1-4 动量方程与气体状态方程

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可压缩气体的流量方程
ρ1 A1v1 = ρ 2 A2 v2
A:通流截面积 v:平均流速
可压缩气体的能量方程
前提:不计能量损失和Biblioteka Baidu能变化。
k p1 v k p2 v + = + k 1 ρ1 2 k 1 ρ 2 2
k:等熵指数 v:平均流速
2 1
2 2
对气体做功时的能量方程
在绝热过程下
k p1 v k p2 v + + Lk = + k 1 ρ1 2 k 1 ρ2 2
∑ F = ρqβ v
2 2
ρqβ1v1
瞬态力:液体流量变化所引起的力 稳态力:流出控制表面和流出控制表 面时的动量变化率
F = ρqv2 ρqv1
2.动量方程的应用
例1 计算液体对弯管的作用力 解:1)取断面1-1和2-2间的液体为控制体积。 2)各控制表面上的总压力为:
F1 = p1 A , F2 = p2 A
3)水平方向的动量方程
F1 Fx F2 cosα = ρqv cosα ρqv
4)垂直方向的动量方程
F2 sinα + Fy = ρqvsinα 0
液体对弯管的作用力
例2 一针状锥阀,锥阀的锥角为2φ,入口处的流 速为v1,压力为p1,锥阀出口处的流速为v2,压力 为大气压(p2=0),求外流式和内流式两种情况下 的液流对锥阀芯的稳态液动力。
动量方程
1. 动量方程的推导过程
d (mv ) ∑ F = dt
1)控制体积 2)控制表面
M = ∫ dM = ∫ ρ (s2 s1 )dq
q
dM ∑ F = dt
紊流: β 层流: β
β :动量修正系数
= 1 > 1
dq ∑ F = ρ (s2 s1 ) dt + ρqβ 2v2 ρqβ1v1
气体状态方程
理想气体:没有粘性的气体。 p:气体绝对压力,Pa; 理想气体状态方程:
pv = RT
p
pV = 常数 T
V V:气体体积,m3; m T:气体的热力学温度,K; v:气体体积,m3/kg; ρ:气体密度,kg/m3; R:气体常数,J/(kgK)。 干空气Rg=287.1J/(kgK); 水蒸气Rs=462.05J/(kgK)。
空气cv=718J/(kg.K)
Ev = cv (T2 T1 )
气体状态变化过程—等压状态
等压过程(盖-吕萨克定律): 在压力保持不变的条件下, v = 常数, v1 = v2 一定质量气体所进行的状 T T1 T2 态变化过程。 随温度升高,体积膨胀,对外做功。
W p = R(T2 T1 )
R (T2 T1 ) Wf = n 1
n=0:等压状态过程; n=1:等温状态过程; n=∞:等容状态过程; n=k:绝热状态过程
例1
把绝对压力0.1MPa,温度为20℃的某 容积V的干空气压缩至V/10,试分别 按等温、绝热过程计算压缩后的压力 和温度。
例2
由空气压缩机向气罐充气,使罐内绝对 压力由0.1MPa升至0.265MPa,罐内温度 由室温15℃升至t2。充气结束后,罐内温 度逐渐降到室温,空气压力变为p’2。 求t2和p’2。
随温度升高,热能增加。
Q p = c p (T2 T1 )
cp:质量定压热容;
空气cp=1005J/(kg.K)
气体状态变化过程—等温状态
等温过程(波意耳定律):在温度保持不 变的条件下,一定质量气体所进行的状态 变化过程。
pv = 常数, p1v1 = p2 v2
压力降低,体积膨胀,对外做功。
ρ
= RT
气体状态方程适用条件
绝对压力<20MPa; 温度>253K。
气体状态变化过程—等容状态
等容过程(查理定律): p p1 p2 在体积保持不变的条件下, = 常数, = T1 T2 一定质量气体所进行的状 T 态变化过程。 等容过程气体对外不做功。 随温度升高,压力能和热能增加。
cv:质量定容热容;
v1 p1 WT = RT ln = p1v1 ln v2 p2
等温过程,热能不变。
气体状态变化过程—绝热状态
绝热过程:在气体与外界无热量交换的条件 下,一定质量气体所进行的状态变化过程。
pv = 常数, p1v1 = p2 v 2
k k
k
k 1
气体消耗自身热能对外做功。 压力、温度、体积均为变量。 单位质量体积膨胀对外做功:
T2 v1 = T1 v2
R (T2 T1 ) Wf = k 1
k=
cp cv
T2 p2 = p T1 1
k 1 k
气体状态变化过程—多变状态
多变过程:在没有任何约束条件下,一定质 量气体所进行的状态变化过程。
pv = 常数, p1v1 = p2 v 2
n n
n
单位质量体积膨胀对外做功:
k p1 p2 Lk = k 1 ρ1 p1
k 1 k
2 1
2 2
2 2 + v2 v1 1 2
相关文档
最新文档