两个重要极限的证明
两个重要极限的证明
两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。
当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。
即111sin 222x x <<tgx ,sinx<x<tgx 。
除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。
(1) 由偶函数性质,上式对02x π-<<时也成立。
故(1)式对一切满足不等式0||2x π<<的x 都成立。
由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。
函数f(x)=sin x x的图象如图(b )所示。
2.证明:1lim(1)n n n →∞+存在。
证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。
(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。
由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。
再令a=1,b=1+12n代入(1)。
由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。
不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。
联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。
于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。
极限存在准则两个重要极限公式
极限存在准则两个重要极限公式首先,我们来介绍极限保号公式。
设函数f(x)在点a的一些邻域内有定义,如果存在常数M>0,使得对于任意的x∈(a-h,a+h)(h>0),都有,f(x),≤M,则称M为f(x)在点a处的一个保号常数。
现在我们来证明极限保号公式:假设f(x)在其中一点a的一些邻域内有定义,并且存在常数M>0,使得对于任意的x∈(a-h,a+h)(h>0),都有,f(x),≤M。
如果limx→af(x)=L存在,那么L也满足,L,≤M。
证明:由于limx→a f(x)=L存在,那么对于任意的ε>0,存在δ>0,使得对于任意的x∈(a-h,a+h)(h>0),如果0<,x-a,<δ,那么有,f(x)-L,<ε。
现在我们取ε=M,那么存在δ>0,使得对于任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x)-L,<M。
这说明,对于任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x),=,f(x)-L+L,≤,f(x)-L,+,L,<M+,L。
我们再取任意的x∈(a-h,a+h),如果0<,x-a,<δ,那么有,f(x),≤M+,L,但是我们已经知道,在点a的一些邻域内存在保号常数M>0,使得对于任意的x∈(a-h,a+h),都有,f(x),≤M。
所以有,L,≤M。
这就是极限保号公式的证明。
接下来我们来介绍夹逼准则。
设函数f(x)、g(x)、h(x)在点a的一些邻域内有定义,并且对于任意的x∈(a-h,a+h)(h>0),都有g(x)≤f(x)≤h(x)。
如果limx→a g(x)=limx→a h(x)=L存在,那么limx→a f(x)=L也存在。
证明:对于任意的ε>0,由于limx→a g(x)=L存在,那么存在δ1>0,使得对于任意的x∈(a-h,a+h),如果0<,x-a,<δ1,那么有,g(x)-L,<ε。
两个重要极限公式
两个重要极限公式极限公式在数学中扮演着重要的角色,用于计算和研究函数在特定点处的趋势和性质。
下面将介绍两个重要的极限公式:拉格朗日中值定理和柯西中值定理。
1. 拉格朗日中值定理(Lagrange's Mean Value Theorem)拉格朗日中值定理是微分学中的基本定理之一,它描述了函数在闭区间内特定点的导数与函数在该闭区间两个端点的函数值之间的关系。
设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,那么存在一个点c∈(a,b),使得f'(c)=(f(b)-f(a))/(b-a)。
简单来说,这个定理告诉我们在闭区间上,函数在特定点的导数等于该区间两端函数值的斜率。
这个定理的物理含义是:在其中一段时间内,速度瞬时等于平均速度。
例如,假设我们开车从家到办公室,用时1小时,路程50公里。
那么根据拉格朗日中值定理,我们可以得知,肯定存在一些时刻,我们的速度等于50公里/1小时,即我们的瞬时速度等于平均速度。
拉格朗日中值定理在数学和物理中有着广泛的应用,例如在微分方程的研究中,用于证明存在性和连续性定理。
2. 柯西中值定理(Cauchy's Mean Value Theorem)柯西中值定理是微分学中的一条基本定理,与拉格朗日中值定理类似,它描述了两个函数在其中一区间内的导数之间的关系。
设函数f(x)和g(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且g(x)不为零,那么存在一个点c∈(a,b),使得(f'(c)g(b)-f(b)g'(c))/(g(c))^2=(f'(x)g(x)-f(x)g'(x))/(g(x))^2在(a,b)上成立。
柯西中值定理的物理含义是:在其中一段时间内,两个物体在其中一时刻的速度之比等于它们的速度的平均比值。
例如,假设我们有两个自行车手从家到学校,根据柯西中值定理,可以得知,存在其中一时刻,两个自行车手的速度之比等于他们速度的平均比值。
2.5两个重要极限
例5 求 lim e x 1 . x0 x
解 令u ex 1,则x ln(1 u),当x 0时, u 0, 有
ex 1
u
1
lim
lim
lim
1
x0 x
u0 ln(1 u) u0 1 ln(1 u)
u
练习
7.lim n
1+
1 n
n1
1
8.lim 1 2 x x x0
9.lim x
1 2
练习
1.lim tan x x0 x
1 cos x
2.lim x0
x2
x sin 2x 3.lim
x0 x sin 2 x
sin5( x a ) 4.lim
xa x a
5.lim x0
1 x
sin
x+x
sin
1 x
6.lim x
1 x
sin
x+x
sin
1 x
二 、lim(1 1 )x e
2
22
当0 x ,有 cos x sin x 1
2
x
由sin x,cos x的奇偶性知
当0 x ,有 cos x sin x 1
2
x
由夹逼定理得 lim sin x 1 x0 x
我们不难证得: lim x 1
x0 sin x
例1 求 lim sinax (a为 非 零 常 数)
x
x2
x2
例3 求 lim(1 1 )3x .
解
x
lim(1
x
x 1 )3x x
lxim(1
1 x
)
x
3
lxim(1
两个重要极限
两边夹定理可知, lim | sin x | 0 , 从而 lim sin x 0.
图 2.13 例6.2 证明 lim cos x 1.
x 0
2 x x x 证 当 x 在 0 附近,即当 | x | 时, 由半角公式知 0 1 cos x 2 sin 2 2( )2 . 2 2 2 2
36
1 n 重要极限二: lim (1 ) e. n n 1 n 我们可以利用单调有界数列必有极限来证明 lim (1 ) 的存在性。 n n 1 n 证 设 f (n) (1 ) . 先证 f (n) 单调增加。事实上,由二项式展开有 n 1 n n 1 n( n 1) 1 n( n 1)(n 2) 1 f ( n) (1 ) 1 2 3 n 1! n 2! n 3! n n( n 1)(n 2)...(n n 1) 1 ﹢ n n! n 1 1 1 1 1 2 1 (1 ) (1 )(1 ) 1! 2! n 3! n n 1 1 2 n 1 (1 )(1 )(1 ). 同理有 n! n n n 1 n 1 1 1 1 1 2 1 f (n 1) (1 ) 1 (1 ) (1 )(1 ) n 1 1! 2! n 1 3! n 1 n 1 1 1 2 n 1 (1 )(1 )(1 ) n! n 1 n 1 n 1
n
例 6.13
求 lim
sin x . sin x sin(x) lim 2 2 x x ( x x)(x)
lim 例 6.14
2 2 sin( x) lim 1 . x x x x 2 2
例 6.8
两个重要极限的证明
两个重要的极限1.证明:0sin lim 1x x x→= 证明:如图(a )作单位圆。
当0<x<2π时,显然有ΔOAD 面积<扇形OAD 面积<ΔOAB 面积。
即111sin 222x x <<tgx ,sinx<x<tgx 。
除以sinx ,得到11sin cos x x x<< 或sin 1cos x x x >>。
(1) 由偶函数性质,上式对02x π-<<时也成立。
故(1)式对一切满足不等式0||2x π<<的x 都成立。
由0lim x →cosx=1及函数极限的迫敛性定理立刻可得0lim x →sin 1x x=。
函数f(x)=sin x x的图象如图(b )所示。
2.证明:1lim(1)n n n →∞+存在。
证明:先建立一个不等式,设b>a>0,于是对任一自然数n 有 11(1)n n n b a n b b a++-<+-或11(1)()n n n b a n b b a ++-<+-,整理后得不等式1[(1)]n n a b n a nb +>+-。
(1) 令a=1+11n +,b=1+1n ,将它们代入(1)。
由于11(1)(1)(1)(1)11n a nb n n n n +-=++-+=+, 故有111(1)(1)1n n n n ++>++,这就是说1{(1)}n n+为递增数列。
再令a=1,b=1+12n代入(1)。
由于11(1)(1)(1)22n a nb n n n +-=+-+=,故有111(1)22n n >+,12(1)2n n >+。
不等式两端平方后有214(1)2n n >+,它对一切自然数n 成立。
联系数列的单调性,由此又推得数列1{(1)}n n +是有界的。
于是由单调有界定理知道极限1lim(1)n n n→∞+是存在的。
高等数学第3章第4节两个重要的极限
§4 两个重要的极限一、证明0sin lim 1x xx→=证 如图:由OAC OAB OAB S S S ∆∆<<扇形可导出如下不等式(20π<<x ).除以,得到x x x cos 1sin 1<<,由此得 )1(sin cos xxx x <<在(1)式中用代替时,(1)式不变,故(1)式当02<<-x π时也成立,从而它对一切满足不等式20π<<x 的 都成立.由1cos lim 0=→x x及函数极限的迫敛性,即得1sin lim 0=→xx x . 函数xxy sin =的图象如下所示例1.求sin limx xx ππ→-.例2.求201cos lim x xx →-.注:利用归结原则,可求数列极限。
如求1sin1limlim sin 1n n n n nn→∞→∞=,直接利用0sin lim 1x x x →=是不严格的;但已知0sin lim1x x x →=,故取,(1,2,)n x n n π== ,则0()n x n →→∞,从而由归结原则1sinlim ()lim01n n n n f x n →∞→∞==. 例3.求0lim x tgxx→.二、证明e xxx =+∞→)11(lim 或. e =+→ααα10)1(lim 证 所求证的极限等价于同时成立以下两个极限e xx x =++∞→)11(lim (2)e xx x =+-∞→)11(lim (3)先利用数列极限e nn n =+∞→)11(lim证明(2)式成立.为此,作定义在上),1[+∞的两个阶梯函数如下:nn x f )111()(++=,,1)11()(++=n nx g,,易见f 增(第二章§3习题4)且有上界,g 减(第二章§3习题9)且有下界.故据上节习题2,)(lim x f x +∞→与)(lim x g x +∞→皆存在.于是,由归结原则(取}{}{n x n =)得到e n xf nn x =++=∞→+∞→)111(lim )(lim e nx g n n x =+=+∞→+∞→1)11(lim )(lim 另一方面,当时有nx n 1111111+<+<++以及1)11()11()111(++<+<++n x n nx n,即有)()11()(x g xx f x<+<,),1[+∞∈x .从而根据迫敛性,定理(2)式得证. 现证(3)式.为此作代换y x-=,则y y x y y x )111()11()11(-+=-=+-,且当-∞→x 时+∞→y ,从而有e y y x yy y y x x =-+=-=++∞→-+∞→-∞→)111(lim )11(lim )11(lim 以后还常用到e 的另一种极限形式:e =+→αα1)1(lim(4)事实上,令x1=α,则0→⇔∞→αx ,所以e xxx =+=+→∞→ααα10)1(lim )11(lim例1.求()10lim 12xx x →+.例2.求()10lim 1xx x →-.例3.求211lim(1)nn n n →∞+-.作业:p58. 1(2), (5), (8), (9), (10) , 2(1), (3), (5), (6), 3.。
D1_4两个重要极限公式
lim x sin
x 0
0 ____ ;
e lim (1 ) ____ ; n n
作业
P27 1 (4),(5),(6) ; 2 (2),(3),(4) ;
第七节 目录
上页
下页
返回
结束
cos x sin x x 1
注
目录
上页
下页
返回
结束
例1. 求
解: lim
tan x x
sin x 1 lim x 0 x cos x
x 0
lim
sin x x
x 0
lim
1 x
x 0 cos
1
例2. 求
解: 令 t arcsin x , 则 x sin t , 因此 原式 lim
n
n lim (1 n1 1) lim
(1 n1 1)
n 1
n
1 n1 1
n
e
n
lim (1 1 ) n
x
n 1
lim [(1 1 ) ( 1) e 1 n ] n
n
x
lim (1 1 ) e x
目录
上页
π n
R
证明: 证: lim An lim π R 2
n
sin π n
π n
n
cos π n
说明: 计算中注意利用
目录 上页 下页 返回 结束
2.
证: 当 x 0 时, 设 n x n 1, 则
(1
1 n ) n 1
(1
1 x ) x
(1
1 n 1 ) n
极限的两个重要极限公式
极限的两个重要极限公式极限是高等数学中的重要概念,具有广泛的应用。
在研究函数的性质、求导、积分等方面,极限都起着重要的作用。
本文将介绍两个重要的极限公式,它们分别是复合函数的极限公式和级数的比较判别法。
一、复合函数的极限公式复合函数是由两个或多个函数组合而成的函数,例如f(g(x))。
当我们需要计算复合函数的极限时,可以使用复合函数的极限公式,它的表述如下:设函数f(x)在x0处连续,g(x)在x0处极限存在且等于a,则有:lim f(g(x)) = f(a)x→x0这个公式的意义是,当自变量x趋近于x0时,函数g(x)的值趋近于a,因此f(g(x))的值也趋近于f(a)。
这个公式的证明可以使用ε-δ定义,但在这里我们不再赘述。
这个公式的应用非常广泛,特别是在微积分中,它可以用于求导和积分。
例如,当我们需要求f(g(x))的导数时,可以先求出g(x)的导数,然后将它代入f(x)中,再乘以g'(x),即可得到f(g(x))的导数。
同样地,当我们需要对f(g(x))求积分时,可以将它转化为f(u)du的形式,其中u=g(x),du=g'(x)dx,然后再对f(u)进行积分。
二、级数的比较判别法级数是由无穷多个数相加得到的数列,例如1+1/2+1/3+1/4+...。
在研究级数的性质时,我们经常需要判断它是否收敛。
如果一个级数收敛,那么它的和就是一个有限的数;如果一个级数发散,那么它的和就是无穷大或无穷小。
级数的比较判别法是判断级数收敛性的一种方法,它的表述如下:设有两个级数an和bn,如果存在一个正整数N,使得当n>N 时,有an≤bn,则有:若级数bn收敛,则级数an也收敛。
若级数an发散,则级数bn也发散。
这个公式的意义是,如果级数an的每一项都小于等于级数bn 的对应项,那么an的收敛性和bn的收敛性是相同的。
如果bn收敛,那么an也收敛;如果an发散,那么bn也发散。
这个公式的证明也比较简单,可以使用比较原理和收敛级数的性质进行推导。
极限存在准则两个重要极限公式
夹逼准则不仅说明了极限存在,而且给出了求极限的
方法.下面利用它证明另一个重要的
极限公式: lim sin x 1 x0 x
证:
当
x
(
0
,
2
)
时,
BD
1x
oC
A
△AOB 的面积<圆扇形AOB的面积<△AOD的面积
即
1 2
sin
x
1 2
x
1 2
tan
x
亦故即有
1sin sxinxxxctoa1snxx
1. 单调有界准则
数列 xn : 单调增加 x1 x2 xn xn1 ,
单调减少 x1 x2 xn xn1 ,
准则I 单调有界数列必有极限 单调上升有上界数列必有极限
说 明: 单调下降有下界数列必有极限 (1) 在收敛数列的性质中曾证明:收敛的数列一定 有界,但有界的数列不一定收敛.
1
1 1 n1 n 1
1 yn1
由于数列 yn 是单调增加的,所以数列 zn 是单调减少的.
又
xn
1
1
n
n
1
1
ห้องสมุดไป่ตู้n1
n
zn
z1
4
则 2 xn 4. 综上,根据极限存在准则Ⅰ可知,数列是
收敛的.
2023年12月9日星期六
4
目录
上页
下页
返回
通常用字母 e 来表示这个极限,即
lim
n
1
1
n
)
( n 1, 2,
), 且
x1 0,
a0,
求
lim
n
xn
.
利用极限存在准则
考研数学:两个重要极限
通过比较
xn , xn 1 的展开式,得到除前两项外, xn 的每一项都小于 xn1 的对应项,且 xn1 还 xn xn1 ,即可证数列 xn 单调增加.
多了最后一项且其值大于 0 ,故得出 再证有界;由
1 式易得
1 1 1 1 1 1 2 n 1 1 xn 1 1 1 1 2 n 1 1 3 n! 2 12 2! 3! 2 2 ,
x 0
同理,由夹逼准则可得 x 0
综上,由极限存在的充要条件可知
sin x Biblioteka x .tan x 有关此极限多用于证明与计算比如求 x 0 x ,(读者自行完成). lim 1 lim 1 e x x 接下来证明 . 1 lim 1 e x x 分析:对于 的证明看上去很复杂,但可以先借助极限存在准则(单调
/
sin x sin x x tan x, 0 x cos x 1 2 可得 x 证 由 ,
又
x 0
lim cos x 1 lim
,
由夹逼准则可得
x 0
sin x 1 x ;
sin x tan x x sin x, x 0 cos x 1 2 也可得 x 对于 , lim sin x 1 x ; lim
n 1
1
;
二项式定理
1 1 1 1 1 n 1 1 1 1 1 2! n 1 n! n 1 n 1 n 1
1 1 n ; 1 1 n 1! n 1 n 1
版权所有
数学分析3.4两个重要的极限
第三章函数极限4 两个重要的极限一、证明:limx→0sin xx=1.证:∵sinx<x<tanx(0<x<π2),∴1<xsin x<1cos x(0<x<π2),∴cosx<sin xx<1(0<x<π2),又cos-x=cosx,sin−x−x =sin xx,∴对0<|x|<π2,有cosx<sin xx<1.由limx→0cosx=1,根据极限的迫敛性,limx→0sin xx=1.例1:求limx→πsin x π−x.解:令t=π-x,则sinx=sin(π-t)=sint,且当x→π时,t→0,∴limx→πsin xπ−x=limt→0sin tt=1.例2:求limx→01−cos xx2.解:limx→01−cos xx2=limx2→012sin x2x22=12,二、证明limx→∞1+1xx=e.证:设f(x)=1+1n+1n, g(x)=1+1nn+1, n≤x<n+1, n=1,2,…,则f(x)递增且有上界,g(x)递减且有下界,∴limx→+∞f x与limx→+∞g x都存在,取{x n}={n},由归结原则得lim x→+∞f x=limn→+∞1+1n+1n=e,limx→+∞g x=limn→+∞1+1nn+1=e,又1+1n+1<1+1x≤1+1n,则1+1n+1n<1+1xx<1+1nn+1,根据迫敛性定理得limx→+∞1+1xx= e.设x=-y,则1+1x x=1−1y−y=1+1y−1y,且当x→-∞,y→+∞,从而有lim x→−∞1+1xx=limy→+∞1+1y−1y−1·1+1y−1=e.∴limx→∞1+1xx=e.注:e的另一种形式:lima→01+a1a=e.证:令a=1x ,则当a→0时,1x→∞,∴lima→01+a1a=lim1x→∞1+1xx=e.例3:求limx→01+2x1x.解:limx→01+2x1x=lim12x→∞1+2x12x2=e2.例4:求limx→01−x1x.解:limx→01−x1x=lim−1x→∞1[1+(−x)]−1x=1e.例5:求limn→∞1+1n−1n2n.解:1+1n −1n2n<1+1nn→e(n→∞),又当n>1时有1+1n −1n2n=1+n−1n2n2n−1−nn−1≥1+n−1n2n2n−1−2→e(n→∞,即n−1n2→0).由迫敛性定理得:limn→∞1+1n−1n2n=e.习题1、求下列极限: (1)lim x →0sin 2x x;(2)limx →0sin x 3 (sin x)2;(3)lim x →π2cos xx −π2;(4)limx →0tan x x;(5)limx →0tan x −sin xx 3;(6)limx →0arctan xx;(7)lim x →+∞x sin 1x;(8)limx →asin 2 x −sin 2 ax −a;(9)limx → x +1−1(10)limx →0 1−cos x 21−cos x.解:(1)limx →0sin 2x x=lim2x →02sin 2x 2x=2;(2)lim x →0sin x 3(sin x)2=limx →0 x 3sin x 3x 3(sin x )2=limx 3→0sin x 3x3·lim x 2→0xsin x 2·lim x →0x =0; (3)lim x →π2cos x x −π2=lim x −π2→0−sin x −π2x −π2= -1;(4)limx →0tan x x=limx →0sin x x·limx →01cos x=1;(5)lim x →0tan x −sin xx 3=limx →0sinx 1cos x −1x 3=limx →0sin x·1−cos xcos x x 3=limx →02sinx 2cos x 2·2 sin x 2 2cos xx3=limx →04 sinx 2 3·cos x2cos x x3=limx →0sin x 2 3·cos x2cos x 2 x 23=lim x2→0sinx 2x 23·lim x 2→0cosx 22lim x →0cos x =12;(6)令arctan x=y ,则x=tany ,且x →0时,y →0, ∴limx →0arctan xx=limy →0ytan y =limy →0cos ysin y y=1;(7)lim x →+∞x sin 1x =lim 1x→0sin1x1x =1;(8)lim x →asin 2 x −sin 2 ax −a =limx →a sin x −sin a (sin x+sin a)x −a=limx →a2cosx +a 2 sin x −a2x −a·2sin a=limx −a2→0sinx −a2x −a 2·cos a ·2sin a= sin2a ;(9)limx →x +1−1lim x →0( x+1+1)sin 4xx=8lim4x →0sin 4x 4x=8;(10)lim x →0 1−cos x 21−cos x=limx →0 2sin x 222 sin x 22= 2limx →0sinx 22 x 22 sinx 2x 22= 2.2、求下列极限:(1)limx→∞1−2x−x;(2)limx→01+ax1x(a为给定实数);(3)limx→01+tan x cot x;(4)limx→01+x1−x1x;(5)limx→+∞3x+23x−12x−1;(6)limx→+∞1+αxβx(α,β为给定实数)解:(1)limx→∞1−2x−x=lim−x2→∞1+1−x2−x22=e2;(2)limx→01+ax1x=lima x→01+ax1axa=e a;(3)limx→01+tan x cot x=limtan x→01+tan x1tan x=e;(4)limx→01+x1−x1x=limx→01+x1x1−x1x=limx→01+x1xlim−x→0[1+−x]1−x−1=e2;(5)limx→+∞3x+23x−12x−1=limx→+∞1+33x−16x−33=lim33x−1→0+1+33x−123x−1−13=lim33x−1→0+1+33x−123x−13lim33x−1→0+1+33x−113=e2;(6)limx→+∞1+αxβx=limx→+∞1+αxαβxα=limαx→0+1+αxxααβ=eαβ.3、证明:limx→0limn→∞cos xcos x2cos x22…cos x2n=1.证:∵cos xcos x2cos x22…cos x2n=2n+1cos xcos x2cos x22…cos x2nsin x2n2n+1sin x2n=sin 2x2n+1sin x2n=sin 2x2xsin x2nx2n=x2nsin x2n·sin 2x2x;∴当x≠0时,limn→∞ cos xcos x2cos x22…cos x2n=limx2n→0x2nsin x2n·sin 2x2x=sin 2x2x;lim x→0limn→∞cos xcos x2cos x22…cos x2n=lim2x→0sin 2x2x=1.当x=0时,cos xcos x2cos x22…cos x2n=1,∴limx→0limn→∞cos xcos x2cos x22…cos x2n=1.4、利用归结原则计算下列极限:(1)limn→∞n sinπn;(2)limn→∞1+1n+1n2n.解:(1)∵limx→∞x sinπx=limx→∞sinπxπx·x=limπx→0sinπxπx·limx→∞x=0根据归结原则,limn→∞n sinπn=0.(2)∵当x>0时,1+1x +1x2x>1+1xx→e(x→+∞),又1+1x +1x2x=1+x+1x2x2x+1+xx+1<1+x+1x2x2x+1→e(x→+∞,即x+1x2→0),∴limx→+∞1+1x+1x2x=e根据归结原则,limn→∞1+1n+1n2n=e.。
两个重要极限证明过程
两个重要极限证明过程嘿,咱今天来聊聊两个重要极限证明过程哈!这可是数学里相当关键的玩意儿呢!先来说说第一个重要极限,那就是当 x 趋近于 0 的时候,sinx/x 的极限等于 1。
你想想看,这就好像是一场追逐游戏,sinx 和 x 在趋近于0 的道路上你追我赶。
为啥这个极限是 1 呢?咱可以通过巧妙的构造和分析来搞明白。
咱可以画个单位圆呀,在圆上找个角度对应的弧长和对应的弦长,然后比较比较。
这不就发现,当角度很小的时候,弧长和弦长几乎差不多嘛!这就好比你走在路上,离得近的时候看两根线好像都重合了一样。
这样不就慢慢能理解为啥 sinx/x 在 x 趋近于 0 的时候极限是 1了嘛!再讲讲第二个重要极限,就是当 x 趋近于无穷大的时候,(1+1/x)^x 的极限等于 e。
哎呀呀,这个可有点神奇呢!就好像一个东西在不断地变化、成长。
咱可以通过一些计算和推导来搞清楚。
你就想啊,随着x 越来越大,那个式子里面的 1/x 就越来越小,但是经过那么一运算,最后竟然趋近于一个固定的值 e!这就好像你看着一颗小种子,一点点长大,最后变成了一棵大树,多奇妙呀!这两个重要极限证明过程可不简单呐,就像爬山一样,得一步步往上爬,一点点去理解。
它们在数学里的作用可大了去了,好多问题都得靠它们来解决呢!你要是不把它们搞清楚,那数学的大门可就没那么容易进咯!比如说在求一些极限的时候,你一下子就想到这两个重要极限,然后就像找到了钥匙一样,“咔嚓”一下门就开了。
如果没有它们,那可就像在黑暗里摸索,找不到方向啦!而且呀,这两个重要极限还和好多其他的数学知识紧密相连呢!就像一张大网,它们就是网上的关键节点。
你掌握了它们,就能把这张网织得更结实,更完整。
所以啊,大家可得好好去研究研究这两个重要极限证明过程,别嫌麻烦,别嫌困难。
等你真的搞懂了,你就会发现数学的世界原来这么精彩,这么有趣!就像打开了一扇通往奇妙世界的大门,里面有无尽的宝藏等你去挖掘呢!加油吧!。
两个重要极限的简化证明
两个重要极限的简化证明
1、limsinx/x=1(x-\ue0)当x→0时,sin/x的极限等于1;
2、lim(1+1/x)^x=e
(x→∞)当x→∞时,(1+1/x)^x的极限等于e或当x→0时,(1+x)^(1/x)的极限等于e。
极限的求法有很多种:
1、已连续初等函数,在定义域范围内谋音速,可以将该点轻易代入得极限值,因为连续函数的极限值就等同于在该点的函数值。
2、利用恒等变形消去零因子。
(针对于0/0型)
3、利用无穷大与无穷小的关系谋音速。
4、利用无穷小的性质求极限。
5、利用等价无穷小替代谋音速,可以将原式化简排序。
6、利用两个极限存在准则,求极限,有的题目也可以考虑用放大缩小,再用夹逼定理的方法求极限。
两个重要极限的证明
两个重要极限的证明两个重要极限的证明两个重要极限的证明那么,数列的极限存在,且。
证明:因为,所以对,当时,有,即,对,当时,有,即,又因为,所以当时,有,即有: ,即,所以。
准则I′如果函数满足下列条件:当时,有。
当时,有。
那么当时,的极限存在,且等于。
第一个重要极限:作为准则I′的应用,下面将证明第一个重要极限: 。
证明:作单位圆,如下图: 设为圆心角,并设见图不难发现: ,即: ,即,当改变符号时,及1的值均不变,故对满足的一切,有。
又因为,所以而,证毕。
【例1】。
【例2】。
【例3】。
【例4】。
准则?:单调有界数列必有极限如果数列满足: ,就称之为单调增加数列;若满足: ,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。
如果,使得: ,就称数列为有上界;若,使得: ,就称有下界。
准则?′:单调上升,且有上界的数列必有极限。
准则?″: 单调下降,且有下界的数列必有极限。
注1:由前已知,有界数列未必有极限,若加单调性,就有极限。
2:准则?,?′,?″可推广到函数情形中去,在此不一一陈述了。
第二个重要极限:作为准则?的一个应用,下面来证明极限是不存在的。
先考虑取正整数时的情形: 对于,有不等式: ,即: ,即: 现令,显然,因为将其代入,所以,所以为单调数列。
又令,所以,即对,又对所以{ }是有界的。
由准则?或?′知存在,并使用来表示,即注 1:关于此极限存在性的证明,书上有不同的方法,希望同学自己看!2:我们可证明: ,具体在此不证明了,书上也有,由证明过程知: 。
3:指数函数及自然对数中的底就是这个常数。
【例1】【例2】【例3】【例4】二、课堂练习:三、布置作业:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两个重要极限的证明第六节极限存在准则、两个重要极限
教学目的:1 使学生掌握极限存在的两个准则;并会利用它们求极限;
2使学生掌握利用两个重要极限求极限的方法;
教学重点:利用两个重要极限求极限
教学过程:
一、讲授新课:
准则I:如果数列满足下列条件:
(i)对 ;
(ii) 那么,数列的极限存在,且。
证明:因为,所以对,当时,有,即
,对,当时,有,即,又因为,所以当时,有,
即有:,即,所以。
准则I′如果函数满足下列条件:
(i)当时,有。
(ii)当时,有。
那么当时,的极限存在,且等于。
第一个重要极限:
作为准则I′的应用,下面将证明第一个重要极限:。
证明:作单位圆,如下图:
设为圆心角,并设见图不难发现:,即:,即,
(因为,所以上不等式不改变方向)
当改变符号时,及1的值均不变,故对满足的一切
,有。
又因为,
所以而,证毕。
【例1】。
【例2】。
【例3】。
【例4】。
准则Ⅱ:单调有界数列必有极限
如果数列满足:,就称之为单调增加数列;若满足:,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。
如果,使得:,就称数列为有上界;若,使得:,就称有下界。
准则Ⅱ′:单调上升,且有上界的数列必有极限。
准则Ⅱ″: 单调下降,且有下界的数列必有极限。
注1:由前已知,有界数列未必有极限,若加单调性,就有极限。
2:准则Ⅱ,Ⅱ′,Ⅱ″可推广到函数情形中去,在此不一一陈述了。
第二个重要极限:
作为准则Ⅱ的一个应用,下面来证明极限是不存在的。
先考虑取正整数时的情形:对于,有不等式:,即:,
即: (i)现令,显然,因为将其代入,所以,所以为单调数列。
(ii)又令,所以,
即对,又对所以{ }是有界的。
由准则Ⅱ或Ⅱ′知存在,并使用来表示,即
注 1:关于此极限存在性的证明,书上有不同的方法,希望同学自己看! 2:我们可证明:,具体在此不证明了,书上也有,由证明过程知:。
3:指数函数及自然对数中的底就是这个常数。