《大学物理C上下》练习册及答案
11-12大学物理C习题答案
1电场强度的定义E = (0Fq ),场强只与( 场源 )电荷有关,与( 试验 )电荷无关。
点电荷在距其r 处产生的场强E =204rQ e rπε 2 电通量e Φ=( E d S ⋅⎰),表示(通过电场中某个面的电场线数);电场线可否闭合( 不闭合 )?可否相交( 不相交,从正电荷指向负电荷 )?磁通量Φ=( B d S ⋅⎰),磁场线可否闭合( 闭合 )?可否相交( 不相交 )? 3 高斯定理的内容( 0in e q E dS εΦ=⋅=∑⎰ ),高斯面必须是( 闭合 )的曲面;高斯面上每一点的电场强度均为0,则电通量( 为0 ),通过高斯面的电通量为零,则高斯面内部的电荷( 的代数和为0 );高斯面上某点的场强与面外电荷( 有关 ),通过高斯面的电通量与面外电荷( 无关 ) 4 任意一点A 的电势A V =(AE dl ⋅⎰零),电势的正负只与( 电势零点的选取 )有关,与场强( 无关 );点电荷在距其r 处产生的电势V =( 04Q rπε )5 安培环路定理的内容(0in B dl I μ⋅=∑⎰ ),B dl⋅⎰与环路外面的电流( 无关 ),B与环路外面的电流( 有关 );环路内部电流何时取正,何时取负( 环路与电流满足右手螺旋时,电流取正,否则取负 )?闭合回路上各点磁感强度都为零时,则闭合回路内部( 电流的代数和为0 ),环路内部电流代数和为0时,环路上每一点的磁感应强度是否为0 ( 不一定 , B dl ⋅⎰为0,但每一点的磁感应强度不能确定)?6 半径为R ,均匀带电的球面,其内部距球心为r 处的某点的电场强度E =( 0 ),电势V =(04Q Rπε );画出场强E随距离r 的变化曲线;其外部距球心为r 处的某点的电场强度E =(204rQ e rπε ),电势V =( 04Q rπε );7半径为R ,均匀带电的球体,其内部距球心为r 处的某点的电场强度E =(304r Qr e R πε ),电势V =( 23003V 88Q Qr R R πεπε=- );画出场强E 随距离r 的变化曲线;其外部距球心为r 处的某点的电场强度E =(204rQ e rπε),电势V =(04Q rπε );8半径为R1,均匀带电Q 的球体,外面套一半径为R2,均匀带电-Q 的球面,三个空间的场强E 分别为( )?画出场强E随距离r 的变化曲线,三个空间的电势V 分别为( )?1301122024 40Qrr R R Q E R r R r r R πεπε⎧<⎪⎪⎪=<<⎨⎪⎪>⎪⎩2130102011200223848440Q Q Qr r R R R R Q Q V R r R r R r R πεπεπεπεπε⎧--<⎪⎪⎪=-<<⎨⎪⎪>⎪⎩9半径为R 均匀带电的无限长带电圆柱面,圆柱面内外的电场强度分布为( ),设距轴心长度为a (a>R )处的电势为0,则圆柱面内外的电势分布为( )002r R E R r rλπε<⎧⎪=⎨<⎪⎩0ln 2 V ln 2a r RR a r Rrλπελπε⎧<⎪⎪=⎨⎪>⎪⎩10半径为R 均匀带电的无限长带电圆柱体,圆柱体内外的电场强度分布为( ),设距轴心长度为a (a>R )处的电势为0,则圆柱面内外的电势分布为( )2002 2rr R R E R rrλπελπε⎧<⎪⎪=⎨⎪<⎪⎩222000ln ()24 V ln 2a R r r RR r a r R r λλπεπελπε⎧+-<⎪⎪=⎨⎪>⎪⎩前面部分均为电磁场部分最基本概念及应用的理解,重点高斯定理、电势的求解、安培环路定理,自己一定要牢牢掌握11 四个点电荷到坐标原点O 的距离均为d ,如图示。
大学物理C1练习题答案(新版)
大学物理C1练习题答案(新版)大学物理C1练习题答案力学练习题(一)一、选择题1.D2.B3.B4.D二、填空题1. 2sin A t -ωω 210,1,2,2k k +=πω2. 17.27 2.73(m)r i j ?=+ 0.350.06(m /i j =+v 1.16(m /s)=v3. (1)10 m ,(2)15.7 m三、计算题1. 232210(SI)3t x t ==+v 2./s)=±v力学练习题(二)一、选择题1.D2.D3.C 二、填空题1. sin g -θ cos g θ 2c o s g θv2. 3243t t - 2126t t -3. 55.9/min v m = '东偏北2636或26.6 4. 1212()F m m g m m +-+ 2112(2)m F m g m m ++ 三、计算题1. (1)0mg2. 00(1)R R t μ=+v v v 0(2)ln 2R R t s μμ==v3. (1)7m /s (2)11m /s 222(3)4m/s 605m/s 605m/s t n a a a ===力学练习题(三)一、选择题1.C2.A3.A4.D二、填空题1. 6m /s2. 12J3. 18N s ?三、计算题1. (1)26.49N (2)4.7N s ?2. 12.96m /s3. 0.301m /s力学练习题(四)一、选择题1.C2.B3.B D二、填空题1. 4s 15m/s2.12Ma 3. ln 2J k三、计算题1. 2(1)0.5rad /s - (2)0.25N m -? (3)75rad2. 2(1)10.3rad /s 1(2)9.08rad s -? 力学练习题(五)一、选择题1.C2.D3.B二、填空题1. 0.4rad /s2. 2112(kg m s )k -?? 3(N m)k ?三、计算题1. 21212()m t g m μ+=v v 2. 0(1)78.8=θ (2)4.87m /s (3)3.95J3. 0(1)4ω 22003(2)2W mr =ω 振动和波动练习题(一)一、选择题1.B 2.B 3.D二、填空题1.2,4,12s π-,2π-,2cos()22t ππ-,sin()22t πππ--,2cos()222t πππ--,π2.4T ,12T ,6T3.1︰1三、计算题1.(1)22.010cos(4)3x t m ππ-=?+(2)242.010cos(4)3x t m ππ-=?+ 2.(1)200/k N m =(2)0,0.1,0t x m ===v (3)0.1cos(10)x t m =振动和波动练习题(二)一、选择题1.C 2.C二、填空题1111221122sin sin cos cos A A tg A A -++,2,0,1,2k k ?π?=±=,(21),0,1,2k k ?π?=±+= 2.3cos(5)6t π+,)2t π+ 3.F kx =-,cos[()]x y A t uω?=-+,波沿传播方向传播x 距离落后的时间,波沿传播方向传播x 距离落后的相位。
《大学物理C1(上、下)》练习册及答案
大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。
[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。
大学物理c的试题及答案
大学物理c的试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项是牛顿第一定律的描述?A. 物体在没有外力作用下,总保持静止或匀速直线运动状态B. 物体的加速度与作用力成正比,与质量成反比C. 物体的加速度与作用力成正比,与质量成正比D. 物体在任何情况下都保持静止或匀速直线运动状态答案:A2. 光在真空中的传播速度是多少?A. 299,792,458 m/sB. 299,792,458 km/sC. 299,792,458 km/hD. 299,792,458 m/h答案:A3. 以下哪个是电场强度的定义?A. 电场力与电荷的比值B. 电荷与电场力的比值C. 电场力与电场强度的比值D. 电场强度与电荷的比值答案:A4. 根据热力学第一定律,系统内能的增加等于系统吸收的热量与对外做的功之和。
A. 正确B. 错误答案:A5. 电磁波的频率与波长的关系是?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比,但只在特定条件下成立答案:B6. 根据麦克斯韦方程组,变化的磁场会产生什么?A. 变化的电场B. 恒定的电场C. 恒定的磁场D. 没有影响答案:A7. 欧姆定律描述的是电流、电压和电阻之间的关系,其表达式为?A. I = V/RB. I = R/VC. V = I * RD. R = V/I答案:A8. 以下哪个选项是描述波的干涉现象?A. 两个波相遇时,振幅相加B. 两个波相遇时,振幅相减C. 两个波相遇时,振幅不变D. 两个波相遇时,振幅消失答案:A9. 根据量子力学,电子在原子中的运动状态是由什么决定的?A. 电子的电荷B. 电子的质量C. 电子的能级D. 电子的动量答案:C10. 根据相对论,当物体的速度接近光速时,其质量会如何变化?A. 质量不变B. 质量增加C. 质量减少D. 质量消失答案:B二、填空题(每题2分,共20分)1. 根据牛顿第二定律,物体的加速度与作用力成_______,与物体的质量成_______。
大学物理课后习题答案(上下册全)武汉大学出版社 第12章 习题解答
第12章 习题与答案12-1 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为[ ]A. 1.5λ.B. 1.5λ/n .C. 1.5n .D. 3λ. [答案:A ]12-2 平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为[ ]A. 2πn 2e / ( n 1λ1).B. 4πn 1e / ( n 2λ1)] +π.C. 4πn 2e / ( n 1λ1) ]+π.D. 4πn 2e / ( n 1λ1).[答案: C ]12-3 两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射.若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的[ ]A. 间隔变小,并向棱边方向平移.B. 间隔变大,并向远离棱边方向平移.C. 间隔不变,向棱边方向平移.D.间隔变小,并向远离棱边方向平移. [答案: A ]12-4 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如题12-4图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分[ ]A. 凸起,且高度为4λ.B. 凸起,且高度为2λ.C. 凹陷,且深度为2λ.D. 凹陷,且深度为4λ.[答案: C ]12-5 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹[ ]A .中心暗斑变成亮斑. B. 间距变大. C. 间距变小. D. 间距不变. [答案: C ]题12-4图12-6 在光栅光谱中,假如所有偶数级次的主极大都恰好在单缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为[ ] A. =3a b . B. =2a b . C. =a b . D. =0.5a b [答案: C ]12-7 对某一定波长的垂直入射光 衍射光栅的屏幕上只能出现零级和一级主极大,欲使屏幕上出现更高级次的主极大,应该[ ]A. 换一个光栅常数较小的光栅.B. 换一个光栅常数较大的光栅.C. 将光栅向靠近屏幕的方向移动.D. 将光栅向远离屏幕的方向移动.[答案: B ]12-8如果两个偏振片堆叠在一起,且偏振化方向之间夹角为60°,光强为I 0的自然光垂直入射在偏振片上,则出射光强为[ ]A. I 0 / 8.B. I 0 / 4.C. 3 I 0 / 8.D. 3 I 0 / 4.[答案: A ]12-9一束自然光自空气射向一块平板玻璃(如题12-9图),设入射角等于布儒斯特角i 0,则在上表面的出射光2是[ ]A. 自然光.B. 线偏振光且光矢量的振动方向平行于入射面.C. 线偏振光且光矢量的振动方向垂直于入射面.D. 部分偏振光.[答案: C ]12-10相干光的必要条件为________________________,________________________,________________________。
(完整版)大学物理C习题册
《大学物理C》课程学习指导石河子大学师范学院物理系普物教研室编2008年3月目录第一章连续体力学 (3)第二章气体动理论 (12)第三章热力学 (17)第四章静电场 (24)第六章稳恒磁场 (34)第七章电磁感应 (39)第八章振动与波 (43)第九章光的波动性 (50)第一章 连续体力学一、本章重难点1、刚体定轴转动的特点及描述刚体定轴转动的各个物理量。
理解线量与角量的关系。
2、力矩、转动动能、转动惯量、刚体定轴转动定理。
3、角动量,刚体定轴转动的角动量定律、角动量守恒定律4、应力、应变的概念,应变的几种形式5、理解应力与应变的关系,弹性模量6、流体、理想流体、流线和流管、定常流动7、流体的连续性方程、伯努利方程8、泊肃叶定律9、层流、湍流、雷诺数10、粘性流体的伯努利方程、斯托克斯定律11、弯曲液面的附加压强(球形液面、柱形液面) 12、毛细现象、润湿和不润湿现象、气体栓塞二、课后习题解答1-1、一飞轮直径为0.2m ,质量为5.00kg ,t 边缘饶一轻绳,现用恒力拉绳子的一端,使其有静止均匀地加速,经0.50s 转速达10转/s 。
假定飞轮可看作实心圆柱体。
求; (1) 飞轮的角加速度及在这段时间转过的转数 (2) 拉力及拉力所做的功(3) 从拉动后t=10s 时飞轮的角速度及边缘上一点的速度和切向加速度及发向速度。
解: ,/1058.1,/6.12,/126,/1026.1)3(3.4921212125232202s m r a s m r a s m r v s t J J J J A t n t t z z z ⨯======⨯====-=ωβωβωωωωτN mr F mr J rF M F r M n t s rad t t z z z 4.31212190,25.2221/6.125)1(20==∴===⇒=⨯===⇒===⇒=βββθπθβθωββωϖϖϖ)(转1-2、有一根长为l 、质量为m 的匀质细杆,两端各牢固的连接一个质量为m 的小球,整个系统可绕一过O 点并垂直于杆的水平轴无摩察的转动,如图。
大学物理c2练习册期中测试题答案
02
答案解析
第1题解析
答案:B
解析:根据牛顿第二定律,物体的加速度与合外力成正比,与质量成反比。选项 B中描述了加速度与合外力、质量的关系,符合牛顿第二定律。
第2题解析
答案:D
解析:根据动量守恒定律,系统在不受外力或合外力为零的情况下,总动量保持不变。选项D中描述了系统动量守恒的条件, 符合动量守恒定律。
动量不变。
第3题答案
应用能量守恒定律 答案:
1. 能量守恒定律表明系统内各种形式 的能量在相互转化时,总量保持不变。
2. 在只有重力或弹力做功的情况下, 物体的动能和势能可以相互转化,总 机械能守恒。
3. 在只有保守力做功的情况下,系统 的势能和动能可以相互转化,总能量 守恒。
4. 在能量守恒的前提下,可以通过分 析能量的转化和转移来解决问题。
受力分析不准确
学生在分析物体受力情况时,容易忽略某些力或分析错误,导致 后续计算出错。
运动过程分析不清
学生对物体的运动过程理解不够深入,容易在分析运动过程中出 现错误。
公式使用不当
学生在使用物理公式时,容易因为对公式的理解不准确或记忆错 误而导致使用不当。
第3题易错点
01
光学基础知识不扎 实
学生对光学基础知识掌握不够扎 实,容易在分析光学问题时出错。
第3题解析
答案:C
解析:根据能量守恒定律,能量不能凭空产生或消失,只能从一种形式转化为另一种形式。选项C中 描述了能量守恒定律的实质,符合能量守恒定律。
03
题目考点分析
第1题考点
知识点
牛顿第二定律的应用
考查内容
通过分析物体的受力情况,利用牛顿第二定律求物体 的加速度。
解题关键
大学物理C课后答案
习题5题5-2图题5-2图5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题5-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q =5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度95.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示题5-4图(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题5-4图所示由于对称性⎰=lQx E 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x xE Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E5-9 如题5-9图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功. 解: 如题5-9图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=题5-9图 题5-10图5-10 如题5-10图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题5-10图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 86)35251(5021=+=+=U U U AB V 习题66-5 在真空中,有两根互相平行的无限长直导线L 1和L 2,相距0.10 m ,通有方向相反的电流,120A I =,210A I =,如题6-5图所示.A ,B 两点与导线在同一平面内.这两点与导线L 2的距离均为5.0 cm.试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题6-5图解:如题6-5图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m6-7 设题6-7图中两导线中的电流均为8 A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:(1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么?题6-7图解: ⎰μ=⋅al B 08d⎰μ=⋅bal B 08d⎰=⋅cl B 0d(1)在各条闭合曲线上,各点B的大小不相等.(2)在闭合曲线C 上各点B 不为零.只是B 的环路积分为零而非每点0=B.题6-10图6-10 如题6-10图所示,在长直导线AB 内通以电流120A I =,在矩形线圈CDEF 中通有电流210A I =,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0 cm ,b =20.0 cm ,d =1.0 cm ,求:(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩.解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==dI bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.题6-12图6-12 一长直导线通有电流120A I =,旁边放一导线ab ,其中通有电流210A I =,且两者共面,如题6-12图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力ab F ⊥d 向上,大小为rI rI F πμ2d d 102= F d 对O 点力矩F r M ⨯=d Md 方向垂直纸面向外,大小为r I I F r M d 2d d 210πμ== ⎰⎰-⨯===ba bar I I M M 6210106.3d 2d πμ m N ⋅题6-13图6-13 电子在47010T B -=⨯的匀强磁场中作圆周运动,圆周半径r =3.0 cm.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如题6-13图所示.(1)试画出这电子运动的轨道;(2)求这电子速度v 的大小; (3)求这电子的动能k E . 解:(1)轨迹如图题6-13图(2)∵ rv m evB 2=∴ 7107.3⨯==m eBrv 1s m -⋅ (3) 162K 102.621-⨯==mv E J05.1===H H B o r μμμ T习题77-1 一半径r =10 cm 的圆形回路放在B =0.8 T 的均匀磁场中,回路平面与B 垂直.当回路半径以恒定速率=80drdtcm/s 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V题7-37-3 如题7-3图所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以d Id t 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r Iab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε习题88-1 质量为10×10-3 kg 的小球与轻弹簧组成的系统,按20.1cos(8)3x t ππ=+(SI)的规律做谐振动,求:(1)振动的周期、振幅、初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等? (3)t 2=5 s 与t 1=1 s 两个时刻的位相差. 解:(1)设谐振动的标准方程为)cos(0φω+=t A x ,则知:3/2,s 412,8,m 1.00πφωππω===∴==T A 又 πω8.0==A v m 1s m -⋅ 51.2=1s m -⋅2.632==A a m ω2s m -⋅(2) N 63.0==m m a FJ 1016.32122-⨯==m mv E J 1058.1212-⨯===E E E k p当p k E E =时,有p E E 2=, 即)21(212122kA kx ⋅= ∴ m 20222±=±=A x (3) ππωφ32)15(8)(12=-=-=∆t t8-2 一个沿x 轴做简谐振动的弹簧振子,振幅为A ,周期为T ,其振动方程用余弦函数表出.如果t =0时质点的状态分别是:(1)x 0=-A ;(2)过平衡位置向正向运动;(3)过2Ax =处向负向运动; (4)过x =处向正向运动.试求出相应的初位相,并写出振动方程. 解:因为 ⎩⎨⎧-==0000sin cos φωφA v A x将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有)2cos(1πππφ+==t T A x)232cos(232πππφ+==t T A x)32cos(33πππφ+==t T A x)452cos(454πππφ+==t T A x8-3 一质量为10×10-3 kg 的物体做谐振动,振幅为24 cm ,周期为4.0 s ,当t =0时位移为+24 cm.求:(1)t =0.5 s 时,物体所在的位置及此时所受力的大小和方向; (2)由起始位置运动到x =12 cm 处所需的最短时间; (3)在x =12 cm 处物体的总能量. 解:由题已知 s 0.4,m 10242=⨯=-T A∴ 1s rad 5.02-⋅==ππωT又,0=t 时,0,00=∴+=φA x 故振动方程为m )5.0cos(10242t x π-⨯=(1)将s 5.0=t 代入得0.17m m )5.0cos(102425.0=⨯=-t x πN102.417.0)2(10103232--⨯-=⨯⨯⨯-=-=-=πωxm ma F方向指向坐标原点,即沿x 轴负向. (2)由题知,0=t 时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt (3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为J10 1.7) 24 .0()2(10102121214223222--⨯=⨯⨯⨯===πωAmkAE8-5 题8-5图为两个谐振动的x-t曲线,试分别写出其谐振动方程.题8-5图解:由题8-5图(a),∵0=t时,s2,cm10,,23,0,0===∴>=TAvx又πφ即1srad2-⋅==ππωT故m)23cos(1.0ππ+=txa由题8-5图(b)∵0=t时,35,0,20πφ=∴>=vAx1=t时,22,0,0111ππφ+=∴<=vx又ππωφ253511=+⨯=∴πω65=故mtxb)3565cos(1.0ππ+=习题9 机械波9-4 已知波源在原点的一列平面简谐波,波动方程为y=A cos (Bt-Cx),其中A,B,C为正值恒量.求:(1)波的振幅、波速、频率、周期与波长;(2)写出传播方向上距离波源为l处一点的振动方程;(3)任一时刻,在波的传播方向上相距为d的两点的位相差.解: (1)已知平面简谐波的波动方程)cos(CxBtAy-=(0≥x)将上式与波动方程的标准形式)22cos(λππυxt A y -=比较,可知: 波振幅为A ,频率πυ2B =, 波长C πλ2=,波速CB u ==λυ, 波动周期BT πυ21==.(2)将l x =代入波动方程即可得到该点的振动方程)cos(Cl Bt A y -=(3)因任一时刻t 同一波线上两点之间的位相差为 )(212x x -=∆λπφ将d x x =-12,及Cπλ2=代入上式,即得 Cd =∆φ.9-5 沿绳子传播的平面简谐波的波动方程为y =0.05cos(10πt -4πx ),式中x ,y 以m 计,t 以s 计.求:(1)波的波速、频率和波长;(2)绳子上各质点振动时的最大速度和最大加速度;(3)求x =0.2 m 处质点在t =1 s 时的位相,它是原点在哪一时刻的位相?这一位相所代表的运动状态在t =1.25 s 时刻到达哪一点? 解: (1)将题给方程与标准式)22cos(x t A y λππυ-=相比,得振幅05.0=A m ,频率5=υ1-s ,波长5.0=λm ,波速5.2==λυu 1s m -⋅. (2)绳上各点的最大振速,最大加速度分别为ππω5.005.010max =⨯==A v 1s m -⋅ 222max 505.0)10(ππω=⨯==A a 2s m -⋅(3)2.0=x m 处的振动比原点落后的时间为08.05.22.0==u x s 故2.0=x m ,1=t s 时的位相就是原点(0=x ),在92.008.010=-=t s 时的位相, 即 2.9=φπ. 设这一位相所代表的运动状态在25.1=t s 时刻到达x 点,则825.0)0.125.1(5.22.0)(11=-+=-+=t t u x x m9-7 如题9-7图所示,S 1和S 2为两相干波源,振幅均为A 1,相距λ4,S 1较S 2位相超前π2,求:题9-7图(1)S 1外侧各点的合振幅和强度;(2)S 2外侧各点的合振幅和强度.解:(1)在1S 外侧,距离1S 为1r 的点,1S 2S 传到该P 点引起的位相差为πλλππφ=⎥⎦⎤⎢⎣⎡+--=∆)4(2211r r 0,0211===-=A I A A A(2)在2S 外侧.距离2S 为1r 的点,1S 2S 传到该点引起的位相差.0)4(2222=-+-=∆r r λλππφ2121114,2A A I A A A A ===+=9-9 一驻波方程为y =0.02cos 20x cos 750t (SI),求:(1)形成此驻波的两列行波的振幅和波速; (2)相邻两波节间距离. 解: (1)取驻波方程为t uxA y πυπυ2cos 2cos 2= 故知 01.0202.0==A m 7502=πυ,则πυ2750=, 202=uπυ∴ 5.37202/7502202=⨯==πππυu 1s m -⋅(2)∵314.01.020/2====πυπυυλu m 所以相邻两波节间距离157.02==∆λx m习题10 波动光学10-4 在杨氏双缝实验中,双缝间距d =0.20 mm ,缝屏间距D =1.0 m .试求:(1)若第2级明条纹离屏中心的距离为6.0 mm ,计算此单色光的波长; (2)求相邻两明条纹间的距离.解: (1)由λk dDx =明知,λ22.01010.63⨯⨯=, ∴ 3106.0-⨯=λmm oA 6000=(2) 3106.02.010133=⨯⨯⨯==∆-λd D x mm10-5 在双缝装置中,用一很薄的云母片(n =1.58)覆盖其中的一条缝,结果使屏幕上的第7级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为550 nm ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ按题意λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ10-7 在折射率n 1=1.52的镜头表面涂有一层折射率n 2=1.38的MgF 2增透膜,如果此膜适用于波长λ=550 nm 的光,问膜的厚度应取何值?解: 设光垂直入射增透膜,欲透射增强,则膜上、下两表面反射光应满足干涉相消条件,即λ)21(22+=k e n ),2,1,0(⋅⋅⋅=k∴ 222422)21(n n k n k e λλλ+=+=)9961993(38.14550038.125500+=⨯+⨯=k k o A 令0=k ,得膜的最薄厚度为996oA . 当k 为其他整数倍时,也都满足要求.。
《大学物理》考试试卷(C)及答案解析
《大学物理》考试试卷(C )及答案解析一、选择题(共24分,每小题3分,请将答案填写在表格中)题号 12345678答案B BC A C AD D 1.下面表述正确的是[ ](A)质点作圆周运动,加速度一定与速度垂直 (B) 物体作直线运动,法向加速度必为零 (C)轨道最弯处法向加速度最大(D)某时刻的速率为零,切向加速度必为零。
2.用水平压力F 把一个物体压着靠在粗糙的竖直墙面上保持静止.当F逐渐增大时,物体所受的静摩擦力f [ ](A) 恒为零 (B) 不为零,但保持不变(C) 随F 成正比地增大. (D) 开始随F 增大,达到某一最大值后,就保持不变 3.地球绕太阳公转,从近日点向远日点运动的过程中,下面叙述中正确的是 [ ] (A)太阳的引力做正功 (B)地球的动能在增加 (C)系统的引力势能在增加 (D) 系统的机械能在减少4.如图所示:一均匀细棒竖直放置,其下端与一固定铰链O 连接,并可绕其转动,当细棒受到扰动,在重力作用下由静止向水平位置绕O 转动,在转动过程中, 下述说法哪一种是正确的[ ](A) 角速度从小到大,角加速度从小到大; (B) 角速度从小到大,角加速度从大到小; (C) 角速度从大到小,角加速度从大到小; (D) 角速度从大到小,角加速度从小到大.5.已知一高斯面所包围的体积内电量代数和 i q =0,则可肯定:[ ](A )高斯面上各点场强均为零。
(B )穿过高斯面上每一面元的电通量均为零。
(C )穿过整个高斯面的电通量为零。
(D )以上说法都不对。
6 有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N=2的平面圆线圈,导线长度不变,并通以同样的电流,则该线圈中心的磁感强度是原来的[ ](A )4倍 (B )2倍 (C ) 1/2 (D )1/47. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是[ ](A) ad 边转入纸内,bc 边转出纸外 (B) ad 边转出纸外,bc 边转入纸内 (C) ab 边转出纸外,cd 边转入纸内a bcd(D) ab 边转入纸内,cd 边转出纸外 8.两根无限长的平行直导线有相等的电流 , 但电流的流向相反,如右图,而电流的变化率dtdI均小于零,有一矩形线圈与两导线共面,则[ ] (A )线圈中无感应电流; (B )线圈中感应电流不确定。
大学物理c下试题及答案
大学物理c下试题及答案一、选择题(每题2分,共20分)1. 下列关于光的偏振现象描述正确的是:A. 光的偏振只发生在自然光中B. 光的偏振只发生在偏振光中C. 光的偏振是光的电磁波性质的表现D. 光的偏振与光的传播方向无关答案:C2. 根据麦克斯韦方程组,下列说法错误的是:A. 变化的磁场会产生电场B. 恒定的电流不会产生磁场C. 变化的电场会产生磁场D. 恒定的电荷分布不会产生电场答案:D3. 在理想气体状态方程中,下列哪个物理量是温度的函数?A. 体积B. 压力C. 气体常数D. 摩尔质量答案:B4. 根据热力学第一定律,下列说法正确的是:A. 系统对外做功,内能一定增加B. 系统吸收热量,内能一定增加C. 系统对外做功且吸收热量,内能可能不变D. 系统对外做功且吸收热量,内能一定减少答案:C5. 根据量子力学的波粒二象性,下列说法正确的是:A. 光子具有波动性,电子不具有波动性B. 电子具有波动性,光子不具有波动性C. 光子和电子都具有波动性D. 光子和电子都不具有波动性答案:C6. 在电磁波谱中,波长最长的是:A. 无线电波B. 微波C. 红外线D. 可见光答案:A7. 根据狭义相对论,下列说法错误的是:A. 运动的物体长度会变短B. 运动的物体质量会增加C. 运动的物体时间会变慢D. 光速在所有惯性参考系中都是相同的答案:D8. 在电磁感应现象中,下列说法正确的是:A. 只有变化的磁场才能产生感应电动势B. 恒定的磁场也能产生感应电动势C. 变化的电场不能产生感应电动势D. 恒定的电场也能产生感应电动势答案:A9. 根据热力学第二定律,下列说法正确的是:A. 热量可以从低温物体自发地传递到高温物体B. 热量不能自发地从低温物体传递到高温物体C. 所有自然过程都是可逆的D. 所有自然过程都是不可逆的答案:B10. 在量子力学中,下列说法错误的是:A. 电子在原子中的运动是确定的B. 电子在原子中的运动是概率性的C. 电子的波动性与粒子性是不可分割的D. 电子的波动性与粒子性是相互独立的答案:A二、填空题(每题2分,共20分)1. 光的波长、频率和速度之间的关系是:波长= __________ × 频率。
大学物理C试题及答案_2021_A卷
23()23t t r t ti j k =++ (采用SI 2〕 2 〔C 〕3 〔D 〕竖直上抛一小球,其空气阻力的大小不变,那么球上升到最高点所需用的时间与从最高点下降到原位E 处处为零,那么该面内必无电荷 如果高斯面内无电荷,那么高斯面上E 处处为零E 处处不为零,那么高斯面内必有电荷如果高斯面内有净电荷,那么通过高斯面的电通量必不为零的一个圆环上通有电流那么环心处的磁感应强度大小为 与R 成正比与R 成反比(32)=+(SI单位制F t i秒内合外力给物体的冲量为千克•米两个同方向同频率的简谐振动,其振动表达式分别为〔,那么它们的合振动的振幅为E 和磁感应强度而B =⨯∇ E 和B 都满足波动方程,即真空中电磁场以电磁波形式出现。
的定滑轮〔可视为匀质圆盘〕与质量分别为与水平面摩擦及绳子的质量可忽略,绳子与滑轮间无滑动,武汉理工大学教务处试题标准答案及评分标准用纸〔考试时间: 2006年1月11日〕| 课程名称 大学物理C (化工、制药、教育技术2004级各班) 〔 A 卷〕 |装 一、选择题〔每题3分,共24分〕| (C) (B) (D) (A) (D) (C) (D) (C) || 二、填空题 〔每空2分,共26分〕 | 1. 0钉 2. 4i ;2焦耳 | 3. 0.01米,23π | 4. 100 nm | 5. 122λλ= | 6. 0 ; 0 | 7. 1:2 ; 2:1 | 8. t BE ∂∂-=⨯∇;变化的电场可产生磁场 线| 三、计算题 | 1. 〔12分〕解:设绳子水平段张力为T 1, 竖直段张力为T 2,物体加速度大小〔二物体相同〕为a .物体A: 竖直方向无运动,水平方向 1A T m a =; ………………………… 2分 物体B: 2B B m g T m a -=; …………………………………………………… 2分滑轮: 由转动定律, 21()T T R J β-=, ………………………… 2分其中圆盘转动惯量 212J MR =, ………………………… 1分 角加速度〔顺时针转动时为正〕β=aR。
主编叶凡大学物理上下课后作业答案
作业1-1 填空题(1)一质点,以m s 1 2的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程[ 答案:10m;5 π m](2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI) ,如果初始时刻质点的速度v0 为5m·s-1,则当t 为3s 时,质点的速度v= 。
[ 答案:23m· s-1 ]1-2 选择题2 一质点作直线运动,某时刻的瞬时速度v 2m/ s ,瞬时加速度a 2m/s2,则一秒钟后质点的速度(A) 等于零(B) 等于-2m/s(C) 等于2m/s (D) 不能确定。
[ 答案:D]平均速度大小和平均速率大小分别为[ 答案: D]1- 4 下面几个质点运动学方程,哪个是匀 变速直线运动?32 (1)x=4t-3 ;(2)x=-4t 3+3t 2+6;(3) 22 x=-2t 2+8t+4 ;( 4) x=2/t 2-4/t 。
给出这个匀变速直线运动在 t=3s 时的 速度和加速度,并说明该时刻运动是加速 的还是减速的。
(x 单位为 m , t 单位为2 R 2 R (A) t ,t(B) 2R (C) 0,00,t2R (D)t ,0[ 答案: (3) 一运动质点在某瞬时位于矢径 的端点处,其速度大小为dr(A ) dtB]r(x, y)(B)dr dtd|r|(C) dt(D) (dx )2 (dy )2dt dts)解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又是位移对时间的两阶导数。
于是可得 (3)为匀变速直线运动。
其速度和加速度表达式分别为v dx4t 8dt d2xa2 4dt2t=3s 时的速度和加速度分别为v=-4m/s ,a=-4m/s 2。
因加速度为正所以是加速的。
1-7 一质点在xOy 平面上运动,运动方程为 x=3t +5, y=1t 2+3t -4.2式中t 以s 计,x, y 以m计.(1) 以时间t 为变量,写出质点位置矢量的表示式;(2) 求出t=1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3) 计算t =0 s时刻到t =4s 时刻内的平均速度;(4) 求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6) 求出质点加速度矢量的表示式,计算 t = 4s 时质点的加速度 ( 请把位置矢量、 位移、平均速度、瞬时速度、平均加速度、 瞬时加速度都表示成直角坐标系中的矢量 式).r 1 8i 0.5j mr 2 11i 4j m解:(1)r (3t 5)i (1t 23t 4) j(2) 将 t 1, t 2 代入上式即有213i 4.5j m(3)r5i 4j,r 4 17i16j4012i 20j3i (4)tdr 1v 3i (t 3) j m s 15jdt 则 (5)v4v 0 3iv a t3i 7j3j,v 43i 7jv 4 v 04j1j 4(6)a dv1j m s 2dt这说明该点只有 y 方向的加速度, 且为恒量。
2022年大学基础教育《大学物理(上册)》过关练习试题C卷 附答案
姓名班级 学号………密……….…………封…………………线…………………内……..………………不……………………. 准…………………答…. …………题…2022年大学基础教育《大学物理(上册)》过关练习试题C 卷 附答案 考试须知:1、考试时间:120分钟,本卷满分为100分。
2、请首先按要求在试卷的指定位置填写您的姓名、班级、学号。
3、请仔细阅读各种题目的回答要求,在密封线内答题,否则不予评分。
一、填空题(共10小题,每题2分,共20分)1、一质点沿半径R=0.4m 作圆周运动,其角位置,在t=2s 时,它的法向加速度=______,切向加速度=______。
2、四根辐条的金属轮子在均匀磁场中转动,转轴与平行,轮子和辐条都是导体,辐条长为R ,轮子转速为n ,则轮子中心O 与轮边缘b 之间的感应电动势为______________,电势最高点是在______________处。
3、一长直导线旁有一长为,宽为的矩形线圈,线圈与导线共面,如图所示. 长直导线通有稳恒电流,则距长直导线为处的点的磁感应强度为___________;线圈与导线的互感系数为___________。
4、一质量为0.2kg 的弹簧振子, 周期为2s,此振动系统的劲度系数k 为_______ N/m 。
5、质点在平面内运动,其运动方程为,质点在任意时刻的位置矢量为________;质点在任意时刻的速度矢量为________;加速度矢量为________。
6、一圆锥摆摆长为I 、摆锤质量为m ,在水平面上作匀速圆周运动,摆线与铅直线夹角,则: (1) 摆线的张力T =_____________________; (2) 摆锤的速率v =_____________________。
7、图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种气体分子的速率分布曲线。
其中曲线(a )是________气分子的速率分布曲线;曲线(c )是________气分子的速率分布曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a 保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。
[ ]2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2?R /T , 2?R/T . (B) 0 , 2?R /T(C) 0 , 0. (D) 2?R /T , 0.[ ]3. 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t d /d v , (2) v t r d /d ,(3) v t S d /d , (4) t a t d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r 的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx[ ]5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率) (A) td d v . (B)2V R . (C) R t 2d d v v . (D) 2/1242d d R t v v . [ ]6. 质量为m 的质点,以不变速率v 沿图中正三角形ABC 的水平光滑轨道运动.质点越过A 角时,轨道作用于质点的冲量的大小为(A) mv . (B)2mv . (C) 3mv . (D) 2mv .[ ]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒. [ ]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F 拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是 (A) 在两种情况下,F 做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等. (C)在两种情况下,箱子获得的动能相等. (D) 在两种情况下,由于摩擦而产生的热相等. [ ]10. 质量为m 的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M ,万有引力恒量为G ,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于 (A) 2R GMm (B) 22R GMm(C) 2121R R R R GMm(D) 2121R R R GMm (E) 222121R R R R GMm[ ]二 填空 11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a =_______;物体A 的加速度A a =______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t 是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1)开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3(SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m 的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m 深的井中提水.起始时桶中装有10 kg 的水,桶的质量为1kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ]2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变.(B) 它的动量不变,对圆心的角动量不断改变.(C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ]3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为?A和?B ,不计滑轮轴的摩擦,则有(A) ?A =?B . (B) ?A >?B .(C) ?A <?B . (D) 开始时?A =?B ,以后?A <?B .[ ]4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度?按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度?(A) 必然增大. (B) 必然减少.(C) 不会改变. (D) 如何变化,不能确定. [ ]5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为?0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31?0. (B)3/1??0. (C) 3??0. (D) 3 ??0. [ ]6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s ?1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度;(2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线上,设两轮的转动惯量分别为J=10 kg·m2和J=20 kg·m2.开始时,A轮转速为600 rev/min,B 轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题 1. 高斯定理 VS V S E 0/d d (A) 适用于任何静电场. (B) 只适用于真空中的静电场.(C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. [ ]2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于: (A) 06 q . (B) 012 q . (C) 024 q . (D) 048 q . [ ] 3. 电荷面密度均为+?的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E 随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大.(B) F / q 0比P 点处原先的场强数值小.(C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ]5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为?1和?2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为: (A)r 0212 . (B) 20210122R R (C) 1012R . (D) 0. [ ]6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变.(B) 曲面S 的电场强度通量变化,曲面上各点场强不变.(C) 曲面S 的电场强度通量变化,曲面上各点场强变化.(D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式 Sq S E 0/d 可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ]二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+?,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B=_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =____________________________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r 表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________.三、计算题10. 带电细线弯成半径为R的半圆形,电荷线密度为?=?0sin?,式中?0为一常数,?为半径R与x轴所成的夹角,如图所示.试求环心O处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x=bx,E y =0,E z=0.求立方体六个面的电场强度通量。