配位化合物习题及解析
无机及分析化学第4章习题答案
第四章配位化合物习题参考解答1. 试举例说明复盐与配合物,配位剂与螯合剂的区别。
解复盐(如KCl·MgCl2·6H2O)在晶体或在溶液中均无配离子,在溶液中各种离子均以自由离子存在;配合物K2[HgI4]在晶体与溶液中均存在[HgI4]2-配离子,在溶液中主要以[HgI4]2-存在,独立的自由Hg2+很少。
配位剂有单基配位剂与多基配位剂:单基配位剂只有一个配位原子,如NH3(配位原子是N);多基配位剂(如乙二胺H2N-CH2-CH2-NH2)含有两个或两个以上配位原子,这种多基配位体能和中心原子M形成环状结构的化合物,故称螯合剂。
2. 哪些元素的原子或离子可以作为配合物的形成体哪些分子和离子常作为配位体它们形成配合物时需具备什么条件解配合物的中心原子一般为带正电的阳离子,也有电中性的原子甚至还有极少数的阴离子,以过渡金属离子最为常见,少数高氧化态的非金属元素原子也能作中心离子,如Si(Ⅳ)、P(Ⅴ)等。
配位体可以是阴离子,如X-、OH-、SCN-、CN-、C2O4-等;也可以是中性分子,如H2O、CO、乙二胺、醚等。
它们形成配合物时需具备的条件是中心离子(或原子)的价层上有空轨道,配体有可提供孤对电子的配位原子。
3. 指出下列配合物中心离子的氧化数、配位数、配体数及配离子电荷。
[CoCl2(NH3)(H2O)(en)]Cl Na3[AlF6] K4[Fe(CN)6] Na2[CaY] [PtCl4(NH3)2]K2[PtCl6] [Ag(NH3)2]Cl [Cu(NH3)4]SO4K2Na[Co(ONO)6] Ni(CO)4[Co(NH2)(NO2)(NH3)(H2O)(en)]Cl K2[ZnY] K3[Fe(CN)6]二硫代硫酸合银(I)酸钠四硫氰酸根⋅二氨合铬(III)酸铵;四氯合铂(II)酸六氨合铂(II) 二氯⋅一草酸根⋅一乙二胺合铁(III)离子硫酸一氯⋅一氨⋅二乙二胺合铬(III)解Na3[Ag(S2O3)2] NH4[Cr(SCN)4(NH3)2] [Pt(NH3)6][PtCl4][FeCl2(C2O4)(en)]-[CrCl(NH3)(en)2]SO46. 下列配离子具有平面正方形或者八面体构型,试判断哪种配离子中的CO32-为螯合剂[Co(CO3)(NH3)5]+[Co(CO3)(NH3)4]+[Pt(CO3)(en)] [Pt(CO3)(NH3)(en)]解[Co(CO3)(NH3)4]+、[Pt(CO3)(en)]中CO32-为螯合剂。
配位化合物练习题配位键配位数与配位化合物的命名
配位化合物练习题配位键配位数与配位化合物的命名配位键是指形成配位化合物的中心金属离子与配体之间的化学键。
配位数是指配位化合物中金属离子与配体之间的键的数量。
命名配位化合物的规则根据配体中的原子数、电荷和官能团等因素来确定。
以下是一些配位化合物练习题,以及配位键、配位数和命名的相关内容。
练习题一:以下配位化合物中,指出配位键的类型和配位数:1. [Co(NH3)6]Cl32. [Fe(CN)6]4-3. [Cu(NH3)4(H2O)2]2+练习题二:请根据以下配位化合物的配位数,给出它们的命名:1. [PtCl4]2-2. [Cu(NH3)2(H2O)2]2+3. [Fe(CO)5]练习题三:请给出以下配位化合物的化学式和它们的命名:1. Tetrachloridocobaltate(II)2. Hexaamminecobalt(III) chloride3. Potassium hexacyanidoferrate(III)解析:练习题一:1. [Co(NH3)6]Cl3配位键类型:配位键类型是金属离子和配体之间的键,此处是配体是氨(NH3),氨和钴(Co)之间形成了配位键。
配位数:配位数是指金属离子与配体之间键的数量,这里配位数为六,因此配位复合物的名称是六配位配合物。
2. [Fe(CN)6]4-配位键类型:配体是氰化物(CN),氰化物和铁(Fe)之间形成了配位键。
配位数:配位数为六,因此配位复合物的名称是六配位配合物。
3. [Cu(NH3)4(H2O)2]2+配位键类型:配体是氨和水,氨和铜(Cu)以及水和铜之间形成了配位键。
配位数:配位数为六,因此配位复合物的名称是六配位配合物。
练习题二:1. [PtCl4]2-配位数为四的配位化合物命名为四氯金(II)。
2. [Cu(NH3)2(H2O)2]2+配位数为六的配位化合物命名为二氨二水铜(II)。
3. [Fe(CO)5]配位数为五的配位化合物命名为五羰基铁。
配位化合物(习题参考答案)
由(2)、(3)计算结果看出,AgCl 能溶于稀 NH3·H2O,而 AgBr 须用浓 NH3·H2O 溶解。 12.解: (1)[HgCl4]2− + 4 I−
K =
ψ
K fψ ([HgI 4 ] 2 − ) K fψ ([HgCl 4 ] )
= 5.78 ×10 14
K ψ 很大,故反应向右进行。
y = 0.49
可见 KCN 可溶解较多的 AgI。 10.解:设 1.0 L 1.0 mol·L−1 氨水可溶解 x mol AgBr,并设溶解达平衡时 c([Ag(NH3)2]+) = x mol·L−1(严格讲应略小于 x mol·L−1)c(Br− ) = x mol·L−1 AgBr(s) + 2NH3·H2O [Ag(NH3)2]+ + Br− + 2H2O 平衡浓度/(mol·L−1) 6.0 − 2 x x x
(2)[Cu(CN)2]− + 2NH3·H2O [Cu(NH3)2]+ + 2CN− + 2H2O
−
Kψ =
K fψ ([Cu(NH 3 ) 2 ] + ) K fψ ([Cu(CN) 2 ] )
= 7.24×10−14
(3)[Fe(NCS)2]+ + 6F−
[FeF6]3− + 2SCN−
+
Kψ =
PDF 文件使用 "pdfFactory" 试用版本创建
[CoF6]3-
[Ru(CN)6]4-
[Co(NCS)4]2―
6.解:已知:[MnBr4]2―μ=5.9 B.M,[Mn(CN)6]3―μ=2.8 B.M。 由: µ= n(n+2) 式求得:
化学配位化合物的配位数练习题
化学配位化合物的配位数练习题配位化合物是由中心金属离子(或原子)周围的配体(或配体分子)通过配位键与其配位形成的化合物。
配位数是指一个中心金属离子(或原子)周围被配体配位连接的数量。
配位数是判断化合物性质和反应性的重要指标之一,因此在化学配位化合物的学习中,对于配位数的理解和计算是非常关键的。
下面将通过一系列练习题来帮助大家巩固对于配位化合物配位数的理解和计算。
1. 对于配位化合物[Cu(NH3)4(H2O)2]2+,请计算其中铜离子的配位数。
解答:配位化合物中的配体通常是阴离子或中性配体。
给定的配位化合物中,铜离子[Cu(NH3)4(H2O)2]2+带正电荷2+,所以配体的总电荷必须是负的,即配体通常为阴离子。
在配位化合物中,每个配体通过一个配位键与中心金属离子连接。
配位键是由一个或多个配体中的原子提供给中心金属离子的一个或多个电子对形成的。
根据配位数的定义,可以知道铜离子的配位数是指与铜离子通过配位键连接的配体的总数。
根据配体的种类和数量的不同,配位数也会不同。
在[Cu(NH3)4(H2O)2]2+中,氨(NH3)和水(H2O)是两种常见的配体。
根据所给化合物的结构,我们可以得知铜离子为四价,并与4个氨配体和2个水配体进行配位连接。
因此,铜离子的配位数为6。
2. 对于配位化合物[Fe(CN)6]3-,请计算其中铁离子的配位数。
解答:所给化合物为[Fe(CN)6]3-,其中的配体为氰基(CN-)。
氰基是一种典型的一价配体,可以通过提供一个孤对电子参与配位键的形成。
在[Fe(CN)6]3-中,氰基配体的数量为6个。
而氰基的配位键为一价,由一个氮原子提供孤对电子形成。
根据所给化合物的结构,我们可以知道铁离子的价为+3。
每个氰基通过一个配位键与铁离子连接。
因此,铁离子的配位数为6。
通过以上两个例子,我们可以发现配位数的计算方法都是根据所给化合物中的配体类型和数量进行计算。
计算配位数需要对化合物的结构有一定的了解,并且熟悉常见的配体及其配位键。
配位化合物习题
第四章配位化合物1、举例说明什么叫配合物,什么叫中心离子(或原子)。
答:配合物的定义是:由一个中心离子(或原子)和几个配位体(阴离子或原子)以配位键相结合形成一个复杂离子(或分子)通常称这种复杂离子为结构单元,凡是由结构单元组成的化合物叫配合物,例如中心离子Co3+和6个NH3分子以配位键相结合形成[Co(NH3)6]3+复杂离子,由[Co(NH3)6]3+配离子组成的相应化合物[Co(NH3)6]Cl3是配合物。
同理,K2[HgI4]、 [Cu(NH3)4]SO4等都是配合物。
每一个配位离子或配位分子中都有一个处于中心位置的离子,这个离子称为中心离子或称配合物的形成体。
2、什么叫中心离子的配位数,它同哪些因素有关。
答:直接同中心离子(或原子)结合的配位原子数,称为中心离子(或原子)的配位数。
影响中心离子配位数的因素比较复杂,但主要是由中心离子和配位体的性质(半径、电荷)来决定。
(1)中心离子的电荷越高,吸引配位体的能力越强,因此配位数就越大,如Pt4+形成PtCl62-,而Pt2+易形成PtCl42-,是因为Pt4+电荷高于后者Pt2+。
(2)中心离子半径越大,其周围可容纳的配位体就越多,配位数就越大,例如Al3+的半径大于B3+的半径。
它们的氟配合物分别是AlF63-和BF4-。
但是中心离子半径太大又削弱了它对配位体的吸引力,反而配位数减少。
(3)配位体的负电荷增加时,配位体之间的斥力增大,使配位数降低。
例如:[Co(H2O)6]2+和CoCl42-。
(4)配位体的半径越大,则中心离子周围容纳的配位体就越小,配位数也越小。
例如AlF63-和AlCl4-因为F-半径小于Cl-半径。
2、命名下述配合物,并指出配离子的电荷数和中心离子的氧化数?根据配合物分子为电中性的原则,由配合物外界离子的电荷总数确定配离子的电荷数、中心离子氧化数。
解:配合物命名配离子电荷数中心离子氧化数[Co(NH3)6]Cl3三氯化六氨合钴(Ⅲ) +3 +3K2[Co(NCS)4] 四异硫氰合钴(Ⅱ)酸钾-2 +2Na2[SiF6] 六氟合硅(Ⅳ)酸钠-2 +4[Co(NH3)5Cl]Cl2二氯化一氯·五氨合钴(Ⅲ) +2 +3K2[Zn(OH)4] 四羟基合锌(Ⅱ)酸钾-2 +2[Co(N3)(NH3)5]SO4 硫酸一叠氮·五氨合钴(Ⅲ) +2 +3[Co(ONO)(NH3)3(H2O)2]Cl2二氯化亚硝酸根·三氨·二水合钴(Ⅲ) +2 +33、指出下列配离子中中心离子的氧化数和配位数:配离子中心离子氧化数配位数(1) [Zn(NH3)4]2+ +2 4(2) [Cr(en)3]3+ +3 6(3) [Fe(CN)6]3- +3 6(4) [Pt(CN)4(NO2)I]2- +4 6(5) [Fe(CN)5(CO)]3- +2 6(6) [Pt(NH3)4(NO2)Cl]2+ +4 64、指出下列化合物中的配离子、中心离子及其配位数。
(完整版)配位化合物习题及解析
《配位化合物》作业参考解析1. 下列说法正确的是A. 配合物的内界和外界之间主要以共价键相结合B. 中心原子与配体之间形成配位键C. 配合物的中心原子都是阳离子D. 螯合物中不含有离子键【B】A、D:一般认为配合物的内界和外界之间主要以离子键相结合,因此螯合物中内界和外界之间是可以存在离子键的;C:中心原子可以是阳离子,也可以是中性原子,例如[Ni(CO)4];B:中心原子与配体化合时,中心原子提供杂化过的空轨道,配体提供孤对电子,而形成配位键。
2. 下列配合物命名不正确的是A. [Co(H2O)(NH3)3Cl2]Cl 氯化二氯·三氨·一水合钴(Ⅲ)B. [Cr(NH3)6][Co(CN)6] 六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)C. K[Co(NO2)3Cl3] 三硝基·三氯合钴(Ⅲ)酸钾D. H2[PtCl6] 六氯合铂(Ⅳ)酸【C】根据配体命名顺序,先无机后有机,先阴离子后中性分子,同类配体根据配位原子在字母表中的先后顺序进行命名。
对于C中的配合物而言,NO2-以N原子为配位原子时,命名为硝基,带一个负电荷,氯离子也是阴离子,同类配体,根据配位原子在字母表中的先后顺序,Cl-离子在前,NO2-离子在后,因此该配合物应该命名为“三氯·三硝基合钴(Ⅲ)酸钾”。
3. 下列配离子具有正方形或者八面体形结构,其中CO32-最有可能作为双齿配体的是A. [Co(NH3)4(CO3)]+B. [Co(NH3)5(CO3)]+C. [Pt(en)(NH3)(CO3)]D. [Pt(en)2(NH3)(CO3)]2+【A】根据题意,配离子具有正方形结构时,配位数为4,形成四个配位键;具有八面体结构时,配位数为6,形成6个配位键。
B:[Co(NH3)5(CO3)]+ 配离子中,已有5个氨作为配体,氨是单齿配体,形成5个配位键,因此该配离子中,CO32-离子只能是单齿配体,这样就形成了6个配位键;C:[Pt(en)(NH3)(CO3)] 配合物中,乙二胺(en)为双齿配体,形成2个配位键,氨为单齿配体,形成1个配位键,因此CO32-离子只能是单齿配体,这样就形成了4个配位键;D:[Pt(en)2(NH3)(CO3)]2+ 配离子中,乙二胺(en)为双齿配体,2个en形成4个配位键,氨为单齿配体,形成1个配位键,因此CO32-离子只能是单齿配体,这样就形成了6个配位键;A:[Co(NH3)4(CO3)]+ 配离子中有4个氨为配体,形成4个配位键,因此CO32-离子必须是双齿配体,这样就形成了4个配位键,如果CO32-离子是单齿配体,那么配离子的配位数为5,这与题意不符。
化学配位化合物练习题配位键性质与配位数计算
化学配位化合物练习题配位键性质与配位数计算化学配位化合物是指由中心金属离子(阳离子)和周围的配体(阴离子或中性分子)通过配位键结合而形成的化合物。
配位键是通过金属离子和配体之间的共价键或均衡异构的键来连接的。
配位键的性质和配位数的计算是化学实验和理论研究中的重要内容。
本文将通过一些练习题来探讨配位键性质和配位数的计算方法。
练习题一:考虑一个由钴离子(Co2+)和六个氰化物(CN-)配体组成的六配位化合物,请回答以下问题:1. 描述该配合物中配位键的性质。
2. 计算该配合物的配位数。
解答一:1. 钴离子的电子构型为[Ar]3d74s2,失去两个电子后形成Co2+离子,电子构型为[Ar]3d74s0。
氰化物是典型的强配体,具有强的键合能力。
在该配合物中,钴离子和氰化物配体之间形成了六个配位键。
配位键的形成是通过配体中的氮原子与钴离子的空位轨道相重叠而形成的。
2. 该配合物中有六个配位键,因此配位数为六。
练习题二:考虑一个由铜离子(Cu2+)和四个氯化物(Cl-)配体组成的四配位化合物,请回答以下问题:1. 描述该配合物中配位键的性质。
2. 计算该配合物的配位数。
解答二:1. 铜离子的电子构型为[Ar]3d104s1,失去一个电子后形成Cu2+离子,电子构型为[Ar]3d94s0。
氯化物是典型的卤素配体,具有较强的键合能力。
在该配合物中,铜离子和氯化物配体之间形成了四个配位键。
配位键的形成是通过配体中的氯原子与铜离子的空位轨道相重叠而形成的。
2. 该配合物中有四个配位键,因此配位数为四。
练习题三:考虑一个由亚铁离子(Fe3+)和六个水(H2O)配体组成的六配位化合物,请回答以下问题:1. 描述该配合物中配位键的性质。
2. 计算该配合物的配位数。
解答三:1. 亚铁离子的电子构型为[Ar]3d54s0,失去三个电子后形成Fe3+离子,电子构型为[Ar]3d54s0。
水是典型的配位键强度较弱的配体。
在该配合物中,亚铁离子和水配体之间形成了六个配位键。
无机化学习题-配位化合物答案
化,形成四配位平面四方配离子 5d8 的 8 个 d 电子全部配对, m = n(n + 2) B. M. = 0。
Pt(IV)应为 d2sp3 杂化,形成内轨型六配位八面体配离子。
该配合物实际化学式可能有:
65.39 y + 16 + 59.024 ´ (2 y -1)
81.39 y
= 0.516 解得 y ≈ 4
183.44 y - 102.048
∴(A)的化学式为 Zn4O(CH3COO)6
2.4ZnCO3 + 6CH3COOH
ZnO(CH3COO)6 + 4CO2 + 3H2O
3.Zn2+为 3d10,Zn2+周围有 4 个 O 原子,∴Zn2+离子采取 sp3 杂化
4.2948 + 14.476x = 3.024 + 15.12x, 0.644x = 1.2708, x = 2
∴Al 为+3 氧化态,Al3+采取 sp3 杂化。
H NEt3
NEt3 H
NEt3 H
Al
H
NEt3
H
Al
H
H
Et3N
NEt3 (非极性分子)
Al H
H
因它们都有对称面,所以都不存在对映体。
十六、1.H C
O
H + CH3OH C
O
(B) LiAlH4
(C) SiCl4
(D) (CH3)2NH (E)
6
N (E)为
H2C H3C N H3C
化学配位化合物练习题络合反应的配体选择与稳定性分析
化学配位化合物练习题络合反应的配体选择与稳定性分析在无机化学中,配位化合物是由中心金属离子和周围的配体形成的复合物。
配体通过与金属离子形成配位键来稳定该化合物。
在设计化学配位化合物时,选择适当的配体对于稳定复合物和提高化合物的性能至关重要。
本文将通过练习题的方式,讨论几个关于配体选择与稳定性的问题。
1. 练习题一给定以下中心金属离子和配体:中心金属离子:Cu2+、Fe3+、Co2+、Zn2+配体:NH3、H2O、Cl-、CN-根据配体场理论,给出以下化合物的形成常数从大到小的排序:A. [Cu(NH3)4]2+B. [Fe(H2O)6]3+C. [Co(NH3)6]2+D. [Zn(Cl)4]2-解析:首先,根据配体场理论,配体中的电子对会与中心金属离子的d轨道发生重叠,形成配位键。
根据双电子对的排斥原理,d轨道的电子云受到更大的影响,因此形成的化合物稳定性更高。
在给定的化合物中,NH3和CN-都是双电子对供体,因此对应的配合物都较稳定。
而H2O和Cl-都是单电子对供体,因此对应的配合物稳定性较低。
根据以上分析,可以排除选项C和D,因为它们的配体全为单电子对供体。
剩下的选项中,NH3可以提供四个双电子对,而H2O只能提供一个双电子对。
因此,[Cu(NH3)4]2+的形成常数最大,其次是[Fe(H2O)6]3+,最后是[Co(NH3)6]2+。
所以,正确的排序是:A > B > C > D2. 练习题二给定以下配体的表格:配体:NH3、H2O、Cl-、CN-形成的配合物:[Fe(NH3)6]3+、[Cu(H2O)4]2+、[Co(Cl)6]3+、[Zn(CN)4]2-根据结构分析和氧化还原性质,判断以下陈述是否正确:A. [Fe(NH3)6]3+是六配位配合物,其中的铁离子处于+3价态。
B. [Cu(H2O)4]2+是四配位配合物,其中的铜离子处于+2价态。
C. [Co(Cl)6]3+是六配位配合物,其中的钴离子处于+3价态。
化学配位化合物练习题配位键与配位数的关系探究
化学配位化合物练习题配位键与配位数的关系探究化学配位化合物是一类非常重要的化合物,它们由中心金属离子与周围配体通过配位键相连而形成。
配位键的特性和配位数对于化学配位化合物的性质和应用有着关键的影响。
在本文中,我们将探讨配位键和配位数的关系,并通过练习题来加深对这一关系的理解。
配位键是指中心金属离子与配体之间共用电子对的键。
它是通过配位作用来连接中心金属离子和配体的。
根据中心金属离子的配位能力和配体的配体场强,配位键可以分为不同类型,如配位键、单极性配位键、双极性配位键等。
不同类型的配位键具有不同的化学性质和反应性。
配位数是指中心金属离子周围配体的数目。
配位数决定了化学配位化合物的结构、形状以及一系列的性质。
在确定配位数时,需要考虑中心金属离子的电子结构以及配体的空位和官能团。
常见的配位数包括2、4、6等,但也存在一些特殊的配位数,如3、5等。
为了更好地理解配位键与配位数的关系,我们来做几道练习题。
练习题一:以下化合物中,找出含有最多配位数的化合物。
1. [Fe(CN)6]4-2. [Cu(NH3)4(H2O)2]2+3. [Co(NH3)5SO4]Br解答:根据化合物的配位数规则,[Fe(CN)6]4-的配位数为6,它含有最多的配位数。
练习题二:以下化合物中,判断哪些是双极性配位键。
1. [Fe(CN)6]4-2. [Cu(NH3)4(H2O)2]2+3. [Co(NH3)5SO4]Br解答:双极性配位键是指中心金属离子与配体之间键电性差异较大的配位键。
根据化合物的成键规律,[Fe(CN)6]4-和[Co(NH3)5SO4]Br含有双极性配位键。
通过以上练习题,我们可以得出以下结论:1. 配位数越大,化合物的形状越复杂。
配位数为6的化合物通常呈八面体或者六配位型结构,配位数为4的化合物通常呈正方形平面或四面体结构,而配位数为2的化合物通常呈线性结构。
2. 配位数越大,化合物的稳定性越强。
配位数越大,中心金属离子与配体之间的配位键数量增加,镇静效应增强,使得配合物更加稳定。
基础化学配位化合物及配位平衡习题解答
13.解答:lgc
K
θ/ ZnY
=7.75>6,可以标定。
14.解答:lgc
K
θ/ ZnY
=9.21>6,可以滴定。
反式-二溴·四氨合钌(III)
顺式-四氨·二水合钴(III) 反式-四氨·二水合钴(III)
11 配位化合物及配位平衡
22.解答:顺式-二氯·二氨·二水合铬(III)结构式:
可能的异构体有:
其中(I)、(II)为反式二氨异构体。 23.解答:配体 en 比配体 F-具有更强的场强,F-引起的中心离子 Co3+d 轨道分裂能
小于 en 引起的中心离子 Co3+d 轨道分裂能。所以电子在[CoF6-]3-的 eg 与 t2g 之间跃迁需要的能量比[Co(en)3]3+的小,即[CoF6-]3-电子跃迁吸收的光波波 长比[Co(en)3]3+的长,[CoF6-]3-显示出的颜色对应的光波波长比[Co(en)3]3+ 的短。所以黄色溶液应该是[Co(en)3]3+的溶液,而[CoF6-]3-溶液成蓝色。 24.解答:(1) [CuBr4]2-、[Cu(H2O)6]2(2) 正 方 形 场 配 合 物 [CuBr4]2- 中 心 离 子 d 轨 道 分 裂 能 比 八 面 体 场 [Cu(H2O)6]2-配合物 d 轨道分裂能小,[Cu(H2O)6]2-的电子跃迁能大于 [CuBr4]2-,[Cu(H2O)6]2-显示的颜色波长大于[CuBr4]2-,[Cu(H2O)6]2-呈淡 蓝色,而[CuBr4]2-呈深紫色。
络合物(配位化合物)(习题及答案)
第九章络合物(配位化合物)一、选择题1.下列离子中属于低自旋的是(C)A.[C oF6]3-B.[FeF6]3-C.[Fe(CN)6]3-D.[MnCl4]2-(μ=5.88)2.下列分子或离子能做螯合剂的是(D)A.H2N—NH2B.CH3COO—C.HO—OH D.H2NCH2CH2NH23.中心原子以sp3杂化轨道形成络离子时,其空间构型为(D)A.直线型B平面四边形C.正八面体D.正四面体4.下列试剂中能溶解Zn(OH)2、AgBr、Cr(OH)3、Fe(OH)3四种沉淀的是(B)A. 氨水B.氰化钾溶液C 硝酸 D.盐酸5.已知Co(NH3)63++e=Co(NH3)62+的Eθ=0.10V , Eθ(Co3+/Co2+)=1.84V,以下叙述正确的是(C)A.K fθCo(NH3)62+]=K fθ[Co(NH3)63+]B. K fθ[Co(NH3)62+]>K fθ[Co(NH3)63+]C. K fθ[Co(NH3)62+]<K fθ[Co(NH3)63+]D.都不对6.[Ni(CN)4]2—为平面四方形构型,中心离子杂化轨道类型和d电子分别是(D)A.sp2,d7B.sp3,d8C.d2sp3,d6D.dsp2,d8二、填空题1.碳酸氯·硝基·四氨合铂(Ⅳ)的化学式为[Pt(NH3)4(NO2)Cl]CO3,配体是NH3、NO2、Cl,配位原子是N、Cl ,配位数是62.氨水装在铜制容器中,发生配位反应,生成了[Cu(NH3)4]2+,使容器溶解。
3.向Cu2++4NH3=[Cu(NH3)4]2+体系中加入NH3,平衡将向正方向移动,加入CN—, 平衡将向逆方向移动(填正、逆)4.实验测得[Fe(CN)6]3-络离子的磁矩为1.7B.M.,则中心离子Fe3+采用了__d2sp3____杂化形式,是_内_轨型络合物。
5.[Ag(S2O3)2]3-的K fθ=a,[ AgCl2]-的K fθ=b则[Ag(S2O3)2]3-+ 2Cl-= [ AgCl2]-+ 2 S2O32-的平衡常数为b/a。
无机及分析化学(习题含答案)-配位化合物
第九章 配位化合物与配位滴定法习题1.是非判断题1-1中心离子的未成对电子数越多,配合物的磁矩越大。
1-2配合物由内界和外界组成。
1-3配位数是中心离子(或原子)接受配位体的数目。
1-4配位化合物K 3[Fe(CN)5CO]的名称是五氰根·一氧化碳和铁(Ⅱ)酸钾。
1-5一般说来,内轨型配合物比外轨型配合物稳定。
1-6配合物中由于存在配位键,所以配合物都是弱电解质。
1-7同一种中心离子与有机配位体形成的配合物往往要比与无机配合体形成的配合物更稳定。
1-8配合物的配位体都是带负电荷的离子,可以抵消中心离子的正电荷。
1-9电负性大的元素充当配位原子,其配位能力强。
1-10在螯合物中没有离子键。
1-11配位物中心离子所提供杂化的轨道,其主量子数必须相同。
1-12配合物的几何构型取决于中心离子所采用的杂化类型。
1-13外轨型配离子磁矩大,内轨型配合物磁矩小。
1-14配离子的配位键越稳定,其稳定常数越大。
1-15氨水溶液不能装在铜制容器中,其原因是发生配位反应,生成[Cu(NH 3)4]2+,使铜溶解。
1-16在配离子[Cu(NH 3)4]2+解离平衡中,改变体系的酸度,不能使配离子平衡发生移动。
1-17已知[HgI 4]2-的4θβ=K 1,[HgCl 4]2-的4θβ=K 2,,则反应[HgCl 4]2-+4I -=[HgI 4]2-+4Cl -的平衡常数为K 1/K 2。
1-18 [Cu(NH 3)3]2+ 的积累稳定常数β3是反应[Cu(NH 3)2]2+ + NH 3⇔[Cu(NH 3)3]2+的平衡常数。
1-19已知θϕ[Fe 3+/Fe 2+]=0.77V ,电极反应[Fe(C 2O 4)3]3-+ e=[Fe(C 2O 4)2]2-+ C 2O 42-,在标准状态时,θϕ的计算式为:θθθθθϕϕc O C c c O C Fe c c O C Fe c Fe F /)(/])([/])([lg 0592.0)/e 2422242334223---+⋅++(= 。
第十一章配位化合物
第十一章 配位化合物 首 页 习题解析 本章练习 本章练习答案 章后习题答案 习题解析 [TOP]例7-1 固体CrCl 3·6H 2O 的化学式可能为〔Cr(H 2O)4Cl 2〕Cl·2H 2O 或〔Cr(H 2O)5Cl 〕Cl·H 2O 或〔Cr(H 2O)6〕Cl 3,今将溶解有0.200gCrCl 3·6H 2O 的溶液流过一酸性阳离子交换柱,在柱上进行离子交换反应: X n+(aq) + n (RSO 3H) (RSO 3)n X + n H +(aq)配合物正离子 阳离子交换树脂 交换后的交换树脂 交换下来的H+ 交换下来的H +用0.100mol·L -1NaOH 标准溶液滴定,计耗去22.50mL ,通过计算推断上述配合物的正确化学式〔已知Mr(CrCl 3·6H 2O)=266.5〕。
析 根据题中条件可知离子的物质的量与配合物的电荷数有确定的关系,因此只要确定离子的物质的量即可求出配离子的电荷,进而求出配合物的化学式。
解 0.200gCrCl 3•6H 2O 的物质的量为1mol 1000mmol mol266.5g 0.200g 1⨯⋅-=0.75mmol 滴定测得 n (H +)=22.50mL×0.100mol·L -1=2.25mmol由交换反应式知:1mol X n+可交换出n mol H +。
因0.75 mmol CrCl 3•6H 2O 交换出2.25 mmol 的H +,由此可得1 :n = 0.75 :2.25 n = 3即X n+为X 3+,所以配正离子只能是[Cr(H 2O)6]3+,配合物为[Cr(H 2O)6]Cl 3。
例7-2(1)根据价键理论,画出[Cd(NH 3)4]2+(μ=0μB )和[Co(NH 3)6]2+(μ=3.87μB )的中心原子与配体成键时的电子排布,并判断空间构型。
配位化合物习题及解析
配位化合物习题及解析————————————————————————————————作者: ————————————————————————————————日期:《配位化合物》作业参考解析1. 下列说法正确的是A.配合物的内界和外界之间主要以共价键相结合B.中心原子与配体之间形成配位键C.配合物的中心原子都是阳离子D.螯合物中不含有离子键【B】A、D:一般认为配合物的内界和外界之间主要以离子键相结合,因此螯合物中内界和外界之间是可以存在离子键的;C:中心原子可以是阳离子,也可以是中性原子,例如[Ni(C O)4];B:中心原子与配体化合时,中心原子提供杂化过的空轨道,配体提供孤对电子,而形成配位键。
2. 下列配合物命名不正确的是A. [Co(H2O)(NH3)3Cl2]Cl氯化二氯·三氨·一水合钴(Ⅲ)B.[Cr(NH3)6][Co(CN)6] 六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)C.K[Co(NO2)3Cl3]三硝基·三氯合钴(Ⅲ)酸钾D.H2[PtCl6]六氯合铂(Ⅳ)酸【C】根据配体命名顺序,先无机后有机,先阴离子后中性分子,同类配体根据配位原子在字母表中的先后顺序进行命名。
对于C中的配合物而言,NO2-以N原子为配位原子时,命名为硝基,带一个负电荷,氯离子也是阴离子,同类配体,根据配位原子在字母表中的先后顺序,Cl-离子在前,NO2-离子在后,因此该配合物应该命名为“三氯·三硝基合钴(Ⅲ)酸钾”。
3. 下列配离子具有正方形或者八面体形结构,其中CO32-最有可能作为双齿配体的是A. [Co(NH3)4(CO3)]+B. [Co(NH3)5(CO3)]+C.[Pt(en)(NH3)(CO3)] D.[Pt(en)2(NH3)(CO3)]2+【A】根据题意,配离子具有正方形结构时,配位数为4,形成四个配位键;具有八面体结构时,配位数为6,形成6个配位键。
B:[Co(NH3)5(CO3)]+配离子中,已有5个氨作为配体,氨是单齿配体,形成5个配位键,因此该配离子中,CO32-离子只能是单齿配体,这样就形成了6个配位键;C:[Pt(en)(NH3)(CO3)] 配合物中,乙二胺(en)为双齿配体,形成2个配位键,氨为单齿配体,形成1个配位键,因此CO32-离子只能是单齿配体,这样就形成了4个配位键;D:[Pt(en)2(NH3)(CO3)]2+ 配离子中,乙二胺(en)为双齿配体,2个en形成4个配位键,氨为单齿配体,形成1个配位键,因此CO32-离子只能是单齿配体,这样就形成了6个配位键;A:[Co(NH3)4(CO3)]+配离子中有4个氨为配体,形成4个配位键,因此CO32-离子必须是双齿配体,这样就形成了4个配位键,如果CO32-离子是单齿配体,那么配离子的配位数为5,这与题意不符。
《配位化合物与配位平衡》部分习题解答
第八章《配位平衡与配位滴定》部分习题解答18-1、AgNO 3能从Pt(NH 3)6C14溶液中将所有的氯沉淀为AgCl ,但在Pt(NH 3)3Cl 4中仅能沉淀1/4的氯。
试根据这些事实写出这两种配合物的结构式,并命名。
解:注意配合物的内界与外界之间是离子键结合,易断裂。
中心离子与配位原子之间是配8-3354一种配合物的溶液中加入BaCl 2时产生BaSO 4沉淀,但加AgNO 3时不产生沉淀;而第二种配合物则与此相反。
写出这两种配合物的化学式,并指出钴的配位数和氧化数。
解:此题与8-1是同类型。
注意配合物的内界与外界之间是离子键结合,易断裂。
中心离子配离子的空间构型。
[Mn(H 2O)6]2+ ; [Ag(CN)2]- ; [Cd(NH 3)4]2+ ; [Ni(CN)4]2- ; [Co (NH 3)6]3+。
8-5、试确定下列配合物是内轨型还是外轨型,说明理由,并以它们的电子层结构表示之。
(1) K 4[Mn(CN)6]测得磁矩m /μB =2.00;(2) (NH 4)2[FeF 5(H 2O)]测得磁矩m /μB =5.78。
解:(1) K 4[Mn(CN)6],磁矩m /μB =2.00,只有一个未成对电子;25Mn 2+, 3d 54S 0, ↑↓ ↑↓ ↑ ,d 2sp 3杂化,内轨型;(2)(NH 4)2[FeF 5(H 2O)],磁矩m/μB =5.78,有五个未成对电子;26Fe 3+ , 3d 54S 0, ↑ ↑ ↑ ↑ ↑ ,sp 3d 2杂化,外轨型。
8-8、(1)、(0.0592(lg ()a b V c E E n c θ=+氧化态还原态)氧化态)还原态 B/C/D 中氧化态浓度是减少的,故A 最大。
选A(2)、例如:AgCl(s) + 2NH 3= [Ag (NH 3)2]+ + Cl -3232223332[Ag NH ](Cl )[Ag NH ](Cl )(Ag )c(NH )c(NH )(Ag ),[Ag NH ],Ag f sp c c c c c K c K K Clθθθ+-+-+++==⨯=⨯()()() 要有利于沉淀的溶解,即是K 要大,所以选B无机及分析化学学习指导2 8-9、H 2O ;过氧化氢(HO —OH);H 2N —CH 2CH 2一NH 2;联氨H 2N —NH 2;解:有效的螯合剂为H 2N —CH 2CH 2一NH 2有效的螯合剂是一个配体中含两个及以上的配位原子,而且配位原子间要相隔2~3个其它原子,故只有H 2N —CH 2CH 2一NH 2满足。
化学配位化合物练习题配位数与配位键
化学配位化合物练习题配位数与配位键化学配位化合物练习题:配位数与配位键化学配位化合物是指由中心金属离子与周围的配体形成的有机或无机配合物。
配位化合物的配位数和配位键是研究该类化合物的重要参数。
本文将通过一些练习题来帮助读者加深对配位数和配位键的理解。
1. 练习题一:选择配位数最佳的答案a) [Cu(NH3)4]2+b) [PtCl6]2-解析:配位数是指中心金属离子周围的配体个数,每个配体通过一个配位键与中心金属离子相连。
根据题目中的化合物,可以得出以下结论:a) [Cu(NH3)4]2+:这个配合物是四配位的,因为四个氨分子作为配体连接到一个铜离子上。
b) [PtCl6]2-:这个配合物是六配位的,因为六个氯离子作为配体连接到一个铂离子上。
因此,答案是b) [PtCl6]2-。
2. 练习题二:填空题填入下划线处适当的数字,使表达式成立:[Fe(H2O)_n]^(3+),其中n为_?_。
解析:在这个化合物中,Fe离子通过配位键与水分子相连。
根据题目,我们需要填写适当的数字以表示配位数。
Fe离子的电荷为3+,即Fe^(3+)。
根据配位数的定义,Fe与n个水分子相连,所以n表示配位数。
在填空题中,我们可以通过观察化合物的电荷来得到答案。
由于Fe 离子的电荷是3+,每个H2O分子贡献一个氧原子,而氧原子的电荷是2-,所以需要填入的数字是6。
因此,答案是6,即n=6。
3. 练习题三:配位键的类型根据以下配合物的名称,判断配位键的种类:[Co(NH3)6]Cl3解析:根据配合物的名称,可知其中所含的配体为氨分子(NH3)。
氨分子通过氮原子通过配位键与中心金属离子Co相连。
根据氮的配位能力,我们可以判断配位键的种类。
氮具有孤电子对,因此它可以通过孤电子对与金属离子形成配位键。
由于配体中每个NH3分子含有一个孤电子对,氮可以通过孤电子对与金属离子配位。
因此,对于这个配合物,配位键的种类是孤对电子配位键。
总结:配位数和配位键是描述化学配位化合物的重要参数。
(完整版)配位化合物习题(1)
第19章配位化合物习题目录一判断题;二选择题;三填空题;四计算并回答问题一一判断题(返回目录)1 价键理论认为,配合物具有不同的空间构型是由于中心离子(或原子)采用不同杂化轨道与配体成键的结果。
()2 价键理论能够较好地说明配合物的配位数、空间构型、磁性和稳定性,也能解释配合物的颜色。
()3 价键理论认为,在配合物形成时由配体提供孤对电子进入中心离子(或原子)的空的价电子轨道而形成配位键。
()4 同一元素带有不同电荷的离子作为中心离子,与相同配体形成配合物时,中心离子的电荷越多,其配位数一般也越大。
()5 在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。
因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。
()6 所有八面体构型的配合物比平面四方形的稳定性强。
()7 所有金属离子的氨配合物在水中都能稳定存在。
()8 价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。
()9 所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。
()10 内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。
()11 内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。
()12 不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。
13 [Fe(CN)6]3和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。
()14 [Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。
()15 K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。
()16 Fe2+的六配位配合物都是反磁性的。
()17 在配离子[AICI 4]-和[AI(OH)4]-中,Al 3+的杂化轨道不同,这两种配离子的空间构型也不同。
()18 已知E ' (Cu2+/Cu) = 0.337V,E 1([Cu(NH 3)4]2+/Cu) = -0.048V,则E ' ([Cu (CN)4]2-/Cu) <-0.048V。
(完整版)配位化合物习题(1)
第19章配位化合物习题目录一判断题;二选择题;三填空题;四计算并回答问题一判断题(返回目录)1 价键理论认为,配合物具有不同的空间构型是由于中心离子(或原子)采用不同杂化轨道与配体成键的结果。
()2 价键理论能够较好地说明配合物的配位数、空间构型、磁性和稳定性,也能解释配合物的颜色。
()3 价键理论认为,在配合物形成时由配体提供孤对电子进入中心离子(或原子)的空的价电子轨道而形成配位键。
()4 同一元素带有不同电荷的离子作为中心离子,与相同配体形成配合物时,中心离子的电荷越多,其配位数一般也越大。
()5 在多数配位化合物中,内界的中心原子与配体之间的结合力总是比内界与外界之间的结合力强。
因此配合物溶于水时较容易解离为内界和外界,而较难解离为中心离子(或原子)和配体。
()6 所有八面体构型的配合物比平面四方形的稳定性强。
()7 所有金属离子的氨配合物在水中都能稳定存在。
()8 价键理论认为,所有中心离子(或原子)都既能形成内轨型配合物,又能形成外轨型配合物。
()9 所有内轨型配合物都呈反磁性,所有外轨型配合物都呈顺磁性。
()10 内轨型配合物往往比外轨型配合物稳定,螯合物比简单配合物稳定,则螯合物必定是内轨型配合物。
()11 内轨型配合物的稳定常数一定大于外轨型配合物的稳定常数。
()12 不论配合物的中心离子采取d2sp3或是sp3d2杂化轨道成键,其空间构型均为八面体形。
13 [Fe(CN)6]3-和[FeF6]3-的空间构型都为八面体形,但中心离子的轨道杂化方式不同。
()14 [Fe(CN)6]3-是内轨型配合物,呈反磁性,磁矩为0。
()15 K3[FeF6]和K3[Fe(CN)6]都呈顺磁性。
()16 Fe2+的六配位配合物都是反磁性的。
()17 在配离子[AlCl 4]-和[Al(OH)4]-中,Al 3+的杂化轨道不同,这两种配离子的空间构型也不同。
()18 已知E (Cu 2+/Cu) = 0.337V ,E ([Cu(NH 3)4]2+/Cu) = -0.048V ,则E ([Cu(CN)4]2-/Cu) < -0.048V 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配位化合物习题及解析集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)《配位化合物》作业参考解析1. 下列说法正确的是A. 配合物的内界和外界之间主要以共价键相结合B. 中心原子与配体之间形成配位键C. 配合物的中心原子都是阳离子D. 螯合物中不含有离子键【B 】A 、D :一般认为配合物的内界和外界之间主要以离子键相结合,因此螯合物中内界和外界之间是可以存在离子键的;C :中心原子可以是阳离子,也可以是中性原子,例如[Ni(CO)4];B :中心原子与配体化合时,中心原子提供杂化过的空轨道,配体提供孤对电子,而形成配位键。
2. 下列配合物命名不正确的是A. [Co(H 2O)(NH 3)3Cl 2]Cl 氯化二氯·三氨·一水合钴(Ⅲ)B. [Cr(NH 3)6][Co(CN)6] 六氰合钴(Ⅲ)酸六氨合铬(Ⅲ)C. K[Co(NO 2)3Cl 3] 三硝基·三氯合钴(Ⅲ)酸钾D. H 2[PtCl 6] 六氯合铂(Ⅳ)酸【C 】根据配体命名顺序,先无机后有机,先阴离子后中性分子,同类配体根据配位原子在字母表中的先后顺序进行命名。
对于C 中的配合物而言,NO 2- 以N 原子为配位原子时,命名为硝基,带一个负电荷,氯离子也是阴离子,同类配体,根据配位原子在字母表中的先后顺序,Cl -离子在前,NO 2-离子在后,因此该配合物应该命名为“三氯·三硝基合钴(Ⅲ)酸钾”。
3. 下列配离子具有正方形或者八面体形结构,其中CO 32-最有可能作为双齿配体的是A. [Co(NH 3)4(CO 3)]+B. [Co(NH 3)5(CO 3)]+C. [Pt(en)(NH 3)(CO 3)]D. [Pt(en)2(NH 3)(CO 3)]2+【A 】根据题意,配离子具有正方形结构时,配位数为4,形成四个配位键;具有八面体结构时,配位数为6,形成6个配位键。
B :[Co(NH 3)5(CO 3)]+ 配离子中,已有5个氨作为配体,氨是单齿配体,形成5个配位键,因此该配离子中,CO 32-离子只能是单齿配体,这样就形成了6个配位键;C :[Pt(en)(NH 3)(CO 3)] 配合物中,乙二胺(en)为双齿配体,形成2个配位键,氨为单齿配体,形成1个配位键,因此CO 32-离子只能是单齿配体,这样就形成了4个配位键;D :[Pt(en)2(NH 3)(CO 3)]2+ 配离子中,乙二胺(en)为双齿配体,2个en 形成4个配位键,氨为单齿配体,形成1个配位键,因此CO 32-离子只能是单齿配体,这样就形成了6个配位键;A :[Co(NH 3)4(CO 3)]+ 配离子中有4个氨为配体,形成4个配位键,因此CO 32-离子必须是双齿配体,这样就形成了4个配位键,如果CO 32-离子是单齿配体,那么配离子的配位数为5,这与题意不符。
4. 下列分子或者离子的中心原子发生了dsp 2杂化的是 A. BF 3 B. [Zn(NH 3)4]2+ (μ = 0 ) C. [Ni(CN)4]2-(μ = 0 ) D.【C 】A :BF 3分子为正三角形,中心原子B 发生sp 2杂化;[Zn(NH 3)4]2+ (μ = 0 )的配位数为4,中心原子提供4个杂化空轨道,由于Zn 2+离子的价层电子排布为3d 10,d 轨道已经全部排满电子,因此只会发生sp 3杂化,形成四个杂化轨道;D :NH 4+离子是正面体结构,因此中心原子N 原子发生了sp 3杂化;C :[Ni(CN)4]2-(μ = 0 )的配位数为4,中心原子提供4个杂化空轨道。
已知Ni 2+离子的价层电子排布为3d 8,有2个单电子,但是[Ni(CN)4]2- 配离子的μ = 0,可见配离子中中心原子的价电子全部成对,说明Ni 2+ 离子与CN -离子配位时,中心原子Ni 2+ 离子的3d 轨道上的单电子发生了重排,因此可以空出一个内层d 轨道参与杂化,根据其配位数可以判断,Ni 2+ 离子与CN -离子配位时,中心原子Ni 2+ 离子发生了dsp 2杂化。
5. 已知[Co(NH 3)6]3+ 配离子的μ = 0,则配离子的中心原子Co 3+的未成对电子数、杂化轨道类型和配合物类型分别为A. 4,sp 3d 2,外轨型B. 4,d 2sp 3,内轨型C. 0,sp 3d 2,外轨型D. 0,d 2sp 3,内轨型 【D 】[Co(NH 3)6]3+ 配离子的中心原子为Co 3+,已知Co 3+的价层电子排布式为3d 6,有4个单电子。
根据题意,[Co(NH 3)6]3+ 配离子的μ = 0,可见中心原子Co 3+的价电子全部成对了,因此配离子中未成对电子数为0;同时可以看到形成配离子后中心原子价电子的单电子与自由离子相比大大减少,说明在形成配离子时,中心原子的价层电子发生重排,可以空出2个内层d 轨道参与杂化,因此中心原子Co 3+发生了d 2sp 3杂化,形成了内轨型的配合物。
6. 下列说法正确的是A. 配位数相等的配合物,可以根据K s 的大小直接比较它们稳定性的高低B. 某金属离子M2+ 形成的配离子 [M(CN)4]2-,其空间构型为平面四边形C. 一般而言,配合物的K s较大,难溶电解质的K sp也较大,反应将有利于配合物向难溶电解质转化D. [Co(H2O)6]3+(μ≠ 0)的K s小于[Co(CN)6]3-(μ = 0)的K s【D】A:应该是配体数相等的配合物,可以根据K s的大小直接比较它们稳定性的高低;B:CN-离子是强场配体,配位能力较强,但是中心原子价轨道将采取何种杂化方式进行杂化,除了与配体的强度有关以外,还与中心原子的价电子排布有关,如果中心原子的内层d轨道上已经排满10个电子,那么一般就会发生sp3杂化,而形成四面体形空间结构;C:配合物的稳定常数越大,说明其稳定性越高,同时难溶电解质的溶度积越大,说明其越易溶解于水中,因此在这种情况下,反应将有利于难溶电解质向配合物转化;D:这两个配离子的中心原子都是Co3+,已知Co3+的价层电子排布式为3d6,有4个单电子。
根据题意,[Co(CN)6]3-的μ = 0,说明中心原子在形成配合物时,价层电子发生了重排,空出了内层d轨道参与杂化,从而形成了内轨型配合物,而[Co(H2O)6]3+的μ≠ 0,因此说明中心原子价层电子没有重排,全部用外层轨道参与杂化,从而形成外轨型配合物。
一般而言,对于同一中心原子所形成的配合物来说,内轨型配合物的稳定性往往高于外轨型配合物,所以[Co(H2O)6]3+(μ≠0)的K s小于[Co(CN)6]3-(μ = 0)的K s。
7. 下列配合物中,在水溶液中解离度最小的是A. [Cr(NH3)5Cl]SO4B. [Pt(NH3)2Cl2]C. H[Ag(CN)2]D. K 3[Fe(CN)6]【B 】根据配合物的组成,一般认为,内界和外界之间的作用是离子键,在水溶液中可以完全解离,表现出强电解质的性质;而内界的中心原子和配体之间形成配位键,在水溶液中难以解离,表现出弱电解质的性质。
那么题中四个选项中,A 、C 、D 三个配合物都是既有内界又有外界,因此在水溶液中内界和外界之间可以完全解离,解离度大,但是B 中的配合物只有内界,中心原子与配体之间难以解离,因此就表现出弱电解质的性质,解离度小。
8. 已知φ?(Co 3+/Co 2+) >φ?([Co(CN)6]3-/[Co(CN)6]4-) ,则A. K s ([Co(CN)6]3-)>K s ([Co(CN)6]4-)B. K s ([Co(CN)6]3-)=K s ([Co(CN)6]4-)C. K s ([Co(CN)6]3-)< K s ([Co(CN)6]4-)D. 无法确定 【A 】题中涉及到两个电极反应,分别为显然如果在电极(1)中加入过量的CN -离子就可以制得电极(2)。
对于电极(1)而言,其能斯特方程为:当在标准状态下的Co 3+/Co 2+电极(溶液中Co 3+和Co 2+的浓度均为1mol ·L -1)中加入CN -离子后,溶液中Co 3+和Co 2+离子分别与之反应生成了[Co(CN)6]3- 和[Co(CN)6]4- 配离子,因此Co 3+和Co 2+离子浓度均会下降,那么如果CN -离子过量并维持在1mol ·L -1时,此时溶液中[Co(CN)6]3- 和[Co(CN)6]4- 配离子的浓度就也分别为1mol ·L -1。
那么此时溶液中Co 3+离子的浓度可根据以下平衡来求算: 同理462s,[Co(CN)]1[Co ]K -+=,代入能斯特方程可得:而当电极(1)溶液中CN -离子过量并维持在1mol ·L -1时,电极(1)其实已经转变为电极(2),并处于标准状态下,因此上述能斯特方程可以表达为: 由于φ?( Co 3+/Co 2+ )>φ? [ Co(CN)63-/Co(CN)64-], 因此4636s,[Co(CN)]s,[Co(CN)]lg 0K K --<,那么所以A 选项是正确的。
9. 已知φ?(Hg 2+/Hg) = 0.854 V ,[HgI 4]2- 的K s = 6.8×1029,则φ?([HgI 4]2-/Hg)为 V 。
解:题中涉及到两个电极反应,分别为显然如果在电极(1)中加入过量的I -离子就可以制得电极(2)。
对于电极(1)而言,其能斯特方程为:当在标准状态下的Hg 2+/Hg 电极(溶液中Hg 2+的浓度为1mol ·L -1)中加入I -离子后,溶液中Hg 2+离子与之反应生成了[HgI 4]2-配离子,因此Hg 2+离子浓度均会下降,那么如果I -离子过量并维持在1mol ·L -1时,此时溶液中 [HgI 4]2- 配离子的浓度就也为1mol ·L -1。
那么此时溶液中Hg 2+离子的浓度可根据以下平衡来求算: 代入能斯特方程可得:而当电极(1)溶液中I -离子过量并维持在1mol ·L -1时,电极(1)其实已经转变为电极(2),并处于标准状态下,因此上述能斯特方程可以表达为: 10. 已知某溶液中[Ag(NH 3)2]+ 的浓度为0.050 mol ·L -1,NH 3 的浓度为3.0 mol ·L -1,Cl - 离子浓度为0.050 mol ·L -1,向此溶液中滴加浓HNO 3至溶液中恰好产生白色沉淀,则此时溶液中c (Ag +) = mol ·L -1,c (NH 3) = mol ·L -1, pH= 。