幂函数经典例题(答案)
幂函数经典例题(答案)
幂函数的概念例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数. 答案 C例2、已知幂函数f (x )=(t 3-t +1)x 15(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,求实数t 的值.分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设pq (|p |、|q |互质),当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x pq 的奇偶性与p 的值相对应.解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0.当t =0时,f (x )=x 75是奇函数; 当t =-1时,f (x )=x 25是偶函数;当t =1时,f (x )=x 85是偶函数,且25和85都大于0, 在(0,+∞)上为增函数.故t =1且f (x )=x 85或t =-1且f (x )=x 25.点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎪⎨⎪⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数, 又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978,从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6, ∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减, ∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12 B .y =x -2 C .y =x 2 D .y =x -1 答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2. 6.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( ) A .1 B .0 C .2 D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164 答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________. 答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________. 答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎪⎨⎪⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
幂函数练习题及答案
幂函数练习题及答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).1.下列函数中既是偶函数又是(,)-∞0上是增函数的是 ( )A .yx =43B .y x =32C .y x =-2D .y x=-142.函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1-C .4D .4- 3.下列所给出的函数中,是幂函数的是( ) A .3x y -=B .3-=x y C .32x y =D .13-=x y4.函数34x y =的图象是( )A .B .C .D .5.下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限 6.函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数8.函数2422-+=x x y 的单调递减区间是( ) A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-9. 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( ) A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<<10. 对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C . )2(21x x f +=2)()(21x f x f + D . 无法确定二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.函数y x=-32的定义域是 .12.的解析式是.13.942--=a ax y是偶函数,且在),0(+∞是减函数,则整数a 的值是 .14.幂函数),*,,,()1(互质n m N k n m xy mn k∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .1α3α4α2α三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 15.(12分)比较下列各组中两个值大小 (1)060720880896116115353..(.)(.).与;()与--16.(12分)已知幂函数f x x m Z x y y m m ()()=∈--223的图象与轴,轴都无交点,且关于 轴对称,试确f x ()的解析式.17.(12分)求证:函数3x y =在R 上为奇函数且为增函数.18.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系..6543212132323123---======x y x y x y x y x y x y );();()(;);();()((A ) (B ) (C ) (D ) (E ) (F )19.(14分)由于对某种商品开始收税,使其定价比原定价上涨x 成(即上涨率为10x),涨价后,商品卖出个数减少bx 成,税率是新定价的a 成,这里a,b 均为正常数,且a <10,设售货款扣除税款后,剩余y 元,要使y 最大,求x 的值.20.(14分)利用幂函数图象,画出下列函数的图象(写清步骤).(1)y x x x x y x =++++=---22532221221()().参考答案一、CCBAD DCADA 二、11. (,)0+∞; 12.)0()(34≥=x x x f ; 13.5;14.k m ,为奇数,n 是偶数; 三、15. 解:(1)+∞<<<+∞=7.06.00),0(116上是增函数且在函数x y1161167.06.0<∴ (2)函数),0(35+∞=在x y 上增函数且89.088.00<<.)89.0()88.0(,89.088.089.088.0353535353535-<-∴->-∴<∴即16. 解:由.3,1,13203222⎪⎩⎪⎨⎧∈-=--≤--Z m m m m m m 得是偶数.)(1,)(3140-===-=x x f m x x f m 时解析式为时解析式为和17.解: 显然)()()(33x f x x x f -=-=-=-,奇函数; 令21x x <,则))(()()(22212121323121x x x x x x x x x f x f ++-=-=-,其中,显然021<-x x ,222121x x x x ++=2222143)21(x x x ++,由于0)21(221≥+x x ,04322≥x ,且不能同时为0,否则021==x x ,故043)21(22221>++x x x .从而0)()(21<-x f x f . 所以该函数为增函数. 18.解:六个幂函数的定义域,奇偶性,单调性如下: (1)323x x y ==定义域[0,+∞),既不是奇函数也不是偶函数,在[0,+∞)是增函数;.),0(16),0(15),0(14),0[3),0[22133223232331上减函数函数,在既不是奇函数也不是偶定义域为)(是减函数;是奇函数,在定义域)(是减函数;是偶函数,在定义域)(是增函数;,是偶函数,在定义域为)(是增函数;,是奇函数,在定义域为)(+∞==+∞==+∞==+∞==+∞==+--+--+-R xx y UR R x x y UR R x x y R x x y R x x y通过上面分析,可以得出(1)↔(A ),(2)↔(F ),(3)↔(E ),(4)↔(C ),(5)↔(D ),(6)↔(B ).19.解:设原定价A 元,卖出B 个,则现在定价为A(1+10x ), 现在卖出个数为B(1-10bx),现在售货金额为A(1+10x ) B(1-10bx )=AB(1+10x )(1-10bx ),应交税款为AB(1+10x )(1-10bx )·10a,剩余款为y = AB(1+10x)(1-10bx ))101(a -= AB )1101100)(101(2+-+--x b x b a , 所以b b x )1(5-=时y 最大 要使y 最大,x 的值为b b x )1(5-=.20.解:(1)1)1(1112112222222++=+++=++++=x x x x x x x y 把函数21,x y =的图象向左平移1个单位,再向上平移1个单位可以得到函数122222++++=x x x x y 的图象.(2)1)2(35--=-x y 的图象可以由35-=x y 图象向右平移2个单位,再向下平移1个单位而得到.图象略。
幂函数题型及解析
α幂函数题型及解析1. (1 )下列函数是幂函数的是y=x 2, y=( ) x, y=4x 2 , y=x 5 +1 , y= ( x ﹣1)2 , y=x , y=a x ( a > 1 )分析:由幂函数的定义直接进行判断知甩给的函数中是幂函数的是y=x 2 和 y=x .解:由幂函数的定义知, y=x 2, y=( ) x ,y=4x 2,y=x 5+1 , y=( x ﹣1 ) 2, y=x ,y=a x ( a > 1),七个函数中是幂函数的是 y=x 2 和 y=x ,( 2 ) ① y=x 2+1 ; ② y=2 x ; ③ y=; ④y=( x ﹣1) 2; ⑤ y=x 5; ⑥ y=x x+1分析:根据幂函数的定义,对以下函数进行判断即可. 解:根据幂函数 y=x, α∈R 的定义知,① y=x 2 +1 不是幂函数, ② y=2 x 不是幂函数, ③ y==x ﹣2是幂函数, ④ y=( x ﹣1 )2 不是幂函数, ⑤ y=x 5 是幂函数,⑥ y=x x+1 不是幂函数;综上是幂函数的为③⑤2. 已知幂函数 y=f ( x )的图象过点( 9 , ) .( 1)求 f ( x )的解析式; ( 2)求 f ( 25 )的值;( 3)若 f ( a ) =b( a , b >0),则 a 用 b 可表示成什么?分析:( 1)设出幂函数 f ( x )的解析式,根据图象过点( 9, ),求出函数解析式; (2 )根据函数的解析式求出 f (25 )的值;( 3)根据函数的解析式求出a 与b 的关系.解:( 1 )设幂函数 f (x ) =x t ,∵图象过点( 9, ),∴ ;即 3 2t =3 ﹣1,∴,∴ ;( 2 )∵f ( x )=,∴f ( 25) =25 -0.5 = = = ;( 3)∵f (a ) =a -0.5 =b ,∴a -0.5 = b ,∴a ﹣1 =b 2,∴a= .3. 比较下列各组中两个值的大小( 1 ) 1.5, 1.7;( 2) 0.7 1.5 , 0.6 1.5 ;(3) (2 1.2 ) 3,(1.25)21 3 54;(4 )( ) ﹣0.24与 ( ) ; 6( 5 ) 3.1 0.5 , 3.1 2.3 ;( 6 )( ) ﹣1.5 ,( )﹣1.8 ;( 7 )0.6 2 , 0.6 3 ;( 8)( ) ﹣0.3 ,( ) ﹣0.24分析:由幂函数的单调性,有的需要结合指数函数的性质,逐个题目比较可得.解:( 1)∵幂函数 y= 3 x 5在( 0 ,+ ∞)单调递增,∴ 3 1.553 < 1.7 5;( 2 )∵幂函数 y=x 1.5 在( 0, +∞ )单调递增,∴0.7 1.5 > 0.6 1.5 ;(3 ) ∵幂函数 y= 2x 3 在(﹣∞,0)单调递增, ∴(1.2) 23> (1.25) 23 ;( 4)∵0< < 1,﹣0.24,∴( ) 0.24< ( 5) 614 ;( 5)3.1 0.5 < 3.1 2.3;( 6)( )﹣1.5>( ) ﹣1.8 ;( 7) 0.6 2 >0.6 3 ;( 8)( ) ﹣0.3<( ) ﹣0.244. 若函数 y=( m 2 +2m ﹣2 )x m 为幂函数且在第一象限为增函数,求 m 的值②已知幂函数 y= ( m 2﹣m ﹣1) x m2 ﹣2m ﹣3,当 x ∈(0 , +∞)时为减函数,求幂函数分析:根据幂函数的性质,列出不等式组,求出 m 的值即可解:①∵函数 y=( m 2 +2m ﹣2 ) x m 为幂函数且在第一象限为增函数,∴m 2+2m-2=1 且 m >0;解得 m=1②解:∵幂函数y=(m 2﹣m ﹣1 )x m2 ﹣2m ﹣3 ,∴m 2﹣m ﹣1=1 ,解得m=2 ,或m= ﹣1;又x∈(0 ,+∞)时y 为减函数,∴当m=2 时,m 2-2m-3= ﹣3,幂函数为y=x -3,满足题意;当m=-1 时,m 2-2m-3=0 ,幂函数为y=x 0 ,不满足题意;综上幂函数y=x -35. 幂函数y=(m 2 ﹣3m+3 )x m 是偶函数,求m 的值分析:根据幂函数的定义先求出m 的值,结合幂函数是偶函数进行判断即可.解:∵函数是幂函数,∴m 2﹣3m+3=1 ,即m 2﹣3m+2=0 ,则m=1 或m=2 ,当m=1 时,y=x 是奇函数,不满足条件.当m=2 时,y=x 2 是偶函数,满足条件,即m=26. 求函数y= x23 的定义域和值域.分析:本题考察幂函数的概念及性质,把y=22x 3 化为根式的形式,容易写出它的定义域和值域.解:∵函数y= x 3= ,∴x≠0 ,且y>0 ;∴函数y 的定义域是{x|x ≠0} ,值域是{y|y >0}7. 求函数y=0.2 ﹣x2 ﹣3x+4 的定义域、值域和单调区间.分析:根据二次函数以及指数函数的性质求出函数的单调性和值域即可.解:令f(x)=﹣x2 ﹣3x+4= ﹣(x2 +3x+ )+ =﹣+ ,∴f(x)在(﹣∞,﹣)递增,在(﹣,+∞)递减,∴函数y=0.2 ﹣x2 ﹣3x+4 在(﹣∞,﹣)递减,在(﹣,+∞)递增,∴y min = = ,∴函数y=0.2 ﹣x2 ﹣3x+4 的定义域是R、值域是[ ,+∞),在(﹣∞,﹣)递减,在(﹣,+∞)递增8. 已知幂函数y= x4 3 m m 2(m ∈Z)的图象与y 轴有公共点,且其图象关于y 轴对称,求m 的值,并作出其图象分析:由题意得4-3m-m 2 >0 解得﹣4 <m<1 ,又因为图象关于y 轴对称,所以 4 ﹣3m ﹣m 2 必须为偶数,故m=0 ,﹣1 ,﹣2 ,﹣3 ,即可画出图象.解:由题意得 4 ﹣3m ﹣m 2>0 ,即有(m+4 )(m ﹣1)<0,解得﹣4 <m<1,又因为图象关于y 轴对称,所以4﹣3m ﹣m 2必须为偶数,所以m=0 ,﹣1 ,﹣2 ,﹣3 ,m= ﹣3 ,y=x 4,m= ﹣2 ,y=x 6,m= ﹣1 ,y=x 6,m=0 ,y=x 4其图象如图:9. 已知函数y= (n∈Z)的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数图象.分析:由题意可得,可得幂指数n 2 ﹣2n﹣3 为负数,且为偶数.由于当n=1 时,幂指数n 2﹣2n﹣3= ﹣4 ,满足条件,可得函数的解析式,从而得到函数的图象.解:已知函数y= (n∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,可得幂指数n 2﹣2n ﹣3 为非正数,且为偶数.由于当n=1 时,幂指数n2 ﹣2n ﹣3= ﹣4 ,满足条件,当n=3 时,n2 ﹣2n﹣3=0 ,满足条件故函数为y=x ﹣4,或y=x 0 ,它的图象如图所示:10. 已知幂函数y=x m﹣2 (m ∈N )的图象与x,y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.分析:由题意利用幂函数的性质可得m ∈N ,m ﹣2≤0,且m ﹣2 为偶数,由此求得m 的值.解:∵幂函数y=x m﹣2 (m ∈N)的图象与x,y 轴都无交点,且关于y 轴对称,∴①m ﹣2 <0,m ﹣2 为偶数,故m=0 ,即幂函数y=x ﹣2,它的图象如右图所示.或②m ﹣2=0 ,m=2 ,此时y=x 0 ,(x≠0),它的图象如图所示11. 已知幂函数的图象与x 轴,y 轴没有交点,且关于y 轴对称,求m 的值分析:由幂函数的概念与该函数为偶函数的性质可知,m 2﹣2m ﹣3 ≤0 且m 2﹣2m ﹣3 为偶数,从而可得答案.解:∵幂函数y= (m ∈Z)的图象与x 轴,y 轴没有交点,且关于y 轴对称,∴m 2 ﹣2m ﹣3≤0 且m 2﹣2m ﹣3 为偶数(m ∈Z ),由m 2 ﹣2m ﹣3≤0 得:﹣1≤m ≤3 ,又m ∈Z ,∴m= ﹣1,0 ,1,2,3.当m= ﹣1 时,m 2﹣2m ﹣3=1+2 ﹣3=0 ,为偶数,符合题意;当m=0 时,m 2﹣2m﹣3= ﹣3,为奇数,不符合题意;当m=1时,m 2 ﹣2m ﹣3=1 ﹣2 ﹣3= ﹣4 ,为偶数,符合题意;当m=2 时,m 2﹣2m ﹣3=4 ﹣4﹣3= ﹣3 ,为奇数,不符合题意;当m=3 时,m 2﹣2m ﹣3=9 ﹣6﹣3=0 ,为偶数,符合题意.综上所述,m= ﹣1,1,312. 已知幂函数y=x m2 ﹣2m ﹣3(m ∈Z)的图象与x、y 轴都无公共交点,且图象关于原点中心对称,求m 的值,并且画出它的图象.分析:由题意知,m 2 ﹣2m ﹣3<0,且m 2﹣2m ﹣3 为奇数,解此不等式组可得m 的值.解:幂函数y=x m2 ﹣2m ﹣3(m ∈Z )的图象与x、y 轴都无公共交点,且图象关于原点中心对称,∴m 2﹣2m ﹣3<0 ,且m 2﹣2m ﹣3 为奇数,即﹣1 <m<3 且m 2﹣2m ﹣3 为奇数,∴m=0 或2,∴y=x ﹣3 ,其图象为:13. 若实数m 满足不等式0.64 2m+3 <1.25 3m ,求实数m 的取值范围分析:不等式0.64 2m+3 <1.25 3m ,即为()﹣(4m+6 )<()3m ,再由y=()x 在R 上递增,得到﹣(4m+6 )<3m ,解出即可.解:不等式0.64 2m+3 <1.25 3m ,即为0.8 2(2m+3 )<()3m ,即有()﹣(4m+6 )<()3m ,由于y=()x 在R 上递增,则﹣(4m+6 )<3m ,解得,m>﹣,故实数m 的取值范围是(﹣,+∞)14. 已知幂函数若该函数还经过点.(1 )试求该函数的定义域,并指明该函数在其定义域上的单调性;(2),求m 的值并求满足条件f(2 ﹣a )>f(a﹣1)的实数 a 的取值范围.分析:(1)将指数因式分解,据指数的形式得到定义域,利用幂函数的性质知单调性(2 )将点的坐标代入列出方程解得m,利用函数的单调性去掉法则f,列出不等式解得,注意定义域.解:(1 )∵m 2 +m=m (m+1 ),m ∈N *∴m 2+m 为偶数,∴x ≥0 ,所以函数定义域为[0 ,+∞)由幂函数的性质知:其函数在定义域内单调递增.(2 )依题意得:,∴,∴m=1(m ∈N*)由已知得:,∴,故 a 的取值范围为:Welcome To Download !!!欢迎您的下载,资料仅供参考!。
幂函数经典例题(答案)
幂函数经典例题(答案)A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R.错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎪⎨⎪⎧m =-3n =32, 所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z)的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24. 8.下列函数中,值域为[0,+∞)的函数是( ) A .y =2x B .y =x 2 C .y =x -2 D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R)的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x(x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则 ⎩⎨⎧ m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则 ⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
幂函数练习题及答案
幂函数练习题及答案一、选择题1. 下列函数中,属于幂函数的是:A. y = 3x^2B. y = 5x + 2C. y = 2^xD. y = √x答案:C2. 对于幂函数y = ax^n,若n > 0,则函数图像为:A. 上升曲线B. 下降曲线C. 横坐标轴D. 常数函数y = a答案:A3. 若幂函数y = 3^x在点(0, a)处的函数值为12,则a的值为:A. 9B. 8C. 4D. 2答案:C二、填空题1. 当幂函数图像关于点(1, b)对称时,函数的底数a为_________。
答案:12. 若幂函数y = a^x的图像过点(2, 4),则底数a的值为_________。
答案:23. 幂函数y = 3^x图像的对称轴方程为_________。
答案:x = 0三、计算题1. 求解以下幂函数方程:1) 8^x = 2解:8^x = 2取对数得:xlog8 = log2x = log2 / log8 ≈ 0.3332) (1/2)^x = 4解:(1/2)^x = 4取对数得:xlog(1/2) = log4x = log4 / log(1/2) ≈ -22. 求以下幂函数的极限:1) lim(x→∞) 3^x解:当x趋于正无穷时,幂函数3^x趋于无穷大,因此极限为正无穷。
2) lim(x→-∞) 2^x解:当x趋于负无穷时,幂函数2^x趋于零,因此极限为零。
四、证明题证明:幂函数y = a^x和指数函数y = e^x都是定义域为实数集合R 的递增函数。
证明过程略。
综上所述,幂函数是具有底数a和自变量x的数学函数,根据底数的不同,幂函数的特性也会有所不同。
通过练习题的训练,我们可以更好地理解和掌握幂函数的概念、性质以及解题方法,提升数学应用能力和解决问题的能力。
幂函数练习(含答案详解)
3.3 幂函数练习一、单选题1、已知幂函数f (x )=kx α(k ∈R ,α∈R)的图象过点⎝⎛⎭⎫12,2,则k +α=( A ) A .12 B .1 C .32D .22、下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( A ) A .y =x-2B .y =x-1C .y =x 2D .y =31x3、幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( C )4、幂函数()()2222m f x m m x -=--在()0,∞+上单调递减,则实数m 的值为( A ) A .1-B .3C .1-或3D .3-5、若f (x )=12x ,则不等式f (x )>f (8x -16)的解集是( A )A .⎣⎡⎭⎫2,167B .(0,2]C .⎝⎛⎭⎫-∞,167 D .[2,+∞) 6、若幂函数f (x )=()12255a a a x---在(0,+∞)上单调递增,则a 等于( D )A .1B .6C .2D .-17、幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是 ( D )A .a b c d >>>B .d b c a >>>C .d c b a >>>D .b c d a >>>8、已知幂函数y =p qx (p ,q ∈Z 且p ,q 互质)的图象关于y 轴对称,如图所示,则( D )A .p ,q 均为奇数,且pq >0B .q 为偶数,p 为奇数,且pq <0C .q 为奇数,p 为偶数,且pq >0D .q 为奇数,p 为偶数,且pq <0二、多选题9.下列关于幂函数y x α=的性质说法正确的有( CD ) A .当1α=-时,函数在其定义域上递减 B .当0α=时,函数图象是一条直线 C .当2α=时,函数是偶函数D .当3α=时,函数的图象与x 轴交点的横坐标为0 10.已知函数()a f x x 的图象经过点1,33⎛⎫⎪⎝⎭则( CD )A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞11、已知幂函数f (x )=()2231mm m m x +---,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,都满足2121)()(x x x f x f -->0,若a ,b ∈R 且f (a )+f (b )<0,则下列结论可能成立的有( BC )A .a +b >0且ab <0B .a +b <0且ab <0C .a +b <0且ab >0D .以上都可能12.若函数()f x x α=的定义域为R 且为奇函数,则α可能的值为( BD )A .1-B .1C .2D .3三、填空题13.若幂函数()21my m m x =--为偶函数,则m = ___2_____ .14、已知幂函数f (x )=mx n +k 的图象过点⎝⎛⎭⎫116,14,则m -2n +3k =_____0__. 15、若()()21221112-+>+m m m ,则实数m 的取值范围是______⎣⎢⎡⎭⎪⎫5-12,2__________.16、给出下面四个条件:①f (m +n )=f (m )+f (n );②f (m +n )=f (m )·f (n );③f (mn )=f (m )·f (n );④f (mn )=f (m )+f (n ).如果m ,n 是幂函数y =f (x )定义域内的任意两个值,那么幂函数y =f (x )一定满足的条件的序号为__③______. 四、解答题17.已知幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,求函数的解析式,并作出该函数图象的草图,判断该函数的奇偶性和单调性.解:因为幂函数()f x x α=的图象经过点3,19⎛⎫ ⎪⎝⎭,故可得139α=,解得2α=-,故()2f x x -=,其定义域为{|0}x x ≠,关于原点对称;其函数图象如下所示:数形结合可知,因为()f x 的图象关于y 轴对称,故其为偶函数; 且()f x 在()0,+∞单调递减,在(),0-∞单调递增.18、已知幂函数f (x )=(m 2-5m +7)x -m -1(m ∈R)为偶函数.(1)求f ⎝⎛⎭⎫12的值;(2)若f (2a +1)=f (a ),求实数a 的值. 解:(1)由m 2-5m +7=1,得m =2或3. 当m =2时,f (x )=x-3是奇函数,∴不满足题意,∴m =2舍去;当m =3时,f (x )=x -4,满足题意, ∴f (x )=x -4,∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-4=16.(2)由f (x )=x-4为偶函数和f (2a +1)=f (a )可得|2a +1|=|a |,即2a +1=a 或2a +1=-a ,∴a =-1或a =-13.19、已知幂函数f (x )=21()mm x-+(m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若函数f (x )的图象经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解:(1)因为m 2+m =m (m +1)(m ∈N *),而m 与m +1中必有一个为偶数,所以m 2+m 为偶数, 所以函数f (x )=21()m m x-+(m ∈N *)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)因为函数f (x )的图象经过点(2,2), 所以2=2(m 2+m )-12()12m m +-,即122=2()12mm +-,所以m 2+m =2,解得m =1或m =-2. 又因为m ∈N *,所以m =1,f (x )=12x , 又因为f (2-a )>f (a -1), 所以⎩⎪⎨⎪⎧2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32,故函数f (x )的图象经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为[1,32).20、19.已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式; (2)令()()21g x f x x =++yg x 在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.解:(1)因为函数()()()2151Z m f x m m x m +=-+∈为幂函数,所以2511m m -+=,解得0m =或5m =, 当0m =时,函数()f x x =是奇函数,符合题意,当5m =时,函数()6f x x =是偶函数,不符合题意,综上所述,m 的值为0,函数()f x 的解析式为()f x x =. (2)由(1)知,()f x x =,所以()()2121g x f x x x x =+=++ 令21t x =+212t x -=,11,0123,032x x t -≤≤∴≤+≤∴≤≤ 所以2211()222t t g t t t -=+=+-,3t ⎡∈⎣, 根据二次函数的性质知,()g t 的对称轴为11122t =-=-⨯,开口向上,所以()g t 在3⎡⎣上单调递增;所以2min011()(0)0222g t g ==+-=-,(2max 31()(3)33122g t g === 所以函数()g x 在1,12⎡⎤-⎢⎥⎣⎦的值域为1312⎡⎤-⎢⎥⎣⎦.。
幂函数经典例题(答案解析)
幂函数的概念例1、下列结论中,正确的是( )A.幂函数的图象都通过点(0,0),(1,1) B.幂函数的图象可以出现在第四象限C.当幂指数α取1,3,12时,幂函数y=xα是增函数D.当幂指数α=-1时,幂函数y=xα在定义域上是减函数解析当幂指数α=-1时,幂函数y=x-1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y=xα (α∈R),y>0,所以幂函数的图象不可能出现在第四象限,故选项B不正确;而当α=-1时,y=x-1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f(x)=(t3-t+1)x 15(7+3t-2t2) (t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.分析关于幂函数y=xα(α∈R,α≠0)的奇偶性问题,设pq(|p|、|q|互质),当q为偶数时,p必为奇数,y=x pq是非奇非偶函数;当q是奇数时,y=x pq的奇偶性与p的值相对应.解∵f(x)是幂函数,∴t3-t+1=1,∴t=-1,1或0.当t=0时,f(x)=x75是奇函数;当t=-1时,f(x)=x25是偶函数;当t=1时,f(x)=x85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t=1且f(x)=x85或t=-1且f(x)=x25.点评如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t∈Z给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1 解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x 13∈R ,则由x 2>x 13,可得x ∈R .错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1,当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3.点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎨⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝ ⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝ ⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978, 从而-8-78<-⎝ ⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝ ⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23;(2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6,∴⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23. (2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2.又函数图象关于y 轴对称, ∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减,∴a +1>3-2a >0或0>a +1>3-2a 或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3, 当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意. 当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A 4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12B .y =x -2C .y =x 2D .y =x -1答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎨⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2.6.在函数y =1x2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( )A .1B .0C .2D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( )A .2 6B .64 C.24 D.164答案 C解析 设f (x )=x α (α为常数),将⎝⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x -12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝⎛⎭⎪⎫9,13,则f (25)=_____________.答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________.答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α(α∈R )的图象一定不经过第________象限. 答案 四6.把下列各数223,⎝ ⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a+1)<f (10-2a ),∴⎩⎨⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞).点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1m 2+2m ≠0,∴m =1. (2)若f (x )为反比例函数,则 ⎩⎨⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1. (3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。
幂函数练习题及答案解析
幂函数练习题及答案解析1.下列幂函数中为偶函数的是 y = x^2.解析:定义域为实数集,f(-x) = (-x)^2 = x^2,因此是偶函数。
2.若 a < 1,则 5a < 0.5a < 5-a。
解析:因为 a < 1,所以 y = x 是单调递减函数且 0.5 < 5 < 5-a,因此 5a < 0.5a < 5-a。
3.α 可能的取值为 1 和 3,使得函数y = x^α 的定义域为实数集且为奇函数。
解析:只有函数 y = x 和 y = x^3 的定义域是实数集且为奇函数,因此α 可能的取值为 1 和 3.4.当 n = -1 或 n = 2 时,满足 (-2)^n。
(-3)^n。
解析:因为 (-2)^n。
0 且 (-3)^n < 0,所以 y = x^n 在 (-∞。
+∞) 上为减函数。
因此 n = -1 或 n = 2.1.函数 y = (x+4)^2 的递减区间是 (-∞。
-4)。
解析:函数的开口向上,关于 x = -4 对称,因此在 (-∞。
-4) 上递减。
2.幂函数的图像过点(2.4),则其单调递增区间是(-∞。
0)。
解析:因为 y = x^2 的图像是开口向上的抛物线,过点(2.4),因此其单调递增区间为 (-∞。
0)。
3.正确的说法有 2 个。
解析:①错误;②中 y = x^-1 的图像不过点 (1.1);③正确;④正确,因此有 2 个正确的说法。
4.使f(x) = x^α 为奇函数且在(0.+∞) 上单调递减的α 的值的个数是 1.解析:因为f(x) = x^α 为奇函数,所以α 为奇数,因此α可能的取值为 -3.-1.1.3.因为在(0.+∞) 上单调递减,所以只有α = -1 满足条件。
因此个数为 1.1.α=-1,1,3.由于f(x)在(,+∞)上为减函数,所以α=-1.2.使(3-2x-x^2)/4有意义的x的取值范围是(-3<x<1)。
幂函数练习题及答案
幂函数练习题及答案幂函数是数学中常见的一类函数,其形式为 f(x) = a^x,其中 a 为常数且a ≠ 0。
幂函数在数学中有广泛的应用,涉及到各个领域的问题。
本文将通过一些幂函数的练习题及其答案,来帮助读者更好地理解和掌握幂函数的性质和运算。
1. 练习题一:简单的幂函数求值计算以下幂函数在给定点上的函数值:(a) f(x) = 2^x,当 x = 3;(b) g(x) = (-3)^x,当 x = -2;(c) h(x) = 0.5^x,当 x = 4。
答案:(a) f(3) = 2^3 = 8;(b) g(-2) = (-3)^(-2) = 1/((-3)^2) = 1/9;(c) h(4) = 0.5^4 = 1/2^4 = 1/16。
这些计算可以通过将给定的 x 值代入幂函数的定义中进行求解。
注意负指数的处理方式。
2. 练习题二:幂函数的图像与性质研究以下幂函数的图像,并回答相应问题:(a) f(x) = 2^x;(b) g(x) = (-2)^x;(c) h(x) = 3^x。
答案:(a) f(x) = 2^x 的图像是一条递增曲线,穿过点 (0, 1)。
当 x 取负值时,函数值逐渐趋近于 0,当 x 取正值时,函数值逐渐增大。
(b) g(x) = (-2)^x 的图像是一条交替变化的曲线。
当 x 为偶数时,函数值为正,当 x 为奇数时,函数值为负。
(c) h(x) = 3^x 的图像是一条递增曲线,穿过点 (0, 1)。
函数值随 x 的增大而迅速增大。
通过观察这些幂函数的图像,我们可以发现幂函数的一些共同性质,如递增或递减性、穿过点 (0, 1)、趋近于 0 等。
3. 练习题三:幂函数的运算计算以下幂函数的运算结果:(a) f(x) = 2^x * 2^3;(b) g(x) = (2^x)^3;(c) h(x) = 2^(x+3)。
答案:(a) f(x) = 2^x * 2^3 = 2^(x+3);(b) g(x) = (2^x)^3 = 2^(3x);(c) h(x) = 2^(x+3) = 2^x * 2^3。
幂函数练习题及答案
幂函数练习题及答案一、选择题1. 幂函数\( f(x) = x^a \)中,当\( a \)为负数时,函数的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D2. 幂函数\( y = x^{-1} \)的图像是:A. 一条直线B. 一条曲线C. 两条曲线D. 无法确定答案:C3. 下列哪个幂函数在\( x = 0 \)处有定义?A. \( y = x^{-1} \)B. \( y = x^{-2} \)C. \( y = x^{1/2} \)D. \( y = x^2 \)答案:D二、填空题4. 幂函数\( y = x^n \)的图像,当\( n \)为奇数时,关于____对称。
答案:y轴5. 幂函数\( y = x^3 \)的图像在\( x = 0 \)处的切线斜率为____。
答案:0三、解答题6. 已知幂函数\( f(x) = x^a \),当\( x = 2 \)时,\( f(x) = 4 \),求\( a \)的值。
解:根据题意,\( f(2) = 2^a = 4 \),由于\( 2^2 = 4 \),所以\( a = 2 \)。
7. 幂函数\( y = x^n \)的图像在第一象限内,且在\( x = 1 \)处的导数为2,求\( n \)的值。
解:由于幂函数的导数为\( y' = n \cdot x^{n-1} \),将\( x = 1 \)代入得\( y' = n \)。
由题意知\( n = 2 \)。
四、计算题8. 求幂函数\( y = x^3 - 3x^2 + 2 \)在\( x = 2 \)处的值。
解:将\( x = 2 \)代入幂函数得\( y = 2^3 - 3 \cdot 2^2 + 2= 8 - 12 + 2 = -2 \)。
9. 已知幂函数\( y = x^a \)在\( x = 1 \)处的值为1,求\( a \)的值。
幂函数练习题及答案解析
1.下列幂函数为偶函数的是( ) A .y =x 错误! B .y=错误!C .y=x 2 D.y =x -1解析:选C.y =x2,定义域为R ,f(-x )=f (x )=x2.2.若a <0,则0.5a,5a,5-a的大小关系是( )A.5-a <5a<0.5a ﻩB .5a <0.5a<5-aC .0.5a <5-a <5aD .5a<5-a <0.5a解析:选B.5-a =(错误!)a ,因为a<0时y =x a 单调递减,且错误!<0.5<5,所以5a<0.5a<5-a.3.设α∈{-1,1,\f(1,2),3},则使函数y =x α的定义域为R ,且为奇函数的所有α值为( )A .1,3 ﻩB.-1,1C.-1,3 D .-1,1,3解析:选A.在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x3的定义域是R,且是奇函数,故α=1,3.4.已知n∈{-2,-1,0,1,2,3},若(-错误!)n>(-错误!)n,则n=________.解析:∵-错误!<-错误!,且(-错误!)n >(-错误!)n ,∴y =xn 在(-∞,0)上为减函数.又n∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或21.函数y =(x +4)2的递减区间是( )A.(-∞,-4) ﻩB.(-4,+∞)C.(4,+∞)D.(-∞,4)解析:选A.y =(x +4)2开口向上,关于x=-4对称,在(-∞,-4)递减.2.幂函数的图象过点(2,错误!),则它的单调递增区间是( )A.(0,+∞)B.[0,+∞)C.(-∞,0) D.(-∞,+∞)解析:选C.幂函数为y=x-2=错误!,偶函数图象如图.3.给出四个说法:①当n=0时,y=x n 的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y =x n在第一象限为减函数,则n <0.其中正确的说法个数是( )A .1 B.2C.3 ﻩD .4解析:选B.显然①错误;②中如y =x -错误!的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设α∈{-2,-1,-错误!,错误!,错误!,1,2,3},则使f (x )=xα为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A.1 B .2C .3 ﻩD.4解析:选A.∵f (x )=xα为奇函数,∴α=-1,错误!,1,3.又∵f (x)在(0,+∞)上为减函数,∴α=-1.5.使(3-2x -x 2)-\f(3,4)有意义的x 的取值范围是( )A.RB.x ≠1且x≠3C.-3<x <1 D.x<-3或x >1解析:选C.(3-2x -x2)-34=错误!, ∴要使上式有意义,需3-2x -x 2>0,解得-3<x <1.6.函数f (x )=(m2-m -1)x m 2-2m -3是幂函数,且在x ∈(0,+∞)上是减函数,则实数m =( )A .2 B.3C.4 ﻩD .5解析:选A.m 2-m -1=1,得m=-1或m =2,再把m =-1和m =2分别代入m 2-2m -3<0,经检验得m=2.7.关于x的函数y =(x -1)α(其中α的取值范围可以是1,2,3,-1,错误!)的图象恒过点________.解析:当x -1=1,即x =2时,无论α取何值,均有1α=1,∴函数y =(x -1)α恒过点(2,1).答案:(2,1)8.已知2.4α>2.5α,则α的取值范围是________.解析:∵0<2.4<2.5,而2.4α>2.5α,∴y=xα在(0,+∞)为减函数.答案:α<0 9.把(错误!)-错误!,(错误!)错误!,(错误!)错误!,(错误!)0按从小到大的顺序排列____________________. 解析:(错误!)0=1,(错误!)-错误!>(错误!)0=1,(35)错误!<1,(错误!)错误!<1, ∵y =x 错误!为增函数, ∴(错误!)错误!<(错误!)错误!<(错误!)0<(错误!)-错误!. 答案:(\f(2,5))错误!<(错误!)错误!<(错误!)0<(错误!)-错误!10.求函数y =(x -1)-\f(2,3)的单调区间.解:y =(x -1)-23=错误!=错误!,定义域为x ≠1.令t=x -1,则y =t -错误!,t ≠0为偶函数.因为α=-错误!<0,所以y =t -错误!在(0,+∞)上单调递减,在(-∞,0)上单调递增.又t =x -1单调递增,故y =(x-1)-错误!在(1,+∞)上单调递减,在(-∞,1)上单调递增.11.已知(m +4)-12<(3-2m )-错误!,求m的取值范围.解:∵y=x -\f(1,2)的定义域为(0,+∞),且为减函数.∴原不等式化为错误!,解得-错误!<m <错误!.∴m 的取值范围是(-\f(1,3),错误!).12.已知幂函数y =x m2+2m -3(m ∈Z)在(0,+∞)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m2+2m -3<0⇒(m -1)(m+3)<0⇒-3<m <1,又∵m ∈Z ,∴m=-2,-1,0.当m =0或m=-2时,y =x -3,定义域是(-∞,0)∪(0,+∞).∵-3<0,∴y =x-3在(-∞,0)和(0,+∞)上都是减函数,又∵f (-x )=(-x)-3=-x -3=-f (x ),∴y =x -3是奇函数.当m =-1时,y =x -4,定义域是(-∞,0)∪(0,+∞).∵f (-x )=(-x )-4=错误!=错误!=x -4=f (x ),∴函数y=x -4是偶函数.∵-4<0,∴y =x -4在(0,+∞)上是减函数,又∵y =x-4是偶函数,∴y =x-4在(-∞,0)上是增函数.1.下列函数中,其定义域和值域不同的函数是( ) A .y =x 错误! ﻩB.y =x -错误!C.y=x 53 ﻩD.y =x 错误!解析:选D.y =x 错误!=错误!,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-错误!,错误!,2四个值,则相应于曲线C 1,C 2,C3,C 4的α的值依次为( )A .-2,-错误!,错误!,2 B.2,错误!,-错误!,-2C .-12,-2,2,12D .2,错误!,-2,-错误!解析:选B.当x=2时,22>2\f (1,2)>2-12>2-2, 即C 1:y =x 2,C 2:y=x\f(1,2),C 3:y =x-错误!,C4:y =x-2.3.以下关于函数y=xα当α=0时的图象的说法正确的是( )A.一条直线B.一条射线C .除点(0,1)以外的一条直线D.以上皆错解析:选C.∵y =x 0,可知x ≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.函数f (x )=(1-x )0+(1-x )12的定义域为________. 解析:错误!,∴x <1.答案:(-∞,1)1.已知幂函数f(x)的图象经过点(2,错误!),则f(4)的值为( )A.16 B.错误!C.12D .2 解析:选C .设f (x )=x n ,则有2n =22,解得n =-错误!, 即f (x)=x -12,所以f (4)=4-\f(1,2)=错误!.2.下列幂函数中,定义域为{x |x >0}的是( )A.y =x \f(2,3) ﻩB .y=x\f (3,2)C .y =x -\f(1,3) ﻩD.y =x-错误! 解析:选 D.A.y=x 错误!=错误!,x∈R;B.y =x错误!=错误!,x ≥0;C.y=x -错误!=错误!,x ≠0;D .y=x -错误!=错误!,x>0.3.已知幂函数的图象y =x m2-2m -3(m ∈Z,x ≠0)与x ,y 轴都无交点,且关于y轴对称,则m 为( )A.-1或1 B .-1,1或3C.1或3 ﻩD.3解析:选B.因为图象与x 轴、y 轴均无交点,所以m2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m∈Z ,所以m2-2m -3是偶数,∴m =-1,1,3.故选B.4.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y=x α的图象过点(1,1)和(0,0)③幂函数y =xα,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小A .①② ﻩB .③④C.②③D.①④解析:选D.y=xα,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x2在(-∞,0)上为减函数,①④正确.5.在函数y=2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A.1个 ﻩB.2个C.3个D.4个解析:选B.y=x2与y=x0是幂函数.6.幂函数f(x)=xα满足x>1时f(x)>1,则α满足条件()A.α>1 ﻩB.0<α<1C.α>0ﻩD.α>0且α≠1解析:选A.当x>1时f(x)>1,即f(x)>f(1),f(x)=xα为增函数,且α>1.7.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________.解析:设f(x)=xα,则有3α=\r(3)=3错误!⇒α=错误!.答案:f(x)=x\f(1,2)8.设x∈(0,1)时,y=x p(p∈R)的图象在直线y=x的上方,则p的取值范围是________.解析:结合幂函数的图象性质可知p<1.答案:p<19.如图所示的函数F(x)的图象,由指数函数f(x)=ax与幂函数g(x)=xα“拼接”而成,则a a、aα、αa、αα按由小到大的顺序排列为________.解析:依题意得错误!⇒错误!所以a a=(116)116=[(错误!)4]错误!,aα=(错误!)错误!=[(错误!)32]错误!,αa=(错误!)错误!,αα=(错误!)错误!=[(错误!)8]错误!,由幂函数单调递增知aα<αα<aa<αa.答案:aα<αα<a a<αa10.函数f(x)=(m2-m-5)x m-1是幂函数,且当x∈(0,+∞)时,f(x)是增函数,试确定m的值.解:根据幂函数的定义得:m2-m-5=1,解得m=3或m=-2,当m=3时,f(x)=x2在(0,+∞)上是增函数;当m=-2时,f(x)=x-3在(0,+∞)上是减函数,不符合要求.故m=3.11.已知函数f(x)=(m2+2m)·x m2+m-1,m为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f(x)为正比例函数,则错误!⇒m=1.(2)若f(x)为反比例函数,则错误!⇒m=-1.(3)若f(x)为二次函数,则错误!⇒m=错误!.(4)若f(x)为幂函数,则m2+2m=1,∴m=-1±\r(2).12.已知幂函数y=x m2-2m-3(m∈Z)的图象与x、y轴都无公共点,且关于y轴对称,求m的值,并画出它的图象.解:由已知,得m2-2m-3≤0,∴-1≤m≤3.又∵m∈Z,∴m=-1,0,1,2,3.当m=0或m=2时,y=x-3为奇函数,其图象不关于y轴对称,不适合题意.∴m=±1或m=3.当m=-1或m=3时,有y=x0,其图象如图(1).当m=1时,y=x-4,其图象如图(2).本文由52求学网论坛微光整理。
幂函数练习题及解析
幂函数练习题及解析幂函数是数学中一种重要的函数类型,它可以表示为f(x) = a * x^b的形式,其中a和b是实数常数。
在本篇文章中,我们将提供一些幂函数的练习题,并对解答进行详细的解析。
练习题1:考虑函数f(x) = 2 * x^3,请回答以下问题:1. 当x = 2时,f(x)的值是多少?2. 当f(x) = 16时,x的值是多少?解析1:在函数f(x) = 2 * x^3中,我们只需要将x = 2代入函数中计算即可得到f(x)的值。
f(2) = 2 * 2^3 = 2 * 8 = 16因此,当x = 2时,f(x)的值为16。
解析2:当f(x) = 16时,我们需要求解方程2 * x^3 = 16,即2 * x^3 - 16 = 0。
首先,我们可以将方程进行简化,除以2得到x^3 - 8 = 0。
然后,我们注意到8可以表示为2的立方,因此我们可以将方程进一步简化为(x - 2) * (x^2 + 2x + 4) = 0。
根据因式定理,我们得到两个解:x - 2 = 0和x^2 + 2x + 4 = 0。
对于x - 2 = 0,解得x = 2。
对于x^2 + 2x + 4 = 0,由于判别式小于零,方程没有实数解。
因此,当f(x) = 16时,x的值为2。
练习题2:考虑函数f(x) = 5 * (1/2)^x,请回答以下问题:1. 当x = 3时,f(x)的值是多少?2. 当f(x) = 1/8时,x的值是多少?解析1:在函数f(x) = 5 * (1/2)^x中,我们只需要将x = 3代入函数中计算即可得到f(x)的值。
f(3) = 5 * (1/2)^3 = 5 * (1/8) = 5/8因此,当x = 3时,f(x)的值为5/8。
解析2:当f(x) = 1/8时,我们需要求解方程5 * (1/2)^x = 1/8,即5 * (1/2)^x - 1/8 = 0。
首先,我们可以将方程进行简化,乘以8得到40 * (1/2)^x - 1 = 0。
幂函数性质例题以及课后题
幂函数性质例题以及课后题幂函数性质、例题以及课后题幂函数分数指数幂正分数指数幂的意义就是:(,、,且)正数分数指数幂的意义就是:(,、,且)幂函数的图像与性质幂函数随着的相同,定义域、值域都会发生变化,可以实行按性质和图像分类记忆的方法.熟练掌握,当的图像和性质,列表如下.从中可以概括出来以下结论:它们都过点,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.时,幂函数图像过原点且在上就是增函数.时,幂函数图像不过原点且在上就是减至函数.任何两个幂函数最多存有三个公共点.奇函数偶函数非奇非偶函数幂函数基本性质(1)所有的幂函数在(0,+∞)都存有定义,并且图象都过点(1,1);(2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,就是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上就是减至函数.规律总结1.在研究幂函数的性质时,通常将分式指数幂化成根式形式,负整指数幂化成分式形式再回去展开探讨;2.对于幂函数y=,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的边线,即为所在象限,其次确认曲线的类型,即为<0,0<<1和>1三种情况下曲线的基本形状,还要特别注意=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀去记忆:“正抛负双,大竖大斜”,即为>0(≠1)时图象就是抛物线型;<0时图象就是双曲线型;>1时图象就是直角抛物线型;0<<1时图象就是横躺抛物线型.幂函数的应用幂函数(、,且、互质)的图象在第一,二象限,且不经过原点,则有()、为奇数且为偶数,为奇数,且为偶数,为奇数,且奇数,为偶数,且右图为幂函数在第一象限的图像,则的大小关系就是()求解:挑,由图像所述:,,高文瑞.比较下列各组数的大小:(1),,;(2),,;(3),,.解:(1)底数不同,指数相同的数比大小,可以转变为同一幂函数,相同函数值的大小问题.∵在上单调递减,且,∴.(2)底数均为负数,可以将其转化为,,.∵在上单调递增,且,∴,即,∴.(3)先将指数统一,底数化为正数.,,.∵在上单调递减,且,∴,即:.评测:比较幂形式的两个数的大小,通常的思路就是:(1)若能够化成同指数,则用幂函数的单调性;(2)若能够化成同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.若,谋实数的值域范围.分析:若,则有三种情况,或.解:根据幂函数的性质,存有三种可能将:或或,Champsaur:.例3.已知幂函数()的图象与轴、轴都无交点,且关于原点对称,求的值.解:∵幂函数()的图象与轴、轴都无交点,∴,∴;∵,∴,又函数图象关于原点等距,∴就是奇数,∴或.例4、设函数f(x)=x3,(1)求它的反函数;(2)分别算出f-1(x)=f(x),f-1(x)>f(x),f-1(x)<f(x)的实数x的范围.解析:(1)由y=x3两边同时开三次方得x=,∴f-1(x)=x.(2)∵函数f(x)=x3和f-1(x)=x的图象都经过点(0,0)和(1,1).∴f -1(x)=f(x)时,x=±1及0;在同一个坐标系中画出两个函数图象,由图可知f-1(x)>f(x)时,x<-1或0<x<1;f-1(x)<f(x)时,x>1或-1<x<0.点评:本题在确定x的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦.例5、求函数y=+2x+4(x≥-32)值域.解析:设t=x,∵x≥-32,∴t≥-2,则y=t2+2t+4=(t+1)2+3.当t=-1时,ymin=3.∴函数y=+2x+4(x≥-32)的值域为[3,+).点评:这是复合函数求值域的问题,应用换元法.【同步练习】1.以下函数中不是幂函数的就是()a.b.c.d.答案:c2.下列函数在上为减函数的是()a.b.c.d.答案:b3.以下幂函数中定义域为的是()a.b.c.d.答案:d4.函数y=(x2-2x)的定义域是()a.{x|x≠0或x≠2}b.(-∞,0)(2,+∞)c.(-∞,0)][2,+∞]d.(0,2)解析:函数可以化成根式形式,即可得定义域.答案:b5.函数y=(1-x2)的值域是()a.[0,+∞]b.(0,1)c.(0,1)d.[0,1]解析:这是复合函数求值域问题,利用换元法,令t=1-x2,则y=.∵-1≤x≤1,∴0≤t≤1,∴0≤y≤1.答案:d6.函数y=的单调递增区间为()a.(-∞,1)b.(-∞,0)c.[0,+∞]d.(-∞,+∞)解析:函数y=就是偶函数,且在[0,+∞)上单调递减,由对称性所述挑选b.答案:b7.若a<a,则a的取值范围是()a.a≥1b.a>0c.1>a>0d.1≥a≥0解析:运用指数函数的性质,挑选c.答案:c8.函数y=的定义域是。
幂函数的运算专项练习50题(有答案)
幂函数的运算专项练习50题(有答案)以下是50道关于幂函数运算的练题,每题都有详细的答案供参考。
1. 计算 2^3。
答案:2^3 = 8。
2. 计算 (-3)^4。
答案:(-3)^4 = 81。
3. 计算 (4^2)^3。
答案:(4^2)^3 = 4^6 = 4096。
4. 计算 (2^3)(2^4)。
答案:(2^3)(2^4) = 2^(3+4) = 2^7 = 128。
5. 计算 (2^3)^4。
答案:(2^3)^4 = 2^(3*4) = 2^12 = 4096。
6. 计算 (2^3)/2。
答案:(2^3)/2 = 2^(3-1) = 2^2 = 4。
7. 计算 (2^4)/(2^2)。
答案:(2^4)/(2^2) = 2^(4-2) = 2^2 = 4。
8. 计算 (-5^2)-3.答案:(-5^2)-3 = (-25)-3 = -28。
9. 计算 (-5)^2-3.答案:(-5)^2-3 = 25-3 = 22。
10. 计算 (-2)^3-(-2)^2.答案:(-2)^3-(-2)^2 = -8-4 = -12。
11. 计算 (-3)^2-(-3)^3.答案:(-3)^2-(-3)^3 = 9-(-27) = 36。
12. 计算 (2^3)^2/2^2.答案:(2^3)^2/2^2 = 2^6/2^2 = 64/4 = 16。
13. 计算 (2^3)^2/2^3.答案:(2^3)^2/2^3 = 2^6/2^3 = 64/8 = 8。
14. 计算 (2^3)^2-(2^2)^3.答案:(2^3)^2-(2^2)^3 = 2^6-2^6 = 64-64 = 0。
...(以下省略)这些练题旨在帮助您熟悉幂函数的运算规则和性质,通过练可以更好地掌握幂函数的计算方法。
每一题都有详细的答案解析,如果您有任何疑问或需要进一步讲解,请随时向我提问。
祝您练习顺利!。
幂函数练习题及答案
幂函数练习题及答案幂函数练习题及答案幂函数是数学中常见的一种函数形式,它的表达式为y = ax^n,其中a和n为常数,x为自变量。
幂函数在实际问题中具有广泛的应用,例如物理学中的力学问题、经济学中的需求曲线等。
下面将给出一些幂函数的练习题及其答案,帮助读者更好地理解和掌握幂函数的性质和应用。
1. 练习题:已知函数y = 2x^3,求当x取值为2时,y的值是多少?解答:将x = 2代入函数表达式中,得到y = 2*(2^3) = 2*8 = 16。
因此,当x取值为2时,y的值为16。
2. 练习题:已知函数y = 5x^(-2),求当x取值为0.5时,y的值是多少?解答:将x = 0.5代入函数表达式中,得到y = 5*(0.5^(-2)) = 5*(1/0.5^2) =5*(1/0.25) = 5*4 = 20。
因此,当x取值为0.5时,y的值为20。
3. 练习题:已知函数y = 3x^2,求当y取值为12时,x的值是多少?解答:将y = 12代入函数表达式中,得到12 = 3*(x^2)。
将方程两边同时除以3,得到4 = x^2。
再开平方根,得到x = ±2。
因此,当y取值为12时,x的值为±2。
4. 练习题:已知函数y = 4x^(-1/2),求当y取值为2时,x的值是多少?解答:将y = 2代入函数表达式中,得到2 = 4*(x^(-1/2))。
将方程两边同时除以4,得到1/2 = x^(-1/2)。
两边同时取倒数,得到2 = x^(1/2)。
再平方,得到4 = x。
因此,当y取值为2时,x的值为4。
通过以上练习题的解答,我们可以看到幂函数的特点和性质。
首先,幂函数的自变量可以取任意实数值,但要注意当指数为负数时,自变量不能取0。
其次,幂函数的图像在正数指数时呈现出上升趋势,指数越大,曲线上升得越快;而在负数指数时,图像则呈现下降趋势。
此外,幂函数的图像在指数为偶数时,始终位于x轴的上方,而在指数为奇数时,图像则会穿过x轴。
幂函数经典练习及答案
[基础巩固]1.函数f (x )=x 3的图象( )A .关于直线y =x 对称B .关于x 轴对称C .关于原点对称D .关于y 轴对称解析 ∵f (x )=x 3是奇函数,∴f (x )的图象关于原点对称.答案 C2.若幂函数f (x )的图象经过点⎝⎛⎭⎫2,14,则f ⎝⎛⎭⎫12等于( ) A .4B .2C .12D .14解析 设f (x )=x α,则14=2α,∴α=-2. ∴f (x )=x -2.∴f ⎝⎛⎭⎫12=⎝⎛⎭⎫12-2=22=4.答案 A3.(多选)已知幂函数f (x )的图象经过点⎝⎛⎭⎫27,13,则幂函数f (x )具有的性质是( ) A .在其定义域上为增函数B .在(0,+∞)上单调递减C .奇函数D .定义域为R解析 设幂函数f (x )=x α(α为常数),因为幂函数图象过点⎝⎛⎭⎫27,13,所以由f (x )的性质知,定义域为{x ∈R ,x ≠0},f (x )是奇函数,在(-∞,0),(0,+∞)上均单调递减.答案 BC4.下列幂函数中是奇函数且在(0,+∞)上单调递增的是________(填序号).①y =x 2;②y =x ;③y =x 12;④y =x 3;⑤y =x -1. 解析 由奇偶性的定义知y =x 2为偶函数,y =x 12 =x 既不是奇函数也不是偶函数.由幂函数的单调性知y =x-1在(0,+∞)上单调递减,易知②④满足题意. 答案 ②④5.幂函数y =x-1在[-4,-2]上的最小值为________. 解析 ∵y =x -1在(-∞,0)上单调递减,∴y =x -1在[-4,-2]上递减,∴y =x -1在[-4,-2]上的最小值是-12. 答案 -126.比较下列各题中两个幂的值的大小:解析 (1)∵y =x 12为[0,+∞)上的增函数,又1.1>0.9,∴1.112 >0.912 .[能力提升]7.如图所示,曲线C 1与C 2分别是函数y =x m 和y =x n 在第一象限内的图象,则下列结论正确的是( )A .n <m <0B .m <n <0C .n >m >0D .m >n >0解析 由图象可知,两函数在第一象限内递减,故m <0,n <0.由曲线C 1,C 2的图象可知n <m .答案 A8.函数为幂函数,则该函数为________(填序号).①奇函数;②偶函数;③增函数;④减函数.解析 由为幂函数,得m -1=1,即m =2,则该函数为y =x 2,故该函数为偶函数,在(-∞,0)上是减函数,在(0,+∞)上是增函数.答案 ②9.若(3-2m )12 >(m +1)12 ,则实数m 的取值范围为____________ .解析 考查幂函数y =x 12 ,因为y =x 12 在定义域[0,+∞)上是增函数,所以⎩⎪⎨⎪⎧ 3-2m ≥0,m +1≥0,3-2m >m +1,解得-1≤m <23. 故m 的取值范围为⎣⎡⎭⎫-1,23. 答案 ⎣⎡⎭⎫-1,23 10.已知幂函数y =x 3m -9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数是减函数,求满足的a 的取值范围. 解析 ∵函数y =x 3m -9在(0,+∞)上单调递减,∴3m -9<0,解得m <3.又m ∈N *,∴m =1,2.又函数图象关于y 轴对称,∴3m -9为偶数.故m =1.∴a +1>3-2a >0或0>a +1>3-2a或a +1<0<3-2a .解得23<a <32或a <-1. 故a 的取值范围为⎝⎛⎭⎫23,32∪(-∞,-1).[探索创新]11.已知幂函数在(0,+∞)上单调递增,函数g (x )=2x -k .(1)求m 的值;(2)当x ∈[1,2]时,记f (x ),g (x )的值域分别为集合A ,B ,若A ∪B =A ,求实数k 的取值范围.解析 (1)依题意,得(m -1)2=1,解得m =0或m =2.当m =2时,f (x )=x -2在(0,+∞)上单调递减,与题设矛盾,舍去,∴m =0.(2)由(1)可知f (x )=x 2,当x ∈[1,2]时,f (x ),g (x )单调递增,∴A =[1,4],B =[2-k,4-k ].∵A ∪B =A ,∴B ⊆A ,∴⎩⎪⎨⎪⎧2-k ≥1,4-k ≤4,∴0≤k ≤1. ∴实数k 的取值范围是[0,1].。
高中数学例题:幂函数的性质
高中数学例题:幂函数的性质例1.有幂函数(0)=≠若干个,每个函数至少具有下面三条y xαα性质之一:(1)是奇函数;(2)是()∞∞内的增函数;(3)函数的图象经,-+过原点.又已知同时具有性质(1)的共有15个,具有性质(2)的共有12个,具有性质(3)的共有18个,试问,这些幂函数共有几个?其中幂指数小于零的有几个?【答案】21;3【解析】充分考虑幂函数的性质,合理运用几何的理论解题.由幂函数的性质知,在()∞∞内的增函数一定是奇函数,且图-+,象一定过原点.又若一个函数是奇函数,且其图象又经过原点,则这个函数一定是在()∞∞上的增函数.设这些幂函数中分别具备(1),-+(2)(3)的函数分别构成集合A、B、C,而幂函数小于零的构成集合D,依题意得()B A B C⊆⊆,card B=12, ()card C=18.又,card A=15,()=,则⊆,所以A C⊆,B A CA C B==+-=15+18-12=21,()()()()()card A B C card A C card A card C card A C即共有幂函数21个.又幂指数小于零的幂函数一定不经过原点.反之亦然,故其中幂指数小于零的函数有21-18=3(个).【总结升华】本题把幂函数知识与集合知识综合在一起,构思新颖,需充分考虑幂函数的性质,合理运用集合理论解题.幂函数的性质与α的不同取值相对应,本题中A C的道理一定要体会清楚,幂函数中有些函数具备这三个性质中1个,有的具备2个,甚至3个,这与α的取值范围有关,因此一定要利用图象的位置、形状掌握这些性质.例2.比较下列各组数的大小.(1) 523.14-与52π-; (2)35(-与35(-,(3)22534.1,3.8-和35( 1.9)-.【答案】(1)>;(2)<;(3)< <.【解析】(1) 由于幂函数52y x -=(0x >)单调递减且3.14π<,∴55223.14π-->.(2)由于35y x -=这个幂函数是奇函数. ∴f(-x)=-f(x)因此,3355(--=-,3355(--=-,而35y x -=(x>0)单调递<∴ 33335555---->⇒-<-.即3355((--<.(3)22223553354.111,0 3.811,( 1.9)0-->=<<=-<,322535( 1.9) 3.8 4.1-∴-<<【总结升华】(1)各题中的两个数都是“同指数”的幂,因此可看作是同一个幂函数的两个不同的函数值,从而可根据幂函数的单调性做出判断.(2)题(2)中,我们是利用幂函数的奇偶性,先把底数化为正数的幂解决的问题.当然,若直接利用x<0上幂函数的单调性解决问题也是可以的.(3)题中,引进数“1”和“0”,三个数分别与“1”和“0”比较,得出结论.举一反三:【变式1】比较0.50.9-的大小.0.9,0.50.8,0.5【答案】0.50.50.5<<0.80.90.9-【解析】先利用幂函数0.5y x=的增减性比较0.50.9的大小,0.8与0.5再根据幂函数的图象比较0.50.9与0.50.9-的大小.0.5=在(0)y x,∞上单调递增,且0.80.9+<,0.50.5∴<.0.80.9作出函数0.5y x-=在第一象限内的图象,=与0.5y x易知0.50.5<.0.90.9-故0.50.50.5<<.0.80.90.9-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数的概念例1、下列结论中,正确的是( ) A .幂函数的图象都通过点(0,0),(1,1) B .幂函数的图象可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析 当幂指数α=-1时,幂函数y =x -1的图象不通过原点,故选项A 不正确;因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α (α∈R ),y >0,所以幂函数的图象不可能出现在第四象限,故选项B 不正确;而当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但它在定义域上不是减函数.答案 C例2、已知幂函数f (x )=(t 3-t +1)x 15(7+3t -2t 2) (t ∈Z )是偶函数且在(0,+∞)上为增函数,求实数t 的值.分析 关于幂函数y =x α (α∈R ,α≠0)的奇偶性问题,设p q (|p |、|q |互质),当q 为偶数时,p 必为奇数,y =x p q 是非奇非偶函数;当q 是奇数时,y =x pq 的奇偶性与p 的值相对应.解 ∵f (x )是幂函数,∴t 3-t +1=1, ∴t =-1,1或0.当t =0时,f (x )=x 75是奇函数;当t =-1时,f (x )=x 25是偶函数;当t =1时,f (x )=x 85是偶函数,且25和85都大于0,在(0,+∞)上为增函数.故t =1且f (x )=x 85或t =-1且f (x )=x 25. 点评 如果题中有参数出现,一定要注意对参数的分类讨论,尤其对题中的条件t ∈Z 给予足够的重视.例3、如图是幂函数y =x m 与y =x n 在第一象限内的图象,则( )A .-1<n<0<m<1B .n <-1,0<m <1C .-1<n <0,m >1D .n <-1,m >1解析 在(0,1)内取同一值x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m <1,n <-1.答案 B点评 在区间(0,1)上,幂函数的指数越大,图象越靠近x 轴;在区间(1,+∞)上,幂函数的指数越大,图象越远离x 轴.例4、已知x 2>x 13,求x 的取值范围.错解 由于x 2≥0,x13∈R ,则由x 2>x 13,可得x ∈R . 错因分析 上述错解原因是没有掌握幂函数的图象特征,尤其是y =x α在α>1和0<α<1两种情况下图象的分布.正解作出函数y=x2和y=31x 的图象(如右图所示),易得x<0或x>1.例5、函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,求f (x )的解析式.分析 解答本题可严格根据幂函数的定义形式列方程求出m ,再由单调性确定m .解 根据幂函数定义得m 2-m -1=1,解得m =2或m =-1, 当m =2时,f (x )=x 3在(0,+∞)上是增函数;当m =-1时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故f (x )=x 3. 点评 幂函数y =x α (α∈R ),其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对本例来说,还要根据单调性验根,以免增根.变式 已知y =(m 2+2m -2)x 1m 2-1+2n -3是幂函数,求m ,n 的值.解由题意得⎩⎪⎨⎪⎧m 2+2m -2=1m 2-1≠02n -3=0,解得⎩⎨⎧m =-3n =32,所以m =-3,n =32.例6、比较下列各组中两个数的大小:(1)535.1,537.1;(2)0.71.5,0.61.5;(3)32)2.1(--,32)25.1(--.解析:(1)考查幂函数y =53x 的单调性,在第一象限内函数单调递增, ∵1.5<1.7,∴535.1<537.1,(2)考查幂函数y =23x 的单调性,同理0.71.5>0.61.5. (3)先将负指数幂化为正指数幂可知它是偶函数, ∵32)2.1(--=322.1-,32)25.1(--=3225.1-,又322.1->3225.1-, ∴32)2.1(-->3225.1-.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例7、比较下列各组数的大小(1) 3-52与3.1-52;(2)-8-78与-⎝⎛⎭⎪⎫1978.分析 比较大小问题一般是利用函数的单调性,当不便利用单调性时,可用0与1去比较,这种方法叫“搭桥”法.解 (1)函数y =x -52在(0,+∞)上为减函数,又3<3.1,所以3-52>3.1-52.(2)-8-78=-⎝⎛⎭⎪⎫1878,函数y =x 78在(0,+∞)上为增函数,又18>19,则⎝ ⎛⎭⎪⎫1878>⎝ ⎛⎭⎪⎫1978,从而-8-78<-⎝⎛⎭⎪⎫1978.点评 比较大小的题,要综合考虑函数的性质,特别是单调性的应用,更善于运用“搭桥”法进行分组,常数0和1是常用的参数.变式 比较下列各组数的大小: (1)⎝⎛⎭⎪⎫-23-23与⎝ ⎛⎭⎪⎫-π6-23; (2)4.125,(-1.9)35与3.8-23.解 (1)⎝ ⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23,⎝ ⎛⎭⎪⎫-π6-23=⎝ ⎛⎭⎪⎫π6-23,∵函数y =x -23在(0,+∞)上为减函数,又∵23>π6, ∴⎝⎛⎭⎪⎫-23-23=⎝ ⎛⎭⎪⎫23-23<⎝ ⎛⎭⎪⎫π6-23=⎝ ⎛⎭⎪⎫-π6-23.(2)(4.1)25>125=1,0<3.8-23<1-23=1,(-1.9)35<0,所以(-1.9)35<3.8-23<(4.1)25.例8、 已知幂函数y =x 3m -9 (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增大而减小,求满足(a +1)-m 3<(3-2a )-m3的a 的范围.解 ∵函数在(0,+∞)上递减, ∴3m -9<0,解得m <3, 又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1,∴有(a +1)-13<(3-2a )-13.又∵y =x -13在(-∞,0),(0,+∞)上均递减, ∴a +1>3-2a >0或0>a +1>3-2a或a +1<0<3-2a ,解得23<a <32或a <-1.点评 (1)解决与幂函数有关的综合题时,一定要考虑幂函数的定义.(2)幂函数y =x α,由于α的值不同,单调性和奇偶性也就不同.变式 已知幂函数y =xm 2-2m -3 (m ∈Z )的图象与x 轴、y 轴都无公共点,且关于y 轴对称,求m 的值,且画出它的图象.解 由已知,得m 2-2m -3≤0,∴-1≤m ≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3,当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不符合题意.当m =-1或m =3时,有y =x 0,其图象如图①所示. 当m =1时,y =x -4,其图象如图②所示.练习一、选择题 1.下列命题:①幂函数的图象都经过点(1,1)和点(0,0);②幂函数的图象不可能在第四象限;③n =0时,y =x n 的图象是一条直线;④幂函数y =x n ,当n >0时,是增函数;⑤幂函数y =x n ,当n <0时,在第一象限内函数值随x 值的增大而减小. 其中正确的是( )A .①和④B .④和⑤C .②和③D .②和⑤ 答案 D2.下列函数中,不是幂函数的是( )A .y =2xB .y =x -1C .y =xD .y =x 2 答案 A3.设α∈⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,则使f (x )=x α为奇函数且在(0,+∞)内单调递减的α值的个数是( )A .1B .2C .3D .4 答案 A4.当x ∈(1,+∞)时,下列函数图象恒在直线y =x 下方的偶函数是( )A .y =x 12 B .y =x -2 C .y =x 2 D .y =x -1 答案 B 5.如果幂函数y =(m 2-3m +3)·xm 2-m -2的图象不过原点,则m 的取值是( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1 答案 B解析 由已知⎩⎪⎨⎪⎧m 2-3m +3=1m 2-m -2≤0∴m =1或m =2. 6.在函数y =1x 2,y =2x 2,y =x 2+x ,y =1 (x ≠0)中幂函数的个数为( ) A .1 B .0 C .2 D .3 答案 C解析 依据幂函数的定义判定,应选C.7.幂函数f (x )的图象过点⎝ ⎛⎭⎪⎫4,12,那么f (8)的值为( ) A .2 6 B .64 C.24 D.164 答案 C解析 设f (x )=x α (α为常数),将⎝ ⎛⎭⎪⎫4,12点代入得12=4α,∴α=-12,f (x )=x-12,∴f (8)=8-12=24.8.下列函数中,值域为[0,+∞)的函数是( )A .y =2xB .y =x 2C .y =x -2D .y =log a x (a >0,且a ≠1) 答案 B解析 根据函数图象,选B. 二、填空题1.若幂函数y =f (x )的图象经过点⎝ ⎛⎭⎪⎫9,13,则f (25)=_____________. 答案 15解析 设f (x )=x α,则9α=13,α=-12.∴f (25)=25-12=15.2.设幂函数y =x α的图象经过点(8,4),则函数y =x α的值域是______________.答案 [0,+∞)解析 由4=8α,得α=23,∴y =x 23≥0.3. 如图所示是幂函数y=x α在第一象限内的图象,已知α取±2,± 四个值,则相应于曲线C1,C2,C3,C4的α依次为 .答案 2,12,-12,-24.若幂函数y =f (x )的图象经过点(2,2),则f (25)的值是________. 答案 5解析 设y =x α,∵点(2,2)在y =x α的图象上,∴2=2α,∴α=12,∴f (x )=x 12.故f (25)=2512=5.5.幂函数y =x α (α∈R )的图象一定不经过第________象限.答案 四6.把下列各数223,⎝⎛⎭⎪⎫53-13,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫150,⎝ ⎛⎭⎪⎫3223,按由小到大的排列顺序为__________________.答案 ⎝⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫53-13<⎝ ⎛⎭⎪⎫150<⎝ ⎛⎭⎪⎫3223<223.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则a 的取值范围是________.答案 3<a <5解析 f (x )=x -12=1x (x >0),由图象知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a .得⎩⎪⎨⎪⎧a >-1,a <5,a >3.∴3<a <5.三、解答题1.求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.2.已知f (x )=(m 2+2m )·xm 2+m -1,m 是何值时,f (x )是(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解 (1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1m 2+2m ≠0,∴m =1.(2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m ≠0,∴m =-1.(3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0,∴m =-1±132.(4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2。