导数的概念及基本函数的导数

合集下载

导数的基本概念与性质知识点总结

导数的基本概念与性质知识点总结

导数的基本概念与性质知识点总结导数是微积分中的一项重要概念,它描述了函数在某一点处的变化率。

在这篇文章中,我们将介绍导数的基本概念以及它的一些重要性质。

一、导数的定义导数描述了函数在某一点处的变化率,可以想象成函数曲线在该点处的切线斜率。

设函数y=f(x),在点x=a处有导数的充分必要条件是:f'(a) = lim(x→a) (f(x)-f(a))/(x-a)其中lim表示极限。

这个定义告诉我们,导数可以通过极限的方式来求得。

二、用导数求函数的极值导数在微积分中有着重要的应用,其中一个重要的应用是求函数的极值。

一个函数在某一点的导数为零,说明在该点处函数取得极值。

具体而言,如果函数在某一点的导数为零,且在该点的导数的左右两侧的值符号不同,那么该点即为函数的极值点。

三、导数的四则运算导数具有很多运算特性,这使得我们能够更轻松地对函数进行分析。

导数的四则运算规则如下:1. 常数规则:如果c是常数,f(x)=c,则f'(x)=0。

2. 基本初等函数规则:对于基本初等函数来说,我们可以直接通过求导公式得到它们的导数。

例如,对于常数函数f(x)=c,它的导数为0;对于幂函数f(x)=x^n,它的导数为f'(x)=nx^(n-1)。

3. 和差规则:如果f(x)和g(x)都是可导的函数,那么它们的和(差)的导数等于各自函数的导数之和(差)。

即(f+g)'(x)=f'(x)+g'(x)。

4. 乘积规则:如果f(x)和g(x)都是可导的函数,那么它们的乘积的导数等于第一个函数的导数乘以第二个函数再加上第一个函数乘以第二个函数的导数。

即(fg)'(x)=f'(x)g(x)+f(x)g'(x)。

5. 商法则:如果f(x)和g(x)都是可导的函数,那么它们的商的导数等于分子函数的导数乘以分母函数再减去分子函数乘以分母函数的导数,再除以分母函数的平方。

导数的基本公式及运算法则

导数的基本公式及运算法则

导数的基本公式及运算法则导数是微积分中的一个重要概念,用于描述函数在其中一点处的变化率。

导数的基本公式和运算法则是学习微积分的基础,下面将详细介绍。

一、导数的定义在数学中,函数f(x)在点x处的导数定义为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量的增量。

该定义表示函数f(x)在点x处的导数是函数在极限过程中的变化率。

二、导数的基本公式1.常数函数的导数公式若f(x)=c,其中c为常数,则f'(x)=0。

2.幂函数的导数公式若f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。

3.指数函数的导数公式若f(x)=e^x,则f'(x)=e^x。

4.对数函数的导数公式若f(x) = ln(x),则f'(x) = 1/x。

5.三角函数的导数公式- 若f(x) = sin(x),则f'(x) = cos(x)。

- 若f(x) = cos(x),则f'(x) = -sin(x)。

- 若f(x) = tan(x),则f'(x) = sec^2(x)。

6.反三角函数的导数公式- 若f(x) = arcsin(x),则f'(x) = 1 / sqrt(1 - x^2)。

- 若f(x) = arccos(x),则f'(x) = -1 / sqrt(1 - x^2)。

- 若f(x) = arctan(x),则f'(x) = 1 / (1 + x^2)。

三、导数的运算法则1.和差法则若f(x)和g(x)都可导,则(f±g)'(x)=f'(x)±g'(x)。

2.常数倍法则若f(x)可导,则(kf(x))' = kf'(x),其中k为常数。

3.乘积法则若f(x)和g(x)都可导,则(fg)'(x) = f'(x)g(x) + f(x)g'(x)。

(一)导数的概念及运算

(一)导数的概念及运算
1.一个物体的运动方程为 其中y的单位:m,t的单位:s,那么物体在3s末的瞬时速度是_______ .
2.已知f(x)=sinx(cosx+1),则 等于_______.
3.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围是 ,则点P横坐标的取值范围为_______.
4.若点P在曲线y=x3-3x2+(3- )x+ 上移动,经过点P的切线的倾斜角为 ,则角 的取值范围是_______.
5.(2008南通调研)给出下列的命题:①若函数 ;②若函数 图像上P(1,3)及邻近点Q(1+ 则 ;③加速度是动点位移函数 对时间t的导数;④ ,其中正确的命题是_______.
6.(2009南通调研)曲线C: 在x=0处的切线方程为_______.
7.(2009徐州调研).已知函数f(x)= sinx+cosx,则 =.
8.(2009全国卷Ⅰ理9福建卷理)若曲线 存在垂直于 轴的切线,则实数 取值范围是_____________.
10.(2009陕西卷理)设曲线 在点(1,1)处的切线与x轴的交点的横坐标为 ,令 ,则 的值为.
11.设f(x)=x(x+1)(x+2)…(x+n),则f′(0)=_________
(第一讲)导数的概念及运算
一、导数的概念:函数y= 的导数 ,就是当Δ 0时,函数的增量Δy与自变量的增量Δ 的比 的,即 ==.
二、导函数:函数y= 在区间(a, b)内的导数都存在,就说 在区间( a, b )内,其导数也是(a ,b )内的函数,叫做 的,记作 或 ,函数 的导函数 在 时的函数值,就是 在 处的导数.
(4) =

导数的概念及其意义、导数的运算

导数的概念及其意义、导数的运算

§3.1 导数的概念及其意义、导数的运算学习目标了解导数的概念、掌握基本初等函数的导数. 2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数,能求简单的复合函数(形如f (ax +b ))的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或0'|x x y =.f ′(x 0)=lim Δx →0 ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx . (2)函数y =f (x )的导函数 f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos_x f (x )=cos x f ′(x )=-sin_x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln_a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ).5.复合函数的定义及其导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y ′x =y ′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( × ) (2)与曲线只有一个公共点的直线一定是曲线的切线.( × ) (3)f ′(x 0)=[f (x 0)]′.( × )(4)若f (x )=sin (-x ),则f ′(x )=cos (-x ).( × ) 教材改编题1.函数f (x )=e x +1x 在x =1处的切线方程为________.答案 y =(e -1)x +2 解析 f ′(x )=e x -1x 2,∴f ′(1)=e -1, 又f (1)=e +1,∴切点为(1,e +1),切线斜率k =f ′(1)=e -1, 即切线方程为y -(e +1)=(e -1)(x -1), 即y =(e -1)x +2.2.已知函数f (x )=x ln x +ax 2+2,若f ′(e)=0,则a =________. 答案 -1e解析 f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.3.若f (x )=ln(1-x )+e 1-x ,则f ′(x )=________. 答案1x -1-e 1-x题型一 导数的运算例1 (1)(多选)(2022·济南质检)下列求导运算正确的是( ) A.⎝⎛⎭⎫1ln x ′=-1x ln 2x B .(x 2e x )′=2x +e xC.⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-sin ⎝⎛⎭⎫2x -π3 D.⎝⎛⎭⎫x -1x ′=1+1x 2 答案 AD解析 ⎝⎛⎭⎫1ln x ′=-1ln 2x ·(ln x )′=-1x ln 2x , 故A 正确;(x 2e x )′=(x 2+2x )e x ,故B 错误;⎣⎡⎦⎤cos ⎝⎛⎭⎫2x -π3′=-2sin ⎝⎛⎭⎫2x -π3,故C 错误;⎝⎛⎭⎫x -1x ′=1+1x 2,故D 正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝⎛⎭⎫π3sin x ,则f ⎝⎛⎭⎫π6=________. 答案 π236+2π3解析 f ′(x )=2x +f ′⎝⎛⎭⎫π3cos x , ∴f ′⎝⎛⎭⎫π3=2π3+12f ′⎝⎛⎭⎫π3, ∴f ′⎝⎛⎭⎫π3=4π3, ∴f ⎝⎛⎭⎫π6=π236+2π3.教师备选1.函数y =sin 2x -cos 2x 的导数y ′等于( )A .22cos ⎝⎛⎭⎫2x -π4B .cos 2x +sin xC .cos 2x -sin 2xD .22cos ⎝⎛⎭⎫2x +π4 答案 A解析 y ′=2cos 2x +2sin 2x =22cos ⎝⎛⎭⎫2x -π4. 2.(2022·济南模拟)已知函数f ′(x )=e x sin x +e x cos x ,则f (2 021)-f (0)等于( ) A .e 2 021cos 2 021 B .e 2 021sin 2 021 C.e2 D .e答案 B解析 因为f ′(x )=e x sin x +e x cos x , 所以f (x )=e x sin x +k (k 为常数), 所以f (2 021)-f (0)=e 2 021sin 2 021.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解. (3)复合函数求导,应由外到内逐层求导,必要时要进行换元.跟踪训练1 (1)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于( )A .1B .2C .3D .4 答案 C解析 当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3.(2)已知函数f (x )=ln(2x -3)+ax e -x ,若f ′(2)=1,则a =________. 答案 e 2解析 f ′(x )=12x -3·(2x -3)′+a e -x +ax ·(e -x )′=22x -3+a e -x -ax e -x ,∴f ′(2)=2+a e -2-2a e -2=2-a e -2=1,则a =e 2.题型二 导数的几何意义 命题点1 求切线方程例2 (1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为__________.答案 5x -y +2=0 解析 y ′=⎝⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为__________. 答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x .∴由⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2 求参数的值(范围)例3 (1)(2022·青岛模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于( )A .4B .3C .2D .1 答案 A解析 ∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵ f (x )=a ln x +b ,∴ f ′(x )=a x ,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln 1+b =2,解得b =2,故2a +b =2+2=4.(2)(2022·广州模拟)过定点P (1,e)作曲线y =a e x (a >0)的切线,恰有2条,则实数a 的取值范围是________. 答案 (1,+∞)解析 由y ′=a e x ,若切点为(x 0,0e x a ), 则切线方程的斜率k =0'|x x y =0e x a >0,∴切线方程为y =0e x a (x -x 0+1), 又P (1,e)在切线上, ∴0e x a (2-x 0)=e ,即ea =0e x (2-x 0)有两个不同的解, 令φ(x )=e x (2-x ), ∴φ′(x )=(1-x )e x ,当x ∈(-∞,1)时,φ′(x )>0; 当x ∈(1,+∞)时,φ′(x )<0,∴φ(x )在(-∞,1)上单调递增,在(1,+∞)上单调递减, ∴φ(x )max =φ(1)=e , 又x →-∞时,φ(x )→0; x →+∞时,φ(x )→-∞, ∴0<ea<e ,解得a >1,即实数a 的取值范围是(1,+∞). 教师备选1.已知曲线f (x )=x 3-x +3在点P 处的切线与直线x +2y -1=0垂直,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3) D .(1,-3)答案 C解析 设切点P (x 0,y 0), f ′(x )=3x 2-1,又直线x +2y -1=0的斜率为-12,∴f ′(x 0)=3x 20-1=2,∴x 20=1, ∴x 0=±1,又切点P (x 0,y 0)在y =f (x )上, ∴y 0=x 30-x 0+3, ∴当x 0=1时,y 0=3;当x 0=-1时,y 0=3. ∴切点P 为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M 是曲线y =ln x +12x 2+(1-a )x 上的任一点,若曲线在M 点处的切线的倾斜角均是不小于π4的锐角,则实数a 的取值范围是( )A .[2,+∞)B .[4,+∞)C .(-∞,2]D .(-∞,4]答案 C解析 因为y =ln x +12x 2+(1-a )x ,所以y ′=1x +x +1-a ,因为曲线在M 点处的切线的倾斜角均是不小于π4的锐角,所以y ′≥tan π4=1对于任意的x >0恒成立,即1x +x +1-a ≥1对任意x >0恒成立, 所以x +1x ≥a ,又x +1x≥2,当且仅当x =1x ,即x =1时,等号成立,故a ≤2,所以a 的取值范围是(-∞,2].思维升华 (1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”. 跟踪训练2 (1)(2022·南平模拟)若直线y =x +m 与曲线y =e x -2n相切,则( )A .m +n 为定值 B.12m +n 为定值 C .m +12n 为定值D .m +13n 为定值答案 B解析 设直线y =x +m 与曲线y =e x -2n切于点(x 0,02e x n -),因为y ′=e x-2n,所以02e x n -=1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m , 即12m +n =12. (2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是______. 答案 [2,+∞)解析 直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x +4x -a =2在(0,+∞)内有解,则a =4x +1x -2,x >0.又4x +1x≥24x ·1x=4, 当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4 (1)(2022·邯郸模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于( ) A .0 B .-1 C .3 D .-1或3 答案 D解析 由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln 1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1,因为直线l 与g (x )的图象也相切,则方程组⎩⎪⎨⎪⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)(2022·韶关模拟)若曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,则a 的取值范围为________. 答案 ⎣⎡⎭⎫e24,+∞ 解析 由y =ax 2(a >0),得y ′=2ax , 由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线, 设公切线与曲线C 1切于点(x 1,ax 21), 与曲线C 2切于点(x 2,2e x ),则2ax 1=222121e e ,x x ax x x -=-可得2x 2=x 1+2,∴a =1121e2x x +, 记f (x )=12e2x x +, 则f ′(x )=122e(2)4x x x+-, 当x ∈(0,2)时,f ′(x )<0,f (x )单调递减; 当x ∈(2,+∞)时,f ′(x )>0,f (x )单调递增. ∴当x =2时,f (x )min =e 24.∴a 的取值范围是⎣⎡⎭⎫e 24,+∞.延伸探究 在本例(2)中,把“存在公共切线”改为“存在两条公共切线”,则a 的取值范围为________. 答案 ⎝⎛⎭⎫e 24,+∞ 解析 由本例(2)知,∵两曲线C 1与C 2存在两条公共切线,∴a =1121e2x x +有两个不同的解. ∵函数f (x )=12e2x x+在(0,2)上单调递减, 在(2,+∞)上单调递增,且f (x )min =f (2)=e 24,又x →0时,f (x )→+∞, x →+∞时,f (x )→+∞, ∴a >e 24.教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( )A .1B .2C .3D .3或-1 答案 D解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于( )A .-1B .-2C .1D .2 答案 B解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为 y -1e x =1e x (x -x 1),即1111e e e ,xxxy x x =-+曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得1112121e ,e e 1ln ,x x x x x x ⎧=⎪⎨⎪-=-+⎩ 得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+11lnex =-1-x 1, 则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3 (1)(2022·青岛模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为( ) A .2 B .5 C .1 D .0答案 C解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________. 答案 y =e x 或y =x +1解析 设直线l 与f (x )=e x 的切点为(x 1,y 1), 则y 1=1e x ,f ′(x )=e x , ∴f ′(x 1)=1e x , ∴切点为(x 1,1e x ), 切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1), 即y =1e x ·x -x 11e x +1e x ,①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2), ∴y 2=ln x 2+2, g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2), 切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②由题意知,①与②相同,∴111121221e e ,e e ln 1,x x x x x x x x -⎧=⎪⎨⎪-+==+⇒⎩③④ 把③代入④有111e e x x x -+=-x 1+1, 即(1-x 1)(1e x -1)=0, 解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ; 当x 1=0时,切线方程为y =x +1, 综上,直线l 的方程为y =e x 或y =x +1.课时精练1.(2022·营口模拟)下列函数的求导正确的是( ) A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln 10)′=110D .(e 2x )′=2e x 答案 B解析 (x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对; (ln 10)′=0,∴C 错; (e 2x )′=2e 2x ,∴D 错.2.(2022·黑龙江哈师大附中月考)曲线y =2cos x +sin x 在(π,-2)处的切线方程为( ) A .x -y +π-2=0 B .x -y -π+2=0 C .x +y +π-2=0 D .x +y -π+2=0答案 D解析 y ′=-2sin x +cos x ,当x =π时,k =-2sin π+cos π=-1,所以在点(π,-2)处的切线方程,由点斜式可得y +2=-1×(x -π),化简可得x +y -π+2=0.3.(2022·长治模拟)已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4 答案 B解析 由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 4.已知点A 是函数f (x )=x 2-ln x +2图象上的点,点B 是直线y =x 上的点,则|AB |的最小值为( ) A. 2 B .2 C.433 D.163答案 A解析 当与直线y =x 平行的直线与f (x )的图象相切时,切点到直线y =x 的距离为|AB |的最小值.f ′(x )=2x -1x =1,解得x =1或x =-12(舍去),又f (1)=3,所以切点C (1,3)到直线y =x 的距离即为|AB |的最小值,即|AB |min =|1-3|12+12= 2.5.设曲线f (x )=a e x +b 和曲线g (x )=cos πx2+c 在它们的公共点M (0,2)处有相同的切线,则b+c -a 的值为( ) A .0 B .π C .-2 D .3 答案 D解析 ∵f ′(x )=a e x ,g ′(x )=-π2sin πx2,∴f ′(0)=a ,g ′(0)=0,∴a =0,又M (0,2)为f (x )与g (x )的公共点,∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.(2022·邢台模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是( ) A.⎣⎡⎭⎫0,3π4 B.⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π C.⎝⎛⎭⎫π2,3π4 D.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 答案 B解析 ∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π), ∴α∈⎣⎡⎭⎫0,π2∪⎝⎛⎭⎫3π4,π. 7.(多选)已知函数f (x )的图象如图,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .f ′(3)>f ′(2)B .f ′(3)<f ′(2)C .f (3)-f (2)>f ′(3)D .f (3)-f (2)<f ′(2) 答案 BCD解析 f ′(x 0)的几何意义是f (x )在x =x 0处的切线的斜率.由图知f ′(2)>f ′(3)>0, 故A 错误,B 正确. 设A (2,f (2)),B (3,f (3)), 则f (3)-f (2)=f (3)-f (2)3-2=k AB ,由图知f ′(3)<k AB <f ′(2),即f ′(3)<f (3)-f (2)<f ′(2),故C ,D 正确.8.(多选)(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎫0,3π4上是凸函数的是( ) A .f (x )=-x 3+3x +4 B .f (x )=ln x +2x C .f (x )=sin x +cos x D .f (x )=x e x 答案 ABC解析 对A ,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3, f ″(x )=-6x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故A 为凸函数; 对B ,f (x )=ln x +2x ,f ′(x )=1x +2,f ″(x )=-1x2,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故B 为凸函数; 对C ,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )<0,故C 为凸函数; 对D ,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎫0,3π4时,f ″(x )>0,故D 不是凸函数. 9.(2022·马鞍山模拟)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =________. 答案 -1解析 因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x , f ′(π)=cos π-π·sin π=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1.10.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =________.答案 2解析 f ′(x )=-(ax -1)′(ax -1)2+e xcos x -e xsin x =-a(ax -1)2+e x cos x -e x sin x , ∴f ′(0)=-a +1=-1,则a =2.11.(2022·宁波镇海中学质检)我国魏晋时期的科学家刘徽创立了“割圆术”,实施“以直代曲”的近似计算,用正n 边形进行“内外夹逼”的办法求出了圆周率π的精度较高的近似值,这是我国最优秀的传统科学文化之一.借用“以直代曲”的近似计算方法,在切点附近,可以用函数图象的切线近似代替在切点附近的曲线来近似计算.设f (x )=2e x,则f ′(x )=________,其在点(0,1)处的切线方程为________.答案 22e xx y =1 解析 ∵f (x )=2e x ,故f ′(x )=(x 2)′2e x =22e x x ,则f ′(0)=0.故曲线y =f (x )在点(0,1)处的切线方程为y =1.12.已知函数f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为____________________. 答案 (-∞,-1)∪(3,+∞)解析 因为f (x )=x 3-ax 2+⎝⎛⎭⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根,则Δ=4a 2-12⎝⎛⎭⎫23a +1>0,即a 2-2a -3>0, 解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.拉格朗日中值定理又称拉氏定理,是微积分学中的基本定理之一,它反映了函数在闭区间上的整体平均变化率与区间某点的局部变化率的关系,其具体内容如下:若f (x )在[a ,b ]上满足以下条件:①在[a ,b ]上图象连续,②在(a ,b )内导数存在,则在(a ,b )内至少存在一点c ,使得f (b )-f (a )=f ′(c )(b -a )(f ′(x )为f (x )的导函数).则函数f (x )=x e x -1在[0,1]上这样的c 点的个数为( ) A .1 B .2 C .3 D .4 答案 A解析 函数f (x )=x e x -1, 则f ′(x )=(x +1)e x -1, 由题意可知,存在点c ∈[0,1], 使得f ′(c )=f (1)-f (0)1-0=1,即(1+c )e c -1=1,所以e c -1=11+c ,c ∈[0,1],作出函数y =e c -1和y =11+c的图象,如图所示,由图象可知,函数y =e c-1和y =11+c的图象只有一个交点,所以e c -1=11+c ,c ∈[0,1]只有一个解,即函数f (x )=x e x -1在[0,1]上c 点的个数为1.14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( ) A .e b <a B .e a <b C .0<a <e b D .0<b <e a答案 D解析 方法一 设切点(x 0,y 0),y 0>0, 则切线方程为y -b =0e x (x -a ),由⎩⎨⎧y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解. 设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ), 由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增, 当x >a 时,f ′(x )<0,f (x )单调递减, 所以f (x )max =f (a )=e a (1-a +a )=e a , 当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0, 当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线 ,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方, 得0<b <e a .15.若曲线y =14sin 2x +32cos 2x 在A (x 1,y 1),B (x 2,y 2)两点处的切线互相垂直,则|x 1-x 2|的最小值为( ) A.π3 B.π2 C.2π3 D .π 答案 B解析 ∵y =14sin 2x +32cos 2x=14sin 2x +32×1+cos 2x2 =12sin ⎝⎛⎭⎫2x +π3+34, ∴y ′=cos ⎝⎛⎭⎫2x +π3, ∴曲线的切线斜率在[-1,1]范围内, 又曲线在两点处的切线互相垂直,故在A (x 1,y 1),B (x 2,y 2)两点处的切线斜率必须一个是1,一个是-1.不妨设在A 点处切线的斜率为1, 则有2x 1+π3=2k 1π(k 1∈Z ),2x 2+π3=2k 2π+π(k 2∈Z ),则可得x 1-x 2=(k 1-k 2)π-π2=k π-π2(k ∈Z ),∴|x 1-x 2|min =π2.16.(2022·南昌模拟)已知曲线C 1:y =e x +m ,C 2:y =x 2,若恰好存在两条直线l 1,l 2与C 1,C 2都相切,则实数m 的取值范围是____________. 答案 (-∞,2ln 2-2)解析 由题意知,l 1,l 2的斜率存在,设直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,设l 1与C 1,C 2的切点坐标分别为(x 1,y 1),(x 2,y 2), 则⎩⎨⎧k 1=1e x m+=2x 2(k 1>0),k 1x 1+b 1=1e x m+,k 1x 2+b 1=x 22,可得⎩⎪⎨⎪⎧x 1=ln k 1-m ,x 2=k 12,k 1(x 2-x 1)=x 22-1ex m+,故k 1⎝⎛⎭⎫k 12-ln k 1+m =k 214-k 1, 整理得m =ln k 1-k 14-1,同理可得,当直线l 2:y =k 2x +b 2与C 1,C 2都相切时, 有m =ln k 2-k 24-1,综上所述,只需m =ln k -k4-1(k >0)有两解,令f (k )=ln k -k4-1,则f ′(k )=1k -14=4-k4k ,故当f ′(k )>0时,0<k <4, 当f ′(k )<0时,k >4,所以f (k )在(0,4)上单调递增,在(4,+∞)上单调递减, 故f (k )max =f (4)=ln 4-44-1=2ln 2-2,所以只需满足m <2ln 2-2即可.。

导数的定义和基本规则

导数的定义和基本规则

导数的定义和基本规则1. 导数的定义导数是数学分析中的一个核心概念,主要用于研究函数在某一点处的局部性质。

具体来说,导数反映了函数在某一点处的变化率,即自变量发生微小变化时,因变量的变化量与自变量变化量的比值。

设函数f(x)在点x0处有极限,则函数f(x)在点x0处的导数定义为:f′(x0)=limΔx→0f(x0+Δx)−f(x0)Δx如果上述极限存在,则称函数f(x)在点x0处可导。

2. 基本导数公式(1)常数函数的导数:对于常数c,有f(x)=c,则f′(x)=0。

(2)幂函数的导数:对于幂函数f(x)=x n(n为实数),有f′(x)=nx n−1。

(3)指数函数的导数:对于指数函数f(x)=a x(a为常数,a≠0),有f′(x)=a x lna。

(4)对数函数的导数:对于对数函数f(x)=log a x(a为常数,a>0,a≠1),有f′(x)=1xlna。

(5)三角函数的导数:•对于正弦函数f(x)=sinx,有f′(x)=cosx。

•对于余弦函数f(x)=cosx,有f′(x)=−sinx。

•对于正切函数f(x)=tanx,有f′(x)=sec2x。

(6)反三角函数的导数:•对于反正弦函数f(x)=arcsinx,有f′(x)=√1−x2(−1≤x≤1)。

•对于反余弦函数f(x)=arccosx,有f′(x)=√1−x2−1≤x≤1)。

•对于反正切函数f(x)=arctanx,有f′(x)=11+x2。

(7)链式法则:若函数f(x)=g(ℎ(x)),则f′(x)=g′(ℎ(x))⋅ℎ′(x)。

(8)乘积法则:若函数f(x)=g(x)⋅ℎ(x),则f′(x)=g′(x)⋅ℎ(x)+g(x)⋅ℎ′(x)。

(9)商法则:若函数f(x)=g(x)ℎ(x)(h(x)≠0),则f′(x)=g′(x)⋅ℎ(x)−g(x)⋅ℎ′(x)[ℎ(x)]2。

(10)和差法则:若函数f(x)=g(x)+ℎ(x),则f′(x)=g′(x)+ℎ′(x);若函数f(x)=g(x)−ℎ(x),则f′(x)=g′(x)−ℎ′(x)。

导数的概念及计算

导数的概念及计算

导数的概念及计算一.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率0lim x ∆→ f (x 0+Δx )-f (x 0)Δx=0lim x ∆→ Δy Δx 为函数y =f (x )在x =x 0处的导数,记作y ′|x =x 0 =f ′(x 0) =0lim x ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx . (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)值就是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).二.基本初等函数的导数公式三.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 四.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′.考向一 利用公式及运算法则求导【例2】求下列函数的导数2311(1)()y x x x x =++ (2) (3) ()234(21)x y x =+ (5)sin2xy e x -= 【举一反三】1.下列求导运算正确的是( )A .(3x )′=x •3x−1B .(2e x )′=2e x (其中e 为自然对数的底数)C .(x 2+1x )′=2x +1x 2 D .(x cosx)′=cosx−xsinx cos 2x2.求下列函数的导数: (1)y =√x 5+√x 7+√x 9√x ; (2)y =x ⋅tanx (3)y =x n ⋅lg x ;(4)y =1x +2x 2+1x 3;考向二 复合函数求导【例3】求下列函数导数(1)y =sin(2x +1) ()(2)cos2f x x x =⋅ (3)()cos ln y x =【举一反三】求下列函数的导数: (1)y =; (2)2()5log 21y x =+.(3)sin()eax b y +=;(提示:设e uy =,sin u v =,v ax b =+,x u v xy y u v ''''=⋅⋅)(4)2(πsin 2)3y x =+; 考向三 利用导数求值【例4】(1)f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0= . 2.若f (x )=x 2+2x ·f ′(1),则f ′(0)= .3. 已知函数()f x 的导函数为()f x ',且满足()()2e ln f x xf x +'=,则()e f '= 。

大学导数知识点总结

大学导数知识点总结

大学导数知识点总结一、导数的概念导数是微积分中一个非常重要的概念,它是某一函数在某一点上的变化率。

在几何意义上,导数表示了曲线在某一点的切线斜率;在物理学中,导数表示了物体在某一时刻的速度和加速度。

因此,导数在数学、物理、经济等领域中都有着非常广泛的应用。

设y=f(x),x为自变量,y为因变量。

如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记作f'(a)。

导数f'(a)就是函数f(x)在点x=a处的瞬间变化率,也就是函数的斜率。

导数的计算是微积分中的一个重要内容,它可以通过极限的方法来求得。

二、导数的计算方法求导数的过程即为求函数的瞬间变化率的过程,常用的方法有以下几种:1. 函数的基本求导公式:包括多项式函数、指数函数、对数函数、三角函数等求导公式。

这些基本求导公式是求导的起点,通过它们可以得到更复杂函数的导数。

2. 导数的四则运算:如果函数f(x)和g(x)都在点x=a处可导,那么f(x)与g(x)的和、差、积、商函数在点x=a处的导数可分别表示为(f+g)'(a)、(f-g)'(a)、(fg)'(a)、(f/g)'(a)。

3. 复合函数求导:对于复合函数f(g(x)),可以利用链式法则求导,即先对最外层函数求导,再乘以内层函数的导数。

4. 隐函数求导:对于以x和y为自变量的方程,如果y不能表示为x的函数形式,则称y是x的隐函数。

对隐函数求导需要利用隐函数求导的公式。

5. 参数方程求导:对参数方程x=x(t)和y=y(t)所确定的轨迹求切线斜率时,需要计算dy/dx=y'(t)/x'(t)。

6. 反函数求导:如果函数y=f(x)在一段区间内是单调、连续、可导的,并且f'(x)≠0,则其反函数在对应区间内也是可导的,且有f^(-1)'(y)=1/f'(x),即反函数的导数等于原函数导数的倒数。

导数的定义和求导规则

导数的定义和求导规则

导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。

定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。

2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。

2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。

2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。

2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。

2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。

2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。

2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。

2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。

三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。

导数的概念及基本函数的导数

导数的概念及基本函数的导数

Dy [(0+Dx)2+(0+Dx)+1]-(02+0+1) 又 Dlim =lim =lim (Dx+1)=1, x0- Dx Dx0Dx Dx02+0+1) Dy [ a (0+ D x )+ b ] (0 lim+ Dx =lim+ Dx D x0 D x0
aDx+b-1 b- 1 =lim =a+lim D x + D x0 Dx0+ Dx 故当 b-1=0 且 a=1 即 a=b=1 时, f(x) 在 x=0 处可导. 综上所述, 当 b=1, aR 时, f(x) 在 x=0 处连续, 当 a=b=1 时, f(x) 在 x=0 处可导. (2)由(1)知, f(0)=1, 又 f(0)=1, 故曲线 y=f(x) 在点 P(0, f(0)) 处的切线方程为 y-1=x-0, 即 x-y+1=0.
(2)物理意义: 函数 S=s(t) 在点 t0 处的导数 s(t0), 就是当物体 的运动方程为 S=s(t) 时, 物体运动在时刻 t0 时的瞬时速度 v, 即: v=s(t0). 设 v=v(t) 是速度函数, 则 v(t0)表示物体在时刻 t=t0 时的 加速度.
3.几种常见函数的导数
一、复习目标
了解导数概念的某些实际背景(瞬时速度, 加速度, 光滑曲线 切线的斜率等), 掌握函数在一点处的导数的定义和导数的几何 意义, 理解导数的概念, 熟记常见函数的导数公式 c, xm(m 为有 理数), sinx, cosx, ex, ax, lnx, logax 的导数, 并能熟练应用它们求 有关导数.
因而对于开区间 (a, b) 内每一个确定的值, 都对应着一个确定 的导数 f(x0). 据函数定义, 在开区间 (a, b) 内就构成了一个新 函数, 即导数.

导数公式及导数的运算法则

导数公式及导数的运算法则

导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。

(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。

(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。

(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。

(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。

2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。

(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。

(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。

(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。

1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。

导数的概念导数公式与应用

导数的概念导数公式与应用

导数的概念导数公式与应用一、导数的概念导数是微积分中的重要概念之一,表示函数在其中一点处的变化率。

具体来说,对于函数f(x),在点x处的导数可以用极限表示为:f'(x) = lim┬(Δx→0)⁡〖(f(x+Δx) - f(x))/Δx 〗其中,Δx表示自变量x的一个增量。

导数表示了在自变量x发生微小变化的过程中,函数f(x)相应地发生的变化。

二、导数的公式1.常数的导数公式:如果f(x)=c是一个常数函数,其中c是常数,则f'(x)=0。

这是因为无论x如何变化,函数的值始终保持不变。

2.幂函数的导数公式:如果f(x)=x^n,其中n是任意实数,则f'(x)=nx^(n-1)。

3.指数函数的导数公式:如果f(x)=a^x,其中a>0且a≠1,则f'(x)=a^xln⁡(a)。

这个公式表明指数函数的导数与指数函数的底数有关。

4.对数函数的导数公式:如果f(x)=logₐ(x),其中a>0且a≠1,则f'(x)=1/((xln⁡(a))。

5.三角函数的导数公式:- sin(x)的导数:(sin(x))'=cos(x)。

- cos(x)的导数:(cos(x))'=-sin(x)。

- tan(x)的导数:(tan(x))'=sec^2(x)。

6.反三角函数的导数公式:- arcsin(x)的导数:(arcsin(x))'=1/√(1-x^2)。

- arccos(x)的导数:(arccos(x))'=-1/√(1-x^2)。

- arctan(x)的导数:(arctan(x))'=1/(1+x^2)。

以及其他常用函数的导数公式,如指数函数、对数函数的复合函数求导法则等。

三、导数的应用导数作为一种变化率的度量,有许多实际应用。

1.切线与法线:通过计算函数的导数,可以求得函数曲线在特定点处的导数值,从而得到曲线上该点处的切线方程。

导数的概念与导数运算考点及题型全归纳

导数的概念与导数运算考点及题型全归纳

第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。

导数的定义和基本性质解析

导数的定义和基本性质解析

导数的定义和基本性质解析导数是微积分中一个重要的概念,对于研究函数的局部变化有着重要的作用。

在本文中,我们将解析导数的定义和基本性质,并探讨其在求解函数极值、切线方程等方面的应用。

一、导数的定义导数的定义最早由法国数学家拉格朗日提出,它描述了函数在某一点处的变化率。

设函数f(x)在点x=a处可导,则f(x)在x=a处的导数可表示为:f'(a) = lim┬(Δx→0)⁡(f(a+Δx)-f(a))/Δx其中,Δx表示自变量x的增量,lim表示当Δx趋近于0时的极限值。

导数的定义可以通过斜率来理解。

当自变量x在a点做微小的增量Δx时,函数f(x)在x=a处的导数就是通过点(x=a,f(a))和(x=a+Δx,f(a+Δx))这两点连线的斜率。

二、导数的基本性质1. 常数的导数为0:如果f(x)是一个常数,那么f'(x)=0。

2. 线性性质:对于任意常数c和任意函数f(x)、g(x),有(cf(x))' = cf'(x)和(f(x) + g(x))' = f'(x) + g'(x)。

3. 乘法法则:如果f(x)和g(x)都在x=a处可导,则(f⋅g)'(a) =f'(a)⋅g(a) + f(a)⋅g'(a)。

4. 除法法则:如果f(x)和g(x)都在x=a处可导且g(a)≠0,则(f/g)'(a) = (f'(a)⋅g(a) - f(a)⋅g'(a))/[g(a)]²。

5. 链式法则:如果f(x)在x=g(x)处可导,而g(x)在x=a处可导,则复合函数(f∘g)(x)在x=a处可导,并且有(f∘g)'(a) = f'(g(a))⋅g'(a)。

三、导数的应用导数在微积分中有着广泛的应用。

以下是其中一些重要的应用:1. 求函数的极值:导数可以帮助我们确定函数的极大值和极小值。

导数知识点总结大全

导数知识点总结大全

导数知识点总结大全一、基本概念1.1 导数的定义对于函数y = f(x),在点x处的导数表示为f'(x),它定义为函数在该点的变化率。

导数可以用极限的概念来定义:\[f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}\]其中,h表示自变量x的小变化量,当h趋近于0时,这个极限就表示了函数在点x处的导数。

导数也可以表示为函数的微分形式,即dy = f'(x)dx。

1.2 导数的几何意义导数有着重要的几何意义,它表示了函数在某一点上的切线斜率。

对于函数y = f(x),在点(x, f(x))处的切线的斜率恰好等于函数在该点的导数f'(x)。

这意味着导数可以描述函数在某一点的变化速率和方向。

1.3 导数的物理意义在物理学中,导数也有着重要的物理意义。

对于物理量s关于时间t的函数s(t),它的导数s'(t)表示了速度的变化率,即s'(t) = ds/dt。

类似地,速度关于时间的函数v(t)的导数v'(t)表示了加速度的变化率,即v'(t) = dv/dt。

因此,导数在描述物理过程中的变化率和速度方面也有着重要的应用。

1.4 导数的符号表示导数的符号表示通常有几种形式,常见的包括f'(x)、dy/dx、y'等。

它们都表示对函数y =f(x)的自变量x求导所得到的结果,即函数在某一点上的变化率或者斜率。

二、导数的性质2.1 导数存在性对于一个函数f(x),它在某一点上的导数可能存在也可能不存在。

如果函数在某一点上导数存在,那么称该函数在该点上可导。

对于大多数常见的函数,它们在定义域内是可导的,例如多项式函数、三角函数、指数函数等。

但也存在一些特殊的函数,在某些点上导数可能不存在,例如绝对值函数在原点处的导数就不存在。

2.2 导数的连续性如果一个函数在某一点上导数存在,并且它在该点上是连续的,那么称该函数在该点上是可微的。

导数的概念及运算知识点讲解(含解析)

导数的概念及运算知识点讲解(含解析)

导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。

导数的基本概念及性质应用

导数的基本概念及性质应用

导数的基本概念及性质应用、能运用导数求解单调区间及极值、新授课:知识点总结:导数的基本概念与运算公式1、导数的概念考点: 1、掌握导数的基本概念及运算公式, 并能灵活应用公式求解能力: 方法: 、理解并掌握极值及单调性的实质, 数形结合 讲练结合并能灵活应用其性质解题。

函数y =f (x )的导数f (X ),就是当AX 0时,函数的增量Ay 与自变量的增量A X 的比啓 的极限,即y X △-Af(x A x)-f(x)A X说明:分子和分母中间的变量必须保持一致 2、导函数函数y = f (X )在区间(a, b )内每一点的导数都存在,就说在区 f (X )间(a, b )内可导,其导数也是(a ,b )内的函数,叫做f (X )的导函数,记作f (X )或y X ,函数f (X )的导函数f (X )在X X o 时的函数值f (x 0),就是 f (X )在X 0处的导数。

3、导数的几何意义设函数y = f (X )在点X o 处可导,那么它在该点的导数等于函数所表示曲线在相应点 M (X 0 , y o )处的切线斜率。

4、求导数的方法c 0 m(X ) m 1 .mx (m(sin X) cosx(cosx)sin X.X .X(e ) e z X.(a ) X .aIna (In x) X (log :)1 xIn aQ)(1)基本求导公(2)导数的四则运算G)(3)复合函数的导数设U g(x)在点X 处可导,y =在点f(X)处可导,则复合函数 f[g(x)]在点X 处可导,f x ((X)) f (U)(X)导数性质:1、函数的单调性⑴设函数y = f(x)在某个区间内可导,若 f(X)>0,则f(x)为增函数;若f(X)< 0则为减函数。

⑵求可导函数单调区间的一般步聚和方法。

① 确定函数f(x)的定义区间② 求f(X),令f (X) = 0,解此方程,求出它在定义区间内的一切实根。

第一讲导数、导函数的概念及导数的运算全面版

第一讲导数、导函数的概念及导数的运算全面版

导数与导函数的观点【基础知识点】1.函数从到的均匀变化率为① ____________,若△x x2x1,△ y f ( x2 ) f ( x1 ) ,则均匀变化率可表示为.2.一般的,定义在区间( a ,b)上的函数 f ( x) ,x o( a, b) ,当x 无穷趋近于0 时,y f (x o x) f (x o )A ,则称f ( x)在x x o处可导,并x x无穷趋近于一个固定的常数称 A 为f ( x)在x x o处的导数,记作 f ' ( x o ) 或f ' ( x ) |x xo3.几何意义: f ( x) 在x x0处的导数就是 f ( x) 在x x0处的切线斜率。

4.导函数的观点: f ( x)的对于区间(a , b)上随意点处都可导,则 f ( x) 在各点的导数也随 x 的变化而变化,因此也是自变量x的函数,该函数被称为 f ( x) 的导函数,记作f ' ( x ) 。

【典例分析】【典例 1】函数f ( x)知足f ' (1)2,则当 x 无穷趋近于 0 时,( 1)f (1x) f (1)2x( 2)f (12x) f (1)x变式 :设f(x)在x=x0处可导,(3)f ( x04x)f ( x)无穷趋近于1,则f(x0 ) =___________ x(4)f ( x04x)f ( x)无穷趋近于1,则f(x0 ) =__________ x( 5)当△ x 无穷趋近于0,f ( x02x) f (x02 x)所对应的常数与 f ( x0 ) 的x关系。

总结:导数等于纵坐标的增量与横坐标的增量之比的极限值。

【基础知识点】1.基本初等函数的求导公式:⑴(kx b)k (k,b为常数 ) ⑵(C ) 0 (C 为常数 )⑶ ( x)1⑷( x 2 ) 2 x⑸( x 3) 3x2⑹ (1)1xx 2⑺(x )1由⑶ ~⑹你能发现什么规律 ?2 x⑻ ( x ) x1( 为常数)⑼ (a x )a x ln a (a0,a 1)⑽(log a x)1log a e1 ( a 0,且 a 1)xxlna⑾(e x )e x⑿(lnx ) 1x⒀(sinx ) cosx⒁(cosx)- sinx2.曲线在某点处的切线和曲线过某点的切线.曲线 y = f (x )在点 P ( x 0, f ( x 0))处的切线方程是 y - f ( x 0)= f ' ( x o ) ( x - x 0);3. 求过某点的切线方程,需先设出切点坐标,再依照已知点在切线上求解. 4.函数的差、积、商的求导法例:( 1) ( 2)( 3)f ( x)g ( x) ' f '( x)g '( x)cf ( x) ' cf (x)'f (x)g ( x) ' f '(x) g(x)f ( x)g '(x)f ( x) '( 4)f '( x)g (x) f (x) g '( x)( g (x) 0)g( x)g( x)2【典例分析】【典例 1】求以下函数的导数( 1)y3x 5( 2)y1( 3)y log 4 x( 4)x 4y sin(x)2( 5)y cos(3( 6)yx x x x)2题型一:点在曲线上【典例 2】已知曲线y1x3上一点 P(2,8),则过 P 点的切线方程为.33分析:过点 P 的切线的斜率为k f ' 2 4 ,那么切线方程为y84x 2 ,即312 x 3y 160 .变式:(南通市2013 届高三第一次调研测试数学试卷)曲线 f ( x)f(1)x12在e f (0) x xe2点 (1, f (1)) 处的切线方程为 ________.题型二:点不在曲线上【典例 3】过点(1,0) 作抛物线y x2x1的切线,则此中一条切线为解析:设切点为 x0 , y0,切线的斜率为 f ' x02x0 1 ,则切线方程为:y y0 f 'x0x x0,由于点 ( 1,0) 在切线上,故y0 f ' x0 1x0,解得x00,或 x02,切点为 0,1或2,3,故切线方程为 x y20或3x y30变式: 1.(江苏省淮安市2013届高三上学期第一次调研测试数学试题)过点1,0. 与函数 f x e x( e 是自然对数的底数)图像相切的直线方程是__________.2.( 2011 年高考(江苏卷))在平面直角坐标系xOy 中,已知点P是函数 f ( x)e x (x0)的图象上的动点 , 该图象在P 处的切线l交y轴于点, 过点P作l的垂线交y轴于点,设M N线段 MN的中点的纵坐标为t ,则 t 的最大值是__题型三:已知切线斜率求切线方程【典例 4】求垂直于直线 2 x6y 1 0且与曲线y x33x2 5 相切的直线方程。

导数的基本概念及性质应用

导数的基本概念及性质应用

导数的基本概念及性质应用Document number:NOCG-YUNOO-BUYTT-UU986-1986UT导数的基本概念及性质应用考点:1、掌握导数的基本概念及运算公式,并能灵活应用公式求解 2、能运用导数求解单调区间及极值、最值3、理解并掌握极值及单调性的实质,并能灵活应用其性质解题。

能力:数形结合 方法:讲练结合新授课:一、 知识点总结:导数的基本概念与运算公式1、导数的概念函数y =)(x f 的导数)(x f ',就是当Δx →0时,函数的增量Δy 与自变量的增量Δx 的比x Δ yΔ的极限,即)(x f '=0x Δlim→xΔ yΔ=x Δlim→xΔf(x)-x) Δ(+x f说明:分子和分母中间的变量必须保持一致 2、导函数函数y =)(x f 在区间( a, b )内每一点的导数都存在,就说在区)(x f 间( a, b )内可导,其导数也是(a ,b )内的函数,叫做)(x f 的导函数,记作)(x f '或x y ',函数)(x f 的导函数)(x f '在0x x =时的函数值)(0x f ',就是)(x f 在0x 处的导数。

3、导数的几何意义设函数y =)(x f 在点0x 处可导,那么它在该点的导数等于函数所表示曲线在相应点),(00y x M 处的切线斜率。

4、求导数的方法 (1)基本求导公式0='c )()(1Q m mx x m m ∈='-x x cos )(sin =' x x sin )(cos -=' x x e e =')( a a a x x ln )(=' xx 1)(ln =' ax xa ln 1)(log ='(2)导数的四则运算v u v u '±'='±)( v u v u uv '+'=')()0()(2≠=''-'v v v u v u v u(3)复合函数的导数设)(x g u=在点x 处可导,y =在点)(x f 处可导,则复合函数)]([x g f 在点x 处可导,)()())(('''x u f x f x ϕϕ=导数性质:1、函数的单调性⑴设函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为增函数;若)(x f '<0则为减函数。

导数的基本公式及运算法则

导数的基本公式及运算法则

导数的基本公式及运算法则导数是微积分的重要概念之一,是描述函数变化率的工具。

它在求解函数的最值、判断函数的增减性和曲线的弧长等方面有广泛的应用。

在微积分中,导数的基本公式和运算法则是必须掌握的基本内容。

本文将就导数的基本公式和运算法则进行详细介绍。

1.基本函数的导数公式(1)常数函数的导数:f(x)=C,其中C为常数,则f'(x)=0。

(2) 幂函数的导数:f(x) = x^n,其中n为整数,则f'(x) =nx^(n-1)。

(3) 指数函数的导数:f(x) = a^x,其中a>0且a≠1,则f'(x) =ln(a) * a^x。

(4) 对数函数的导数:f(x) = loga(x),其中a>0且a≠1,则f'(x) = 1 / (x * ln(a))。

(5)三角函数的导数:① f(x) = sin(x),则f'(x) = cos(x)。

② f(x) = cos(x),则f'(x) = -sin(x)。

③ f(x) = tan(x),则f'(x) = sec^2(x)。

(6)反三角函数的导数:① f(x) = arcsin(x),则f'(x) = 1 / √(1-x^2)。

② f(x) = arccos(x),则f'(x) = -1 / √(1-x^2)。

③ f(x) = arctan(x),则f'(x) = 1 / (1+x^2)。

2.导数的四则运算公式设函数f(x)和g(x)可导,常数k为实数,则有以下四则运算法则:(1)和差法则:(f(x)±g(x))'=f'(x)±g'(x)。

(2)乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

(3)除法法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x)(其中g(x)≠0)。

导数的知识点

导数的知识点

导数的知识点:
导数是微积分中的一个重要概念,用于描述函数在某一点的变化率。

以下是导数的一些基本知识点:
1.导数的定义:在数学上,函数f(x) 在某一点x 处的导数表示函数在该点处的变化率,通常记作f'(x) 或者dy/dx。

导数的定义是函数在该点附近的极限。

2.导数的几何意义:函数在某一点的导数可以理解为函数曲线在该点处的切线的斜率。

即,如果函数f(x) 在点x 处可导,则函数图像在该点处的切线的斜率就是f'(x)。

3.导数的计算:导数的计算可以通过多种方法,常见的包括使用导数的定义、求导法则以及常见函数的导数公式。

例如,多项式函数、指数函数、对数函数、三角函数等都有相应的求导公式。

4.导数的性质:导数具有一系列的性质,如常数函数的导数为零、函数和常数的乘积的导数等于函数的导数乘以常数、函数的和的导数等于各项的导数的和等。

5.高阶导数:函数的导数本身也可以再次求导,得到二阶导数、三阶导数等。

这些导数分别表示函数的变化率、变化率的变化率等。

6.导数的应用:导数在物理、工程、经济学等领域有着广泛的应用,如在物体运动学中描述物体的速度、加速度,优化问题中求解最优解,微分方程中描述动态系统的行为等。

导数是微积分的基础,也是应用数学中一个非常重要的工具,对于理解函数的性质和应用数学建模都起着至关重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 3 同理, 曲线 y= 4 x -2 在 P 处的切线斜率 k2=3, k 2- k 1 由夹角公式 tan=| 1+k k |=1 得 = . 4 2 1 故两曲线的交点处切线的夹角为 4 .

课后练习 1
1 (x2+1), x≤1, 已知函数 f(x)= 2 判断 f(x) 在 x=1 处是否可导. 1 (x+1), x>1. 2 1 [(1+Dx)2+1]- 1 (12+1) Dy 1 Dx) =1, 2 2 =lim (1+ 解: ∵D lim =lim Dx02 x0- Dx Dx0Dx 1 (1+Dx+1)- 1 (12+1) 1 Dx Dy 2 1, 2 2 lim =lim = =lim 2 Dx0+Dx Dx0+ Dx0+ Dx Dx Dy Dy Dy ∴ Dlim lim , 从而 lim 不存在 . D x x0- Dx Dx0+Dx D x 0 ∴ f(x) 在 x=1 处不可导. 注 判定分段函数在“分界点处”的导数是否存在, 要验证 其左、右极限是否存在且相等, 如果存在且相等, 那么这点的 导数存在, 否则不存在.
(2)物理意义: 函数 S=s(t) 在点 t0 处的导数 s(t0), 就是当物体 的运动方程为 S=s(t) 时, 物体运动在时刻 t0 时的瞬时速度 v, 即: v=s(t0). 设 v=v(t) 是速度函数, 则 v(t0)表示物体在时刻 t=t0 时的 加速度.
3.几种常见函数的导数
(1)c=0(c 为常数), (xn)=nxn-1(nQ); (2)(sinx)=cosx, (cosx)=-sinx; 1 log e; (3)(lnx)= 1 , (log x ) = a x x a (4)(ex)=ex, (ax)=axlna.
典型例题 1
2+x+1, x≤0, x 已知函数 f(x)= (1)确定 a, b 的值, 使 f(x) 在 x=0 ax+b, x>0. 处连续、可导; (2)求曲线 y=f(x) 在点 P(0, f(0)) 处的切线方程.
二、重点解析
导数概念比较抽象, 其定义、方法一般不太熟悉, 因此对导 数概念的理解是学习中的一个难点. 本节要重点掌握根据导数 定义求简单函数的导数的方法. 一方面, 根据导数定义求导可 进一步理解导数的概念, 另一方面, 许多法则都是由导数定义 导出的. 导函数(导数)是一个特殊的函数, 它的引出和定义始终贯穿 着函数思想, 首先定义函数 y=f(x) 在点 x0 处可导, 且在 x0 处有 唯一的导数 f(x0), 然后定义函数 y=f(x) 在开区间 (a, b) 内可导,
0
典型例题 4
2 与 y= 1 x3-2 的交点处切线的夹角(用弧度数 求曲线 y=2- 1 x 2 4 作答). 2 与 y= 1 x3-2联立方程组解得交点坐标为 P(2, 0). 解: 由 y=2- 1 x 2 4 1 ∵y=2- 2 x2 的导函数为 y=-x, ∴它在 P 处的切线斜率 k1=-2,
Dy f(x+Dx)-f(x) f(x)=y=lim =lim . D x 0 D x D x0 Dx 导函数也简称导数. 当 x0(a, b) 时, 函数 f(x) 在点 x0 处的导数 f(x0) 等于函数 f(x) 在开区间 (a, b)内的导数 f(x) 在点 x0 处的函 数值. 如果函数 y=f(x) 在点 x0 处可导, 那么函数 y=f(x) 在点 x0 处连 续, 但要注意连续不一定可导. 2.导数的意义 (1)几何意义: 函数 y=f(x) 在点 x0 处的导数 f(x0), 就是曲线 y=f(x) 在点 P(x0, f(x0)) 处的切线的斜率 k, 即: k=tan=f(x0). 相 应的切线方程为 y-y0=f(x0)(x-x0).
若函数 f(x)=|x|, (1)试判断 f(x) 在 x=0 处是否可导; (2)当 x0 时, 求 f(x) 的导数. Dy |Dx| 解: (1)∵Dy=f(0+Dx)-f(0)=|Dx|, ∴ Dx = . Dx Dy Dy 当 Dx<0 时, Dx =-1, lim =-1; D x0 D x Dy Dy 当 Dx>0 时, Dx =1, lim =1, D x0 D x Dy Dy Dy ∴D lim lim , 从而 lim 不存在. x0- Dx Dx0+ Dx D x 0 D x 故函数 f(x)=|x| 在点 x=0 处不可导. (2)当 x>0 时, 可使 x+Dx>0. (x+Dx)-x |x+Dx|-|x| f(x+Dx)-f(x) =1. f(x)=lim =lim =lim D x 0 D x0 D x0 Dx Dx Dx 同理可得, 当 x<0 时, f(x)=-1. 注 函数在一点连续, 但不一定可导; 函数在一点可导, 直观 反映是函数的图象在这一点是平滑的.
课后练习 4
如果曲线 y=x3+x-10 的某一切线与直线 y=4x+3 平行, 求切点 坐标与切线方程. 解: ∵切线与直线 y=4x+3 平行, ∴切线斜率为 4.
因而对于开区间 (a, b) 内每一个确定的值, 都对应着一个确定 的导数 f(x0). 据函数定义, 在开区间 (a, b) 内就构成了一个新 函数, 即导数.
三、知识要点
1.导数的概念 对于函数 y=f(x), 如果自变量 x 在 x0 处有增量 Dx, 那么函数 Dy y 相应的有增量 Dy=f(x0+Dx)-f(x0), 比值 Dx 叫做函数 y=f(x) 在 Dy f(x0+Dx)-f(x0) x0 到 x0+Dx 之间的平均变化率, 即 . Dx = Dx Dy 如果当 Dx0 时, 有极限, 就说函数 y=f(x) 在点 x0 处可导, Dx 并把这个极限叫做 f(x) 在点 x0 处的导数(或变化率), 记作: f(x0+Dx)-f(x0) Dy =lim . f(x0) 或 y | x=x0, 即: f(x0)=lim Dx0 Dx Dx0 Dx
课后练习 2
课后练习 3
一质点作直线运动, 它所经过的路程 S(单位: m)和时间 t(单 位: s)的关系是 S=3t2+t+1. (1)求 [2, 2.01] 这段时间内质点的平 均速度; (2)当 t=2 时的瞬时速度. 解: (1)∵DS=32.012+2.01+1-(322+2+1)=0.1303. DS ∴v= Dt = 0.1303 0.01 =13.03(m/s). (2)∵DS=3(t+Dt)2+(t+Dt)+1-(3t2+t+1)=3Dt2+(1+6t)Dt, DS 3Dt2+(1+6t)Dt =3Dt+1+6t. ∴ Dt = Dt DS ∴v=lim =lim(3 Dt+1+6t)=6t+1. D t0 D t D t0 ∴v | t=2=13. 即当 t=2 时, 质点运动的瞬时速度为 13m/s. 注 (2)亦可直接对函数求导后解决.
f(x) =lim f(x)=f(0). 解: (1)要使 f(x) 在 x=0 处连续, 则需 xlim 0x0+
2+x+1)=1, f(0)=1, lim f(x) =lim(ax+b)=b, 而x lim f ( x ) =lim( x 0x0+ +
x 0 x 0
故当 b=1 时, 可使 f(x) 在 x=0 处连续.
一、复习目标
了解导数概念的某些实际背景(瞬时速度, 加速度, 光滑曲线 切线的斜率等), 掌握函数在一点处的导数的定义和导数的几何 意义, 理解导数的概念, 熟记常见函数的导数公式 c, xm(m 为有 理数), sinx, cosx, ex, ax, lnx, logax 的导数, 并能熟练应用它们求 有关导数.
பைடு நூலகம்
Dy [(0+Dx)2+(0+Dx)+1]-(02+0+1) 又 Dlim =lim =lim (Dx+1)=1, x0- Dx Dx0Dx Dx02+0+1) Dy [ a (0+ D x )+ b ] (0 lim+ Dx =lim+ Dx D x0 D x0
aDx+b-1 b- 1 =lim =a+lim D x + D x0 Dx0+ Dx 故当 b-1=0 且 a=1 即 a=b=1 时, f(x) 在 x=0 处可导. 综上所述, 当 b=1, aR 时, f(x) 在 x=0 处连续, 当 a=b=1 时, f(x) 在 x=0 处可导. (2)由(1)知, f(0)=1, 又 f(0)=1, 故曲线 y=f(x) 在点 P(0, f(0)) 处的切线方程为 y-1=x-0, 即 x-y+1=0.
典型例题 2
若 f(x) 在 R 上可导, (1)求 f(-x) 在 x=a 处的导数与 f(x) 在 x=-a 处的导数的关系; (2)证明: 若 f(x) 为偶函数, 则 f(x) 为奇函数. (1)解: 设f(-x)=g(x), 则 f(-a-Dx)-f(-a) g(a+Dx)-g(a) =lim g(a)=lim Dx D x0 Dx D x 0 f(-a-Dx)-f(-a) =-f(-a). =lim - Dx -Dx0 ∴f(-x) 在 x=a 处的导数与 f(x) 在 x=-a 处的导数互为相反数. (2)证: ∵f(x) 为偶函数, f(-x+Dx)-f(-x) f(x-Dx)-f(x) ∴f(-x)=lim =lim D x 0 D x 0 Dx Dx f(x-Dx)-f(x) =-f(x), =lim -Dx0 -Dx ∴f(x) 为奇函数. 注: 本题亦可利用复合函数的求导法则解决.
相关文档
最新文档