概率论与数理统计作业及解答

合集下载

概率论与数理统计作业题及参考答案

概率论与数理统计作业题及参考答案

东北农业大学网络教育学院 概率论与数理统计作业题(一)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。

2.用随机变量X 来描述掷一枚硬币的试验结果. 则X 的分布函数为 。

3.已知随机变量X 和Y 成一阶线性关系,则X 和Y 的相关系数=XY ρ 。

4.简单随机样本的两个特点为:5.设21,X X 为来自总体),(~2σμN X 的样本,若2120041X CX +为μ的一个无偏估计,则C = 。

二、选择题1.关系( )成立,则事件A 与B 为互逆事件。

(A )Φ=AB ; (B )Ω=B A ; (C )Φ=AB Ω=B A ; (D )A 与B 为互逆事件。

2.若函数)(x f y =是一随机变量X 的概率密度,则( )一定成立。

)(A )(x f y =的定义域为[0,1] )(B )(x f y =非负)(C )(x f y =的值域为[0,1] )(D )(x f y =在),(+∞-∞内连续3.设Y X ,分别表示甲乙两个人完成某项工作所需的时间,若EY EX <,DY DX >则 ( ) (A ) 甲的工作效率较高,但稳定性较差 (B ) 甲的工作效率较低,但稳定性较好 (C ) 甲的工作效率及稳定性都比乙好 (D ) 甲的工作效率及稳定性都不如乙4.样本4321,,,X X X X 取自正态分布总体X ,μ=EX 为已知,而2σ=DX 未知,则下列随机变量中不能作为统计量的是( )(.A ).∑==4141i i X X (B ).μ241++X X (C ).∑=-=4122)(1i i X X k σ (D ).∑=-=4122)(31i i X X S 5.设θ是总体X 的一个参数,θˆ是θ的一个估计量,且θθ=)ˆ(E ,则θˆ是θ的( )。

(A )一致估计 (B )有效估计 (C )无偏估计 (D )一致和无偏估计三、计算题1.两封信随机地投向标号1,2,3,4的四个空邮筒,问:(1)第二个邮筒中恰好投入一封信的概率是多少;(2)两封信都投入第二个邮筒的概率是多少?22.一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求(1)这4个中的次品数X 的分布列;(2))1(<X p3.已知随机变量X 的分布密度函数为 ⎪⎩⎪⎨⎧≤<-≤<=其他,021,210,)(x x x x x f ,求DX EX ,.4.设随机变量X 与Y(1)求X 与Y 的边缘分布列 (2)X 与Y 是否独立?5.总体X 服从参数为λ的泊松分布)(λp ,λ未知,设n X X X ,,, 21为来自总体X 的一个样本: (1)写出)(21n X X X ,,, 的联合概率分布; (2)}{max 1i ni X ≤≤,21X X +,212XX n -,5,∑=ni iX 12)(λ-中哪些是统计量?6.某车间生产滚珠,从长期实践可以认为滚珠的直径服从正态分布,且直径的方差为04.02=σ,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对05.0=α,求出滚珠平均直径的区间估计)96.1,645.1(025.005.0==Z Z概率论与数理统计作业题(二)一、填空题1.将A ,A ,C ,C ,E ,F ,G 这7个字母随机地排成一行,恰好排成GAECF AC 的概率为 。

【精品】概率与数理统计作业

【精品】概率与数理统计作业

概率论与数理统计作业1(§1.1~§1.2)一、填空题1.设A、B、C表示三个随机事件,试将下列事件用A、B、C表示出来:(1)仅A发生;(2)A、B、C都不发生;(3)A、B、C不都发生;(4)A不发生,且B、C中至少有一个事件发生;(5)A、B、C中至少有两个事件发生;(6)A、B、C中最多有一个事件发生。

2.对飞机进行两次射击,每次射一弹,设事件A={第一次击中飞机},B={第二次击中飞机},试用A、B表示下列事件:(1)恰有一弹击中飞机;(2)至少有一弹击中飞机;(3)两弹都击中飞机。

3.设A、B、C是任意的三个随机事件,写出以下概率的计算公式:(1)=BP(AB)AP;)(P;(2)=(A=-)(3)=BP。

A⋃⋃)(C4.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是。

5.设A、B、C是三个随机事件,且25PB=CP,=AP).0(=)()((=)=BCP,则:(ABPP,0)125).0AC(=(1)A、B、C中都发生的概率为;(2)A、B、C中至少有一个发生的概率为;(3)A、B、C都不发生的概率为。

6.设()()P AB P AB =,且()P A p =,则()P B = .二、单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为[]。

(A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销”。

2.对于事件A 、B 有A B ⊂,则下述结论正确的是[]。

(A )A 与B 必同时发生;(B )A 发生,B 必发生;(C )B 发生,A 必发生;(D )B 不发生,A 必不发生。

3.对于任意两事件A 、B ,与B B A =⋃不等价的是[]。

(A )B A ⊂;(B )A B ⊂;(C )φ=B A ;(D )φ=B A 。

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。

概率论与数理统计作业及解答

概率论与数理统计作业及解答

概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;ABACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m M C C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C ==5. 从1~9九个数字中, 任取3个排成一个三位数, 求:(1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业 1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率.记事件A ={甲中靶},B ={乙中靶}.(1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j i j k i i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+==当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+== (2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}. (1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯= (2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成,每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -===☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X0,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率.受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx x S x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee -⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ-0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-= (4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4, 19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y X P X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得'21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+ '21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0,0.Y y y f y y ->=≤⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y =''21122()(())|()|(())|()|,0.yY X X f y f x y x y f x y x y y -=+=>6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫==-=-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X xf x dy x x ==-<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立? (1) 2220()(,),11,y y X f x f x y dy Ax e dy Ax e dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y yy Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,zz z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min(X , Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩. min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩.1,0,()1(),0Y Y yy S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e e x ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩. 1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4. 设二维离散型随机变量(X , Y )的联合分布律为求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y ey f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-=(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯=★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为0.45由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为j (,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B n p ==5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯= 根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001|ii P X =⎧⎪=>=⎨⎪⎪⎩⎭∑2222(1.34)220.90990.1802.≈-Φ=-Φ=-⨯=⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n ==(0.8)P X n≥3P ⎛=≥==-⎭0.95,3⎛≈Φ≥ ⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本, 212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S 分别为两个样本方差, 222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+-。

大学概率论与数理统计习题及参考答案

大学概率论与数理统计习题及参考答案

Ω 0 ,1,2. Ω 10,11,12.
(4)
3
五、电话号码由7个数字组成,每个数字可以是0、1、2、…、9中的任一个 (但第一个数字不能为0),求电话号码是由完全不相同的数字组成的概率。 解:
9 P96 P ( A) 0.0605. 6 9 10
六、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率。 解:
P( AB) 0.4; P( A B) 0.7.
5. 设 P( AB) P( AB), 且 P ( A) p, 则 P( B) 1 p.
8
二、
设P (A) > 0, P (B) > 0 ,将下列四个数: P (A) 、P (AB) 、P (A∪B) 、P (A) + P (B) 用“≤”连接它们,并指出在什么情况下等号成立.

P A B P( A) P( B) P( AB)
P A B P( A) P( B)
AB A ( A B)
P ( AB ) P ( A) P ( A B)
P ( AB ) P ( A) P ( A B) P ( A) P ( B)
十一、两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个 邮筒内只有一封信的概率. 解: 设事件 A 表示“前两个邮筒内没有信”,设事件 B 表示“及第一个邮筒 内只有一封信”,则
22 P ( A) 2 0.25; 4 1 1 C2 C3 P( B) 0.375. 2 4
P( AB) P( BC ) 0, 则:
(1)A、B、C中至少有一个发生的概率为 0.625 (2)A、B、C中都发生的概率为 0 ; 。 (3)A、B、C都不发生的概率为 0.375 ;

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)

概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。

若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。

8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。

9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。

但当增⼤置信⽔平时,则相应的置信区间长度总是。

⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。

设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。

三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

(完整word版)概率论与数理统计习题集及答案(word文档良心出品)

(完整word版)概率论与数理统计习题集及答案(word文档良心出品)

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。

§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。

概率论与数理统计作业与解答

概率论与数理统计作业与解答

概率论与数理统计作业及解答第一次作业 ★ 1.甲.乙.丙三门炮各向同一目标发射一枚炮弹•设事件ABC 分别表示甲.乙.丙 击中目标.则三门炮最多有一门炮击中目标如何表示• 事件E 丸事件A, B,C 最多有一个发生},则E 的表示为E =ABC ABC ABC ABC;或工 ABU AC U B C;或工 ABU ACU BC;或工 ABACBC ;或工 ABC_(AB C ABC A BC ).(和 A B 即并AU B,当代B 互斥即AB 二'时.AU B 常记为AB)2. 设M 件产品中含m 件次品.计算从中任取两件至少有一件次品的概率★ 3.从8双不同尺码鞋子中随机取6只.计算以下事件的概率A 二{8只鞋子均不成双}, B={恰有2只鞋子成双}, C 珂恰有4只鞋子成双}.C 6 (C 2 )6 32C 8C 4(C 2)4 800.2238, P(B) 8 皆 0.5594,P(A) 8/143★ 4.设某批产品共50件.其中有5件次品•现从中任取3件•求 (1) 其中无次品的概率-(2)其中恰有一件次品的概率‘ /八 C 5 1419 C :C 5 99⑴冷0.724.⑵虫产0.2526. C 50 1960C 503925. 从1〜9九个数字中•任取3个排成一个三位数•求 (1) 所得三位数为偶数的概率-(2)所得三位数为奇数的概率•4(1) P {三位数为偶数} = P {尾数为偶数}=-,9⑵P {三位数为奇数} = P {尾数为奇数} = 5,9或P {三位数为奇数} =1 -P {三位数为偶数} =1 -彳=5.9 96. 某办公室10名员工编号从1到10任选3人记录其号码 求(1)最小号码为5的概率 ⑵ 最大号码为5的概率 记事件A ={最小号码为5}, B={最大号码为5}.1 12 C m C M m C mm(2M - m -1)M (M -1)6 —C 16143P(C)二 C 8CJC 2)300.2098.143C 16C 2 iC 2⑴ P(A)=# 詁;(2) P(B )X =C 10 12C 107. 袋中有红、黄、白色球各一个 每次从袋中任取一球.记下颜色后放回 共取球三次 求下列事件的概率:A={全红} B ={颜色全同} C ={颜色全不同} D ={颜色不全同} E ={无 黄色球} F ={无红色且无黄色球} G ={全红或全黄}.1 11A 3!2 8P (A)=3^2?P (B )=3P (A )=9, P(C^#=?=9, P(DH ^P(BH?28 1 1 2P(E)亏方P(F)亏审 P(G r 2P(A)盲☆某班n 个男生m 个女生(m^n 1)随机排成一列•计算任意两女生均不相邻的概率☆ •在[0 ■ 1]线段上任取两点将线段截成三段•计算三段可组成三角形的概率14第二次作业1.设 A B 为随机事件 P(A)=0.92 ■ P(B)=0.93 P(B|Z)=0.85 求 ⑴ P(A|B) (2) P (AU B) ■ (1) 0.85 =P(B| A) =P(A B )P (AB ),P (A B )=0.85 0.08=0.068,P(A) 1-0.92P(AB)二 P(A) -P(AB)二 P(A) - P(B) P(AB) = 0.92 -0.93 0.068 = 0.058,P(A| B): = P(AB) = 0.。

概率论与数理统计答案完整版

概率论与数理统计答案完整版

概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。

概率论与数理统计习题集和答案

概率论与数理统计习题集和答案

第1章 概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D 为开关。

设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。

A B L R C D1. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。

第1章作业答案§1 .8. 1: 用A,B,C,D 表示开关闭合,于是 T = AB ∪CD, 从而,由概率的性质及A,B,C,D 的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)424222p p p p p -=-+=2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38; (2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章 随机变量及其分布§2.2 10-分布和泊松分布1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;2 设随机变量X 有分布律: X 23 , Y ~π(X), 试求: p 0.4 0.6(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。

§2.3 贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6 均匀分布和指数分布2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。

概率论与数理统计习题1及答案

概率论与数理统计习题1及答案

概率论与数理统计习题及答案习题 一1.写出下列随机试验的样本空间及下列事件包含的样本点。

(1) 掷一颗骰子,出现奇数点。

(2) 掷二颗骰子,A =“出现点数之和为奇数,且恰好其中有一个1点.”B =“出现点数之和为偶数,但没有一颗骰子出现1点.” (3)将一枚硬币抛两次, A =“第一次出现正面。

” B =“至少有一次出现正面。

”C =“两次出现同一面.” 【解】{}{}1123456135A Ω==(),,,,,,,,;{}{}{}{}{}(2)(,)|,1,2,,6,(12),(14),(16),(2,1),(4,1),(6,1),(22),(24),(26),(3,3),(3,5),(4,2),(4,4),(4,6),(5,3),(5,5),(6,2),(6,4),(6,6);(3)(,),(,),(,),(,),(,),(,),(,),(,),(i j i j A B A B ΩΩ=======,,,,,,正反正正反正反反正正正反正正正反反{}{},),(,),(,),C =正正正反反2。

设A ,B ,C 为三个事件,试用A ,B ,C 的运算关系式表示下列事件: (1) A 发生,B ,C 都不发生; (2) A 与B 发生,C 不发生; (3) A ,B ,C 都发生;(4) A ,B ,C 至少有一个发生; (5) A ,B ,C 都不发生; (6) A ,B ,C 不都发生; (7) A ,B ,C 至多有2个发生;(8) A ,B ,C 至少有2个发生. 【解】(1) A BC (2) AB C (3) ABC(4) A ∪B ∪C =AB C ∪A B C ∪A BC ∪A BC ∪A B C ∪AB C ∪ABC =ABC(5) ABC =A B C (6) ABC(7) A BC ∪A B C ∪AB C ∪AB C ∪A BC ∪A B C ∪ABC =ABC =A ∪B ∪C (8) AB ∪BC ∪CA =AB C ∪A B C ∪A BC ∪ABC5.设A ,B 为随机事件,且P (A )=0。

(完整版)《概率论与数理统计》习题及答案选择题

(完整版)《概率论与数理统计》习题及答案选择题

·151·《概率论与数理统计》习题及答案选 择 题单项选择题1.以A 表示事件“甲种产品畅销,乙种产品滞销",则其对立事件A 为( ). (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销或乙种产品畅销"; (D )“甲种产品滞销”。

解:设B =‘甲种产品畅销’,C =‘乙种产品滞销’,A BC = A BC B C ===‘甲种产品滞销或乙种产品畅销'。

选C 。

2.设,,A B C 是三个事件,在下列各式中,不成立的是( )。

(A )()A B B A B -=;(B )()AB B A -=;(C)()A B AB ABAB -=;(D )()()()A B C A C B C -=--。

解:()()()A B B AB B A B B B A B -=== ∴A 对。

()()A B B A B B AB BB AB A B A -====-≠ B 不对 ()()().A B AB A B B A AB AB -=--= C 对 ∴选B.同理D 也对。

3.若当事件,A B 同时发生时,事件C 必发生,则( ). (A )()()()1P C P A P B ≤+-; (B )()()()1P C P A P B ≥+-; (C)()()P C P AB =; (D)()().P C P A B =解:()()()()()()()1AB C P C P AB P A P B P A B P A P B ⊂⇒≥=+-≥+-∴ 选B 。

4.设(),(),()P A a P B b P A B c ===,则()P AB 等于( )。

(A )a b -; (B )c b -; (C )(1)a b -; (D )b a -。

解:()()()()()()()P AB P A B P A P AB a P A P B P A B c b =-=-=--+=- ∴ 选B 。

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计习题及答案

概率论与数理统计习题及答案

练习题一1. 写出下列随机试验的样本空间:(1)一个正方体各面分别涂以红、黄、蓝、白、黑、绿六种颜色,任意抛掷一次,观察其朝上一面的颜色;(2)讨论某电话交换台在单位时间内收到的呼叫次数,并设={收到的呼叫次数};(3)测量某地区河水温度,并设t={测得水的温度};(4)同时掷三枚均匀的硬币,观察其正面向上的情况.2.向指定目标射击三枪,分别用A1、A2、A3表示第一、第二、第三枪击中目标,试用A1、A2、A3表示以下事件:(1)只有第一枪击中;(2)至少有一枪击中;(3)至少有两枪击中;(4)三枪都未击中.3. 已知A,B是样本空间Ω中的两个事件,且Ω={a, b, c, d, e, f, g, h},A={b, d, f, h},B={b, c, d, e, f, g},试求:(1);(2)+B;(3)A-B;(4).4. 已知A,B是样本空间Ω中的两个事件,且Ω={x | 1 <x < 9},A={x | 4≤x < 6},B={x | 3 <x ≤7},试求:(1);(2)+B;(3)A-B;(4).5.一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.6.一批产品由95件正品和5件次品组成,连续从中抽取两件,第一次取出后不再放回,问:1)第一次抽得正品且第二次抽得次品的概率多大.2)抽得一件为正品,一件为次品的概率.7. 从0,1,2,3,4,5这六个数中任取三个数进行排列,问取得的三个数字能排成三位数且是偶数的概率有多大.8. 已知某城市中有50%的用户订日报,65%的用户订晚,85%用户至少这两种报中的一种,问同时订两种报的用户占百分之几.9. 设某种动物由出生算起活到20岁以上的概率为0.8,活到25岁以上的概率为0.4. 如果现在有一个20岁的这种动物,问它能活到25岁以上的概率是多少.10. 在100件产品中有5件是次品,从中连续无放回地抽取3次,问第三次才取得次品的概率.11. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.12. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.13. 用三个机床加工同一种零件,零件由各机床加工的概率分别为0.5、0.3、0.2,各机床加工的零件为合格品的概率分别为0.94、0.90、0.95,求全部产品的合格率.14. 一批产品中有20%的次品,现进行重复抽样,共抽取5件样品,分别计算这5件样品中恰好有3件次品及至多有3件次品的概率.15. 自某工厂产品中进行重复抽样检查,共取200件样品,检查结果发现其中有4件是废品,问能否相信该厂产品废品率不超过0.005.16. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.17. (1)已知P(A)=0.4,P(B)=0.3,P(AB)=0.18,试求P(A|B),P(A+B),P(B),P(),P(+B);(2)已知P(A)=0.4,P(B)=0.3,且A、B相互独立,试求P(A|B),P(A+B),P(B),P(),P(+B);(3)已知P(A)=0.4,P(B)=0.3,且A、B互不相容,试求P(A|B),P(A+B),P(B),P(),P(+B).18.面对试卷上的10道4选1的选择题,某考生心存侥幸,试图用抽签的方法答题. 试求下列事件的概率:(1)恰好有2题回答正确;(2)至少有2题回答正确;(3)无一题回答正确;(4)全部回答正确.19. 许多体育比赛采用五战三胜制,甲方在每一场比赛中胜乙方的概率是0.6(没有和局),求甲方最后取胜的概率.练习题二一、一维随机变量1. 在10件产品中有3件次品,从中任取2件,用随机变量表示取到的次品数,试写出的分布列.2. 设随机变量的分布列为P(=k)=(k=1,2,3),试求P(>2);P(≤3);P (1.5≤≤5);P(>).3. 设随机变量的分布列为,试求:(1)常数a;(2)P();(3)P(>1).4. 有1000件产品,其中900件是正品,其余是次品. 现从中每次任取1件,有放回地取5件,试求这5件所含次品数的分布列.5. 在一个繁忙的交通路口,单独一辆汽车发生意外事故的概率是很小的,设p=0.0001. 如果某段时间内有1000辆汽车通过这个路口,问这段时间内,该路口至少发生1起意外事故的概率是多少?6. 设随机变量的分布密度为p(x)=,求P(x)与P().7. 设随机变量的分布密度为p(x)=,求:(1)常数a;(2)P(>3).8. 设服从N(0,1),试求:(1)P();(2)P(>2);(3)P(≤-1.8);(4)P()(5)P().9. 设服从N(5,3),求P(<10),P().10. 设服从N(1,0.6),求P(>0),P().11. 某校电器(3)班学生期末考试的数学成绩x(分)近似服从正态分布N(75,10),求数学成绩在85分以上的学生约占该班学生的百分之几?12. 已知随机变量的分布列为,(1)求=2-的分布列;(2)求=3+2分布列.13. 已知随机变量的分布密度为=,且=2-,试求的分布密度.14. 某机械零件的指标值在[90,110]内服从均匀分布,试求:(1)的分布密度、分布函数;(2)取值于区间(92.5,107.5)内的概率.15. 某电子元件的使用寿命服从以=的指数分布,其分布函数为=(1)求随机变量的分布密度p(x);(2)作出p(x)及F (x)的图象;(3)求这类元件使用寿命1000小时以上的概率.二、二维随机变量1. 已知的联合分布函数为F=++,试求:1)F(1,1);2)P(0,1);3)边缘分布函数,并考察随机变量与的独立性.2.已知的联合分布函数为F=,试求:1)边缘分布函数;2)联合密度、边缘密度,并考察随机变量与的独立性.3.离散型随机向量有如下的概率分布求的边缘分布,并考察与相互独立性.4.随机向量在矩形区域内服从均匀分布,求的联合分布密度与边缘分布密度,又问随机变量是否独立?5.随机向量的联合分布密度为=,求:1)系数A;2)的边缘分布密度.6.一机器制造直径为的圆轴,另一机器制造内径为的轴衬,设的联合分布密度为=,若轴衬的内径与轴的直径之差大于0.004且小于0.36,则两者可以相适衬,求任一轴与任一轴衬适衬的概率.7.对于下列三组参数,写出二维正态随机向量的联合分布密度与边缘分布密度.8.设与相互独立,其密度分别为=,=,求+的密度.9.设某种商品一周的需要量是一个随机变量,其密度为=,如果各周的需要量是互相独立的. 试求:1)两周的需要量的概率密度;2)三周的需要量的概率密度.10. 已知相互独立的随机变量,,…,都服从泊松分布,记=,试求P(3).11. 一本5万字的学生用书,按常规允许出错率为0.0001,试求该书不多于10个错误的概率.12. 某工厂生产的一批零件,合格率为95%,今从中抽取1000件,试求下列事件的概率:1)被检验的1000件中恰好有40件不合格品;2)不合格的件数不少于40件;3)不合格的件数在40到60之间.13. 某公司电话总机有200台分机,每台分机有6%的时间用于外线通话,假定每台分机用不用外线是相互独立的,试问该总机至少应装多少条外线,才能有95%的把握确保各分机需用外线时不必等候.练习题三1. 已知随机变量的分布列为P (=m )=, m =2,4,…,18,20, 求E .2.两台生产同一种零件的车床,一天生产中次品数的概率分布分别是如果两台机床的产量相同,问哪台机床好?3.某射手每次射击打中目标的概率都是0.8,现连续向一目标射击,直到第一次击中为止.求“射击次数”的期望. 4.盒中有五个球,其中有三白二黑,从中随机抽取两个球,求“抽得的白球数”的期望.5.射击比赛,每人射四次(每次一发),约定全部不中得0分,只中一弹得15分,中二弹得30分,中三弹得55分,中四弹得100分.甲每次射击命中率为,问他期望能得多少分?6.设随机变量的分布密度为=求E.7.设随机变量的分布密度为=且=3+2,求E与D.8.对球的直径作近似测量,设其值均匀地分布在区间内,求球体积的均值.9.已知随机变量的分布列为,求E,E(2-3),E2,E(2-2+3).10.设随机变量的分布密度为=求E,E(2-3),E2,E(2-2+3)11.设随机变量的分布密度为=且E=,求常数,并D.12.设随机变量的分布密度为=,求E,D,E(-),D(-).练习题四一、统计概念1.设(,,)是正态总体N(,)的一个样本,其中是未知量,是已知量,问下列各式哪些是统计量?1);2)-;3)min{};4);5)+2-3;6)+2-.2.设总体服从泊松分布,即分布列为P(=m)=,>0为参数,m=1,2,…,试求样本(,,…,)的联合分布列.3.设总体的分布密度为()=,0<x<1,>-1为参数,试求样本(,,…,)的联合分布密度.4.已知某样本值为:2.06,2.44,5.91,8.15,8.75,12.50,13.42,15.78,17.23,18.22,22.72. 试求样本平均值、样本方差、样本修正方差.5.设总体的分布密度为()=,>0为参数,,,…,是总体中的一个样本,试求:E、D、E、E.6.设,,…,是总体的样本,试求:E、D、E.1)~N(,) ;2)~b(1,p).7.求下列各题中有关分布的临界值.1),;2),;3),.8.求下列各题中的常数k.1)设~,P(>k)=0.10;2)设~,P(<k=0.95;3)设~,P(>k)=0.05;4)设~,P(>k)=0.05;5)设~,P(>k)=0.95.9.对于给定的临界概率及自由度k(或k1,k2),查表求符合题意的相应临界值.1)已知=0.0838,求及;2)已知=0.01,k=51,求及;3)已知=0.01,k=23,求及,使P()=,P()=;4)已知=0.01,k1=8,k2=5,求及,使P()=,P()=.二、参数估计1.设总体的分布列为,式中0<<0.25为待估参数,(,,…,)为样本,试求的矩估计量.2.设总体的分布密度为=,>0为待估参数,(,,…,)为的一个样本,求的矩估计量.3. 已知一批元件的长度测量误差服从N(,),,为未知参数,现从总体中抽出200个样本值,经分组后整理成下表求,的估计值.4.设总体服从两点分布,分布列为P(=x)=,x=0,1,0<<1为待估参数,为的一观察值,求的最大似然估计值.5. 设总体的分布密度为=,>0为待估参数,现从中抽取10观察值,具体数据如下1050110010801200130012501340106011501150,求的最大似然估计值.6. 对于总体有E=,D=,(,)是的样本,讨论下列统计量的无偏性与有效性.=+,=+-,=+.7. 某水域由于工业排水而受污染,现对捕获的10条鱼样检测,得蛋白质中含汞浓度(%)为0.2130.2280.1670.7660.0540.0370.2660.1350.0950.101,若生活在这个区域的鱼的蛋白质中含汞浓度~N(,),试求=E,=D的无偏估计.8. 用某仪器测量某零件的温度,重复测量5次,量得温度如下(单位:℃):12501265124512601275,假定测量温度服从正态分布,且测量精度为11,试找出平均温度的置信区间(=0.05).9. 已知灯泡寿命的标准差=50小时,从中抽取25个灯泡检验,其平均寿命是500小时,试以95%的可靠性对灯泡的平均寿命进行区间估计.10. 已知某炼铁厂的铁水含铁量~N(,),现随机测量了5炉铁水,其含铁量为4.28 4.40 4.42 4.35 4.37,求的置信度为0.95的置信区间.11. 设某种电子管的使用寿命服从N(,),从中随机抽取30个进行检验,测得平均使用寿命25000小时,标准差700小时,以95%的可靠性,求整批电子管与的置信区间.12. 已知某种木材横纹抗压力的实验值服从正态分布,对10个试件作横纹抗压力试验,得数据如下(单位:公斤/平方厘米):578572570568572570570596584572.1)横纹抗压力~N(580,),试对进行区间估计(=0.05).2)横纹抗压力~N(,),试对进行区间估计(=0.05).三、假设检验1. 已知在正常生产情况下某种汽车零件的质量服从正态分布N(54 , 0.752).在某日生产的零件中抽取10件,测得质量(g)如下:54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3.如果标准差不变,该日生产的零件质量的均值是否有显著差异?(=0.05)2. 化肥厂用自动打包机包装化肥.某日测得9包化肥的质量(kg)如下:49.7 49.8 50.3 50.5 49.7 50.1 49.9 50.5 50.4.已知每包化肥的质量服从正态分布,是否可以认为每包化肥的平均质量为50 kg?(=0.05)3. 进行5次试验,测得锰的熔化点(℃)如下:1269 1271 1256 1265 1254.已知锰的熔化点服从正态分布,是否可以认为锰的熔化点显著高于1250℃?(=0.01)4. 已知某炼铁厂铁水含碳量服从正态分布N(4.40,0.052 ),现在测定了5炉铁水,其含碳量为4.34 4.40 4.42 4.30 4.35如果估计方差没有变化,可否认为现在生产之铁水平均含碳量为4.40(=0.05)?5. 已知某一试验,其温度服从正态分布N(,),现在测量了温度的5个值为:1250 1265 1245 1260 1275问是否可以认为=1277(=0.05)?6. 打包机装糖入包,每包标准重为100斤,每天开工后,要检验所装糖包的总体期望值是否合乎标准(100斤). 某日开工后,测得九包糖重如下(单位:斤):99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5如果打包机装糖的包重服从正态分布,问该天打包机工作是否正常(=0.05)?7. 某种导线的电阻服从正态分布N(,),要求电阻的标准差不得超过0.004欧姆. 今从新生产的一批导线中抽取10根,测其电阻,得s2=0.006欧姆. 对于=0.05,能否认为这批导线电阻的标准差显著偏大?8. 从一批灯炮中抽取50个灯泡的随机样本,算得样本平均数=1900小时,s2=490小时,以=1%的水平,检验整批灯泡的使用寿命是否为2000小时?9. 某种羊毛在处理前后,各抽取样本,测得含脂率如下(%):处理前:19 18 21 30 66 42 8 12 30 27处理后:19 24 7 8 20 12 31 2913 4.若羊毛含脂率按正态分布,问处理后含脂率有无显著变化(=0.05)?10. 两台车床生产同一种滚珠(滚珠直径按正态分布),从中分别抽取6个和9个产品,试比较两台车床生产的滚珠直径的方差是否相等(=0.10)?甲车床:34.5 38.2 34.2 34.1 35.1 33.8乙车床:34.5 42.3 41.7 43.1 42.4 42.2 41.8 43.0 42.9.11. 甲、乙两个铸造厂生产同一种铸件,假设两厂铸件的重量都服从正态分布,测得重量如下(单位:kg):甲厂:85.6 85.9 85.7 85.7 86.0 85.5 85.4 85.8乙厂:86.2 85.7 86.5 85.8 86.3 86.0 85.8 85.7 .问两厂铸件的平均重量有无显著差别(=0.05)?练习题五1. 某地4.5至10.5周岁女孩7个所年龄组的平均身高(单位:cm)的实测值如下表女孩年龄平均身高试求女孩长身高关于年龄的线性回归方程.2. 用切削机床进行金属品加工时,为了适当地调整机床,需要测定刀具的磨损速度.在一定时间(例如每隔一小时)测量刀具的厚度,得到数据如下:试求刀具厚度关于切削时间的线性回归方程,并考察相关的显著性.。

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。

概率论与数理统计习题参考答案

概率论与数理统计习题参考答案

概率论与数理统计参考答案(附习题)第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解: 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生;(2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生;(6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解: 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B CA B C A B C A B CA B C AB CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立? (3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?解: 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的. (4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3, 所以 P (AB )=0.4, 故 ()P AB = 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)=18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B的事件数为1111112ab b a a b A A A A A A +=, 则 2211222()()a b a ba b a bA A A A P A PB A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则333333101016()()120720或者====C A P A P A C A . (2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语}根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2) ()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率;(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C . (3) 设C={取三颗子中至少的一颗黑子} ()1()0.74=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法. 设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以 ()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品},C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式 40()()(|)0.196===∑i i i P B P A P B A 由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05.因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻 (1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C (2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=19. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,如果每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以采用三局二胜制或五局三胜制,问在哪一种比赛制度下甲获胜的可能性较大? 解 在三局两胜时, 甲队获胜的概率为332213333(2)(3)(0.6)(0.4)(0.6)(0.4)0.648=+=+=A P P P C C在五局三胜的情况下, 甲队获胜的概率为55533244155555(3)(4)(5)(0.6)(0.4)(0.6)(0.4)(0.6)(0.4)0.682=++=++=B P P P P C C C因此,采用五局三胜制的情况下,甲获胜的可能性较大.20. 4次重复独立试验中事件A 至少出现一次的概率为6581,求在一次试验中A出现的概率.解 设在一次独立试验中A 出现一次的概率为p, 则由题意00444465(0)(1)181==-=-P C p q p 解得p=1/3.21.(87,2分)三个箱子,第一个箱子中有4只黑球1只白球,第二个箱子中有3只黑球3只白球,第三个箱子有3只黑球5只白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率等于 . 已知取出的球是白球,此球属于第二个箱子的概率为解 设=B “取出白球”,=i A “球取自第i 个箱子”,.3,2,1=i 321,,A A A 是一个完全事件组,.3,2,1,3/1)(==i A P i 5/1)|(1=A B P ,2/1)|(2=A B P ,8/5)|(3=A B P ,应用全概率公式与贝叶斯公式,12053)852151(31)|()()(31=++==∑=i i i A B P A P B P.5320)()|()()|(222==B P A B P A P B A P22.(89,2分)已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A ⋃的概率=⋃)(B A P 解 7.0)|()()()()()()()(=-+=-+=⋃A B P A P B P A P AB P B P A P B A P .23.(90,2分)设随机事件A ,B 及其和事件B A ⋃的概率分别是4.0,3.0和6.0. 若B 表示B 的对立事件,那么积事件B A 的概率=)(B A P解 B A 与B 互不相容,且.B B A B A ⋃=⋃ 于是.3.0)()()(=-⋃=B P B A P B A P24.(92,3分)已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P ,则事件A ,B ,C 全不发生的概率为 解 从0)(=AB P 可知,0)(=ABC P .)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +--++=⋃⋃.8501611*********=+---++=25.(93,3分)一批产品共有10件正品和两件次品,任意抽取两次,每次抽一件,抽出后不再放回,则第二次抽出的是次品的概率为解 设事件=i B “第i 次抽出次品”,.2,1=i 则,12/2)(1=B P 12/10)(1=B P ,.11/2)|(,11/1)|(1212==B B P B B P 应用全概率公式)|()()|()()(1211212B B P B P B B P B P B P +=.611121210111122=⨯+⨯=26.(94,3分)已知A ,B 两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P解 ).()()(1)()(AB P B P A P B A P B A P +--=⋃=因)()(B A P AB P =,故有.1)(1)(,1)()(p A P B P B P A P -=-==+27.(06,4分)设A ,B 为随机事件,且0)(>B P ,1)|(=B A P ,则必有( ) A .)()(A P B A P >⋃ B .)()(B P B A P >⋃ C .)()(A P B A P =⋃ D .)()(B P B A P =⋃解 选(C )28.(05,4分)从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y ,则==)2(Y P 解 填.481329.(96,3分)设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该产品属A 生产的概率是解 设事件=C “抽取的产品是次品”,事件=D “抽取的产品是A 生产的”,则D 表示“抽取的产品是工厂B 生产的”. 依题意有.02.0)|(,01.0)|(,40.0)(,60.0)(====D C P D C P D P D P应用贝叶斯可以求得条件概率.7302.04.001.06.001.06.0)|()()|()()|()()|(=⨯+⨯⨯=+=D C P D P D C P D P D C P D P C D P30.(97,3分)袋中有50只乒乓球,其中20只是黄球,30只是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 解 设事件=i A “第i 个人取得黄球”,2,1=i . 根据题设条件可知.4920)|(,4919)|(,5030)(,5020)(121211====A A P A A P A P A P 应用全概率公式.524920503049195020)|()()|()()(1211212=⋅+⋅=+=A A P A P A A P A P A P31.(87,2分)设在一次试验中,事件A 发生的概率为p 。

(完整版)概率论与数理统计课后习题答案

(完整版)概率论与数理统计课后习题答案

·1·习 题 一1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’;(4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’;(5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。

解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =,135{,,}A e e e =。

(2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。

(3){(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S =(2,3,5),(2,4,5),(1,3,5)}{(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A =(4){(,,),(,,),(,,),(,,),(,,),(,,),S ab ab ab a b a b b a =---------(,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒;{(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计作业及解答第一次作业★1. 甲, 乙, 丙三门炮各向同一目标发射一枚炮弹, 设事件A , B , C 分别表示甲, 乙, 丙击中目标, 则三门炮最多有一门炮击中目标如何表示. 事件E ={事件,,A B C 最多有一个发生},则E 的表示为;E ABC ABC ABC ABC =+++或;ABACBC =或;ABACBC =或;AB ACBC =或().ABC ABC ABC ABC =-++(和A B +即并A B ,当,A B 互斥即AB φ=时,A B 常记为A B +.) 2. 设M 件产品中含m 件次品, 计算从中任取两件至少有一件次品的概率.221M mM C C --或1122(21)(1)m M m m MC C C m M m M M C -+--=- ★3. 从8双不同尺码鞋子中随机取6只, 计算以下事件的概率.A ={8只鞋子均不成双},B ={恰有2只鞋子成双},C ={恰有4只鞋子成双}.61682616()32()0.2238,143C C P A C ===1414872616()80()0.5594,143C C C P B C === 2212862616()30()0.2098.143C C C P C C === ★4. 设某批产品共50件, 其中有5件次品, 现从中任取3件, 求:(1)其中无次品的概率; (2)其中恰有一件次品的概率.(1)34535014190.724.1960C C == (2)21455350990.2526.392C C C == 5. 从1~9九个数字中, 任取3个排成一个三位数, 求: (1)所得三位数为偶数的概率; (2)所得三位数为奇数的概率.(1){P 三位数为偶数}{P =尾数为偶数4},9=(2){P 三位数为奇数}{P =尾数为奇数5},9=或{P 三位数为奇数}1{P =-三位数为偶数45}1.99=-=6. 某办公室10名员工编号从1到10,任选3人记录其号码,求:(1)最小号码为5的概率;(2)最大号码为5的概率.记事件A ={最小号码为5}, B ={最大号码为5}.(1) 253101();12C P A C ==(2) 243101().20C P B C ==7. 袋中有红、黄、白色球各一个,每次从袋中任取一球,记下颜色后放回,共取球三次,求下列事件的概率:A ={全红},B ={颜色全同},C ={颜色全不同},D ={颜色不全同},E ={无黄色球},F ={无红色且无黄色球},G ={全红或全黄}.311(),327P A ==1()3(),9P B P A ==33333!2(),339A P C ===8()1(),9P D P B =-=3328(),327P E ==311(),327P F ==2()2().27P G P A ==☆.某班n 个男生m 个女生(m ≤n +1)随机排成一列, 计算任意两女生均不相邻的概率.☆.在[0, 1]线段上任取两点将线段截成三段, 计算三段可组成三角形的概率. 14第二次作业1. 设A , B 为随机事件, P (A )=0.92, P (B )=0.93, (|)0.85P B A =, 求:(1)(|)P A B , (2)()P A B ∪. (1) ()()0.85(|),()0.850.080.068,()10.92P AB P AB P B A P AB P A ====⨯=-()()()()()()P AB P A P AB P A P B P AB =-=-+0.920.930.0680.058,=-+=()0.058(|)0.83.()10.93P AB P A B P B ===-(2)()()()()P A B P A P B P AB =+-0.920.930.8620.988.=+-=2. 投两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率. 记事件A ={(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}, B ={(1,6),(6,1)}. 21(|).63P B A ==★.在1—2000中任取一整数, 求取到的整数既不能被5除尽又不能被7除尽的概率. 记事件A ={能被5除尽}, B ={能被7除尽}.4001(),20005P A ==取整2000285,7⎡⎤=⎢⎥⎣⎦28557(),2000400P B ==200057,57⎡⎤=⎢⎥⨯⎣⎦57(),2000P AB = ()()1()1()()()P AB P AB P AB P A P B P AB ==-=--+1575710.686.54002000=--+=3. 由长期统计资料得知, 某一地区在4月份下雨(记作事件A )的概率为4/15, 刮风(用B 表示)的概率为7/15, 既刮风又下雨的概率为1/10, 求P (A |B )、P (B |A )、P (A B ).()1/103(|),()7/1514P AB P A B P B ===()1/103(|),()4/158P AB P B A P A ===()()()()P A B P A P B P AB =+-47119.15151030=+-=4. 设某光学仪器厂制造的透镜第一次落下时摔破的概率是1/2,若第一次落下未摔破,第二次落下时摔破的概率是7/10,若前二次落下未摔破,第三次落下时摔破的概率是9/10,试求落下三次而未摔破的概率.记事件i A ={第i 次落下时摔破},1,2,3.i = 1231213121793()()(|)(|)111.21010200P A A A P A P A A P A A A ⎛⎫⎛⎫⎛⎫==---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭5. 设在n 张彩票中有一张奖券,有3个人参加抽奖,分别求出第一、二、三个人摸到奖券概率.记事件i A ={第i 个人摸到奖券},1,2,3.i =由古典概率直接得1231()()().P A P A P A n ===或212121111()()()(|),1n P A P A A P A P A A n n n-====-31231213121211()()()(|)(|).12n n P A P A A A P A P A A P A A A n n n n--====--或 第一个人中奖概率为11(),P A n=前两人中奖概率为12122()()(),P A A P A P A n +=+=解得21(),P A n=前三人中奖概率为1231233()()()(),P A A A P A P A P A n ++=++=解得31().P A n=6. 甲、乙两人射击, 甲击中的概率为0.8, 乙击中的概率为0.7, 两人同时射击, 假定中靶与否是独立的.求(1)两人都中靶的概率; (2)甲中乙不中的概率; (3)甲不中乙中的概率. 记事件A ={甲中靶},B ={乙中靶}. (1) ()()()0.70.70.56,P AB P A P B ==⨯=(2) ()()()0.80.560.24,P AB P A P AB =-=-= (3) ()()()0.70.560.14.P AB P B P AB =-=-=★7. 袋中有a 个红球, b 个黑球, 有放回从袋中摸球, 计算以下事件的概率: (1)A ={在n 次摸球中有k 次摸到红球}; (2)B ={第k 次首次摸到红球};(3)C ={第r 次摸到红球时恰好摸了k 次球}.(1) ();()k n kk n kk k nnna b a b P A C C a b a b a b --⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭(2) 11();()k k kb a ab P B a b a b a b --⎛⎫== ⎪+++⎝⎭ (3) 1111().()rk rr k rr r k k ka b a b P C CCa b a b a b ------⎛⎫⎛⎫== ⎪ ⎪+++⎝⎭⎝⎭8.一射手对一目标独立地射击4次, 已知他至少命中一次的概率为80.81求该射手射击一次命中目标的概率.设射击一次命中目标的概率为,1.p q p =-4801121,,1.818133q q p q =-===-= 9. 设某种高射炮命中目标的概率为0.6, 问至少需要多少门此种高射炮进行射击才能以0.99的概率命中目标.(10.6)10.99,n -<-0.40.01,n <由50.40.01024,=60.40.01,<得 6.n ≥ ☆.证明一般加法(容斥)公式1111()()()()(1)().nn n n i i i i j ij ki i i i ji j kP A P A P A A P A A A P A -===<<<=-+++-∑∑∑证明 只需证分块111,,k k n k i i i i i i A A A A A A +⊂只计算1次概率.(1,,n i i 是1,,n 的一个排列,1,2,,.k n =)分块概率重数为1,,k i i A A 中任取1个-任取2个1(1)k -++-任取k 个,即121(1)1k k k k k C C C --++-=⇔ 121(1)(11)0.k k k k k k C C C -+++-=-=将,互换可得对偶加法(容斥)公式1111()()()()(1)().nnn n i i i ij ij k i i i i ji j kP A P A P A A P AA A P A -===<<<=-+++-∑∑∑☆.证明 若A , B 独立, A , C 独立, 则A , B ∪C 独立的充要条件是A , BC 独立. 证明(())()()()()P A B C P AB AC P AB P AC P ABC ==+- ()()()()()P A P B P A P C P ABC =+- 充分性:⇐(())()()()()(),P A B C P A P B P A P C P ABC =+-代入()()()P ABC P A P BC = ()(()()())P A P B P C P BC =+-()(),P A P B C = 即,A B C 独立. 必要性:⇒(())()()P A B C P A P B C =()(()()())P A P B P C P BC =+-()()()()()()P A P B P A P C P A P BC =+-()()()()()P A P B P A P C P ABC =+- ()()(),P ABC P A P BC =即,A BC 独立.☆.证明:若三个事件A 、B 、C 独立,则A ∪B 、AB 及A -B 都与C 独立. 证明 因为[()]()()()()()()()()()()()[()()()()]()()()P A B C P AC BC P AC P BC P ABC P A P C P B P C P A P B P C P A P B P A P B P C P A B P C ==+-=+-=+-=[()]()()()()[()()]()()()P AB C P ABC P A P B P C P A P B P C P AB P C ==== [()]()()()()()()()()[()()]()()()P A B C P AC B P AC P ABC P A P C P A P B P C P A P AB P C P A B P C -=-=-=-=-=-所以A ∪B 、AB 及A -B 都与C 独立. 第三次作业1. 在做一道有4个答案的选择题时, 如果学生不知道问题的正确答案时就作随机猜测. 设他知道问题的正确答案的概率为p , 分别就p =0.6和p =0.3两种情形求下列事件概率: (1)学生答对该选择题; (2)已知学生答对了选择题,求学生确实知道正确答案的概率. 记事件A ={知道问题正确答案},B ={答对选择题}.(1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+113,444p pp -=+=+ 当0.6p =时,13130.67()0.7,444410p P B ⨯=+=+== 当0.3p =时,13130.319()0.475.444440p P B ⨯=+=+==(2) 由贝叶斯公式得()4(|),13()1344P AB p pP A B p P B p ===++ 当0.6p =时,440.66(|),13130.67p P A B p ⨯===++⨯ 当0.3p =时,440.312(|).13130.319p P A B p ⨯===++⨯ 2. 某单位同时装有两种报警系统A 与B , 当报警系统A 单独使用时, 其有效的概率为0.70; 当报警系统B 单独使用时, 其有效的概率为0.80.在报警系统A 有效的条件下, 报警系统B 有效的概率为0.84.计算以下概率: (1)两种报警系统都有效的概率; (2)在报警系统B 有效的条件下, 报警系统A 有效的概率; (3)两种报警系统都失灵的概率.()0.7,()0.8,(|)0.84.P A P B P B A ===(1) ()()(|)0.70.840.588,P AB P A P B A ==⨯=(2) ()0.588(|)0.735,()0.8P AB P A B P B === (3) ()()1()1()()()P AB P A B P A B P A P B P AB ==-=--+10.70.80.5880.088.=--+=☆.为防止意外, 在矿内同时设有两种报警系统A 与B . 每种系统单独使用时, 其有效的概率系统A 为0. 92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85,. 求: (1)发生意外时, 两个报警系统至少有一个有效的概率; (2) B 失灵的条件下, A 有效的概率.3. 设有甲、乙两袋, 甲袋中有n 只白球, m 只红球; 乙袋中有N 只白球, M 只红球. 从甲袋中任取一球放入乙袋, 在从乙袋中任取一球, 问取到白球的概率是多少. 记事件A ={从甲袋中取到白球},B ={从乙袋中取到白球}. 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+111n N m Nn m N M n m N M +=+++++++().()(1)n N n m n m N M ++=+++☆.设有五个袋子, 其中两个袋子, 每袋有2个白球, 3个黑球. 另外两个袋子, 每袋有1个白球, 4个黑球, 还有一个袋子有4个白球, 1个黑球. (1)从五个袋子中任挑一袋, 并从这袋中任取一球, 求此球为白球的概率. (2)从不同的三个袋中任挑一袋, 并由其中任取一球, 结果是白球, 问这球分别由三个不同的袋子中取出的概率各是多少?★4. 发报台分别以概率0.6和0.4发出信号 “·” 及 “-”. 由于通信系统受到于扰, 当发出信号 “·” 时, 收报台分别以概率0.8及0.2收到信息 “·” 及 “-”; 又当发出信号 “-” 时, 收报台分别以概率0.9及0.l 收到信号 “-” 及 “·”. 求: (1)收报台收到 “·”的概率;(2)收报台收到“-”的概率;(3)当收报台收到 “·” 时, 发报台确系发出信号 “·” 的概率;(4)收到 “-” 时, 确系发出 “-” 的概率.记事件B ={收到信号 “·”},1A ={发出信号 “·”},2A ={发出信号“-”}.(1) )|()()|()()(2211A B P A P A B P A P B P +=;52.01.04.0)2.01(6.0=⨯+-⨯= (2) ()1()10.520.48;P B P B =-=-=(3) 1111()()(|)(|)()()P A B P A P B A P A B P B P B ==0.60.8120.923;0.5213⨯=== (4)2222()()(|)(|)()()P A B P A P B A P A B P B P B ==0.40.930.75.0.484⨯=== 5. 对以往数据分析结果表明, 当机器调整良好时, 产品合格率为90%, 而机器发生某一故障时, 产品合格率为30%. 每天早上机器开动时, 机器调整良好的概率为75%. (1)求机器产品合格率,(2)已知某日早上第一件产品是合格品, 求机器调整良好的概率. 记事件B ={产品合格},A ={机器调整良好}. (1) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+0.750.90.250.30.75,=⨯+⨯=(2) 由贝叶斯公式得()()(|)(|)()()P AB P A P B A P A B P B P B ==0.750.90.9.0.75⨯== ☆.系统(A), (B), (C)图如下, 系统(A), (B)由4个元件组成, 系统(C)由5个元件组成, 每个元件的可靠性为p , 即元件正常工作的概率为p , 试求整个系统的可靠性.(A) (B) (C) 记事件A ={元件5正常},B ={系统正常}.(A) 222(|)(1(1)(1))(44),P B A p p p p p =---=-+ (B) 2222(|)1(1)(1)(2),P B A p p p p =---=- (C) 由全概率公式得()()(|)()(|)P B P A P B A P A P B A =+2222(44)(1)(2)p p p p p p p =⋅-++-- 23452252.p p p p =+-+第四次作业1. 在15个同型零件中有2个次品, 从中任取3个, 以X 表示取出的次品的个数, 求X 的分布律.2213315(),0,1,2.k k C C P X k k C -=== X0 1 2 P 22/35 12/35 1/35☆.经销一批水果, 第一天售出的概率是0.5, 每公斤获利8元, 第二天售出的概率是0.4, 每公斤获利5元, 第三天售出的概率是0.1, 每公斤亏损3元. 求经销这批水果每公斤赢利X X3- 5 8 P 0.1 0.4 0.50,3,(3)(3)0.1,35,()(5)(3)(5)0.10.40.5,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩2. 抛掷一枚不均匀的硬币, 每次出现正面的概率为2/3, 连续抛掷8次, 以X 表示出现正面的次数, 求X 的分布律.(8,2/3),X B n p ==8821(),0,1,,8.33k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭3. 一射击运动员的击中靶心的命中率为0.35, 以X 表示他首次击中靶心时累计已射击的次数, 写出X 的分布律, 并计算X 取偶数的概率.(0.35),X G p =11()0.350.65,1,2.k k P X k pq k --===⨯= ()+()=1,()()=,P X P X P X P X q ⎧⎪⎨⎪⎩奇偶偶奇 解得0.6513()=0.394.110.6533q P X q ==++偶4. 一商业大厅里装有4个同类型的银行刷卡机, 调查表明在任一时刻每个刷卡机使用的概率为0.1,求在同一时刻:(1)恰有2个刷卡机被使用的概率;(2)至少有3个刷卡机被使用的概率; (3)至多有3个刷卡机被使用的概率;(4)至少有一个刷卡机被使用的概率. 在同一时刻刷卡机被使用的个数(4,0.1).X B n p ==(1) 2224(2)0.10.90.00486,P X C ==⨯⨯= (2) 3344(3)(3)(4)0.10.90.10.0037,P X P X P X C ≥==+==⨯⨯+= (3) 4(3)1(4)10.10.9999,P X P X ≤=-==-=(4)4(1)1(0)10.910.65610.3439.P X P X ≥=-==-=-=5. 某汽车从起点驶出时有40名乘客, 设沿途共有4个停靠站, 且该车只下不上. 每个乘客在每个站下车的概率相等, 并且相互独立, 试求: (1)全在终点站下车的概率; (2)至少有2个乘客在终点站下车的概率; (3)该车驶过2个停靠站后乘客人数降为20的概率. 记事件A ={任一乘客在终点站下车},乘客在终点站下车人数(40,1/4).X B n p ==(1) 40231(40)8.271810,4P X -⎛⎫===⨯ ⎪⎝⎭(2) 403940140313433(2)1(0)(1)1144434P X P X P X C ⎛⎫⎛⎫⎛⎫≥=-=-==--⨯=-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭10.0001340880.999865912.=-=(3) 记事件B ={任一乘客在后两站下车},乘客在后两站下车人数(40,1/2).Y B n p ==2020202040404011(20)0.1268.222C P Y C ⎛⎫⎛⎫==== ⎪ ⎪⎝⎭⎝⎭(精确值)应用斯特林公式!2,nn n n e π⎛⎫ ⎪⎝⎭2020202040404011(20)222C P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭24040!(20!)2= 402204040202e e ⎫⎪⎝⎭⎫⎫⎪⎪⎪⎭⎭0.1262.=其中 1.7724538509.π==参:贝努利分布的正态近似.6. 已知瓷器在运输过程中受损的概率是0.002, 有2000件瓷器运到, 求: (1)恰有2个受损的概率; (2)小于2个受损的概率; (3)多于2个受损的概率; (4)至少有1个受损的概率. 受损瓷器件数(2000,0.002),X B n p ==近似为泊松分布(4).P n p λ=⨯=(1) 2441480.146525,2!P e e --=== (2) 4424150.0915782,1!P e e --⎛⎫=+== ⎪⎝⎭(3) 431211130.761897,P P P e-=--=-= (4) 4410.981684.P e -=-=7. 某产品表面上疵点的个数X 服从参数为1.2的泊松分布, 规定表面上疵点的个数不超过2个为合格品, 求产品的合格品率.产品合格品率2 1.2 1.21.2 1.212.920.879487.1!2!P e e --⎛⎫=+=== ⎪⎝⎭ ★8. 设随机变量X求:X 的分布函数, 以及概率(||5).X ≤ 随机变量X 的分布函数为0,3,(3)(3)0.2,35,()(5)(3)(5)0.20.50.7,58,(8)1,8.x F P X x F x F P X P X x F x <-⎧⎪-==-=-≤<⎪=⎨==-+==+=≤<⎪⎪=≥⎩(36)(5)0.5,P X P X <≤===(1)(5)(8)0.50.30.8,P X P X P X >==+==+=(5)(||5)(5)(3)(5)0.20.50.7,P X P X F P X P X ≤=≤===-+==+=第五次作业1. 学生完成一道作业的时间X 是一个随机变量(单位: 小时), 其密度函数是2,00.5()0,kx x x f x ⎧+≤≤=⎨⎩其他试求: (1)系数k ; (2)X 的分布函数; (3)在15分钟内完成一道作业的概率; (4)在10到20分钟之间完成一道作业的概率. (1) 0.50.523200111(0.5),21,32248kk F kx xdx x x k ⎛⎫==+=+=+= ⎪⎝⎭⎰(2) 23200,01()()217,00.5,2(0.5)1,0.5.x x F x P X x x xdx x x x F x <⎧⎪⎪=≤=+=+≤<⎨⎪=≥⎪⎩⎰(3) 322011119()2170.140625,442464x F P X x x xdx ⎛⎫⎛⎫⎛⎫=≤=+=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰(4) 3212316111111129217.6336424108P X F F x xdx ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫≤≤=-=+=+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎰2. 设连续型随机变量X 服从区间[-a , a ](a >0)上的均匀分布, 且已知概率1(1)3P X >=, 求: (1)常数a ; (2)概率1()3P X <.(1) 1111(1),3,223aa P X dx a a a ->====⎰(2) 13311115()3.36639P X dx -⎛⎫<==+= ⎪⎝⎭⎰3. 设某元件的寿命X 服从参数为θ 的指数分布, 且已知概率P (X >50)=e -4, 试求:(1)参数θ 的值; (2)概率P (25<X <100) . 补分布()()|,0.x x xx xS x P X x e dx e ex θθθθ+∞--+∞->==-=>⎰ (1) 504502(50)(50),0.08,25x S P X e dx e e θθθθ+∞---=>=====⎰(2) 由()(),,0,rxr S rx e S x r x θ-==>取50,x =依次令1,2,2r =得12282(25)(25)(50),(100)(100)(50)S P X S e S P X S e --=>===>==0.0003354563,=其中 2.7182818284.e28(25100)(25)(100)P X P X P X e e --<<=>->=- 0.135334650.00033545630.1349991937.=-= 4. 某种型号灯泡的使用寿命X (小时)服从参数为1800的指数分布, 求: (1)任取1只灯泡使用时间超过1200小时的概率; (2)任取3只灯泡各使用时间都超过1200小时的概率. (1) 1312008002(1200)0.2231301602,P X ee-⨯->===1.6487212707001.= (2) 932(1200)0.0111089965.P X e->==5. 设X ~N (0, 1), 求: P (X <0.61), P (-2.62<X <1.25), P (X ≥1.34), P (|X |>2.13). (1) (0.61)(0.61)0.72907,P X <=Φ=(2) ( 2.62 1.25)(1.25)( 2.62)(1.25)(2.62)1P X -<<=Φ-Φ-=Φ+Φ- 0.894359956010.88995,=+-=(3) ( 1.34)1(1.34)10.909880.09012,P X >=-Φ=-=(4)(|| 2.13)22(2.13)220.983410.03318.P X >=-Φ=-⨯=6. 飞机从甲地飞到乙地的飞行时间X ~N (4,19). 设飞机上午10: 10从甲地起飞, 求: (1)飞机下午2: 30以后到达乙地的概率; (2)飞机下午2: 10以前到达乙地的概率; (3)飞机在下午1: 40至2: 20之间到达乙地的概率.(1) 131331/34111(1)10.841340.15866,331/3P X P X -⎛⎫⎛⎫⎛⎫>=-≤=-Φ=-Φ=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2) (4)(0)0.5,P X <=Φ=(3) 72525/647/24261/31/3P X --⎛⎫⎛⎫⎛⎫<<=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13122⎛⎫⎛⎫=Φ+Φ- ⎪ ⎪⎝⎭⎝⎭0.691460.9331910.62465.=+-=★7. 设某校高三女学生的身高X ~N (162, 25), 求: (1)从中任取1个女学生, 求其身高超过165的概率; (2)从中任取1个女学生, 求其身高与162的差的绝对值小于5的概率; (3)从中任取6个女学生, 求其中至少有2个身高超过165的概率.(1) 162165162(165)0.61(0.6)10.72580.2742,55X P X P --⎛⎫>=>==-Φ=-=⎪⎝⎭ (2) 162(|162|5)12(1)120.8413410.6827,5X P X P ⎛-⎫-<=<=Φ-=⨯-= ⎪⎝⎭(3) 记事件A ={任一女生身高超过165}, ()(165)0.2742,p P A P X ==>= 随机变量Y 贝努利分布(6,0.2742),B n p ==6156(2)1(0)(1)1(1)(1)0.52257.P Y P Y P Y p C p p ≥=-=-==----=第六次作业★1.设随机变量X 的分布律为(1)求Y =|X |的分布律; (2)求Y =X 2+X 的分布律. (1)(2)★.定理X 密度为()X f x ,()y g x =严格单调,反函数()x x y =导数连续,则()Y g X =是连续型变量,密度为(())|()|,()(),()0,XY f x y x y g x y g x f y αβ'=<<=⎧=⎨⎩极小值极大值其它. 证明 1)若()0,x x y ''=>{}{()()}{},Y y g X g x X x ≤=≤=≤ ()()(()())()(),Y X F y P Y y P g X g x P X x F x =≤=≤=≤= 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=<<2)若()0,x x y ''=<{}{()()}{},Y y g X g x X x ≤=≤=≥()()(()())()1(),Y X F y P Y y P g X g x P X x F x =≤=≤=≥=- 两边对y 求导,()(())(),.Y X f y f x y x y y αβ'=-<<因此总有()(())|()|,.Y X f y f x y x y y αβ'=<< 或证明()(),()0,()()(()())()1(),()0,X Y XP X x F x g x F y P Y y P g X g x P X x F x g x '≤=>⎧=≤=≤=⎨'≥=-<⎩ 两边对y 求导,(),()(),X Y X dF x dxdx dyf y dF x dx dx dy ⎧⎪⎪=⎨⎪-⎪⎩或两边微分()(),()()()(),X X Y Y X XdF x f x dx dF y f y dy dF x f x dx =⎧==⎨-=-⎩(),()(),X Y X dx f x dy f y dxf x dy ⎧⎪=⎨-⎪⎩(())|()|,.X f x y x y y αβ'=<<2. 设随机变量X 的密度函数是f X (x ), 求下列随机变量函数的密度函数: (1)Y =tan X ; (2)1Y X=; (3)Y =|X |. (1) 反函数()arctan ,x y y ='21(),1x y y =+由连续型随机变量函数的密度公式得 '21()(())|()|(arctan ).1Y X Xf y f x y x y f y y ==+ 或 反函数支()arctan ,i x y i y i π=+为整数,'21(),1i x y y =+'21()(())|()|(arctan ).1Y X i iX i i f y f x y x y f i y y π+∞+∞=-∞=-∞==++∑∑(2) 1,X Y =反函数1,y x y ='211()()().Y X y y X f y f x x f y y==(3) ()()(||)()()()Y X X F y P Y y P X y P y X y F y F y =≤=≤=-≤≤=--. 两边对y 求导得Y 的密度函数为()()(),0.Y X X f y f y f y y =+->★3. 设随机变量X ~U [-2, 2], 求Y =4X 2-1的密度函数.2()()(41)(115,Y F y P Y y P X y P X y =≤=-≤=≤≤=-≤≤两边对y 求导得随机变量Y 的密度为()115.Y f y y =-≤≤ 或解反函数支12()()x y x y =='''112211()(())|()|(())|()|2(())()115.Y X X X f y f x y x y f x y x y f x y x y y =+==-≤≤★4. 设随机变量X 服从参数为1的指数分布, 求Y =X 2的密度函数(Weibull 分布). 当0y ≤时, 2Y X =的分布()0Y F y =,当0y >时,2()()()(Y X F y P Y y P X y P X F =≤=≤=≤= 两边对y 求导得()Y X f y f '==0,()0.Y y f y >=⎩或反函数y x='()()0.Y X y y f y f x x y ==>★5. 设随机变量X~N (0, 1), 求(1)Y =e X 的密度函数; (2)Y =X 2的密度函数(Gamma 分布). (1) 当0y ≤时, e X Y =的分布()0Y F y =,当0y >时,()()(e )(ln )(ln ),X Y F y P Y y P y P X y y =≤=≤=≤=Φ 因而Y 的密度为''1()(ln )(ln )(ln )(ln ),Y f y y y y y y ϕϕ=Φ=={}2(ln ),0,2()0.Y y y f y ->=⎩ 或 反函数ln ,X Y =ln ,y x y ='1()()(ln )Y y y f y x x y y ϕϕ=={}2(ln ),0.2y y =-> (2) 当0y ≤时,()0Y F y =;当0Y >时,2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=-.两边对y 求导得Y的密度函数为2,0,()0.yY y f y ->=⎩或反函数支12()()x y x y ==''21122()(())|()|(())|()|,0.y Y X X f y f x y x y f x y x y y -=+=> 6. 设随机变量X 的密度函数是21,1()0,1X x f x x x ⎧>⎪=⎨⎪≤⎩, 求Y =ln X 的概率密度. 反函数,y y x e ='()()(),0.y y y Y X y y X f y f x x f e e e y -===>第七次作业☆.将8个球随机地丢入编号为1, 2, 3, 4, 5的五个盒子中去, 设X 为落入1号盒的球的个数, Y 为落入2号盒的球的个数, 试求X 和Y 的联合分布律.1. 袋中装有标上号码1, 2, 2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球,. 以X , Y 分别记第一、二次取到球上的号码数, 求: (1)(X , Y )的联合分布律(设袋中各球被取机会相等); (2)X , Y 的边缘分布律; (3)X 与Y 是否独立? (1)(X , Y )的联合分布律为(1,1)0,P X Y ===1(1,2)(2,1)(2,2).3P X Y P X Y P X Y =========(2) X , Y 的分布律相同,12(1),(2).33P X P X ====(3) X 与Y 不独立.2. 设二维连续型变量(,)X Y 的联合分布函数35(1)(1),,0,(,)0,.x y e e x y F x y --⎧-->=⎨⎩其它求(,)X Y 联合密度.2(,)(,),f x y F x y x y ∂=∂∂3515,,0,(,)0,.x y e x y f x y --⎧>=⎨⎩其它★3. 设二维随机变量(X , Y )服从D 上的均匀分布, 其中D 是抛物线y =x 2和x =y 2所围成的区域, 试求它的联合密度函数和边缘分布密度函数, 并判断Y X ,是否独立.分布区域面积213123200211,333x S x dx x x ⎛⎫===-= ⎪⎝⎭⎰⎰联合密度213,1,(,)0,.x y f x y S ⎧=<<⎪=⎨⎪⎩其它边缘X的密度为22()),01,X x f x dy x x ==<<边缘Y的密度为22()),0 1.Y yf y dy y y ==<<(,)()(),X Y f x y f x f y ≠⋅因此X 与Y 不独立.或(,)f x y 非零密度分布范围不是定义在矩形区域上,因此X 与Y 不独立.4. 设二维离散型变量),(Y X 联合分布列是问,p q 取何值时X 与Y两行成比例1/151/52,1/53/103q p ===解得12,.1015p q ==★5.设(,)X Y 的联合密度为2,11,0,(,)0,.y Ax e x y f x y -⎧-<<>=⎨⎩其它求:(1)常数A ;(2)概率1(0,1);2P X Y <<>(3)边缘概率密度f X (x ), f Y (y ); (4)X 与Y 是否相互独立?(1) 2220()(,),11,y y X f x f x y dy Ax e dy Axe dy Ax x +∞+∞+∞--====-<<⎰⎰⎰112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = (2) 112201113(0,1)(0)(1).22216y e P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰ (3) 23(),11,2X f x x x =-<<111221113()(,),0.2y y y Y f y f x y dx Ax e dx e x dx e y ------====>⎰⎰⎰(4)由23,11,0()()(,),20,yX Y x e x y f x f y f x y -⎧-<<>⎪⋅==⎨⎪⎩其它得X 与Y 独立. 或因为2(,),11,0,y f x y Ax e x y -=-<<>可表示为x 的函数与y 的函数的积且分布在矩形区域上,所以X 与Y 相互独立.由此得(),0;y Y f y e y -=>2(),11,X f x Ax x =-<<112112()1,3X f x dx Ax dx A --===⎰⎰3.2A = 112201113(0,1)(0)(1).22216ye P X Y P X P Y x dx e dy -+∞-<<>=<<>==⎰⎰6. 设X 服从均匀分布(0,0.2),U Y 的密度为55,0,()0,y Y e y f y -⎧>=⎨⎩其它.且,X Y 独立.求:(1)X 的密度;(2) (,)X Y 的联合密度. (1)X 的密度为()5,00.2,X f x x =≤≤(2)(,)X Y 的联合密度为525,00.2,0,(,)0,y e x y f x y -⎧≤≤>=⎨⎩其它.第八次作业★1.求函数(1)Z 1=X +Y , (2) Z 2=min{X , Y }, (3) Z 3=max{X , Y }的分布律.(1) 11(0)(0),6P Z P X Y =====1111(1)(0,1)(1,0),362P Z P X Y P X Y ====+===+=1111(2)(0,2)(1,1),12126P Z P X Y P X Y ====+===+=11(3)(1,2).6P Z P X Y =====(2) 2111(1)(1,1)(1,2),1264P Z P X Y P X Y ====+===+=223(0)1(1).4P Z P Z ==-==(3) 31(0)(0),6P Z P X Y =====31117(1)(0,1)(1,1)(1,0),312612P Z P X Y P X Y P X Y ====+==+===++=3111(2)(0,2)(1,2).1264P Z P X Y P X Y ====+===+=2. 设随机变量(求函数Z =X /Y 的分布律.(/1)(1)(1)0.250.250.5,P Z X Y P X Y P X Y =====+==-=+= (/1)1(/1)0.5.P Z X Y P Z X Y ==-=-===3. 设X 与Y 相互独立, 概率密度分别为220()00,xX e x f x x -⎧>=⎨≤⎩0()00,y Y e y f y x -⎧>=⎨≤⎩试求Z =X +Y 的概率密度.()(,)()()zzZ X Y f z f x z x dx f x f z x dx =-=-⎰⎰20222(1),0.z zx z x z x z z e e dx e e dx e e z --+----===->⎰⎰★4. 设X ~U (0, 1), Y ~E (1), 且X 与Y 独立, 求函数Z =X +Y 的密度函数.,01,0,(,)0,y e x y f x y -⎧<<>=⎨⎩其它,当01z <≤时,()(,)()()z z Z X Y f z f x z x dx f x f z x dx =-=-⎰⎰01,z z z x z xz x e dx e e -+-+-====-⎰当1z >时,11110()(,)()().zz x z xz z Z X Y x f z f x z x dx f x f z x dx e dx e e e -+-+--==-=-===-⎰⎰⎰因此11,01,(),1,0,.z z z Z e z f z e e z ---⎧-≤≤⎪=->⎨⎪⎩其它★5. 设随机变量(X , Y )的概率密度为()101,0(,)10x y e x y f x y e -+-⎧⎪<<<<+∞=⎨-⎪⎩其它(1)求边缘概率密度f X (x ), f Y (y ); (2)求函数U =max (X , Y )的分布函数; (3)求函数V =min (X ,Y )的分布函数.(1) 1,01,()10,xX e x f x e --⎧<<⎪=-⎨⎪⎩其它.,0,()0,y Y e y f y -⎧>=⎨⎩其它. (2) 11000,0,1()(),01,111,1xx x x X X x e e F x f x dx dx x e e x ----≤⎧⎪-⎪===<<⎨--⎪≥⎪⎩⎰⎰.min{,1}10,0,1,01x x e x e --≤⎧⎪=⎨->⎪-⎩. 0,0,()1,0Y yy F y e y -≤⎧=⎨->⎩.21(1),01,()()()11,1x U X Y x e x F x F x F x e e x ---⎧-<<⎪==-⎨⎪-≥⎩.min{,1}1(1)(1),0.1x x e e x e -----=>-(3) 111,0,()1(),01,10,1x X X x e eS x F x x e x ---≤⎧⎪-⎪-=<<⎨-⎪≥⎪⎩.min{,1}111,0,,01x x e e x e---≤⎧⎪=⎨->⎪-⎩. 1,0,()1(),0Y Y y y S y F y e y -≤⎧-=⎨>⎩.112111()11,01,()1()()111,1x x x xV X Y e e e e e e x F x S x S x e ex ---------⎧---+-=<<⎪=-=--⎨⎪≥⎩.1min{,1}111,01x x x e e e x e --------+=>-.6. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.随机变量2(160,20),X N 180160(180)(1)0.84134,20P X -⎛⎫≤=Φ=Φ= ⎪⎝⎭没有一只寿命小于180小时的概率为444(180)(1(1))(10.84134)0.00063368.P X >=-Φ=-=第九次作业★1.试求: E (X ), E (X 2+5), E (|X |).20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑22(5)57.2,E X EX +=+=||||20.110.210.320.130.1 1.2.i i iE X x p ==⨯+⨯+⨯+⨯+⨯=∑2. 设随机变量X 的概率密度为0 0,() 01, 1.x x f x x x Ae x -⎧≤⎪=<≤⎨⎪>⎩求: (1)常数A ; (2)X 的数学期望.(1) 1100111(),2x f x dx xdx Ae dx Ae +∞+∞--==+=+⎰⎰⎰,2e A =(2) 12100114()2.2323x e e EX xf x dx x dx xe dx e +∞+∞--==+=+⨯=⎰⎰⎰★3. 设球的直径D 在[a , b ]上均匀分布,试求: (1)球的表面积的数学期望(表面积2D π);(2)球的体积的数学期望(体积316D π).(1) 22222()();3ba x E D ED dx a ab b b a ππππ===++-⎰ (2) 33322()().6624b a x E D ED dx a b a b b a ππππ⎛⎫===++ ⎪-⎝⎭⎰ ★4.求E (X ), E (Y ), E (XY ).2(0.10.050.050.1)2(0.10.150.050.1)i i iEX x p ==-⨯++++⨯+++∑20.320.350.1,=-⨯+⨯=1(0.10.050.1)2(0.050.15)j j jEY y p ==⨯+++⨯+∑3(0.050.10.05)4(0.10.20.05) 2.65,+⨯+++⨯++=,()i j i j ijE XY x y p =∑∑2(10.120.0530.0540.01)2(10.120.1530.0540.05)=-⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯ 1.5 1.50.=-+=★5. 设随机变量X 和Y 独立, 且具有概率密度为2,01,()0,X x x f x <<⎧=⎨⎩其它,3(1)3,1,()0, 1.y Y e y f y y --⎧>=⎨≤⎩(1)求(25)E X Y +; (2)求2()E X Y .(1) 112002()2,3X EX xf x dx x dx ===⎰⎰3(1)114()3,3y Y EY yf y dy ye dy +∞+∞--===⎰⎰或随机变量1Z Y =-指数分布(3),E 141,,33EZ EY EY =-==24(25)25258.33E X Y EX EY +=+=⨯+⨯=(2) 11223001()2,2X EX x f x dx x dx ===⎰⎰由X 和Y 独立得22142().233E X Y EX EY ==⨯=第十次作业1. 设离散型随机变量试求: (1) D (X ); (2) D (-3X +2) .(1) 20.110.210.320.130.10.4,i i iEX x p ==-⨯-⨯+⨯+⨯+⨯=∑2222222(2)0.1(1)0.210.320.130.1 2.2,i i iEX x p ==-⨯+-⨯+⨯+⨯+⨯=∑2222.20.4 2.04.DX EX E X =-=-=(2) 2(32)(3)9 2.0418.36.D X DX -+=-=⨯=★2. 设随机变量X 具有概率密度为22,02,()0,Ax x x f x ⎧+<<=⎨⎩其他,试求: (1)常数A ; (2)E (X ); (3) D (X ); (4) D (2X -3) .(1) 22081()(2)4,3f x dx Ax x dx A +∞-∞==+=+⎰⎰解得9.8A =-(2) 22095()(2).86EX xf x dx x x x dx +∞-∞==-+=⎰⎰(3) 22222094()(2),85EX x f x dx x x x dx +∞-∞==-+=⎰⎰2224519.56180DX EX E X ⎛⎫=-=-= ⎪⎝⎭(4) 21919(23)24.18045D X DX -==⨯= ★3. 设二维随机变量(,)X Y 联合概率密度为2,01,01,(,)0,x y x y f x y --<<<<⎧=⎨⎩其他,试求: (1),X Y 的协方差和相关系数A ; (2)(21).D X Y -+(1) 103()(,)(2),01,2X f x f x y dy x y dy x x +∞-∞==--=-<<⎰⎰由,x y 的对称性3(),0 1.2Y f y y y =-<<1035(),212X EX xf x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰12222031(),24X EX x f x dx x x dx EY +∞-∞⎛⎫==-== ⎪⎝⎭⎰⎰2221511,412144DX EX E X DY ⎛⎫=-=-== ⎪⎝⎭11001()(,)(2),6E XY xyf x y dydx xy x y dydx +∞+∞-∞-∞==--=⎰⎰⎰⎰ 因此2151(,)(),612144Cov X Y E XY EXEY ⎛⎫=-=-=- ⎪⎝⎭,1.11X Y ρ==-(2) 由随机变量和的方差公式()2(,)D X Y DX DX Cov X Y +=++得(21)(2)()2(2,)D X Y D X D Y Cov X Y -+=+-+-22592(1)22(1)(,).144DX DY Cov X Y =+-+⨯⨯-⨯=★4. 设二维随机变量(,)X Y 具有联合分布律试求,,,EX DX EY DY 以及X 和Y 的相关系数. (1) X 的分布列为0.45由变量X 分布对称得0,EX =或10.4500.4510.450,i i iEX x p ==-⨯+⨯+⨯=∑22222(1)0.4500.4510.450.9,i i iEX x p ==-⨯+⨯+⨯=∑220.9.DX EX E X =-=(2) Y 的分布列为j(,)X Y 取值关于原点中心对称由变量Y 分布对称得0,EY =或20.20.250.2520.20,j j iEY y p ==-⨯-++⨯=∑222222(2)0.2(1)0.2510.2520.2 2.1,j j iEY y p ==-⨯+-⨯+⨯+⨯=∑22 2.1.DY EY E Y =-=(3) 由二维变量(,)X Y 的联合分布列关于两坐标轴对称得,()0,i j i j ijE XY x y p ==∑∑(,)()0,Cov X Y E XY EXEY =-=因此,0.X Y ρ==5. 设随机变量X 服从参数为2的泊松分布(2)P ,随机变量Y 服从区间(0,6)上的均匀分布(0,6),U 且,X Y 的相关系数,X Y ρ=记2,Z X Y =-求,.EZ DZ (1) 2,EX =063,2EY +==(2)2223 4.EZ E X Y EX EY =-=-=-⨯=-(2) 2(60)2, 3.12DX DY -===由,X Y ρ==得(,)1,Cov X Y = 由随机变量和的方差公式()2(,)D X Y DX DY Cov X Y +=++得2(2)(2)2(,2)(2)4(,)10.DZ D X Y DX D Y Cov X Y DX DY Cov X Y =-=+-+-=+--=第十一次作业★1. 试用切比雪夫不等式估计下一事件概率至少有多大: 掷1000次均匀硬币, 出现正面的次数在400到600次之间.出现正面的次数~(1000,0.5),X B n p == 10000.5500,EX np ==⨯=10000.50.5250,DX npq ==⨯⨯=应用切比雪夫不等式,有239(400600)(|500|100)1.10040DX P X P X ≤≤=-≤≥-=2. 若每次射击目标命中的概率为0.1, 不断地对靶进行射击, 求在500次射击中, 击中目标的次数在区间(49, 55)内的概率.击中目标的次数~(500,0.1),X B np == 5000.150,EX np ==⨯=5000.10.945.DX npq ==⨯⨯=根据中心极限定理,X 近似服从正态分布(50,45).N EX DX ==(4955)P X P ≤≤=≤≤1≈Φ-Φ=Φ+Φ-⎝⎭⎝⎭ (0.74)(0.15)10.77040.559610.33.=Φ+Φ-=+-=★3. 计算器在进行加法时, 将每个加数舍入最靠近它的整数.设所有舍入误差是独立的且在(-0.5, 0.5)上服从均匀分布, (1)若将1500个数相加, 问误差总和的绝对值超过15的概率是多少?(2)最多可有几个数相加使得误差总和的绝对值小于10的概率不小于0.90.(1) 误差变量,1,2,.i X i =⋅⋅⋅独立同均匀分布(0.5,0.5),X U -10,.12EX DX ==由独立变量方差的可加性150011500125,12i i D X =⎛⎫== ⎪⎝⎭∑15001i i X =∑近似(0,125).N15001||15i i P X =⎧⎫>⎨⎬⎩⎭∑15001||5ii P X =⎧⎪=>=⎨⎪⎪⎩⎭2222(1.34)220.90990.1802.5⎛⎫≈-Φ=-Φ=-⨯= ⎪ ⎪⎝⎭(2) 1||10n i i P X =⎧⎫<⎨⎬⎩⎭∑1||n i P X =⎧⎪=<=⎨⎪⎩210.90,⎛≈Φ-≥ ⎝0.95,⎛Φ≥ ⎝1.645,≥2124.4345.1.645n ≤= 因此,最多可有4个数相加,误差总和的绝对值小于10的概率不小于0.90.★4. 一个系统由n 个相互独立的部件所组成, 每个部件的可靠性(即部件正常工作的概率)为0.90. 至少有80%的部件正常工作才能使整个系统正常运行, 问n 至少为多大才能使系统正常运行的可靠性不低于0.95.正常工作的部件数~(,),X B n p 其中0.9.p =0.9,EX np n ==0.09.DX npq n == (0.8)P X n≥P ⎛=≥==⎭0.95,≈Φ≥⎝⎭1.645,24.354.n ≥≥因此n 至少取25.★5. 有一大批电子元件装箱运往外地, 正品率为0.8, 为保证以0.95的概率使箱内正品数多于1000只, 问箱内至少要装多少只元件?正品数~(,),X B n p 其中0.8.p =0.8,EX np n ==0.16.DX npq n ==(1000)P X≥P =≥=0.95,≈Φ≥1.645,0.810000.n ≥-≥ 解得1637.65,n ≥因此n 至少取1638.★.贝努利分布的正态近似.投掷一枚均匀硬币40次出现正面次数20X =的概率. 正面次数(40,1/2),X B n p ==400.520,400.50.510.EX np DX npq ==⨯===⨯⨯= 离散值20X =近似为连续分组区间19.520.5,X <<(20)(19.520.5)P X P X =<<0.16P ⎫=<=⎪⎭2((0.16)0.5)2(0.56360.5)0.1272.=Φ-=⨯-= 第十二次作业★1. 设X 1, X 2, ⋅⋅⋅, X 10为来自N (0, 0.32)的一个样本, 求概率1021{ 1.44}i i P X =>∑.标准化变量(0,1),1,2,...,10.0.3iXN i =由卡方分布的定义,10222211~(10).0.3ii Xχχ==∑1021 1.44i i P X =⎧⎫>⎨⎬⎩⎭∑10222211 1.44(10)160.1,0.30.3i i P X χ=⎧⎫==>=≈⎨⎬⎩⎭∑ 略大,卡方分布上侧分位数20.1(10)15.9872.χ= ★2. 设X 1, X 2, X 3, X 4, X 5是来自正态总体X ~(0, 1)容量为5的样本, 试求常数c , 使得统计量t 分布, 并求其自由度.由独立正态分布的可加性,12(0,2),X X N +标准化变量(0,1),U N =由卡方分布的定义,22222345~(3),X X X χχ=++U 与2χ独立.由t 分布的定义,(3),T t ===因此c =自由度为3.★3. 设112,,,n X X X 为来自N (μ1, σ2)的样本,212,,,nY Y Y 为来自N (μ2, σ2)的样本, 且两样本相互独立, 2212,S S分别为两个样本方差,222112212(1)(1)2pn S n S S n n -+-=+-. 试证明22().p E S σ=证 由221112(1)~(1),n S n χσ--及()211(1)1E n n χ-=-得()2211112(1)(1)1,n S E E n n χσ⎛⎫-=-=- ⎪⎝⎭221.ES σ= 类似地222.ES σ=222112212(1)(1)2pn S n S ES E n n ⎛⎫-+-= ⎪+-⎝⎭22212121212(1)(1).22n n ES ES n n n n σ--=+=+-+- ★4. 设1,...,n X X 为总体2(,)N μσ的简单样本,样本均值和样本方差依次为2,.X S 求满足下式的k 值:()0.95.P X kS μ>+=统计量(1),X T t n =-0.05(1)X P T t n ⎛⎫=>--= ⎪⎝⎭0.05(0.95.P X t n μ⎛>--= ⎝因此k = ☆.设正态总体2(,)N μσ的容量为12n =的简单样本为112,...,X X ,样本均值和样本方差依次为2,.X S 求满足下式的k 值:()0.95.P X kS μ>+= 正态总体样本方差未知,统计量(1),12.X T t n n =-=。

相关文档
最新文档