2m +1)x +(m +1)y =7m +4,即(x +y -4)+m (2x +y -7)=0恒过直线x +y -4=0与2x +y -7=0的交点(3,1),且点(3,1)与圆心(2,2)的距离等于2(小于半径2),即点(3,1)位于圆C 内,因此直线l 与圆C 的位置关系是相交.考点12 圆的切线问题【例】在平面直角坐标系xOy 中,已知点(4,0),(0,4)A B -,从直线AB 上一点P 向圆221x y +=引两条切线,切点分别为C ,D .设线段CD 的中点为M ,求线段AM 长的最大值.【解析】∵直线AB 的方程为4x y -=,∴设00(,4)P x x -,则以OP 为直径的圆方程为2200(4)0x y x x x y +---=,联立圆221x y +=,并消去二次项得CD 的直线方程为00(4)4x x x y +-=,∵线段CD 的中点为M ,∴直线OM 的方程为00(4)0x x x y --=,两式消去0x 得M 点的轨迹方程为22111()()222x y ++-=,即圆心为11(,)22-,半径为2的圆.又(4,0)A -,∴AM= 巩固1.过点P (1,3)作圆O :x 2+y 2=1的两条切线(O 为坐标原点),切点分别为A ,B ,则·=____. 【解析】 可知OA ⊥AP ,OB ⊥BP ,OP =1+3=2.又OA =OB =1,可以求得AP =BP =3,∠APB =60°.故·=3×3×cos 60°=32.巩固2.求过点(-2,3)作圆x 2+y 2+2x -4y =4的切线方程.【解析】当斜率不存在时,直线方程为2x =-,此时圆心(1,2)-到直线2x =-的距离等于1, ∴圆与直线相切.当斜率存在时,设切线的斜率为k ,则切线方程为3(2)y k x -=+1=,解得0k =,∴切线方程为3y =.综上切线方程为3y =或2x =-.巩固3.若过点P (3,4)的直线与圆(x -2)2+(y -2)2=4相切,且与直线ax -y +1=0垂直,则实数a 值__ __. 【解析】 设过点P (3,4)的直线方程为y -4=k ()x -3,此直线与圆(x -2)2+(y -2)2=4相切,所以圆心()2,2到直线的距离为圆的半径2.即||2k -2-3k +4k 2+1=2,解得k =0或-43,又因为与直线ax -y +1=0垂直,所以k =-43,ka =-1,所以a =34.巩固4.在平面直角坐标系xOy 中,过点P (-2,0)的直线与圆x 2+y 2=1相切于点T ,与圆 (x -a )2+(y -3)2=3相交于点R ,S ,且PT =RS ,则正数a 的值为________.【解析】因为PT 与圆x 2+y 2=1相切于点T ,所以在Rt △OPT 中,OT =1,OP =2,∠OTP =π2,从而∠OPT=π6,PT =3,故直线PT 的方程为x ±3y +2=0,因为直线PT 截圆(x -a )2+(y -3)2=3得弦长RS =3,设圆心到直线的距离为d ,则d =|a ±3+2|2,又3=23-d 2,即d =32,即|a ±3+2|=3,解得a =-8或a =-2或a =4,因为a >0,所以a =4.模块五 隐形圆问题隐形圆也就是题目中给出的条件不是给出一个圆,而是要通过设点、列式、化简得到动点的轨迹是一个圆.本专题分四个方面讲了隐形圆问题.1. 利用圆的定义:在平面内到定点的距离等于常数,则这个点的轨迹是一个圆.解决这类问题只要抓住两个关键词:定点,定长.然后再化归为圆中的有关问题去解.2. 是利用几何特征,直径所对的圆周角是直角,得到了隐形圆,有时两个定点所张的角也不一定是90,可以是其他的定角,则动点的轨迹是两段圆弧.3. 动点到两个定点的距离的平方和是定值,则这个点的轨迹也是一个圆,当然这个定值会有一定的范围,否则轨迹不存在,如果在某一距离前加其他系数也可以.4. 是著名的阿波罗尼斯圆:到两个定点的距离之比是一个不为1的定值,这类题可能给出的背景也不在解析几何中,是要自己建系后,才能看出点的轨迹.所以在解题时要当心给出的条件.5. 化归思想在本专题的作用很重要,因为给出的条件不是圆,是需要大家在解题分析得出的,另外得到圆以后,要合理用好点与圆、直线与圆、圆与圆的位置关系.【例1】(1)已知圆O :x 2+y 2=1,圆M :(x -a )2+(y -a +4)2=1.若圆M 上存在点P ,过点P 作圆O 的两条切线,切点为A ,B ,使得∠APB =60°,则a 的取值范围为____.(2)如果圆(x -2a )2+(y -a -3)2=4上总存在两个点到原点的距离为1,则实数a 的取值范围是____. 【解析】(1)连OP ,则30OPA ∠=,∵1OA =,∴2OP =,即P 点的轨迹方程为224x y +=,又点P在圆M 22()(4)1x a y a -+-+=上,∴两圆有交点,即221(4)9a a ≤+-≤,解得:22a ≤≤+. (2)到原点的距离为1的点的轨迹方程为221x y +=,如果圆(x -2a )2+(y -a -3)2=4上总存在两个点到原点的距离为1等价于两圆相交,即2214(3)9a a ≤++≤,解得605a -≤≤. 【例2】(1)已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0) 0m >,若圆上存在点P ,使得∠APB =90°,则m 的取值范围是____.(2)(2019·南通一模)在平面直角坐标系xOy 中,已知B ,C 为圆x 2+y 2=4上两点,点A (1,1),且AB ⊥AC ,则线段BC 的长的取值范围为_ ___.【解析】(1)∵∠APB =90°,∴点P 在以AB 为直径的圆上,其方程为222x y m +=,又点P 在圆C :(x -3)2+(y -4)2=1上,且有两个,∴两圆相交,即11m m -≤≤+,解得46m ≤≤.(2)∵AB ⊥AC ,设D 为AB 的中点,D 点坐标为(,)x y ,BC 的长为2m ,∴DA m =,在三角形OCD 中,有224m OD +=,即2222(1)(1)4x y x y -+-++=,化简得22113()()222x y -+-=,∴DA 的取值范围为,22.∴BC 的取值范围为. 【例3】在平面直角坐标系xOy 中,已知点(2,0)A ,直线:4l y x =-,圆C 的半径为1,圆心在l 上.若圆C 上存在点M ,使2210MA MO +=,求圆心C 的横坐标a 的取值范围.【解析】设(,)M x y ,∵2210MA MO +=,∴2222(2)10x y x y -+++=,即2223x y x +-=,又圆C 的半径为1,圆心在l 上,∴圆C 的方程为22()(4)1x a y a -+-+=.∵点M也在圆C 上,∴两圆有交点,即221(1)(4)9a a ≤-+-≤,∴2540a a -+≥或250a a -≤,解得4a ≥或1a ≤或05a ≤≤,综上横坐标a 的取值范围为45a ≤≤或01a ≤≤.【例4】已知点A(-2,0),B(4,0),圆C: 16)4(22=++y x ,P 为圆C 上任意一点,问是否存在常数λ,使λ=PBPA,若存在,求出常数λ的值,若不存在,请说明理由.【解析】假设存在,设P 的坐标为(,)x y ,∵λ=PB PAλ=, ∴22222(2)[(4)]x y x y λ++=-+,即222222(1)(1)(48)4160x y x λλλλ-+-+++-=,又∵P 为圆C 上任意一点,∴16)4(22=++y x ,即228x y x +=-,∴22(164)4160x λλ-+-=对于圆上的任意一点均成立,∴21640λ-=,即12λ=. 巩固1.已知ABC ∆是边长为3的等边三角形,点P 到点A 的距离为1,点Q 满足2133AQ AP AC =+,则BQ 的最小值为 .【解析】以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴,建立直角坐标系,则33(,0),(,0),(0,)222B C A -,∵点P 到点A 的距离为1,∴2200(12x y +-=,设00(,),(,)Q x y P x y ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何问题的题型与方法一、知识整合高考中解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题),共计30分左右,考查的知识点约为20个左右。
其命题一般紧扣课本,突出重点,全面考查。
选择题和填空题考查直线、圆、圆锥曲线、参数方程和极坐标系中的基础知识。
解答题重点考查圆锥曲线中的重要知识点,通过知识的重组与链接,使知识形成网络,着重考查直线与圆锥曲线的位置关系,求解有时还要用到平几的基本知识和向量的基本方法...............,这一点值得强化。
1. 能正确导出由一点和斜率确定的直线的点斜式方程;从直线的点斜式方程出发推导出直线方程的其他形式,斜截式、两点式、截距式;能根据已知条件,熟练地选择恰当的方程形式写出直线的方程,熟练地进行直线方程的不同形式之间的转化,能利用直线的方程来研究与直线有关的问题了.2.能正确画出二元一次不等式(组)表示的平面区域,知道线性规划的意义,知道线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念,能正确地利用图解法解决线性规划问题,并用之解决简单的实际问题,了解线性规划方法在数学方面的应用;会用线性规划方法解决一些实际问题.3. 理解“曲线的方程”、“方程的曲线”的意义,了解解析几何的基本思想,掌握求曲线的方程的方法.4.掌握圆的标准方程:222)()(r b y a x =-+-(r >0),明确方程中各字母的几何意义,能根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径,掌握圆的一般方程:022=++++F Ey Dx y x ,知道该方程表示圆的充要条件并正确地进行一般方程和标准方程的互化,能根据条件,用待定系数法求出圆的方程,理解圆的参数方程cos sin x r y r θθ=⎧⎨=⎩(θ为参数),明确各字母的意义,掌握直线与圆的位置关系的判定方法.5.正确理解椭圆、双曲线和抛物线的定义,明确焦点、焦距的概念;能根据椭圆、双曲线和抛物线的定义推导它们的标准方程;记住椭圆、双曲线和抛物线的各种标准方程;能根据条件,求出椭圆、双曲线和抛物线的标准方程;掌握椭圆、双曲线和抛物线的几何性质:范围、对称性、顶点、离心率、准线(双曲线的渐近线)等,从而能迅速、正确地画出椭圆、双曲线和抛物线;掌握a 、b 、c 、p 、e 之间的关系及相应的几何意义;利用椭圆、双曲线和抛物线的几何性质,确定椭圆、双曲线和抛物线的标准方程,并解决简单问题;理解椭圆、双曲线和抛物线的参数方程,并掌握它的应用;掌握直线与椭圆、双曲线和抛物线位置关系的判定方法.二、近几年高考试题知识点分析2004年高考,各地试题中解析几何内容在全卷的平均分值为27.1分,占18.1%;2001年以来,解析几何内容在全卷的平均分值为29.3分,占19.5%.因此,占全卷近1/5的分值的解析几何内容,值得我们在二轮复习中引起足够的重视.高考试题中对解析几何内容的考查几乎囊括了该部分的所有内容,对直线、线性规划、圆、椭圆、双曲线、抛物线等内容都有涉及.1.选择、填空题1.1 大多数选择、填空题以对基础知识、基本技能的考查为主,难度以容易题和中档题为主(1)对直线、圆的基本概念及性质的考查例 1 (04江苏)以点(1,2)为圆心,与直线4x +3y -35=0相切的圆的方程是_________.(2)对圆锥曲线的定义、性质的考查例2(04辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF .当点P 的纵坐标是21时,点P 到坐标原点的距离是 (A )26(B )23 (C )3(D )21.2 部分小题体现一定的能力要求能力,注意到对学生解题方法的考查例3(04天津文)若过定点(1,0)M -且斜率为k 的直线与圆22450x x y ++-=在第一象限内的部分有交点,则k 的取值范围是(A)0k <<(B)0k << (C)0k << (D )05k <<2.解答题解析几何的解答题主要考查求轨迹方程以及圆锥曲线的性质.以中等难度题为主,通常设置两问,在问题的设置上有一定的梯度,第一问相对比较简单.例4(04江苏)已知椭圆的中心在原点,离心率为12,一个焦点是F (-m,0)(m 是大于0的常数).(Ⅰ)求椭圆的方程;(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M.=,求直线l 的斜率.本题第一问求椭圆的方程,是比较容易的,对大多数同学而言,是应该得分的;而第二问,需要进行分类讨论,则有一定的难度,得分率不高. 解:(I )设所求椭圆方程是).0(12222>>=+b a by a x由已知,得 ,21,==a c m c 所以m b m a 3,2==. 故所求的椭圆方程是1342222=+my m x (II )设Q (Q Q y x ,),直线),0(),(:km M m x k y l 则点+=当),,0(),0,(,2km M m F -=由于时由定比分点坐标公式,得,62.139494,)3,32(.31210,32212022222±==+-=++=-=+-=k mm k m m kmm Q km km y m m x Q Q 解得所以在椭圆上又点0(2)()2,2,1212Q Q m kmMQ QF x m y km +-⨯-=-==-==---当时.于是.0,134422222==+k mm k m m 解得 故直线l 的斜率是0,62±.例5(04全国文科Ⅰ)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B .(I )求双曲线C 的离心率e 的取值范围:(II )设直线l 与y 轴的交点为P ,且5.12PA PB =求a 的值. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y a x 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ①.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率01,(2,).e a a e e e ==<<≠∴>≠+∞即离心率的取值范围为(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 由于x 1,x 2都是方程①的根,且1-a 2≠0,2222222222172522289,.,,121121160170,.13a a a x x x a a a a a =-=--=--->=所以消去得由所以例6(04全国文科Ⅱ)给定抛物线C :,42x y =F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点. (Ⅰ)设l 的斜率为1,求OB OA与夹角的大小;(Ⅱ)设]9,4[,∈=λλ若AF FB ,求l 在y 轴上截距的变化范围. 解:(Ⅰ)C 的焦点为F (1,0),直线l 的斜率为1,所以l 的方程为.1-=x y将1-=x y 代入方程x y 42=,并整理得 .0162=+-x x设),,(),,(2211y x B y x A 则有 .1,62121==+x x x x.31)(2),(),(212121212211-=++-=+=⋅=⋅x x x x y y x x y x y x OB OA.41]16)(4[||||21212122222121=+++=+⋅+=x x x x x x y x y x.41143||||),cos(-=⋅=OB OA OB OA 所以OB OA 与夹角的大小为.41143arccos -π (Ⅱ)由题设λ= 得 ),,1(),1(1122y x y x --=-λ即⎩⎨⎧-=-=-.1212),1(1y y x x λλ 由②得21222y y λ=, ∵ ,4,4222121x y x y == ∴.122x x λ=③ 联立①、③解得λ=2x ,依题意有.0>λ∴),2,(),2,(λλλλ-B B 或又F (1,0),得直线l 方程为 ),1(2)1()1(2)1(--=--=-x y x y λλλλ或当]9,4[∈λ时,l 在方程y 轴上的截距为,1212---λλλλ或由 ,121212-++=-λλλλλ 可知12-λλ在[4,9]上是递减的, ∴ ,431234,341243-≤--≤-≤-≤λλλλ直线l 在y 轴上截距的变化范围为].34,43[]43,34[⋃--从以上3道题我们不难发现,对解答题而言,椭圆、双曲线、抛物线这三种圆锥曲线都有考查的可能,而且在历年的高考试题中往往是交替出现的,以江苏为例,01年考的是抛物线,02年考的是双曲线,03年考的是求轨迹方程(椭圆),04年考的是椭圆.三、热点分析与高考预测1.重视与向量的综合在04年高考文科12个省市新课程卷中,有6个省市的解析几何大题与向量综合,主要涉及到向量的点乘积(以及用向量的点乘积求夹角)和定比分点等,因此,与向量综合,仍是解析几何的热点问题,预计在05年的高考试题中,这一现状依然会持续下去.例7(02年新课程卷)平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OB OA OC βα+=,其中α、β∈R,且α+β=1,则点C 的轨迹方程为(A )(x -1)2+(y -2)2=5 (B )3x +2y -11=0 (C )2x -y =0 (D )x +2y -5=0 例8(04辽宁)已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是(A )圆 (B )椭圆 (C )双曲线 (D )抛物线2.考查直线与圆锥曲线的位置关系几率较高在04年的15个省市文科试题(含新、旧课程卷)中,全都“不约而同”地考查了直线和圆锥曲线的位置关系,因此,可以断言,在05年高考试题中,解析几何的解答题考查直线与圆锥曲线的位置关系的概率依然会很大. 3.与数列相综合在04年的高考试题中,上海、湖北、浙江解析几何大题与数列相综合,此外,03年的① ②江苏卷也曾出现过此类试题,所以,在05年的试题中依然会出现类似的问题.例9(04年浙江卷)如图,ΔOBC 的在个顶点坐标分别为(0,0)、(1,0)、(0,2),设P 为线段BC 的中点,P 2为线段CO 的中点,P 3为线段OP 1的中点,对于每一个正整数n,P n+3为线段P n P n+1的中点,令P n 的坐标为(x n,y n), .2121++++=n n n n y y y a (Ⅰ)求321,,a a a 及n a ; (Ⅱ)证明;,414*+∈-=N n y y nn(Ⅲ)若记,,444*+∈-=N n y y b nn n 证明{}n b 是等比数列. 解:(Ⅰ)因为43,21,153421=====y y y y y ,所以2321===a a a ,又由题意可知213+++=n n n y y y , ∴321121++++++=n n n n y y y a =221121++++++n n n n y y y y =,2121n n n n a y y y =++++∴{}n a 为常数列.∴.,21*∈==N n a a n(Ⅱ)将等式22121=++++n n n y y y 两边除以2,得,124121=++++n n n y y y 又∵2214++++=n n n y y y ,∴.414n n yy -=+(Ⅲ)∵)41()41(44444841n n n n n yy y y b ---=-=+++-)(41444n n y y --=+,41n b -=又∵,041431≠-=-=y y b∴{}n b 是公比为41-的等比数列.4.与导数相综合近几年的新课程卷也十分注意与导数的综合,如03年的天津文科试题、04年的湖南文理科试题,都分别与向量综合.例10(04年湖南文理科试题)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。