染料废水脱色方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

染料废水脱色方法

1 引言(Introduction)

随着经济的快速发展,我国已成为染料生产大国,但随之而来产生了大量的染料废水.除了大量残留的染料外,染料废水中还含有其他有毒有害成分,如重金属离子.因此,染料废水具有成分复杂、色度、浓度高、难生物降解、水量水质变化大等特点,成为较难处理的工业废水之一。

孔雀绿是常见的三苯基甲烷类染料之一,常作为丝织品、毛织品、棉布等的染色剂.虽然孔雀绿具有高毒性、致突变性和较强的生物毒性等特性,但因其成本低廉、杀菌效果显著,因此,目前仍被广泛应用在纺织和水产养殖业.重金属通常应用于纺织染料工业的不同生产过程中,因此,染料废水中存在各种不同浓度的重金属,其中,Cr(Ⅵ)的含量最高,而Cu(Ⅱ)次之.研究发现,极少量的重金属离子就能产生明显的中毒反应,且通过食物链被较高级的生物成倍地富集在体内,且会使生物体内的酶、蛋白质等失活,同时它无法被微生物降解,最终累积在器官中,严重损害着人体健康和生态环境。染料废水中残留染料与重金属离子经常并存,这种复合污染具有更高的生物、细胞毒性。

染料脱色一般分为物理化学法和生物法,物化法使用方便、见效快,但成本高、二次污染严重;生物法运行费用低,处理效果显著且不会造成二次污染,是环境友好的处理方法,因而受到广泛关注。但重金属通过影响微生物体内酶的生成或酶的活性抑制微生物对染料的降解。因此,如何提高染料与重金属构成的复合污染中染料的生物降解效率成为该类废水处理的难点之一.

EDTA(乙二胺四乙酸二钠)是一种常见的鳌合剂,生成的络合物在中性或碱性条件下稳定系数非常大.在一般情况下,这些螯合物的配合比都是1:1(鞠峰等, 2011).EDTA与配位离子形成环状结构,金属离子取代配位原子上的氢而进入鳌合环中,使金属离子钝化,降低其毒害作用。但目前关于采用环境中广泛存在的螯合剂减少与染料共存的重金属离子的毒性,提高染料降解效率的研究少有报道.根据之前的研究发现,某些微生物可能会将Cr(Ⅵ)还原成Cr(Ⅲ),因此,本研究拟采用EDTA降低Cr(Ⅵ)的毒性,从而提高Cr(Ⅵ)共存时微生物降解孔雀绿的效率.采用筛选出的高效好氧菌Burkholderia cepacia C09G降解孔雀绿,研究EDTA对重金属共存时降解孔雀绿的影响,同时优化EDTA鳌合Cr(Ⅵ)的最佳浓度.通过此研究以提高在重金属共存时染料的去除效率,为复杂废水的治理奠定一定的理论基础.

2 材料与方法(Materials and methods)2.1 试剂与仪器

试剂:葡萄糖、KH2PO4、Na2HPO4·2H2O、MgSO4、FeCl3·6H2O、KNO3、孔雀绿(MG)、K2CrO7、EDTA等均为分析纯.

仪器:SKY-2102型立式双层恒温培养摇床、SPX-2508-Z型生化培养箱、722N 型可见光光度计、PHS-3C型精密pH计、AA-240型原子吸收光谱仪.

2.2 试验菌种与培养基

本试验所用菌种为Burkholderia cepacia C09G(B. Cepacia C09G).LB培养基:牛肉膏5 g·L-1,蛋白胨10 g·L-1,NaCl 10 g·L-1,分装在100 mL的三角烧瓶中,每瓶装量为30.0 mL,121 ℃灭菌15 min.降解培养基:葡萄糖6.0

g·L-1,KH2PO4 1.8 g·L-1,Na2HPO4·12H2O 3.5 g·L-1,FeCl3·6H2O 0.01 g·L-1,MgSO4 0.1 g·L-1,KNO3 3.5 g·L-1,调节至pH 6.0,分装于250 mL 的三角烧瓶中,121 ℃灭菌15 min.

2.3 试验方法2.

3.1 菌液的制备

将菌株B. Cepacia C09G接种到灭菌后的LB培养基中,于30 ℃、150 r·min-1的恒温振荡培养箱中培养至对数期,并将所得菌液转移至50.0 mL离心管中,7000 r·min-1离心10 min,弃除上清液,用无菌水稀释成菌悬液,4 ℃保存备用.

2.3.2 MG和Cr(Ⅵ)去除试验

将已算好体积的药品加入降解培养基中,每支玻璃离心管(无菌)中加入15.0 mL的降解培养液,再加入菌液(初始OD600=0.7,体积比6%),塞上棉花塞,放入摇床(150 r·min-1,30 ℃)培养0、12、24、36、48、60 h后分别测定OD600、MG和Cr(Ⅵ)浓度.上述每个试验均做3个平行,结果取其平均值,并计算标准偏差.

2.4 生物量、MG及Cr(Ⅵ)的测定

从恒温摇床中取出各时段的降解培养基,在最大吸收波长600 nm处用可见分光光度计测其吸光度,以波长600 nm处的光密度OD600表示细菌生长量.

取上清液,孔雀绿(MG)采用分光光度计测定619 nm处最大吸收峰的吸光度值,以A619表示;利用原子吸收光谱仪测定溶液剩余Cr(Ⅵ)浓度.去除率R计算公式如下:

(1)

式中,C0表示初始时MG或Cr(Ⅵ)的浓度(mg·L-1);Ct表示t时MG或Cr(Ⅵ)的浓度(mg·L-1).

2.5 表征

扫描电子显微镜(SEM)观察:采用JSM-7500型扫描电子显微镜观察样品的表面形貌和微观形态;X射线能量色散谱(EDS)分析:利用与SEM联机的X射线能量散射仪分析样品表面的元素种类和含量;傅里叶变换红外光谱(FTIR)分析:采用Thermo Nicolet 5700红外光谱仪,获取试样的FTIR谱图,溴化钾压片,扫描范围为4000~400 cm-1;X射线光电子能谱(XPS)分析:采用VG ESCALAB 250型X 射线光电子能谱仪对吸附孔雀绿和Cr(Ⅵ)后的Burkholderia cepacia C09G进行分析.

3 结果与讨论(Results and discussion)3.1 不同条件对孔雀绿降解过程的影响

所有实验均用Burkholderia cepacia C09G降解0.1 mmol·L-1孔雀绿,仅加入孔雀绿的为空白实验,其他实验再分别加入0.5 mmol·L-1 Cr(Ⅵ)、0.5 mmol·L-1 EDTA,以及同时加入0.5 mmol·L-1 Cr(Ⅵ)和0.5 mmol·L-1 EDTA,放入摇床中好氧培养0、12、24、36、48、60 h后取出测定OD600、A619、Cr 浓度.

相关文档
最新文档