函数及其表示知识点
高中函数知识点总结符号
高中函数知识点总结符号一、函数的概念和符号表示1. 函数的概念函数是一种特殊的关系,即每一个自变量(输入值)对应唯一的因变量(输出值)。
在数学中,函数用来描述输入和输出之间的关系,是数学建模和问题求解中的重要工具。
2. 函数的符号表示函数通常用f(x)或者y来表示,其中x是自变量,y是因变量。
函数的定义域表示自变量的取值范围,值域表示因变量的取值范围。
函数可以用表格、图像、公式等多种形式表示。
二、函数的性质1. 单调性函数的单调性是指函数在定义域内的增减关系。
函数可以是单调增加的,也可以是单调减少的,还可以是不变的。
2. 奇偶性函数的奇偶性是指函数的对称性。
奇函数满足f(-x)=-f(x),即关于原点对称;偶函数满足f(-x)=f(x),即关于y轴对称。
3. 周期性周期性是指函数在一定范围内具有重复性。
周期函数是指函数在固定的间隔内,输入值的变化导致输出值的重复。
4. 极值和最值函数的极值是指在一定范围内的最大值和最小值。
函数的最值是指整个定义域内的最大值和最小值。
5. 渐近线函数的渐近线是指当自变量趋于无穷大或者无穷小时,函数值趋于一个常数。
渐近线可以是水平渐近线、垂直渐近线或者斜渐近线。
三、常见函数及其性质1. 基本初等函数基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数。
这些函数在数学中具有重要的地位,是其他复杂函数的基本构成单位。
一次函数的一般形式为f(x)=ax+b,其中a和b为常数且a不等于0。
一次函数的图像是一条直线,具有固定的斜率和截距。
3. 二次函数二次函数的一般形式为f(x)=ax^2+bx+c,其中a、b、c为常数且a不等于0。
二次函数的图像是抛物线,开口方向由a的正负确定。
4. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们是周期函数,具有很多重要的性质和应用。
5. 指数函数和对数函数指数函数的一般形式为f(x)=a^x,其中a为底数且a大于0且不等于1;对数函数的一般形式为f(x)=loga(x),其中a为底数且a大于0且不等于1。
函数知识点总结
函数知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!函数知识点总结函数知识点总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它是增长才干的一种好办法,是时候写一份总结了。
函数及其表示知识点
函数及其表示知识点一、函数的定义和特征在数学中,函数是一种关系,它将一个或多个输入值映射到一个唯一的输出值。
函数通常用字母表示,例如f(x)或g(y),其中x和y是输入值,f(x)和g(y)是对应的输出。
函数的定义可以用多种方式表达,比如公式、算法或图表。
函数的核心特征是单值性和一对一性。
单值性要求每个输入对应唯一的输出,而一对一性则要求每个输出值只能由一个输入产生。
二、函数的符号表示函数可以用多种符号来表示,最常见的是用函数名和自变量表示函数。
例如,f(x)表示一个以x为自变量的函数。
函数的符号表示还可以用映射符号箭头“→”表示,例如f: x→f(x)。
在离散数学中,函数也可以使用集合的形式表示。
例如,如果定义了一个函数f,将集合A中的元素映射到集合B中的元素,可以用f: A→B表示。
三、函数的图像表示函数的图像是一种常用的表示方式。
通过绘制函数的图像,我们可以直观地了解函数的特点和关系。
函数的图像通常是在笛卡尔坐标系中绘制的。
横轴表示自变量,纵轴表示函数的值。
函数的图像可以是曲线、直线、折线等不同形状。
曲线图像可以反映函数的变化趋势和特征,而直线和折线图像则更加简单明了。
四、函数的性质和分类函数有许多性质和分类。
其中一些重要的性质包括:1. 定义域和值域:函数的定义域是自变量的取值范围,值域是函数的所有可能输出值的集合。
2. 奇偶性:如果一个函数满足f(-x) = -f(x),则称其为奇函数;如果满足f(-x) = f(x),则称其为偶函数。
3. 增减性:函数的增减性描述了函数的单调性。
如果函数在定义域上是递增的,称其为增函数;如果在定义域上是递减的,称其为减函数。
根据函数的具体形式和性质,我们可以将函数进行分类,常见的函数包括:1. 线性函数:形如f(x) = kx + b的函数,其中k和b是常数。
2. 幂函数:形如f(x) = x^a的函数,其中a是常数。
3. 指数函数:形如f(x) = a^x的函数,其中a是常数。
函数及其表示知识梳理
函数1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。
记作:y =f (x ),x ∈A 。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。
显然,值域是集合B 的子集.解读函数概念(1)“A ,B 是非空的数集”,一方面强调了A ,B 只能是数集,即A ,B 中的元素只能是实数;另一方面指出了定义域、值域都不能是空集,也就是说定义域为空集的函数是不存在的.(2)理解函数的概念要注意函数的定义域是非空数集A ,但函数的值域不一定是非空数集B ,而是集合B 的子集.(3)函数定义中强调“三性”:任意性、存在性、唯一性,即对于非空数集A 中的任意一个(任意性)元素x ,在非空数集B 中都有(存在性)唯一(唯一性)的元素y 与之对应.(4) “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;常用函数符号: ƒ(x) ,g(x), h(x), F(x), G(x)等.(5)函数符号“()y f x =”是数学中抽象符号之一,“()y f x =”仅为y 是x 的函数的数学表示,不表示y 等于f 与x 的乘积,()f x 也不一定是解析式,还可以是图表或图象.(6)函数只能是一对一或者多对一(7)函数求值,需要把所有定义域都做代换2.构成函数的三要素:定义域、对应关系和值域函数的构成要素由函数概念知,一个函数的构成要素为定义域、对应关系和值域_.由于值域是由定义域和对应关系决定的,所以确定一个函数只需要两个要素:定义域和对应关系.辨析() f x 与()()f a a A ∈:()f a 表示当自变量x a =时函数() f x 的值,是一个常量,而() f x 是自变量x 的函数,它是一个变量,()f a 是() f x 的一个特殊值.(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x 的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x 的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x 的实际意义。
高中数学知识点总结(第二章 函数的概念与基本初等函数Ⅰ第一节 函数及其表示)
第二章函数的概念与基本初等函数Ⅰ第一节函数及其表示一、基础知识1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.求函数定义域的策略(1)确定函数的定义域常从解析式本身有意义,或从实际出发.(2)如果函数y=f(x)是用表格给出,则表格中x的集合即为定义域.(3)如果函数y=f(x)是用图象给出,则图象在x轴上的投影所覆盖的x的集合即为定义域.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.两函数值域与对应关系相同时,两函数不一定相同.(4)函数的表示法:表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.关于分段函数的3个注意(1)分段函数虽然由几个部分构成,但它表示同一个函数.(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(3)各段函数的定义域不可以相交.考点一 函数的定义域[典例] (1)(2019·长春质检)函数y =ln1-x x +1+1x的定义域是( ) A .[-1,0)∪(0,1) B .[-1,0)∪(0,1] C .(-1,0)∪(0,1]D .(-1,0)∪(0,1)(2)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B.⎝⎛⎭⎫-1,-12 C .(-1,0)D.⎝⎛⎭⎫12,1[解析] (1)由题意得⎩⎪⎨⎪⎧1-x >0,x +1>0,x ≠0,解得-1<x <0或0<x <1.所以原函数的定义域为(-1,0)∪(0,1).(2)令u =2x +1,由f (x )的定义域为(-1,0),可知-1<u <0,即-1<2x +1<0, 得-1<x <-12.[答案] (1)D (2)B [解题技法]1.使函数解析式有意义的一般准则(1)分式中的分母不为0; (2)偶次根式的被开方数非负; (3)y =x 0要求x ≠0;(4)对数式中的真数大于0,底数大于0且不等于1; (5)正切函数y =tan x ,x ≠k π+π2(k ∈Z);(6)实际问题中除考虑函数解析式有意义外,还应考虑实际问题本身的要求. 2.抽象函数的定义域问题(1)若已知函数f (x )的定义域为[a ,b ],其复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(2)若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]上的值域. [题组训练] 1.函数f (x )=1lnx +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2]D .(-1,2]解析:选B 由⎩⎪⎨⎪⎧x +1>0,ln x +1≠0,4-x 2≥0,得-1<x ≤2,且x ≠0.2.若函数y =f (x )的定义域是[1,2 019],则函数g (x )=f x +1x -1的定义域是________________.解析:因为y =f (x )的定义域是[1,2 019],所以若g (x )有意义,应满足⎩⎪⎨⎪⎧1≤x +1≤2 019,x -1≠0,所以0≤x ≤2 018,且x ≠1.因此g (x )的定义域是{x |0≤x ≤2 018,且x ≠1}. 答案:{x |0≤x ≤2 018,且x ≠1}考点二 求函数的解析式[典例] (1)已知二次函数f (2x +1)=4x 2-6x +5,求f (x ); (2)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x ). [解] (1)法一:待定系数法因为f (x )是二次函数,所以设f (x )=ax 2+bx +c (a ≠0),则f (2x +1)=a (2x +1)2+b (2x +1)+c =4ax 2+(4a +2b )x +a +b +c .因为f (2x +1)=4x 2-6x +5, 所以⎩⎪⎨⎪⎧4a =4,4a +2b =-6,a +b +c =5,解得⎩⎪⎨⎪⎧a =1,b =-5,c =9,所以f (x )=x 2-5x +9(x ∈R). 法二:换元法令2x +1=t (t ∈R),则x =t -12,所以f (t )=4⎝⎛⎭⎫t -122-6·t -12+5=t 2-5t +9(t ∈R),所以f (x )=x 2-5x +9(x ∈R). 法三:配凑法因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9, 所以f (x )=x 2-5x +9(x ∈R).(2)解方程组法由f (-x )+2f (x )=2x , ① 得f (x )+2f (-x )=2-x ,② ①×2-②,得3f (x )=2x +1-2-x . 即f (x )=2x +1-2-x3.故f (x )的解析式是f (x )=2x +1-2-x3(x ∈R).[解题技法] 求函数解析式的4种方法及适用条件 (1)待定系数法先设出含有待定系数的解析式,再利用恒等式的性质,或将已知条件代入,建立方程(组),通过解方程(组)求出相应的待定系数.(2)换元法对于形如y =f (g (x ))的函数解析式,令t =g (x ),从中求出x =φ(t ),然后代入表达式求出f (t ),再将t 换成x ,得到f (x )的解析式,要注意新元的取值范围.(3)配凑法由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.(4)解方程组法已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).[提醒] 由于函数的解析式相同,定义域不同,则为不相同的函数,因此求函数的解析式时,如果定义域不是R ,一定要注明函数的定义域.[题组训练]1.[口诀第2句]已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx . 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).答案:12x 2+12x (x ∈R)2.[口诀第3句]已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________________.解析:令2x +1=t ,得x =2t -1,则f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg2x -1(x >1). 答案:lg2x -1(x >1) 3.[口诀第4句]已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 解析:∵2f (x )+f ⎝⎛⎭⎫1x =3x ,①把①中的x 换成1x ,得2f ⎝⎛⎭⎫1x +f (x )=3x.② 联立①②可得⎩⎨⎧2f x +f ⎝⎛⎭⎫1x =3x ,2f ⎝⎛⎭⎫1x +f x =3x,解此方程组可得f (x )=2x -1x(x ≠0).答案:2x -1x (x ≠0)考点三 分段函数考法(一) 求函数值[典例] (2019·石家庄模拟)已知f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,a x +b ,x ≤0(0<a <1),且f (-2)=5,f (-1)=3,则f (f (-3))=( )A .-2B .2C .3D .-3[解析] 由题意得,f (-2)=a -2+b =5,①f (-1)=a -1+b =3,②联立①②,结合0<a <1,得a =12,b =1,所以f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,⎝⎛⎭⎫12x +1,x ≤0,则f (-3)=⎝⎛⎭⎫12-3+1=9,f (f (-3))=f (9)=log 39=2. [答案] B[解题技法] 求分段函数的函数值的策略(1)求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值;(2)当出现f (f (a ))的形式时,应从内到外依次求值;(3)当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.考法(二) 求参数或自变量的值(或范围)[典例] (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)[解析] 法一:分类讨论法①当⎩⎪⎨⎪⎧x +1≤0,2x ≤0,即x ≤-1时,f (x +1)<f (2x ),即为2-(x +1)<2-2x,即-(x +1)<-2x ,解得x <1. 因此不等式的解集为(-∞,-1].②当⎩⎪⎨⎪⎧x +1≤0,2x >0时,不等式组无解.③当⎩⎪⎨⎪⎧x +1>0,2x ≤0,即-1<x ≤0时,f (x +1)<f (2x ),即为1<2-2x,解得x <0.因此不等式的解集为(-1,0).④当⎩⎪⎨⎪⎧x +1>0,2x >0,即x >0时,f (x +1)=1,f (2x )=1,不合题意.综上,不等式f (x +1)<f (2x )的解集为(-∞,0). 法二:数形结合法∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 结合图象知,要使f (x +1)<f (2x ), 则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0, ∴x <0,故选D. [答案] D[解题技法]已知函数值(或范围)求自变量的值(或范围)的方法(1)根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围,最后将各段的结果合起来(求并集)即可;(2)如果分段函数的图象易得,也可以画出函数图象后结合图象求解.[题组训练]1.设f (x )=⎩⎨⎧x ,0<x <1,2x -1,x ≥1,若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴a =2a , 解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,f (a )=2(a -1),f (a +1)=2(a +1-1)=2a , ∵f (a )=f (a +1),∴2(a -1)=2a ,无解. 综上,f ⎝⎛⎭⎫1a =6.2.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤1,f x -1,x >1,则f (f (3))=________.解析:由题意,得f (3)=f (2)=f (1)=21=2, ∴f (f (3))=f (2)=2. 答案:23.(2017·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________.解析:由题意知,可对不等式分x ≤0,0<x ≤12,x >12讨论.①当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,故-14<x ≤0.②当0<x ≤12时,原不等式为2x +x +12>1,显然成立.③当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,所求x 的取值范围是⎝⎛⎭⎫-14,+∞. 答案:⎝⎛⎭⎫-14,+∞ 4.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是____________.解析:若a <0,则f (a )<1⇔⎝⎛⎭⎫12a-7<1⇔⎝⎛⎭⎫12a <8,解得a >-3,故-3<a <0; 若a ≥0,则f (a )<1⇔a <1,解得a <1,故0≤a <1. 综上可得-3<a <1. 答案:(-3,1)[课时跟踪检测]1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4解析:选B ①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象;③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.2.函数f (x )=2x -1+1x -2的定义域为( ) A .[0,2)B .(2,+∞)C .[0,2)∪(2,+∞)D .(-∞,2)∪(2,+∞)解析:选C 由题意得⎩⎪⎨⎪⎧2x -1≥0,x -2≠0,解得x ≥0,且x ≠2.3.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于( ) A.74 B .-74C.43D .-43解析:选A 令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.4.(2019·贵阳检测)下列函数中,同一个函数的定义域与值域相同的是( ) A .y =x -1 B .y =ln x C .y =13x -1D .y =x +1x -1解析:选D 对于A ,定义域为[1,+∞),值域为[0,+∞),不满足题意;对于B ,定义域为(0,+∞),值域为R ,不满足题意;对于C ,定义域为(-∞,0)∪(0,+∞),值域为(-∞,-1)∪(0,+∞),不满足题意;对于D ,y =x +1x -1=1+2x -1,定义域为(-∞,1)∪(1,+∞),值域也是(-∞,1)∪(1,+∞).5.(2018·福建期末)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516B .3C .-6364或3D .-1516或3解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.6.已知函数y =f (2x -1)的定义域是[0,1],则函数f 2x +1log 2x +1的定义域是( )A .[1,2]B .(-1,1] C.⎣⎡⎦⎤-12,0 D .(-1,0)解析:选D 由f (2x -1)的定义域是[0,1], 得0≤x ≤1,故-1≤2x -1≤1, ∴f (x )的定义域是[-1,1], ∴要使函数f 2x +1log 2x +1有意义,需满足⎩⎪⎨⎪⎧-1≤2x +1≤1,x +1>0,x +1≠1,解得-1<x <0.7.下列函数中,不满足f (2 018x )=2 018f (x )的是( ) A .f (x )=|x | B .f (x )=x -|x | C .f (x )=x +2D .f (x )=-2x解析:选C 若f (x )=|x |,则f (2 018x )=|2 018x |=2 018|x |=2 018f (x );若f (x )=x -|x |,则f (2 018x )=2 018x -|2 018x |=2 018(x -|x |)=2 018f (x );若f (x )=x +2,则f (2 018x )=2 018x +2,而2 018f (x )=2 018x +2 018×2,故f (x )=x +2不满足f (2 018x )=2 018f (x );若f (x )=-2x ,则f (2 018x )=-2×2 018x =2 018×(-2x )=2 018f (x ).故选C.8.已知具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数: ①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( ) A .①② B .①③ C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足题意;对于②,f ⎝⎛⎭⎫1x =1x +x=f (x ),不满足题意;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧ 1x ,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足题意.综上可知,满足“倒负”变换的函数是①③. 9.(2019·青岛模拟)函数y =ln ⎝⎛⎭⎫1+1x +1-x 2的定义域为________. 解析:由⎩⎪⎨⎪⎧ 1+1x >0,1-x 2≥0⇒⎩⎪⎨⎪⎧x <-1或x >0,-1≤x ≤1⇒0<x ≤1. 所以该函数的定义域为(0,1].答案:(0,1]10.(2019·益阳、湘潭调研)若函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,则f (f (-9))=________. 解析:∵函数f (x )=⎩⎨⎧ lg 1-x ,x <0,-2x ,x ≥0,∴f (-9)=lg 10=1,∴f (f (-9))=f (1)=-2. 答案:-211.(2018·张掖一诊)已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:∵f (1)=2,且f (1)+f (a )=0,∴f (a )=-2<0,故a ≤0. 依题知a +1=-2,解得a =-3.答案:-312.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-x -12,x >0,使f (x )≥-1成立的x 的取值范围是________. 解析:由题意知⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧ x >0,-x -12≥-1,解得-4≤x ≤0或0<x ≤2,故所求x 的取值范围是[-4,2].答案:[-4,2]13.设函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <0,2x ,x ≥0,且f (-2)=3,f (-1)=f (1). (1)求函数f (x )的解析式;(2)在如图所示的直角坐标系中画出f (x )的图象.解:(1)由f (-2)=3,f (-1)=f (1),得⎩⎪⎨⎪⎧ -2a +b =3,-a +b =2, 解得⎩⎪⎨⎪⎧ a =-1,b =1,所以f (x )=⎩⎪⎨⎪⎧-x +1,x <0,2x ,x ≥0. (2)函数f (x )的图象如图所示.。
第四讲函数及其表示
第四讲函数及其表示函数是数学中的一个重要概念,广泛应用于各个学科,具有很多不同的表示方法。
本文将介绍函数的定义、常见表示方法以及函数的性质。
一、函数的定义:函数是数学中描述两个数集之间特定对应关系的一个映射。
通俗地说,函数就是将一个“输入值”映射到一个“输出值”的规则。
函数通常用f(x)或y来表示,其中x是自变量,y是因变量。
函数的定义域是所有可能的自变量值的集合,值域是所有可能的因变量值的集合。
二、函数的表示方法:1.显式定义:显式定义是最常见和简单的函数表示方法。
通过明确给出自变量和因变量之间的关系式,可以直接计算函数值。
例如:f(x)=2x+12.隐式定义:当函数关系无法用一个简单的解析式表示时,可以用隐式定义来描述。
例如:x^2+y^2=1表示一个单位圆的上半部分。
在一些工程和物理问题中,常常需要通过求解隐式方程来得到函数的解析式。
3.递归定义:递归定义是一种特殊的定义方法,函数的定义依赖于问题本身的解。
递归定义在计算机科学中经常使用,例如:斐波那契数列的定义方法为f(n)=f(n-1)+f(n-2)。
4.图表表示:函数还可以通过图表来表示。
在直角坐标系中,自变量对应横坐标,因变量对应纵坐标,可以绘制函数的曲线。
图表能直观展示函数在不同自变量取值下的对应关系。
三、函数的性质:1.定义域和值域:函数的定义域和值域是函数的基本属性。
定义域指的是所有可能的自变量值的集合,而值域指的是所有可能的因变量值的集合。
2.单调性:函数的单调性描述了函数值随自变量的增加或减小而单调变化的性质。
单调递增(递减)表示函数随着自变量的增加(减小)而递增(递减)。
3.奇偶性:奇偶性描述了函数的对称性。
偶函数满足f(x)=f(-x),在直角坐标系中关于y轴对称;奇函数满足f(x)=-f(-x),在直角坐标系中关于原点对称。
4.周期性:周期性表示函数在其中一特定区间内具有重复的模式。
函数的周期性可以通过函数的解析式或图表进行判断。
函数常用公式及知识点总结
函数常用公式及知识点总结一、基本的函数类型及其表达式1. 线性函数线性函数是最简单的一类函数,其表达式可以写成y = kx + b的形式,其中k和b是常数,k代表斜率,b代表截距。
线性函数的图像通常是一条直线,斜率决定了直线的倾斜程度,截距决定了直线和y轴的交点位置。
2. 二次函数二次函数的一般形式是y = ax^2 + bx + c,其中a、b、c分别是二次项系数、一次项系数和常数。
二次函数的图像通常是一条开口向上或向下的抛物线,抛物线的开口方向取决于二次项系数a的正负。
3. 指数函数指数函数的一般形式是y = a^x,其中a是底数。
指数函数的特点是以指数形式增长或衰减,当底数a大于1时,函数图像呈现增长趋势;当底数a介于0和1之间时,函数图像呈现衰减趋势。
4. 对数函数对数函数的一般形式是y = log_a(x),其中a是底数。
对数函数和指数函数是互为反函数的关系,对数函数的图像通常是一条斜率逐渐趋近于零的曲线。
5. 三角函数常见的三角函数包括正弦函数、余弦函数和正切函数,它们分别表示了角的正弦值、余弦值和正切值。
三角函数的图像是周期性的波形,具有很强的周期性和对称性特点。
二、函数的常见性质和变换1. 奇偶性函数的奇偶性是指当x取相反数时,函数值是否相等。
如果函数满足f(-x) = f(x),则称其为偶函数;如果函数满足f(-x) = -f(x),则称其为奇函数。
2. 周期性周期性是指函数在一定范围内具有重复的规律性。
对于三角函数和指数函数等周期函数,周期可以通过函数表达式或图像来确定。
3. 平移、缩放和翻转函数可以通过平移、缩放和翻转等方式进行变换。
平移指的是将函数图像沿着x轴或y轴进行平移,缩放指的是改变函数图像的大小或形状,翻转指的是将函数图像进行对称变换。
4. 复合函数复合函数是指一个函数作为另一个函数的自变量,通过这种方式可以得到新的函数。
复合函数的求导、积分和求极限等运算与单个函数类似,但需要注意变量的替换和链式求导法则。
数学所有函数知识点总结
数学所有函数知识点总结一、函数的概念函数是数学中的一个基本概念,它描述了一种特殊的关系,其中每个自变量的值都对应一个唯一的因变量的值。
通俗来讲,函数就是一个“黑匣子”,输入一个自变量,通过某种规律运算之后,得到一个因变量的值。
函数通常用f(x)表示,其中x为自变量,f(x)为因变量。
二、函数的表示1. 显式表示法:y = f(x),其中y表示因变量,x表示自变量,f(x)表示因变量和自变量的关系。
2. 参数方程表示法:x=f(t), y=g(t),其中t是参数。
3. 值域法:f: X → Y,表示自变量X的取值范围与因变量Y的取值范围之间的对应关系。
4. 函数图形表示法:通过画出函数的图形来表示函数的性质和特点。
三、函数的分类1. 按定义域和值域的关系分类:一元函数、多元函数。
2. 按函数的解析表达式的形式分类:代数函数、三角函数、指数函数、对数函数、幂函数、双曲函数、常数函数、分段函数等。
3. 按导数的存在性分类:可导函数、不可导函数。
四、函数的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 奇偶性:奇函数和偶函数。
3. 单调性:增函数和减函数。
4. 周期性:周期函数。
5. 对称性:轴对称函数和中心对称函数。
五、函数的运算1. 四则运算:加法、减法、乘法、除法。
2. 复合运算:f(g(x)),表示g(x)的结果再作为自变量输入到f(x)中进行运算。
3. 反函数运算:如果f(x)是函数,且f(x)在其定义域内是一一对应的,那么可以定义一个函数g(x),使得g(f(x)) = x,这个函数称为f(x)的反函数。
六、函数的极限1. 函数极限的概念:当自变量趋于某个值时,因变量的值趋于一个确定的值。
2. 极限的性质:有界性、保号性、夹逼性、局部有界性、局部保号性、局部夹逼性。
3. 函数极限的计算方法:利用极限的性质和函数的性质进行计算。
七、函数的导数1. 导数的概念:定义导数为函数在某一点的切线的斜率,也可以表示为函数的变化率。
函数及其基本性质知识点总结
函数及其基本性质知识点总结(总7页)-本页仅作为预览文档封面,使用时请删除本页-〖〗函数及其表示【】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()a b,f x的定义域为[,]其复合函数[()]≤≤解出.f g x的定义域应由不等式()a g x b⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的二次方程y f x2++=,则在()0()()()0a y xb y xc ya y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集o合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性函数的性 质定义图象 判定方法函数的单调性 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)x y f(x )1f(x )2o (1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)y x o x x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性 (3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性 函数的性 质定义图象 判定方法函数的奇偶性 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.高考《函数及其基本性质》考点解析考点一:函数定义域1、函数y = )A. {}1,1-B. ( -1 , 1 )C. [ -1 , 1 ]D. (-∞ ,-1 )∪( 1 ,+∞ ) 2、1y x=+ 考点二:函数值域1、①31y x =+ , x ∈{1,2 ,3,4,5 } ( 观察法 )②246y x x =-+ ,x ∈[)1,5 ( 配方法 :形如2y ax bx c =++ )③2y x =换元法:形如y ax b =+) ④1x y x =+ ( 分离常数法:形如cx d y ax b+=+ ) ⑤221y x x =+ ( 判别式法:形如21112222a xb xc y a x b x c ++=++ ) 2、设函数2()2()g x x x R =-∈,222,()()2,()x x x g x f x x x x g x ⎧++<⎪=⎨-->⎪⎩,则()f x 的值域是(A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦考点三:分段函数1、已知函数()510320x x x x f x ⎧+ ≥⎪⎨-+ <⎪⎩=,求f (1)+f (1-)的值2、已知函数()()2122111f x x x x x x f x ⎧+ , ≤-⎪⎪+ , -<<⎨⎪2-4 , ≥ ⎪⎩= ,求f [f (4-)]的值 3、已知函数232,1,(),1,x x f x x ax x +<⎧=⎨+≥⎩若((0))4f f a =,则实数a = .4、已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是__考点四:函数单调性(最值)、函数奇偶性1. 如果函数2()2(1)2f x x a x =+-+在区间(,4]-∞上是减函数,那么实数a 的取值范围是 .2. 如果二次函数2()1)5f x x a x =--+(在区间1(,1)2上是增函数,(2)f 的取值范围 .3. (2008全国Ⅱ)函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称4.二次函数21y x mx =-+是偶函数,则函数的增区间为 ( ) A .[0,)+∞ B .(,0]-∞ C .[1,)+∞ D .[1,)-+∞ 5. 下列函数中, 是奇函数且在(0,)+∞上为增函数的是 ( )A .3y x x =-B . 1y x x =+C . 1y x x=- D . 3y x =- 6.(2007年宁夏)设函数()()()xa x x x f ++=1为奇函数,则实数=a .7.若函数1,0(),0x x f x ax b x -≥⎧=⎨+<⎩为偶函数,则()f a b += .8.已知偶函数()f x 在(0,)+∞上为增函数,且(2)0f =,解不等式:(23)0f x ->.9. 设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则()0f x <的解集为( )A .(1,)+∞B . (,1)-∞-(0,1)C . (,1)-∞-D . (1,)+∞(,1)-∞-10.设偶函数()f x 在),0[+∞上为减函数,则不等式()(21)f x f x >+的解集是 11.函数2()f x x x=+在区间[2,3]上的最大值为 .二次函数问题、函数图像问题等考点均渗透在以上考点中。
函数概念与知识点总结
函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。
在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。
函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。
函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。
1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。
单值性表示对于每个输入参数,函数有且只有一个输出结果。
有限性表示函数的定义域和值域都是有限的。
定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。
1.3 函数的分类函数可以根据其形式、性质和用途进行分类。
常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。
函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。
二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。
若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。
2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。
若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。
2.3 函数的最值函数的最值指在定义域内的最大值和最小值。
函数的最值可以通过求导数或利用一阶导数的性质进行判断。
2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。
通过绘制函数的图像,可以直观地理解函数的性质和变化规律。
例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。
三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。
函数知识点与公式总结
函数知识点与公式总结一、函数的定义和性质函数的定义:函数是一个对应关系,它把一个集合的元素对应到另一个集合的元素。
一个简单的函数可以用如下的记号来表示:f:X→Y,表示一个函数f从集合X到集合Y的映射关系。
其中,X称为定义域,Y称为值域。
函数的性质:1. 定义域和值域:定义域是指函数的输入可以取的值的集合,值域是函数的输出可以取的值的集合。
2. 单调性:函数的单调性是指在定义域内,函数的增减趋势。
可以分为递增和递减两种情况。
3. 奇偶性:函数的奇偶性是指函数的图像是否关于原点对称。
如果对于任意x∈定义域,都有f(-x)=f(x),那么函数是偶函数;如果对于任意x∈定义域,都有f(-x)=-f(x),那么函数是奇函数。
4. 周期性:函数的周期性是指函数在一定范围内具有重复的性质。
5. 函数的图像:函数的图像是函数在直角坐标系中的点的集合,描述了函数的性质和特点。
二、常见的函数公式1. 线性函数线性函数是指函数的图像是一条直线的函数。
线性函数的一般形式为y=ax+b,其中a和b 是常数,a称为斜率,b称为截距。
2. 二次函数二次函数是指函数的图像是一个抛物线的函数。
二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是常数,a≠0。
3. 指数函数指数函数是以常数e为底数的幂函数,一般形式为y=a^x,其中a为底数,x为指数。
4. 对数函数对数函数是指以常数a为底数的对数函数,一般形式为y=log_a(x),其中a为底数,x为真数。
5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度和弧度之间的关系。
6. 反比例函数反比例函数是指函数的图像是一条反比例曲线的函数,一般形式为y=k/x,其中k是常数。
7. 绝对值函数绝对值函数的一般形式为y=|x|,它表示x的绝对值,即x的正数部分。
8. 分段函数分段函数是指在定义域的不同区间上有不同函数式的函数,一般形式为f(x)=```{g(x),a≤x≤bh(x),b<x<c}```9. 复合函数复合函数是指一个函数的自变量(或生成元素)是另一个函数的值域,即f[g(x)],表示函数f和g的复合。
人教版高一数学必修一第一章知识点解析函数及其表示
人教版高一数学必修一第一章知识点解析函数及其表示考点一、映射的概念1.了解对应大千世界的对应共分四类,分别是:单对单多对一一对多多对多2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个氧化物y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。
包括:一对一多对一考点二、函数的概念1.函数:设A和B是两个非空的数集,定出如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。
记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做并集函数的值域。
函数是特殊的态射,是非空数集A到非空数集B的映射。
2.函数的三要素:定义域、值域、对应关系。
这是判断两个函数是否为同一函数的依据。
3.区间的概念:设a,bR,且a<b.我们规定:<p="".我们规定:①(a,b)={xa<x<b}②[a,b]={xa≤x≤b}③[a,b)={xa≤x<b}④(a,b]={x a<x≤b}⑤(a,+∞)={xx;a}⑥[a,+∞)={xx≥a}⑦(-∞,b)={xx<b}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=r<p=""}⑧(-∞,b]={xx≤b}⑨(-∞,+∞)=r考点三、函数的表示方法1.函数的三种表示方法列表法图象法导出法考点四、不求定义域的几种情况①若f(x)是整式,则函数的定义域是实数集为R;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是对数函数,真数应大于零。
高中数学__函数及其表示知识点
函数及其表示 (一)知识梳理 1.函数的概念 (1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对于集合A 中的 x ,在集合B 中都有 的数和它对应,那么这样的对应叫做从A 到B 的一个函数,通常记为__________(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x A 叫做)(x f y =的定义域;与x 的值相对应的y 值叫做函数值, {}A x x f ∈)(称为函数)(x f y =的值域。
(3)函数的三要素: 、 和 2.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。
3.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
4.映射的概念设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任意元素,在集合B 中都有唯一确定的元素与之对应,那么这样的单值对应叫做从A 到B 的映射,通常记为B A f →: ,f 表示对应法则注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
例1. 试判断以下各组函数是否表示同一函数?(1)2)(x x f =,33)(x x g =; (2)x xx f =)(,⎩⎨⎧<-≥=;01,01)(x x x g (3)x x f =)(1+x ,x x x g +=2)(;(4)12)(2--=x x x f ,12)(2--=t t t g(5)1212)(++=n n x x f ,1212)()(--=n n x x g (n ∈N *); 考点2:映射的概念例1.下述两个个对应是A 到B 的映射吗?(1)A R =,{|0}B y y =>,:||f x y x →=;(2){|0}A x x =>,{|}B y y R =∈,:f x y →=例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个 例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( )()A 8个 ()B 12个 ()C 16个 ()D 18个考点3:求函数的定义域题型1:求有解析式的函数的定义域(1)方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的x 的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;⑦ 如果涉及实际问题,还应使得实际问题有意义,而且注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义域不要漏写。
高一数学函数知识点归纳
高一数学函数知识点归纳一、函数的概念1. 函数定义:函数是从一个数集A(定义域)到另一个数集B(值域)的映射,通常表示为y=f(x)。
2. 定义域:能够输入到函数中的所有可能的x值的集合。
3. 值域:函数输出的所有可能的y值的集合。
4. 函数图像:函数在坐标系中的图形表示。
二、函数的表示法1. 公式法:用数学公式表示函数关系,如y=2x+3。
2. 表格法:用表格列出x与y的对应值。
3. 图像法:通过函数图像直观表示函数关系。
三、函数的性质1. 单调性:函数在定义域内随着x的增加,y值单调递增或递减。
2. 奇偶性:函数f(x)如果满足f(-x)=-f(x)称为奇函数;如果满足f(-x)=f(x)称为偶函数。
3. 周期性:函数如果存在一个非零常数T,使得对于所有x,都有f(x+T)=f(x),则称函数具有周期性。
4. 有界性:函数的值域在某个区间内有限,称函数在该区间内有界。
四、基本初等函数1. 线性函数:y=kx+b(k≠0),其中k为斜率,b为截距。
2. 二次函数:y=ax^2+bx+c(a≠0),顶点形式为y=a(x-h)^2+k。
3. 幂函数:y=x^n,其中n为实数。
4. 指数函数:y=a^x(a>0,a≠1)。
5. 对数函数:y=log_a(x)(a>0,a≠1)。
6. 三角函数:正弦函数y=sin(x),余弦函数y=cos(x),正切函数y=tan(x)等。
五、函数的运算1. 函数的和差:(f±g)(x)=f(x)±g(x)。
2. 函数的乘积:(f*g)(x)=f(x)g(x)。
3. 函数的商:(f/g)(x)=f(x)/g(x)(g(x)≠0)。
六、复合函数1. 复合函数定义:如果有两个函数f(x)和g(x),那么(f∘g)(x)=f(g(x))。
2. 复合函数的运算法则:(f∘g)(x)=f(g(x)),其中g(x)≠0。
七、反函数1. 反函数定义:如果函数y=f(x)在区间I上是单调的,则存在一个函数x=f^(-1)(y),使得f(f^(-1)(y))=y。
函数概念和知识点总结
函数概念和知识点总结一、函数概念1. 函数是数学中的一个重要概念,是指对于一个集合中的每一个元素,都有唯一确定的输出元素与之对应的关系。
2. 在数学中,函数通常用f(x)来表示,其中x是自变量,f(x)是因变量,表示x经过函数f的映射得到的结果。
3. 函数可以看作是一种特殊的关系,它描述了输入和输出之间的对应关系,是研究自然界和社会现象中变量之间相互依存关系的重要工具。
4. 函数的图像通常用坐标系中的曲线来表示,通过观察函数的图像可以了解函数的变化规律和性质。
5. 函数在现实生活中有着广泛的应用,例如物理学、经济学、工程学等领域都需要使用函数来描述和分析问题。
二、函数的定义与性质1. 函数的定义:对于集合A和集合B,如果存在一种规律,使得集合A中的每一个元素a都与集合B中唯一确定的元素b相对应,那么我们称这种规律为函数。
2. 函数的自变量和因变量:函数中自变量是指输入的变量,通常用x来表示;因变量是指输出的变量,通常用f(x)来表示。
3. 定义域和值域:函数的定义域是指能够取值的自变量的范围;值域是指因变量的取值范围。
在定义和使用函数时,需要注意其定义域和值域的范围。
4. 函数的性质:函数有着一些重要的性质,如奇偶性、周期性、单调性、极值点、渐近线等,这些性质可以通过函数的分析和图像来进行确定。
5. 函数的分段定义:有些函数在不同的定义域上有不同的表达式,这种函数称为分段函数,需要根据具体的定义域来确定函数的表达式。
三、函数的表示和求解1. 函数的表示:函数可以通过不同的方法来表示,如用表达式形式、图像形式、数据表形式、文字描述等方式来表示函数。
2. 函数的求解:对于给定的函数,我们通常需要求解其零点、极值、最值、导数等问题,这些问题都涉及到函数的求解。
3. 函数的复合与逆函数:函数的复合是指将一个函数的输出作为另一个函数的输入,逆函数是指可以将原函数的输入和输出进行对调得到的函数。
4. 函数的图像与性质:函数的图像可以通过绘制坐标系中的曲线来表示,通过观察函数的图像可以了解函数的性质和特点。
数学函数的知识点总结
数学函数的知识点总结一、函数的定义1.1 函数的概念函数是数学中非常重要的概念,通常用来描述输入和输出之间的关系。
在数学上,函数被定义为一个从一个集合到另一个集合的映射,它把每一个输入元素映射到唯一的输出元素。
1.2 函数的记号在数学中,我们通常用 f(x) 或者 y = f(x) 来表示函数,其中 x 是自变量,f(x) 是关于 x 的因变量,可以是一个或多个。
1.3 函数的定义域和值域函数的定义域指的是所有可能的输入值,而值域则是所有可能的输出值。
在确定函数的性质和行为时,定义域和值域是非常重要的。
1.4 函数的图像函数的图像是在坐标平面上描述函数的一种方法,通常用来直观地理解函数的性质和行为。
二、函数的性质2.1 单调性如果对于任意的 x1 和 x2,当 x1 < x2 时,f(x1) <= f(x2) 或者 f(x1) >= f(x2),那么函数 f(x) 就是单调的。
2.2 奇偶性如果对于任意的 x,有 f(-x) = f(x),则函数是偶函数;如果对于任意的 x,有 f(-x) = -f(x),则函数是奇函数。
2.3 周期性如果存在一个正数 T 使得对于所有的 x,有 f(x+T)=f(x),那么函数 f(x) 就是周期函数,T称为函数的周期。
2.4 上下界如果存在一个常数 M,使得对于函数的定义域内的任意 x,有 f(x) <= M 或者 f(x) >= M,则称 M 是函数的上界或下界。
2.5 连续性函数 f(x) 在某一点 x0 处连续,是指当 x 无限趋近于 x0 时,函数值 f(x) 也无限趋近于 f(x0)。
2.6 极限函数 f(x) 的极限就是当 x 趋近于某一点时,函数值的极限值,通常表示为 lim(x->a) f(x) = L。
三、常见的函数类型3.1 线性函数线性函数是最简单的函数形式之一,可以表示为 f(x) = ax + b,其中 a 和 b 是常数,且a ≠ 0。
高中数学知识点:函数及其表示知识梳理与考点
函数的概念及其表示知识梳理1.函数的基本概念(1)函数的定义一般地,设A,B是两个数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)与之对应;那么就称:f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的.(3)函数的三要素是:、和对应关系.(4)表示函数的常用方法有:、和图象法.(5)分段函数若函数在其定义域的不同子集上,因不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的,其值域等于各段函数的值域的,分段函数虽由几个部分组成,但它表示的是一个函数.2.函数定义域的求法类型x满足的条件2n f(x),n∈N*1与[f(x)]0f(x)log a f(x)四则运算组成的函数各个函数定义域的交集考点自测:判断下列命题的真假1.对函数概念的理解.(1)如图:以x 为自变量的函数的图象为②④.( )(2)函数y =1与y =x 0是同一函数.( )2.函数的定义域的求法(3)函数y =x ln(1-x )的定义域为(0,1).( )3.分段函数求值(4)设函数f (x )=Error!则f (f (3))=139.( )4.函数解析式的求法(5)已知f (x )=2x 2+x -1,则f (x +1)=2x 2+5x +2.( )典例突破考点一 求函数的定义域【例1】 (2013·山东卷)函数f (x )=1-2x +1x +3的定义域为( ).A .(-3,0] B .(-3,1] C .(-∞,-3)∪(-3,0] D .(-∞,-3)∪(-3,1]练习1:函数y =ln (1+1x )+1-x 2的定义域为________.【例2】(1)f(x)的定义域为[1,2],f(2x )的定义域为(2)f(2 x )的定义域为[1,2],f(x)的定义域为实际问题使实际问题有意义练习2:已知f(2x )的定义域是[-1,1],则f(log 2x)的定义域为练习3:已知函数f(x)的定义域为[1,2],则函数g(x)=的定义域是 规律方法 (1)求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.(2)抽象函数定义域:若已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由a 求出若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x [a,b]时的值域考点二 求函数的解析式【例3】若f (x +1)=2x 2+1,则f (x )=________.练习4:已知f ()=x+2,求f (x )的解析式.练习5:定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.)1()2(-x x f b x g ≤≤)(∈1+x x【例4】f(x)为一次函数,且2f(1)+3f(2)=3,2f(-1)-f(0)= -1,则f(x)=练习6:f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试求出f (x )的解析式.【例5】定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式.练习7:已知f(x)+2f()=x(x 0),则f(x)= 规律方法 求函数解析式常用方法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法;(2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(3)方程法:已知关于f (x )与f (1x )或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).考点二 分段函数及其应用【例6】定义在R 上的函数f (x )满足f (x )=Error!,则f (3)的值为( ).A .-1B .-2C .1D .2练习8:已知函数f (x )=Error!则f (a )+f (1)=0,则实数a 的值等于( ).x1A.-3 B.-1或3 C.1 D.-3或1规律方法(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.课堂小结1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先意识.2.函数有三种表示方法——列表法、图象法和解析法,三者之间是可以互相转化的;求函数解析式比较常见的方法有凑配法、换元法、待定系数法和方程法等,特别要注意将实际问题转化为函数问题,通过设自变量,写出函数的解析式并明确定义域.。
数学基本函数知识点总结
数学基本函数知识点总结一、函数的定义及表示1、函数的定义函数是一个或多个自变量和一个因变量之间的对应关系。
也就是说,对于每一个自变量输入,都有一个对应的因变量输出。
函数通常用 f(x) 表示,其中 x 是自变量,f(x) 是因变量。
2、函数的表示函数可以用不同的方式表示,包括:数学公式:如 f(x) = x^2 + 1表格:列出自变量和因变量之间的对应关系图像:用坐标系将函数表示为图形符号:一般用字母表示函数,如 f, g, h 等二、基本函数及其图像1、线性函数线性函数的一般形式是 f(x) = mx + b,其中 m 是斜率,b 是截距。
线性函数的图像是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与 y 轴的交点位置。
2、二次函数二次函数的一般形式是 f(x) = ax^2 + bx + c,其中 a, b, c 是常数且a ≠ 0。
二次函数的图像是抛物线,开口方向由 a 的正负确定,即向上开口还是向下开口。
3、指数函数指数函数的一般形式是 f(x) = a^x,其中 a 是底数,x 是指数。
指数函数的图像是一条曲线,在 a 大于 1 时呈现递增趋势,在 0 到 1 之间呈现递减趋势。
4、对数函数对数函数的一般形式是 f(x) = log_a(x),其中 a 是底数,x 是真数。
对数函数的图像是一条曲线,有一条垂直渐近线。
5、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的图像都是周期性的波动曲线,表现出不同的振动特性。
三、函数的性质1、定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
函数的图像通常在定义域内展现出对应的曲线和波动。
2、奇偶性函数的奇偶性可以通过函数公式进行判断。
若 f(-x) = f(x),则函数是偶函数;若 f(-x) = -f(x),则函数是奇函数;若不满足以上条件,则函数是非奇非偶函数。
3、单调性函数的单调性是指函数的增减趋势。
函数 f 在定义域上是单调增加的,就是对于任意的 x1 < x2,有 f(x1) < f(x2)。
函数的表达知识点归纳总结
精品文档供您编辑修改使用专业品质权威编制人:______________审核人:______________审批人:______________编制单位:____________编制时间:____________序言下载提示:该文档是本团队精心编制而成,希望大家下载或复制使用后,能够解决实际问题。
文档全文可编辑,以便您下载后可定制修改,请根据实际需要进行调整和使用,谢谢!同时,本团队为大家提供各种类型的经典资料,如办公资料、职场资料、生活资料、学习资料、课堂资料、阅读资料、知识资料、党建资料、教育资料、其他资料等等,想学习、参考、使用不同格式和写法的资料,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic materials for everyone, such as office materials, workplace materials, lifestylematerials, learning materials, classroom materials, reading materials, knowledge materials, party building materials, educational materials, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!函数的表达知识点归纳总结一、函数的定义与基本观点函数是数学中分外重要的观点之一,它有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数及其表示
一、知识梳理
1.映射的概念 设是两个集合,如果按照某种对应法则,对于集合中的任意元素,在集合中都有唯一确定的元素与之对应,那么这样的单值对应叫做从到的映射,通常记为 ,f 表示对应法则
注意:⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
2.函数的概念
(1)函数的定义:设是两个非空的数集,如果按照某种对应法则,对于集合中的 ,在集合中都有 的数和它对应,那么这样的对应叫做从到的一个函数,通常记为__________
(2)函数的定义域、值域
在函数中,叫做自变量, 叫做的定义域;与的值相对应的值叫做函数值, 称为函数的值域。
(3)函数的三要素: 、 和
3.函数的三种表示法:图象法、列表法、解析法
(1).图象法:就是用函数图象表示两个变量之间的关系;
(2).列表法:就是列出表格来表示两个变量的函数关系;
(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数
在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析
考点1:映射的概念
例1.下述两个个对应是A 到B 的映射吗?
(1)A R =,{|0}B y y =>,:||f x y x →=;
(2){|0}A x x =>,{|}B y y R =∈,:f x y →=
例2.若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个
例3.设集合{1,0,1}M =-,{2,1,0,1,2}N =--,如果从M 到N 的映射f 满足条件:对M 中的每个元素x 与它在N 中的象()f x 的和都为奇数,则映射f 的个数是( )
()A 8个 ()B 12个 ()C 16个 ()D 18个
考点2:判断两函数是否为同一个函数
如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
例1. 试判断以下各组函数是否表示同一函数?
(1),;
(2),
(3),;
(4),
(5),(n ∈N *
); 考点3:求函数解析式
方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;
(2)若已知复合函数的解析式,则可用换元法
(3)配凑法
(4)若已知抽象函数的表达式,则常用解方程组消参的方法求出
题型1:用待定系数法求函数的解析式
例1.已知函数()f x 是一次函数,且49)]([+=x x f f ,求()f x 表达式.
例2.已知()f x 是一次函数且()()()()()22315,2011,f f f f f x -=--==则(
)
A .32x +
B .32x -
C .23x +
D .23x - 例3.二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1.
(1)求f(x)的解析式;
(2)解不等式f (x)>2x +5.
例4.已知g (x )=-x 2
-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值为1,且f (x )+g (x )为奇函数,求函数f (x )的表达式.
2、配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x 的表达式容易配成()g x 的运算形式时,常用配凑法。
但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。
例2 已知221)1(x
x x x f +=+ )0(>x ,求 ()f x 的解析式
3、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
与配凑法一样,要注意所换元的定义域的变化。
例3 已知x x x f 2)1(+=+,求)1(+x f
4、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。
例4已知:函数)(2
x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式
5、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。
例5 设,)1(2)()(x x f x f x f =-满足求)(x f
例6 设)(x f 为偶函数,)(x g 为奇函数,又,1
1)()(-=+x x g x f 试求)()(x g x f 和的解析式
6、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。
例7 已知:1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f
7、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭
乘或者迭代等运算求得函数解析式。
例8 设)(x f 是定义在+N 上的函数,满足1)1(=f ,对任意的自然数b a , 都有ab b a f b f a f -+=+)()()(,求)(x f
考点4:求函数的定义域
题型1:求有解析式的函数的定义域
(1)常规方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的的取值范围,实际操作时要注意:① 分母不能为0;② 对数的真数必须为正;③ 偶次根式中被开方数应为非负数;④ 零指数幂中,底数不等于0;⑤ 负分数指数幂中,底数应大于0;⑥ 若解析式由几个部分组成,则定义域为各个部分相应集合的交集;
例1.函数()13
f x x =-的定义域为( ) A .[)(]22+∞-∞-U ,, B .[)()2,33+∞U ,
C .(][)()22,33-∞-+∞U U ,,
D .(]2-∞-, 例2、函数x x x x f -+=0
)1()(的定义域是( )
A.{}0|<x x
B. {}0|>x x
C. {}10|-≠<x x x 且
D. {}10|-≠≠x x x 且
题型2:求复合函数和抽象函数的定义域
练一练:
例1.已知的定义域是,求函数的定义域
例2.已知(21)y f x =-的定义域是(-2,0),求(21)y f x =+的定义域
例3、已知函数)1(+=x f y 的定义域为[-2,3],则()12-=x f y 的定义域是_________ 考点5:求函数的值域
1. 求值域的几种常用方法
(1)直接法:通过对自变量x 和函数性质的观察,结合函数的解析式直接得出y=f(x)的取值范围
(2)配方法:对于(可化为)“二次函数型”的函数常用配方法,
例1、322+--=x x y
例2、2
285y x x =-+- (1)]1,1[-∈x (2)]4,1[∈x (3)]8,4[∈x
(3)判别式法:通过对二次方程的实根的判别求值域。
例3、132222+-+-=x x x x y 例4、1
12++-=x x x y
(3)换元法:通过等价转化换成常见函数模型,
例5、x x y 21-+= 例6、13432)(-+-=x x x f
(4)分段函数分别求函数值域,
例7、53-++=x x y
例8、函数222(03)()6(20)
x x x f x x x x ⎧-≤≤⎪=⎨+-≤≤⎪⎩的值域是( ) A .R B .[)9,-+∞ C .[]8,1- D .[]9,1-
(5)分离常数法:常用来求“分式型”函数的值域。
例9、1
122
+-=x x y
例10、设函数1
11y x =+的定义域为M ,值域为N ,那么 ( )
()A {0},{0}M x x N y y =≠=≠ ()B {0},{}M x x N y y R =≠=∈ ()C {01,0}M x x x x =<≠->且或,{0011}N y y y y =<<<>或或
()D {1100}M x x x x =<--<<>或或, {0}N y y =≠
(9)反函数法。