液压系统的执行元件
第五章 液压系统的执行元件
液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。
液压缸的典型结构——拉杆液压缸结构
缸体组件
活塞组件
密封装置
要求液压缸所选用的密封元件,在工作压力下具有良好 的密封性能。并且,密封性能应随着压力升高而自动提高, 使泄漏不致因压力升高而显著增加。
液压缸常用的密封方法:
间隙密封 密封元件的密封 间隙密封
缓冲结构示例
排气装置
5.3 液压缸的设计与计算
2.齿条活塞缸
由两个活塞缸和一套齿条传动 装置组成的复合式缸。
齿轮齿条传动装置将活塞的移 动变成齿轮的传动,用于实现工 作部件的往复摆动或间歇进给运 动。
用在机床的进刀机构、回转工 作台转位、分度装置、液压机械 手等。
3.增压缸
增压缸能将输入的低压油转变为 高压油供液压系统中的高压支路 使用。但它不是能量转换装置, 只是一个增压器件。 不计摩擦力,根据力平衡关系,可有如下等式:
液压缸主要尺寸的确定
1、工作压力的选取
根据液压缸的实际工况,计算出外负载大小, 然后参考下表选取适当的工作力。
液压缸工作压力的确定
负载
缸工作压力
0~0.7
70~140
140 ~250
>250
液压执行元件各有什么用途
液压执行元件各有什么用途液压执行元件是液压系统中的核心部件,主要用于将液压能转化为机械能,实现各种工程机械的运动。
常见的液压执行元件包括液压缸、液压马达和液压伺服阀等。
它们各有不同的用途,具体如下:1. 液压缸:液压缸是最常见和应用广泛的液压执行元件,主要用于产生线性运动。
它通常由缸体、活塞、活塞杆和密封件等部件组成。
液压缸可用于各种工程机械,如挖掘机、铲车和推土机等,实现各种行程和推力的精确控制。
2. 液压马达:液压马达是将液压能转化为旋转运动的液压执行元件。
它通常由马达本体、齿轮或液压马达柱塞等组成。
液压马达广泛应用于各种需要转动运动的工程机械,如起重机、钻机和混凝土泵等。
3. 液压伺服阀:液压伺服阀是用于控制和调节液压系统中流量和压力的重要元件。
通过调节阀芯的位置和开口大小,实现对液压能的精确控制。
液压伺服阀广泛应用于液压系统中的动态控制和自动化控制系统。
4. 液压驻车制动器:液压驻车制动器主要用于工程机械和汽车等的停车制动。
它通过液压系统产生的压力来使制动器盘片紧密贴合,从而实现对车辆的牵制和停止。
5. 液力变矩器:液力变矩器是用于传递和调节动力的液压执行元件。
它通常由泵轮、涡轮和导向器等组成,可以实现变矩器的连续变比。
液力变矩器广泛应用于各种需要动力变速的工程机械和汽车等。
6. 液压传动件:液压传动件主要用于传递液压能和机械能的变换。
常见的液压传动件包括管路、接头和油管等。
液压传动件在液压系统中起到连接各个液压元件的作用,实现液压能的传递和分配。
总结来说,液压执行元件在工程机械、汽车等领域中起到至关重要的作用。
它们能够将液压能有效地转化为机械能,实现各种运动和动力传递。
液压执行元件的应用不仅提高了机械设备的工作效率和精度,还增加了操作的便利性和安全性。
液压传动系统的组成及各部分作用
液压传动系统的组成及各部分作用一、引言液压传动系统是一种利用液体介质传递力和能量的系统,在工业和机械设备中得到广泛应用。
本文将深入探讨液压传动系统的组成以及各部分的作用,以期全面、详细、完整地解析这一任务主题。
二、液压传动系统的组成液压传动系统一般由以下几个基本组成部分构成:2.1 液压源液压源是液压传动系统的动力来源,通常由压力油泵、液压油箱等组成。
其中,压力油泵负责将液体介质加压并送入液压系统中,液压油箱则用于储存液体介质,并通过油管将液体运送到各个部件。
2.2 液压执行元件液压执行元件是液压传动系统中实现力和能量转换的部件,常见的有液压缸和液压马达。
液压缸通过液体介质的压力产生推动力,实现直线运动;液压马达则将液体介质的压力转化为旋转力,实现转动运动。
2.3 液压控制元件液压控制元件用于调节和控制液压系统的压力、流量和方向等参数,以实现系统的自动化控制。
常见的液压控制元件包括阀门、压力开关、流量阀、油缸等。
这些元件可以根据系统的需要进行灵活组合和调整。
2.4 液压传动介质液压传动介质是液压系统中传递力和能量的介质,通常采用液态的油作为传动介质。
液态油具有良好的密封性能、润滑性能和传递能力,可以在高压下传递大量的力和能量。
2.5 辅助部件液压传动系统还包括一些辅助部件,如滤清器、冷却器、油位显示器等。
这些部件主要用于提高系统的可靠性、安全性和维护性,保证系统的正常运行。
三、各部分的作用3.1 液压源的作用液压源主要负责产生并提供压力油,为整个液压传动系统提供动力。
压力油泵通过机械运动将液体介质加压,并将其送入液压系统中。
液压油箱则起到储存和供给液体介质的作用。
3.2 液压执行元件的作用液压执行元件主要负责将液压能转换为机械能,实现力和能量的传递。
液压缸通过液体介质的压力产生推动力,实现直线运动;液压马达将液压能转化为旋转能,实现转动运动。
3.3 液压控制元件的作用液压控制元件用于调节和控制液压系统的压力、流量和方向等参数,以实现系统的自动化控制。
液压系统的原理
液压系统的原理液压系统是一种利用液体传递能量的动力系统。
它利用液体在封闭管路中的传力和传递压力实现动力传递的目的。
液压系统主要由液压元件、液控元件、执行元件和液压工作介质组成。
1.原理液压系统利用液体的不可压缩性质,通过液压力来实现能量的传递。
系统中的液体为压力传动介质,通过液体的传输来实现力和能量的转换。
2.液压元件液压系统中的液压元件包括液压泵、液压缸、液压阀等。
液压泵通过机械能输入驱动压缩机构,将机械能转化为液压能,提供液体的压力。
液压缸是液压系统中的执行元件,通过液压力将液体能量转化为机械能,实现工作任务。
液压阀用于控制液压系统的流量、压力和方向。
3.液控元件液控元件包括液压阀、压力开关等。
液压阀可以通过定位、排除或改变液路的方式,来控制液体的流动方向、流量和压力,实现对液压系统的控制。
压力开关用于监测系统的压力情况,当系统压力达到一定值时,开关会自动断开或闭合。
4.执行元件液压系统的工作原理是基于贝努利原理和帕斯卡定律。
贝努利原理指出在流体流动状态下,流体能量是由压力能和动能组成的,通过改变液体的截面积、速度和压力来调节液体的能量。
帕斯卡原理指出在连通的不可压缩流体中,压力的变动在液体中等量传递,并能改变液体的大小或形状。
1.传动可靠性高:液压系统的元件结构简单,工作环境适应性强,传动可靠性高,不易发生故障。
2.调速范围广:液压系统可以通过控制液压流量和压力来实现调速,调速范围广,可满足不同工况要求。
3.功率密度大:液压系统可以在较小空间内提供较大的功率输出,功率密度大。
4.承载能力强:液压系统的主要工作介质为液体,液体不可压缩性能好,能够承受较大的负载和冲击。
5.遥控和自动化程度高:液压系统可以通过电子控制和计算机集成控制,实现远程控制和自动化操作。
总之,液压系统通过利用液体传递能量的原理,实现了高效、可靠、节能的动力传递。
它在工程应用中广泛应用于各种机械设备和工程领域。
数控机床机的液压系统
数控机床机的液压系统引言数控机床机是现代制造业中不可或缺的重要设备,液压系统是数控机床机的核心部件之一。
液压系统的稳定性和性能直接影响机床机的加工精度和效率。
本文将重点介绍数控机床机的液压系统的组成和工作原理。
液压系统的组成部件液压系统主要由以下几个部件组成:1.液压元件:包括液压泵、液压马达、液压缸等。
2.液压执行元件:包括液压缸、液压管路等。
3.液压控制元件:包括液压阀、液压控制系统等。
4.液压储能元件:包括液压储能器等。
5.液压辅助元件:包括油箱、冷却器等。
这些部件紧密配合,共同完成液压系统的工作。
液压系统的工作原理液压系统的工作原理是基于压力传递的原理。
液压泵通过不断地吸入液体并将其压力增加,然后将高压液体输送到液压执行元件,如液压缸。
在液压缸中,液体的压力会转化为机械能,驱动机床机完成加工工作。
液压阀和液压控制系统用于控制液体的流动和压力,确保机床机的稳定运行。
液压系统的工作过程可以概括如下:1.液压泵吸入液体,将其压力增加。
2.高压液体通过液压管路输送到液压执行元件,如液压缸。
3.在液压执行元件中,液体的压力转化为机械能,驱动机床机完成加工工作。
4.液体经过控制元件的调节,在不同的工作状态下控制液体的流动和压力。
5.液体经过冷却器进行冷却,以控制液压系统的温度。
6.用油箱储存液压液,并保证液压系统的润滑和密封。
液压系统的优势和应用领域液压系统具有以下几个优势:1.高功率密度:液压系统可以实现高功率传递,适用于大功率的加工设备。
2.较大的力矩和速度范围:液压系统可以灵活调节力矩和速度,适应不同的加工需求。
3.高精度和重复性:液压系统控制精度高,能够实现高精度的加工。
4.可靠性和耐用性:液压系统由于无需传递动力,因此具有较高的可靠性和耐用性。
5.调节性能好:液压系统可以方便地调节加工参数,实现多种加工需求。
液压系统广泛应用于各个领域,包括机械制造、航空航天、能源、交通运输等。
特别是在数控机床机中,液压系统的高精度、高效率和稳定性,为加工提供了重要的保障。
液压系统的组成和作用
液压系统的组成和作用液压系统是一种利用液体传递能量的技术系统,广泛应用于工程机械、航空航天、汽车、冶金、船舶等领域。
液压系统由多个组成部分组成,每个部分都有不同的作用和功能。
本文将从液压系统的组成和作用两个方面进行阐述。
一、液压系统的组成1. 液压液:液压系统中使用的液体通常是油,具有良好的润滑性、密封性和稳定性。
液压液在系统中承担传递能量、润滑摩擦、密封和冷却的重要作用。
2. 液压泵:液压泵是液压系统的动力源,负责将液压液从储油器中抽吸出来,并产生一定的压力,使液压液能够在系统中流动。
3. 液压阀:液压阀是液压系统中的控制元件,用于控制液压系统中的液压液流动方向、压力和流量。
常见的液压阀有换向阀、节流阀、溢流阀等。
4. 液压缸:液压缸是液压系统中的执行元件,将液压能转化为机械能,实现对物体的推拉运动。
液压缸由缸体、活塞和密封件组成,通过液压液的压力作用,使活塞在缸体内做往复运动。
5. 液压管路:液压管路是液压系统中的传输通道,用于连接液压泵、液压阀、液压缸等各个组成部分,使液压液能够在系统中流动,并传递能量、控制信号。
二、液压系统的作用1. 动力传递:液压系统通过液压泵提供的动力,将液压液传递到液压缸中,通过液压缸的工作,将液压能转化为机械能,实现对物体的推拉运动。
2. 力量放大:液压系统中液压缸的面积比例可以根据需要进行设计,通过液压缸的工作,可以将输入的力量放大到输出端,实现对大型物体的控制和操作。
3. 精确控制:液压系统中的液压阀可以根据需要进行调节,用于控制液压系统中的液压液流量、压力和方向。
通过液压阀的控制,可以实现对液压系统的精确控制,满足不同工况的需求。
4. 灵活性:液压系统具有较高的灵活性,可以根据需要进行设计和布置,适应不同的工作环境和空间要求。
液压系统可以通过改变液压泵的转速、液压阀的开启程度等方式,实现对系统的灵活调节和控制。
5. 安全性:液压系统具有较高的安全性,液压缸的移动速度可以通过液压阀进行调节,避免了因速度过快而引起的危险。
液压元件介绍
液压元件介绍
液压元件是指组成液压系统的各类部件,通常可以分为四大类:
1. 动力元件:如液压泵,其作用是将原动机(通常是电动机或内燃机)提供的机械能转换为流体的液压能。
液压泵是液压系统中的动力源,负责提供压力和流量以驱动整个系统。
2. 执行元件:包括油缸和液压马达,它们是将液压能转换回机械能的元件,实现直线运动或旋转运动,完成各种动作和工作循环。
3. 控制元件:主要是各种阀门,如溢流阀、方向控制阀、速度控制阀等,用于调节和控制液压系统中的压力、流量和流向,从而实现对执行元件运动的精确控制。
4. 辅助元件:如油箱、过滤器、管路和接头等,这些元件虽然不直接参与能量转换,但在整个系统中起到连接、保护和支撑的作用,保证液压系统稳定可靠地运行。
此外,还有工作介质,通常是液压油,它作为传递能量的介质,在液压系统中流动,承受压力并传递动力。
综上所述,液压系统通过这些元件的协同工作,实现了能量的转换和控制,广泛应用于工业机械、工程机械等领域。
根据不同的应用需求,液压元件的种类和设计也会有所不同,以满足特定的功能和性能要求。
液压系统组成
垂,造成密封件和导向 单边磨损,故其垂直使用 更有利。
25
柱塞式液压缸
工作时柱塞总受 压,因而它必须 有足够的刚度
塞只靠缸套支承 而不与缸套 接触, 这样缸套极易加 工,故适于做 长 行程液压缸;
26
伸缩式液压缸
18
执行元件(液压油缸和液压马达)
19
常用的液压缸的分类 液压缸
活塞式 柱塞式 伸缩式 摆动式
20
活塞杆液压缸
单活塞杆液压缸只有 一端有活塞杆。是一 种单活塞液压缸。
双作用缸其两端进出 口油口A和B都可通压 力油或回油,以实现 双向运动,故称为双 作用缸。
活塞杆液压缸
单活塞杆液压缸
双作用缸
4
齿轮泵的原理图
在一个紧密配合的 壳体内相互啮合旋 转,这个壳体的内 部类似“8”字形, 两个齿轮装在里面, 齿轮的外径及两侧 与壳体紧密配合
5
齿轮泵的原理图
挤出机的物料在吸入口进入两个齿轮中间,并充满这
一空间,随着齿的旋转沿壳体运动,最后在两齿啮合
时排出
6
齿轮泵的特点
齿轮泵对油液的要求最低,最早的时候因 为压力低,所以一般用在低压系统中,先 随着技术的发展,压力可以做到25MPa左 右,常用在廉价工程机械和农用机械方面, 当然在一般液压系统中也有用的,但是他 的油液脉动大,不能变量,好处是自吸性 能好。
有单叶片和双叶片两种形式。 定子块固定在缸体上,而叶片和转子连接
在一起。根据进油方向, 叶片将带动转子 作往复摆动。
29
液压马达的结构
30
第二节 小结
根据常用液压 1.活塞式
液压系统执行元件资料
对要求较高的液压 缸,采用排气阀:
注意排气针的自位 性。
4.5 液压马达
一、液压马达特点: 1、液压马达的工作压力高,驱动负载大; 2、 液压马达,尤其是低速大扭矩马达,均可直接驱 动负载。液压马达力密度大,在同等功率输出情况下, 其重量、尺寸仅为直流电马达的5%~20%,相对质量 很轻,所以转动惯量小,启动、制动、反向运转快速 性及低速稳定性好,并可方便地实施无级调速; 3、承受静负载; 4、调速范围广,无级调速。 5、效率较低,能量损失大。
密封种类: 密封圈种类较多,根据不同的密封要求,选用不同的 形状的密封圈,常用的密封圈有: 1、O型密封圈 2、U型密封圈 3、V型密封圈 4、Y型密封圈 密封形式:间隙密封、密封圈密封 运动形式:往复运动和旋转密封 密封材料:金属 铜、铝、橡胶:各种类型,高温,常 温; 尼龙:聚四 氟乙烯:
六、缓冲装置
qt V n
5、流量损耗Δq:由于泄漏引起流量的损失,与压力成 正比;实际流量qn 与理论流量qt 之差。
6、 实际流量qn :输入马达的流量。
qn
V n
mv
V -排量;n -马达转速;ηv- 泄漏系数;
7、理论转速
nt
qt V
8、实际转速
n
qt V
mv
四、马达的转矩、功率:
1、
理论输出转矩T t
二、执行机构作用
1、推拉缸:实现往复直线 运动,输出力和速度;
2、液压马达:实现连续回转,输出扭矩和角速度。
3、摆动缸:实现往复摆动,输出力矩和角速度;
4.1 液压缸
一、单ห้องสมุดไป่ตู้活塞缸
1、简介:往复运动主体为活塞,是双作用油缸。 两个吸油口,两个排油口;单出杆。
液压执行元件
图4-20 液压马达图形符号 a)单向定量马达;b) 单向变量马达; c) 双向定量马达;d) 双向变量马达
1)轴向柱塞式液压马达 如图4-21是轴向柱塞式液压马达的工作原理图。当压力油经配 油盘通入柱塞底部孔时,柱塞受压力油作用向外伸出,并紧压在斜
盘上,这时斜盘对柱塞产生一反作用力F。 由于斜盘倾斜角为γ, 所以F可分解为两个分力:一个轴向分力FX,它和作用在柱塞上的 液压作用力相平衡;另一个分力FY,它使缸体产生转矩。
机电一体化
液压式执行元件是先将电能变化成液体压力,并用电磁阀控制 压力油的流向,从而使液压执行元件驱动执行机构运动。液压式执 行元件有直线式油缸、回转式油缸、液压马达等。
液压执行元件的特点是输出功率大、速度快、动作平稳、可实 现定位伺服、响应特性好和过载能力强。缺点是体积庞大、介质要 求高、易泄露和环境污染。
图 4-15双杆活塞式液压缸 (a) 缸体固定; (b) 活塞杆固定
图4-16 (a) 无杆腔进油;;活塞缸两腔同时通入压力油时,由于无杆腔有效作用面 积大于有杆腔的有效作用面积,使得活塞向右的作用力大于向左的 作用力,因此,活塞向右运动,活塞杆向外伸出;与此同时,又将 有杆腔的油液挤出,使其流进无杆腔,从而加快了活塞杆的伸出速 度,单杆活塞液压缸的这种连接方式被称为差动连接。如图4-16 (c)差动连接时,液压缸的有效作用面积是活塞杆的横截面积,工 作台运动速度比无杆腔进油时的速度大,而输出力则减小。差动连 接是在不增加液压泵容量和功率的条件下,实现快速运动的有效办 法。
l
1)活塞式液压缸 活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装又 有缸筒固定和活塞杆固定两种方式。 ∫ 双杆活塞液压缸的活塞两端都带有活塞杆,分为缸体固定和活 塞杆固定两种安装形式,如图4-15所示。前者工作台移动范围约等 于活塞有效行程 的三倍, 常用于中小型设备。后者工作台的移动范围只约等于液压缸行 程 的两倍,常用于大型设备。单杆活塞液压缸的活塞仅一端带有 活塞杆,活塞双向运动可以获得不同的速度和输出力。其简图 及油路连接方式如图4-16所示。
液压控制系统的基本组成
液压控制系统的基本组成液压控制系统是一种利用压力传递液体来实现力、运动和能量转换的控制系统。
它由多个组成部分组合而成,每个部分都有着特定的功能。
下面将对液压控制系统的基本组成进行详细介绍。
1. 液压源液压源是液压控制系统的动力来源,主要由液压泵、液压马达和液压发电机等组成。
液压泵负责将机械能转化为液压能,将液体压力提高;液压马达则将液体能量转化为机械能,实现运动;液压发电机则是通过液体能量转化为电能,为系统提供电力。
2. 液压执行元件液压执行元件是液压控制系统中负责执行特定任务的部件,主要包括液压缸和液压马达。
液压缸通过液压能将液体压力转化为线性运动,实现推拉工作;液压马达则将液体能量转化为旋转运动,实现转动工作。
3. 液压控制阀液压控制阀是液压控制系统中的核心部件,负责控制液体的流动方向、压力和流量。
常见的液压控制阀包括单向阀、溢流阀、节流阀、方向控制阀和比例控制阀等。
这些阀门能够根据系统需求进行开启、关闭或调节,从而实现对液压能的精确控制。
4. 液压储能元件液压储能元件主要包括液压蓄能器,用于存储液体能量以备系统需要时使用。
液压蓄能器能够在系统停止供液或液压源故障时继续提供能量,保证系统的稳定运行。
5. 辅助元件辅助元件是液压控制系统中的其他重要组成部分,主要包括油箱、滤清器、冷却器、管路和连接件等。
油箱用于储存液压油,并起到冷却和滤清的作用;滤清器负责过滤液压油中的杂质,保证系统的正常运行;冷却器则通过散热将液压油的温度降低,防止系统过热;管路和连接件用于连接各个液压元件,使液体能够顺畅地流动。
液压控制系统的基本组成就是以上几个部分。
通过液压源提供动力,液压执行元件实现动作,液压控制阀控制液体的流动,液压储能元件存储能量,辅助元件保证系统的正常运行。
这些部分相互配合,共同完成液压控制系统的功能。
液压控制系统的基本组成是多个部分的组合,每个部分都有着特定的功能。
了解和掌握液压控制系统的基本组成,对于正确使用和维护液压系统具有重要意义。
液压系统详细介绍
1.1 液压系统的动力元件1.2 液压系统执行元件1.2.1 液压缸1.2.2 液压马达1.3 液压系统控制元件1.3.1 压力控制阀1.3.2 流量控制阀1.3.3 方向控制阀1.3.4 插装阀1.4 电液伺服阀1.5 电液比例阀1.6 辅助元件一个完整的液压系统由动力元件、执行元件、控制元件、辅助元件(附件)和液压油五个部分组成。
液压系统分为液压传动系统和液压控制系统,液压传动系统以传递动力和运动为主要功能,液压控制系统则要使液压系统输出满足特定的性能要求。
1. 动力元件动力元件是将原动机的机械能转换成液体的压力能的元件,一般指液压系统中的油泵,它向整个液压系统提供动力。
液压泵按结构形式的不同分为齿轮泵、叶片泵、柱塞泵和螺杆泵。
按输出流量的不同分为定量泵和变量泵。
2. 执行元件执行元件是将液体的压力能转换为机械能的元件,驱动负载作直线往复运动或回转运动,如液压缸和液压马达。
3. 控制元件控制元件在液压系统中控制和调节液体的压力、流量和方向,即各种液压阀。
1)按控制功能的不同,液压阀分为压力控制阀、流量控制阀和方向控制阀。
压力控制阀包括溢流阀(安全阀)、减压阀、顺序阀、压力继电器(压力开关)等。
流量控制阀包括节流阀、调整阀、分流集流阀等。
方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。
2)按操纵方式的不同,液压阀分为手动阀、电控阀和液控阀。
3)按控制方式不同,液压阀分为定值或开关控制阀、数字控制阀、比例控制阀和伺服控制阀。
4)按阀芯结构形式的不同,液压阀分为滑阀、锥阀和球阀。
5)按安装方式的不同,液压阀分为管式连接、板式连接、插装式和叠加式。
4. 辅助元件辅助元件包括油箱、冷却器、加热器、蓄能器、滤油器、高压球阀、油管及管接头、密封圈、转换接头、压力表、压力变送控制器、压力传感器、油位计、油位信号器等。
5. 液压油液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压元件名称及作用
液压元件名称及作用
液压传动在现代机械中具有重要的地位,而液压元件是构成液压系统的重要部分。
以下是一些常见的液压元件名称及其在液压系统中的作用:
1. 液压泵:液压泵是液压系统的动力源,它能够将机械能转化为液压能,为液压系统提供压力油。
2. 液压马达:液压马达是液压系统的执行元件,它能够将液压能转化为机械能,驱动负载进行旋转或直线运动。
3. 液压缸:液压缸是液压系统的另一种执行元件,它能够将液压能转化为直线运动动能,驱动负载进行运动。
4. 液压阀:液压阀是液压系统中的控制元件,它能够控制液体的流动方向、流量和压力等参数,从而实现不同的动作控制。
5. 液压油箱:液压油箱是液压系统中的油液储存元件,它能够储存和供应足够的油液,为液压泵和液压马达提供必要的润滑和冷却。
6. 液压油管:液压油管是液压系统中的流体通道,它能够连接各个液压元件,使油液能够在系统中流动。
7. 密封件:密封件是液压系统中的重要元件,它能够防止油液泄漏和空气进入系统,保证系统的正常工作和稳定性。
8. 液压附件:液压附件包括各种接头、管夹、滤清器等,它们是辅助元件,用于安装、固定和保护液压元件,保证系统的正常运行。
以上是一些常见的液压元件名称及其在液压系统中的作用,了解这些元件的作用和特点,对于正确设计和维护液压系统具有重要意义。
液压系统的介绍
液压系统的介绍
液压系统是一种利用油液作为工作介质,通过油液的压力能来驱动液压执行机构工作的系统。
其主要由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油。
1.动力元件:主要是各种油泵,它的作用是将原动机(如电动机)的机械能转换成液体的压力能,从而向整个液压系统提供动力。
2.执行元件:如液压缸和液压马达,它们的作用是将液体的压力能转换为机械能,从而驱动负载做直线往复运动或回转运动。
3.控制元件:即各种液压阀,它们在液压系统中控制和调节液体的压力、流量和方向。
液压阀的种类繁多,根据功能不同,可分为压力控制阀(如溢流阀、减压阀、顺序阀、压力继电器等)、流量控制阀(如节流阀、调整阀、分流集流阀等)和方向控制阀(如单向阀、液控单向阀、梭阀、换向阀等)。
根据控制方式的不同,液压阀还可分为开关式控制阀、定值控制阀和比例控制阀。
4.辅助元件:包括油箱、滤油器、冷却器、加热器、蓄能器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位计、油温计等,它们在整个液压系统中起到保障系统正常运行和提供必要辅助功能的作用。
5.液压油:是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。
液压油的选择对于液压系统的性能和寿命有着至关重要的影响。
液压系统的工作原理基于流体静力学中的帕斯卡定律,即利用油
液或其他液体在不可压缩的静止液体中,任何一点受到外力产生的效果会瞬间传递到流体的各点。
这使得我们可以通过较小的力产生较大的力,实现力的放大。
回答完毕。
装载机液压系统工作原理
装载机液压系统工作原理
液压系统是装载机中至关重要的一个部件,它能够通过液压原理来传递力量和控制机械运动。
其主要工作原理可以分为以下几个方面:
1. 液压传动:液压系统采用了液体作为传动介质,通过液体的不可压缩性来传递力量。
当液体从一个活塞或阀门的一侧传输到另一侧时,会产生推力或拉力,从而实现机械部件的运动。
2. 液压泵:液压泵是液压系统的动力源,它通过机械或电动力量将液体从油箱中吸入,并将其加压送至液压系统中的各个执行元件。
液压泵的工作原理类似于汽车发动机的工作原理,通过压缩液体来产生动力。
3. 液压缸:液压缸是液压系统的执行元件,通过将液体加压送入液压缸的活塞腔中,实现机械装置的运动。
液压缸通常由活塞、筒体、密封件和连接部件组成。
液压缸的工作原理是,当液体从液压泵进入液压缸时,液体的压力使活塞受力并产生位移,从而驱动相应的机械装置运动。
4. 液压阀:液压阀是液压系统中控制流量和压力的关键部件。
根据控制的方式,液压阀可以分为手动控制阀、比例控制阀和电动控制阀等。
液压阀的工作原理是,通过控制液体的流量和压力,实现液压系统中的各个执行元件的运动。
5. 液压油:液压油在液压系统中起到传递力量、润滑和密封的作用。
液压油需要具有一定的黏度和抗氧化性能,以确保液压
系统的正常工作。
液压油还需要定期更换和保养,以保证液压系统的性能和寿命。
综上所述,装载机液压系统的工作原理是通过液压传动、液压泵、液压缸、液压阀和液压油等组成的系统,实现力量传递和机械部件的控制。
这些组成部件协同工作,使装载机能够高效、稳定地运行。
液压缸是液压系统中的执行元件
液压缸是液压系统中的执行元件,它能将液压能转换为运动形式的机械能,输出运动速度和力。
单作用液压缸柱塞式液压缸柱塞仅单向运动,返回行程是利用自重或负荷将柱塞推回。
单活塞杆液压缸活塞仅单向运动,返回行程是利用自重或负荷将活塞推动。
双活塞杆液压缸活塞的两侧都装有活塞杆,只能向活塞一侧供给压力油,返回行程通常是利用弹簧力、重力或外力推回。
伸缩液压缸以短缸获得长行程,用液压油由大到小逐节推出,靠外力由小到大逐节缩回。
双作用液压缸单活塞杆液压缸单边有杆,双向液压驱动,双向推力和速度不等。
双活塞杆液压缸双边有杆,双向液压驱动,可实现等速往复运动。
伸缩液压缸双向液压驱动,伸出由大到小逐节推出,由小到大逐节缩回。
组合液压缸经装在一起的齿条驱动齿轮使活塞作往复回转运动。
1、双作用双活塞杆式液压缸两腔的活塞直径d和活塞有效作用面积A通常是相等的。
左右两腔相继进入压力油时,若流量和压力相等,活塞往复运动的速度及两个方向的液压推力相等V1=V2,F1=F2。
2、采用缸体固定的双作用双活塞杆式液压缸,工作台往复运动的范围是活塞有效行程的3倍,占地面积较大,常用于小型设备。
3、采用活塞固定的双作用双活塞杆式液压缸,工作台往复运动的范围是活塞有效行程的2倍,占地面积较小,常用于大中型设备。
双作用单活塞式液压缸,活塞一边有杆,另一端无杆,活塞的有效作用面积不相等。
常用于实现机床的较大负载、慢速工作进给和空回行程时的快速退回。
双作用单活塞杆式液压缸,工作台的往复运动速度不同。
压力油进入无杆腔,v1=4Qv/π(D二次方)压力油进入有杆腔v2=4Qv/π(D方-d方)A1>A2,v2>v1活塞两方向作用力不相等,压力油进入无杆腔,F1=p*(πD方)/4压力油进入有杆腔F2=p*π(D方-d方)/4 ,F1>F2工作台慢速运动活塞获得的推力大,反之获得的推力小。
差动连接,当压力油同时进入液压缸的左、右两腔,由于活塞的两端有效作用面积不同,推力作用与活塞的两端压力也不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章、液压执行元件第一节液压马达一、液压马达的特点及分类液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。
但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。
例如:1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。
2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。
而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。
3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。
因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。
4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。
若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。
5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。
6.液压马达必须具有较大的起动扭矩。
所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。
由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。
液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。
通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。
高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。
此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。
低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。
液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。
二、液压马达的性能参数液压马达的性能参数很多。
下面是液压马达的主要性能参数:1. 排量、流量和容积效率习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。
液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。
因为液压马达在工作中输出的转矩大小是由负载转矩决定的。
但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。
根据液压动力元件的工作原理可知,马达转速n、理论流量qi与排量V之间具有下列关系qi=nV (4-1)式中:qi为理论流量(m3/s);n为转速(r/min);V为排量(m3/s)。
为了满足转速要求,马达实际输入流量q大于理论输入流量,则有:q= qi+Δq(4-2)式中:Δq为泄漏流量。
ηv=qi/q=1/(1+Δq/qi)(4-3)所以得实际流量q=qi/ηv(4-4)2. 液压马达输出的理论转矩根据排量的大小,可以计算在给定压力下液压马达所能输出的转矩的大小,也可以计算在给定的负载转矩下马达的工作压力的大小。
当液压马达进、出油口之间的压力差为ΔP,输入液压马达的流量为q,液压马达输出的理论转矩为Tt,角速度为ω,如果不计损失,液压马达输入的液压功率应当全部转化为液压马达输出的机械功率,即:ΔPq=Ttω(4-5)又因为ω=2πn,所以液压马达的理论转矩为:Tt=ΔP·V/2π(4-6)式中:ΔP为马达进出口之间的压力差。
3. 液压马达的机械效率由于液压马达内部不可避免地存在各种摩擦,实际输出的转矩T总要比理论转矩Tt小些,即:T=T tηm(4-7)式中:ηm为液压马达的机械效率(%)。
4. 液压马达的启动机械效率ηm液压马达的启动机械效率是指液压马达由静止状态起动时,马达实际输出的转矩T0与它在同一工作压差时的理论转矩Tt之比。
即:ηm0=T/Tt(4-8)液压马达的启动机械效率表示出其启动性能的指标。
因为在同样的压力下,液压马达由静止到开始转动的启动状态的输出转矩要比运转中的转矩大,这给液压马达带载启动造成了困难,所以启动性能对液压马达是非常重要的,启动机械效率正好能反映其启动性能的高低。
启动转矩降低的原因,一方面是在静止状态下的摩擦因数最大,在摩擦表面出现相对滑动后摩擦因数明显减小,另一方面也是最主要的方面是因为液压马达静止状态润滑油膜被挤掉,基本上变成了干摩擦。
一旦马达开始运动,随着润滑油膜的建立,摩擦阻力立即下降,并随滑动速度增大和油膜变厚而减小。
实际工作中都希望启动性能好一些,即希望启动转矩和启动机械效率大一些。
现将不同结构形式的液压马达的启动机械效率ηm0的大致数值列入表4-1中。
表4-1 液压马达的启动机械效率杆马达和静压平衡马达居中,叶片马达较差,而齿轮马达最差。
5. 液压马达的转速液压马达的转速取决于供液的流量和液压马达本身的排量V,可用下式计算:nt=qi/V (4-9)式中:nt为理论转速(r/min)。
由于液压马达内部有泄漏,并不是所有进入马达的液体都推动液压马达做功,一小部分因泄漏损失掉了。
所以液压马达的实际转速要比理论转速低一些。
n=nt·ηv (4-10)式中:n为液压马达的实际转速(r/min);ηv为液压马达的容积效率(%)。
6. 最低稳定转速最低稳定转速是指液压马达在额定负载下,不出现爬行现象的最低转速。
所谓爬行现象,就是当液压马达工作转速过低时,往往保持不了均匀的速度,进入时动时停的不稳定状态。
液压马达在低速时产生爬行现象的原因是:(1)摩擦力的大小不稳定。
通常的摩擦力是随速度增大而增加的,而对静止和低速区域工作的马达内部的摩擦阻力,当工作速度增大时非但不增加,反而减少,形成了所谓“负特性”的阻力。
另一方面,液压马达和负载是由液压油被压缩后压力升高而被推动的,因此,可用图4-1(a)所示的物理模型表示低速区域液压马达的工作过程:以匀速v0推弹簧的一端(相当于高压下不可压缩的工作介质),使质量为m的物体(相当于马达和负载质量、转动惯量)克服“负特性”的摩擦阻力而运动。
当物体静止或速度很低时阻力大,弹簧不断压缩,增加推力。
只有等到弹簧压缩到其推力大于静摩擦力时才开始运动。
一旦物体开始运动,阻力突然减小,物体突然加速跃动,其结果又使弹簧的压缩量减少,推力减小,物体依靠惯性前移一段路程后停止下来,直到弹簧的移动又使弹簧压缩,推力增加,物体就再一次跃动为止,形成如图4-1(b)所示的时动时停的状态,对液压马达来说,这就是爬行现象。
图4-1液压马达爬行的物理模型(2)泄漏量大小不稳定。
液压马达的泄漏量不是每个瞬间都相同,它也随转子转动的相位角度变化作周期性波动。
由于低速时进入马达的流量小,泄漏所占的比重就增大,泄漏量的不稳定就会明显地影响到参与马达工作的流量数值,从而造成转速的波动。
当马达在低速运转时,其转动部分及所带的负载表现出的惯性较小,上述影响比较明显,因而出现爬行现象。
实际工作中,一般都期望最低稳定转速越小越好。
7. 最高使用转速液压马达的最高使用转速主要受使用寿命和机械效率的限制,转速提高后,各运动副的磨损加剧,使用寿命降低,转速高则液压马达需要输入的流量就大,因此各过流部分的流速相应增大,压力损失也随之增加,从而使机械效率降低。
对某些液压马达,转速的提高还受到背压的限制。
例如曲轴连杆式液压马达,转速提高时,回油背压必须显著增大才能保证连杆不会撞击曲轴表面,从而避免了撞击现象。
随着转速的提高,回油腔所需的背压值也应随之提高。
但过分的提高背压,会使液压马达的效率明显下降。
为了使马达的效率不致过低,马达的转速不应太高。
8. 调速范围液压马达的调速范围用最高使用转速和最低稳定转速之比表示,即:i=nmax/nmin (4-11)第二节液压缸液压缸又称为油缸,它是液压系统中的一种执行元件,其功能就是将液压能转变成直线往复式的机械运动。
一、液压缸的类型和特点液压缸的种类很多,其详细分类可见表4-2。
表4-2 常见液压缸的种类及特点图4-5双杆活塞缸下面分别介绍几种常用的液压缸。
1.活塞式液压缸活塞式液压缸根据其使用要求不同可分为双杆式和单杆式两种。
(1)双杆式活塞缸。
活塞两端都有一根直径相等的活塞杆伸出的液压缸称为双杆式活塞缸,它一般由缸体、缸盖、活塞、活塞杆和密封件等零件构成。
根据安装方式不同可分为缸筒固定式和活塞杆固定式两种。
如图4-5(a)所示的为缸筒固定式的双杆活塞缸。
它的进、出口布置在缸筒两端,活塞通过活塞杆带动工作台移动,当活塞的有效行程为l时,整个工作台的运动范围为3l,所以机床占地面积大,一般适用于小型机床,当工作台行程要求较长时,可采用图4-5(b)所示的活塞杆固定的形式,这时,缸体与工作台相连,活塞杆通过支架固定在机床上,动力由缸体传出。
这种安装形式中,工作台的移动范围只等于液压缸有效行程l的两倍(2l),因此占地面积小。
进出油口可以设置在固定不动的空心的活塞杆的两端,但必须使用软管连接。
由于双杆活塞缸两端的活塞杆直径通常是相等的,因此它左、右两腔的有效面积也相等,当分别向左、右腔输入相同压力和相同流量的油液时,液压缸左、右两个方向的推力和速度相等。
当活塞的直径为D,活塞杆的直径为d,液压缸进、出油腔的压力为p1和p2,输入流量为q时,双杆活塞缸的推力F和速度v为:F=A(p1-p2)=π (D2-d2) (p1-p2) /4 (4-18)v=q/A=4q/π(D2-d2) (4-19)式中:A为活塞的有效工作面积。
双杆活塞缸在工作时,设计成一个活塞杆是受拉的,而另一个活塞杆不受力,因此这种液压缸的活塞杆可以做得细些。
(2)单杆式活塞缸。
如图4-6所示,活塞只有一端带活塞杆,单杆液压缸也有缸体固定和活塞杆固定两种形式,但它们的工作台移动范围都是活塞有效行程的两倍。
图4-6单杆式活塞缸由于液压缸两腔的有效工作面积不等,因此它在两个方向上的输出推力和速度也不等,其值分别为:F1=(p1A1-p2A2)=π[(p1-p2)D2-p2d2]/4 (4-20)F1=(p1A1-p2A2)=π[(p1-p2)D2-p2d2 ]/4 (4-21)v1=q/A1=4q/πD2(4-22)v2=q/A2=4q/π(D2-d2) (4-23)由式(4-20)~式(4-23)可知,由于A1>A2,所以F1>F2,v1<v2。